

Overview of TCG Technologies for Device Identification and Attestation

Guy Fedorkow Juniper Networks Feb 29, 2024

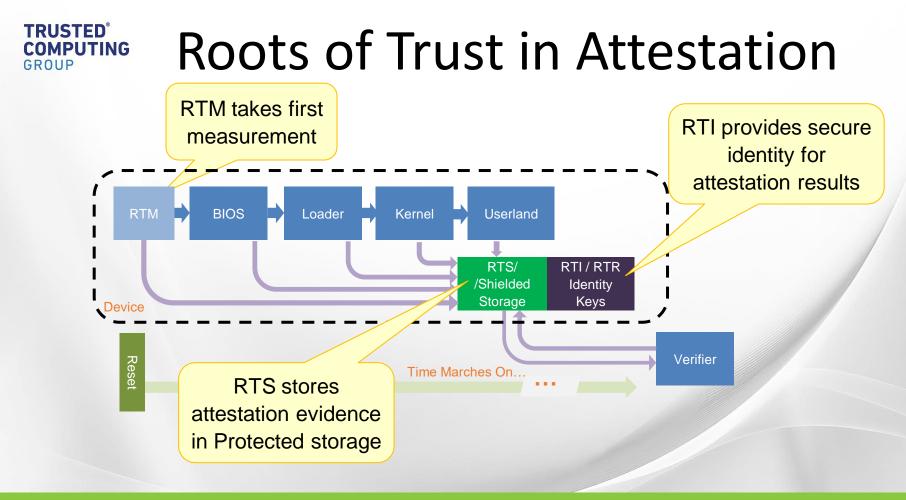
Problem Statement

- How do you know what software is actually running on a box?
- You could ask it, but it might not tell the truth
- Attestation (aka 'measured boot') establishes a chain of trust where each link measures the next link before it starts, and reports the results
- But the chain must start at a known-secure point called a Root of Trust.

This ppt describes the three Root of Trust mechanisms specified by TCG as part of an ecosystem for Attestation

What's a Root of Trust

Definition


"A component that performs one or more security-specific functions, such as measurement, storage, reporting, verification, and/or update. It is trusted always to behave in the expected manner, because its misbehavior cannot be detected (such as by measurement) under normal operation."

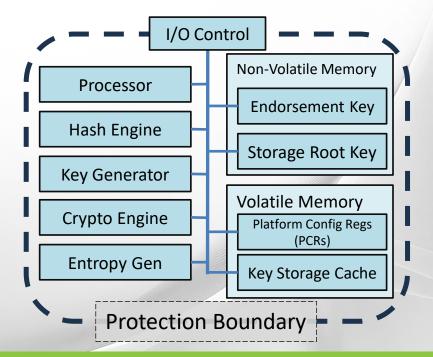
- Roots of Trust must be carefully isolated from system and application software to ensure they can't be inadvertently modified.
- Dedicated hardware or specialized processor features are usually required for a reliable Root of Trust

Root of Trust Functions

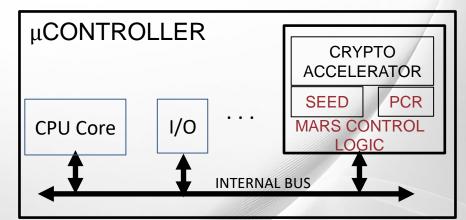
- RTM Root of Trust for Measurement
 - Measures First Mutable Code to start the attestation chain
- RTS Root of Trust for Storage
 - Provides Shielded storage for keys and measurements
- RTI/RTR Root of Trust for Identity, Reporting
 - Protects a difficult-to-hack digital identity for each device (e.g., a signed copy of the serial number and vendor name)

TCG RoT Technologies

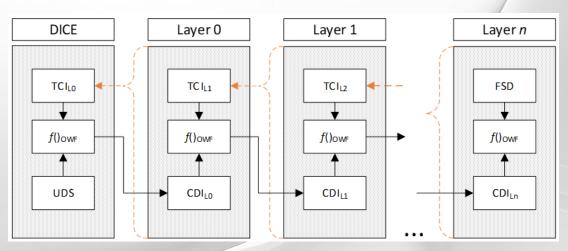
TCG currently specifies three Root of Trust technologies:

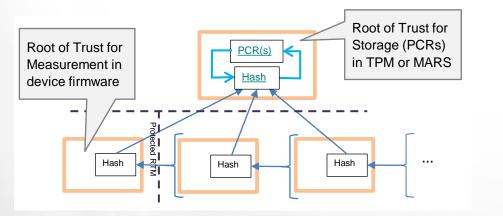

- TPM
 - Small, isolated crypto-processor
 - Either a hardware chip or firmware in a processor's trusted enclave
- MARS
 - Minimal set of TPM-like features, designed to be embedded as an IP block in small processors or microcontrollers.
- DICE
 - Very light hardware requirements, dependent on distributed software implementation to manage the chain of trust.

