
Implicit Attestation at Scale
Chris Fenner, Google

Remote Attestation Gives Us Recoverability

● Step 1: Old code is running in the fleet

● Step 2: Find bugs in the old code

● Step 3: Deploy new code with fixes

● Step 4: Verify the fixed code got deployed

● Step 5: GOTO step 1

Remote Attestation Needs Cryptographic Evidence

Remote Machine

"Install kernel 2024-02-29"

InstallOK

Remote Attestation Needs Cryptographic Evidence

Compromised

Remote Machine

"Install kernel 2024-02-29"

Don't

InstallOK

Remote Attestation Needs Cryptographic Evidence

Compromised

Remote Machine

"Install kernel 2024-02-29"

OK
Don't

Install

"Prove you are running

kernel 2024-02-29"
Can't

provide

proof
Fail

Challenge: Scale

Compromised

Remote Machine

Remote Machine

Remote Machine

Remote Machine

Remote Machine

Remote Machine

Solution: Make Machines Verify Each Other

Compromised

Remote Machine

Remote Machine
Remote Machine

Remote Machine

Remote Machine

Remote Machine

Where to Put Attestation Verifier Logic?

Remote Machine Remote Machine

Verifier Logic Verifier Logic

Where to Put Attestation Verifier Logic?

Remote Machine Remote Machine

Verifier Logic Verifier Logic

Endorsements

Reference

Values

Appraisal

Policies

Endorsements

Reference

Values

Appraisal

Policies

Verifier Service

Where to Put Attestation Verifier Logic?

Remote Machine Remote Machine

Verifier

Logic
Endorsements

Reference

Values

Appraisal

Policies

Where to Put Attestation Verifier Logic?

Remote Machine Remote Machine

Only during certificate rotations

Check peer cert

(Implicit attestation)

Verifier Service

Verifier

Logic
Endorsements

Reference

Values

Appraisal

Policies

Q&A

What to Expect about Post-

Quantum Computing
Chris Fenner, Google

Agenda

● Why care about post-quantum cryptography

● Synopsis of new algorithms

● How to prepare

Why care about post-quantum cryptography?

Quantum computers will solve new kinds of problems…

Source: https://quantumai.google/hardware

https://quantumai.google/hardware

…including the ones assumed Hard by cryptographers

Shor's algorithm

● solves discrete log/factor

● breaks RSA and ECC

● can be parallelized

● can't fix by changing key sizes

● fix by changing algorithms

■ e.g., lattice crypto algorithms

(encapsulation and signing),

hash-based algorithms (signing)

Grover's algorithm

● unstructured search in √N time

● birthday attacks in ∛N time

● slightly weakens symmetric crypto

● can't be parallelized

● if paranoid, fix by increasing

key/hash sizes

■ e.g., AES-256, SHA-384

When will we have RSA-2048-scale quantum computers?

Data source: https://globalriskinstitute.org/publication/2023-quantum-threat-

timeline-report/

Timeframe 5 years 10 years 15 years 20 years 30 years

Experts'

Estimated

Likelihood

4-11% 17-31% 33-54% 56-78% 75-92%

https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/
https://globalriskinstitute.org/publication/2023-quantum-threat-timeline-report/

Synopsis of new algorithms

All PQC signature algorithms

Message (arbitrary

length)