TRUSTED[®] COMPUTING GROUP

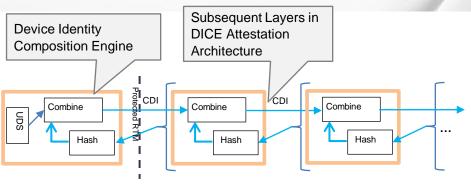

- Self Contained, low-power Crypto Processor
- Secure storage for keys, attestation results and other data
- Rich TCG support environment, libraries, guidance documents, etc

MARS


- Like a minimal TPM with functions essential for Identity and Attestation
- Designed as an Intellectual Property block for inclusion on small processors and controllers
- Not API-compatible with TPM, but offers very similar modes of interaction.



DICE


- Very simple hardware requirements
- The rest of DICE can be done in software
 - Optional DPE hardware can simplify some software handoff steps
- Uses a "Distributed Model", rather than focusing on a single element like the TPM or MARS.
- Different approach for Attestation

COMPUTING Comparing Attestation Models

TPM / MARS Attestation

DICE Attestation

TRUSTED[®] COMPUTING GROUP

Comparison Summary

	ТРМ	MARS	DICE
RTM (Root of Trust for Measurement)	An RTM is Required by all three, but out of scope		
RTS (Root of Trust for Storage)	PCRs to store measurements. Many other Protected Storage capabilities.	One or more PCRs to store measurements.	Hardware secures initial UDS secret. Then each layer secures its own secrets.
RTR (Root of Trust for Reporting)	TPM signs attestation reports	MARS hardware signs attestation reports	Final layer reports aggregate attestation chain
Hardware Overhead	A chip, or firmware in an enclave	Intellectual Property block in silicon	UDS hardware latch

For More Information

 Overview of TCG Technologies for Device Identification and Attestation <u>Version 1.0</u> <u>Revision 1.37</u>

https://trustedcomputinggroup.org/wp-content/uploads/Overview-of-TCG-Technologies-for-Device-Identification-and-Attestation-Version-1.0-Revision-1.37_5Feb24-2.pdf

Thank You!

TRUSTED[®] COMPUTING GROUP

For More Information

- <u>TCG Glossary Version 1.1 https://trustedcomputinggroup.org/resource/tcg-glossary/</u>
- <u>TCG Root of Trust Specification https://trustedcomputinggroup.org/wp-</u> content/uploads/TCG Roots of Trust Specification v0p20 PUBLIC REVIEW.pdf
- <u>TPM 2.0 Trusted Platform Module Library Family "2.0" Specification Parts 1-4 and Code, Revision 1.59</u> <u>https://trustedcomputinggroup.org/resource/tpm-library-specification/</u>
- <u>TPM 2.0 Mobile Reference Architecture</u>, Revision 142, 16 December 2014, <u>https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/</u>
- IETF Remote Attestation ProcedureS (RATS) Architecture, https://datatracker.ietf.org/doc/rfc9334/
- DICE Hardware Requirements for a Device Identifier Composition Engine https://trustedcomputinggroup.org/resource/hardware-requirements-for-adevice-identifier-composition-engine/
- DICE Layering Architecture https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
- DICE Attestation Architecture <u>https://trustedcomputinggroup.org/resource/dice-attestation-architecture/</u>
- <u>DICE Protection Environment</u> [public review] <u>https://trustedcomputinggroup.org/wp-content/uploads/TCG-DICE-Protection-Environment-Specification_14february2023-1.pdf</u>
- Measurement and Attestation RootS (MARS) Library Specification, https://trustedcomputinggroup.org/resource/mars-library-specification/
- <u>TCG Network Equipment https://trustedcomputinggroup.org/resource/tcg-guidance-securing-network-equipment/</u>
- Trusted Computing Platforms: TPM2.0 in Context, Graeme Proudler, Liqun Chen, Chris Dalton, Springer 2014
- IETF RIV TPM-based Network Device Remote Integrity Verification https://datatracker.ietf.org/doc/draft-ietf-rats-tpm-based-network-device-attest/