Sign

Private Key Public Key

Signature Verify
True/

False

LMS, XMSS

One-time-use key

LMS, XMSS

One-time-use key One-time-use key One-time-use key One-time-use key

…

Public key

Internal node Internal node

… …

…

LMS, XMSS

NIST parameter set # of sigs hash size w Public size Signature size

LMS_M24_H5_W8 25 (32) 24 bytes 28 (256) 40 bytes 780 bytes

LMS_M24_H5_W1 25 (32) 24 bytes 21 (2) 40 bytes 8684 bytes

LMS_M32_H25_W1 225 (33M) 32 bytes 21 (2) 48 bytes 9324 bytes

XMSS_10_192 210 (1024) 24 bytes 24 (16) 48 bytes 1492 bytes

XMSS_20_256 220 (1M) 32 bytes 24 (16) 64 bytes 2820 bytes

RSA-2048 ∞ -- -- ~256 bytes 256 bytes

ECDSA-P256 2128 (~∞) -- -- ~64 bytes 64 bytes

SLH-DSA aka SPHINCS+

Few-time-use key

SLH-DSA aka SPHINCS+

XMSS Key XMSS Key XMSS Key XMSS Key

…

XMSS Key

…
Each layer signs the next layers

SLH-DSA aka SPHINCS+

SLH-DSA aka SPHINCS+

Parameter set # of sigs Private size Public size Signature size

SPHINCS+-128s 264 64 bytes 32 bytes 7856 bytes

SPHINCS+-128s-q20 220 64 bytes 32 bytes 3264 bytes

SPHINCS+-192s 264 96 bytes 48 bytes 16224 bytes

SPHINCS+-192s-q20 220 96 bytes 48 bytes 7008 bytes

SPHINCS+-256s 264 128 bytes 64 bytes 29792 bytes

SPHINCS+-256s-q20 220 128 bytes 64 bytes 12640 bytes

RSA-2048 ∞ ~256 bytes ~256 bytes 256 bytes

ECDSA-P256 2128 (~∞) ~32 bytes ~64 bytes 64 bytes

r2

r1

Lattice Cryptography In 2 Minutes

r2

r1x

Lattice Cryptography In 2 Minutes

r1

r2

Lattice Cryptography In 2 Minutes

r1

r2

x

Lattice Cryptography In 2 Minutes

r1

r2

C

Lattice Cryptography In 2 Minutes

ML-DSA aka Dilithium

Parameter set Private size Public size Signature size

ML-DSA-44 2528 bytes 1312 bytes 2420 bytes

ML-DSA-65 4000 bytes 1952 bytes 3293 bytes

ML-DSA-87 4864 bytes 2592 bytes 4595 bytes

RSA-2048 ~256 bytes ~256 bytes 256 bytes

ECDSA-P256 ~32 bytes ~64 bytes 64 bytes

All PQC key-encapsulation algorithms

Encapsulate

Public Key

Ciphertext Decapsulate

Private Key

Entropy

Source

Shared

secret key

Shared

secret key

ML-KEM aka Kyber

Parameter set Private size Public size Ciphertext size

ML-KEM-512 1632 bytes 800 bytes 768 bytes

ML-KEM-768 2400 bytes 1184 bytes 1088 bytes

ML-KEM-1024 3168 bytes 1568 bytes 1568 bytes

RSA-2048 ~256 bytes ~256 bytes 256 bytes

ECIES-P256 ~32 bytes ~64 bytes ~32 bytes

How to prepare

In Protocol Design: Prefer Signing over Encryption

Store-Now-Decrypt-Later Attacks:

Assume that your adversary is recording your encrypted network traffic today

and plans to decrypt it in 10 or 20 years. Will they get anything of value?

An adversary who steals your signing key can sign new things, but you can

fight that by revoking your signing key after PQC happens

There are more options to choose from when it comes to PQC signing algorithms

(LMS, XMSS, SLH-DSA, ML-DSA, etc)

In Interface Design: Plan for Big Keys and Ciphertexts

● The smallest NIST-approved PQC signature is 780 bytes

(LMS_M24_H5_W8) and it's for a key that can sign only 32 times

● Prepare for public and private keys of size 1-4KB, and signatures and

ciphertexts of size 1-4KB or more (especially if considering SLH-DSA aka

SPHINCS+)

In Hardware Design: Implement a SHA3 Block

● Most of the effort of ML-DSA and ML-KEM is in SHA3, which is very efficient

in terms of performance per die area

● SHA3 is also needed in order to implement the SHA3-variant parameter sets

of the hash-based schemes

● SHA3 is also useful for more than just hashing (see SHAKE, KMAC)
○ So make sure your hardware block supports the whole SHA3 family. ML-KEM alone will use

all of the variants!

In Application Design: Plan for Algorithm Changes

● Incorporate reasonable algorithm agility into your application, so that you can

switch from ECDSA to ML-DSA to $FUTURE_ALGORITHM as we learn more

In Application Design: Plan for Hybrid Constructions

● Combine classical and post-quantum algorithms to ensure security is not

reduced in the case of a future discovery that compromises the new quantum

algorithms

● You can combine ECDSA with ML-DSA (example)
○ This example signs the the ECDSA signature again with the ML-DSA key to improve the total

scheme's strong-unforgeability properties

● X-Wing: X25519 + ML-KEM-768

● A future NIST publication (SP800-227) will give more general guidance about

using and combining KEMs

https://eprint.iacr.org/2022/1225.pdf
https://eprint.iacr.org/2024/039

Q&A

	Slide 1: Implicit Attestation at Scale
	Slide 2: Remote Attestation Gives Us Recoverability
	Slide 3: Remote Attestation Needs Cryptographic Evidence
	Slide 4: Remote Attestation Needs Cryptographic Evidence
	Slide 5: Remote Attestation Needs Cryptographic Evidence
	Slide 6: Challenge: Scale
	Slide 7: Solution: Make Machines Verify Each Other
	Slide 8: Where to Put Attestation Verifier Logic?
	Slide 9: Where to Put Attestation Verifier Logic?
	Slide 10: Where to Put Attestation Verifier Logic?
	Slide 11: Where to Put Attestation Verifier Logic?
	Slide 12: Q&A
	8dcb0942-0a02-4813-8381-10beaab70995.pdf
	Slide 1: What to Expect about Post-Quantum Computing
	Slide 2: Agenda
	Slide 3: Why care about post-quantum cryptography?
	Slide 4: Quantum computers will solve new kinds of problems…
	Slide 5: …including the ones assumed Hard by cryptographers
	Slide 6: When will we have RSA-2048-scale quantum computers?
	Slide 7: Synopsis of new algorithms
	Slide 8: All PQC signature algorithms
	Slide 9: LMS, XMSS
	Slide 10: LMS, XMSS
	Slide 11: LMS, XMSS
	Slide 12: SLH-DSA aka SPHINCS+
	Slide 13: SLH-DSA aka SPHINCS+
	Slide 14: SLH-DSA aka SPHINCS+
	Slide 15: SLH-DSA aka SPHINCS+
	Slide 16: Lattice Cryptography In 2 Minutes
	Slide 17: Lattice Cryptography In 2 Minutes
	Slide 18: Lattice Cryptography In 2 Minutes
	Slide 19: Lattice Cryptography In 2 Minutes
	Slide 20: Lattice Cryptography In 2 Minutes
	Slide 21: ML-DSA aka Dilithium
	Slide 22: All PQC key-encapsulation algorithms
	Slide 23: ML-KEM aka Kyber
	Slide 24: How to prepare
	Slide 25: In Protocol Design: Prefer Signing over Encryption
	Slide 26: In Interface Design: Plan for Big Keys and Ciphertexts
	Slide 27: In Hardware Design: Implement a SHA3 Block
	Slide 28: In Application Design: Plan for Algorithm Changes
	Slide 29: In Application Design: Plan for Hybrid Constructions
	Slide 30: Q&A

