
DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED © TCG 2024

DICE Attestation Architecture

Version 1.1
Revision 0.18
January 6, 2024

Contact: admin@trustedcomputinggroup.org

PUBLISHED

S
P
E
C
I
F
I
C
A
T
I
O
N

mailto:admin@trustedcomputinggroup.org

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 1 © TCG 2024

DISCLAIMERS, NOTICES, AND LICENSE TERMS
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use
of information in this specification and to the implementation of this specification, and TCG disclaims all liability for
cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted
herein other than as follows: You may not copy or reproduce the document or distribute it to others without written
permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG
specifications or (b) developing, testing, or promoting information technology standards and best practices, so long
as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing
through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 2 © TCG 2024

CONTENTS
DISCLAIMERS, NOTICES, AND LICENSE TERMS ... 1

1 SCOPE .. 5

1.1 Key Words ... 5

1.2 Statement Type .. 5

2 REFERENCES .. 6

3 TERMS AND DEFINITIONS .. 8

3.1 Glossary ... 8

3.2 Abbreviations ... 10

4 INTRODUCTION ... 11

5 ATTESTATION ARCHITECTURE ... 12

5.1 Attestation Roles .. 13

5.1.1 Attester Role ... 13

5.1.2 Endorser Role ... 14

5.1.3 Verifier Role .. 14

5.1.4 Verifier Owner Role ... 14

5.1.5 Relying Party Role .. 14

5.1.6 Relying Party Owner Role ... 15

5.2 Role Messages .. 15

5.2.1 Evidence ... 15

5.2.2 Appraisal Policy for Evidence .. 15

5.2.3 Endorsements ... 15

5.2.4 Attestation Results .. 16

5.2.5 Appraisal Policy for Attestation Results .. 16

5.2.6 Message Freshness .. 16

5.3 Topology Models .. 16

5.3.1 Passport Model ... 16

5.3.2 Background Check Model ... 17

5.3.3 Multi-party Background Check Model ... 18

5.4 Assignment of Roles to Actors ... 18

5.4.1 Role-Actor Composition .. 19

5.4.2 Actor Composition Summary .. 22

6 Layered Device Attestation .. 24

6.1 Evidence as X.509 Certificate Extensions .. 24

6.1.1 TCB Info Evidence Extension ... 25

6.1.2 Multiple DiceTcbInfo Structures Extension ... 29

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 3 © TCG 2024

6.1.3 Compression Extension for Multiple DiceTcbInfo Structures .. 30

6.1.4 UEID Extension ... 30

6.1.5 CWT Claims Set Evidence Extension ... 31

6.1.6 Manifest Evidence Extension .. 31

6.1.7 AuthorityKeyIdentifier Certificate Extension .. 31

6.1.8 Conceptual Message Wrapper Extension ... 31

6.2 CRL Extensions ... 33

6.3 Evidence as an X.509 Attribute Certificate ... 34

6.4 Evidence as a Manifest .. 34

6.5 Endorsements .. 34

6.5.1 Endorsements as X.509 Certificate Extensions .. 34

6.5.2 Endorsements Using X.509 Attribute Certificates ... 36

6.5.3 Endorsements Using Stand-alone Manifests .. 36

6.6 Attestation Results ... 36

6.6.1 Attestation Results as X.509 Certificate Extensions ... 36

7 Attesting Environment .. 37

7.1 Compound Device Identifiers ... 37

7.2 Security Validation ... 37

7.2.1 Cryptographic Keys ... 37

7.2.2 Retrieval Mechanisms ... 38

7.2.3 Protected Storage ... 39

7.3 Evidence .. 39

7.3.1 Freshness ... 39

7.3.2 Privacy .. 39

8 Appendix A – Complete ASN.1 .. 40

8.1 OIDs ... 40

8.2 Structures ... 40

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 4 © TCG 2024

FIGURES
Figure 1: Attestation Roles and message flow .. 12
Figure 2: Device with Attesting Environment and Target Environment .. 13
Figure 3: Passport Topology Model ... 16
Figure 4: Background Check Topology Model ... 17
Figure 5: Multi-Party Background Check Topology Model ... 18
Figure 6: Attestation Actors ... 19
Figure 7: Role-Actor Composition – Combined Verifier and Relying Party Example ... 20
Figure 8: Role-Actor Composition – Composite Device Attestation Example .. 21
Figure 9: Role-Actor Composition – Local Verifier Example .. 22
Figure 10: Role-Actor Composition – Layered Attester Example .. 22
Figure 11: Layered Attestation .. 24
Figure 12: Cryptographic Key Origination in FIPS, DRBG States ... 37
Figure 13: Key Generation for Retrieval Mechanisms ... 38

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 5 © TCG 2024

1 SCOPE
This specification defines an attestation architecture for DICE layering architectures and X.509 certificate extensions
for attestation Evidence and Endorsements.

1.1 Key Words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”

“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document normative statements are to be interpreted as

described in RFC-2119, Key words for use in RFCs to Indicate Requirement Levels.

1.2 Statement Type
Please note a very important distinction between different sections of text throughout this document. There are two

distinctive kinds of text: informative comment and normative statements. Because most of the text in this specification

will be of the kind normative statements, the authors have informally defined it as the default and, as such, have

specifically called out text of the kind informative comment. They have done this by flagging the beginning and end of

each informative comment and highlighting its text in gray. This means that unless text is specifically marked as of

the kind informative comment, it can be considered a kind of normative statement.

EXAMPLE: Start of informative comment

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of MUST does not require
any action).

End of informative comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 6 © TCG 2024

2 REFERENCES

[1] Trusted Computing Group, "TCG Glossary," 2017. [Online]. Available: https://www.trustedcomputinggoup.org.

[2] Trusted Computing Group, "DICE Endorsement Architecture for Devices," 2023. [Online]. Available:

https://www.trustedcomputinggroup.org.

[3] Trusted Computing Group, "DICE Layering Architecture," 2020. [Online]. Available:

https://www.trustedcomputinggroup.org/.

[4] Trusted Computing Group, "TCG Reference Integrity Manifest (RIM) Information Model," 2019. [Online].

[5] Trusted Computing Group, "TCG Trusted Attestation Protocol Information Model for TPM families 1.2 and 2.0

and DICE Family 1.0," 2019. [Online]. Available: https://www.trustedcomputinggroup.org.

[6] Internet Engineering Task Force, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile," 2008. [Online]. Available: https://tools.ietf.org/html/rfc5280.

[7] Internet Engineering Task Force, "Concise Binary Object Representation (CBOR)," 2020. [Online]. Available:

https://www.rfc-editor.org/rfc/rfc8949.html.

[8] Internet Engineering Task Force, "Concise Software Identification Tags," 2019. [Online]. Available:

https://datatracker.ietf.org/doc/draft-ietf-sacm-coswid/.

[9] Internet Engineering Task Force, "The Entity Attestation Token," 2019. [Online]. Available:

https://datatracker.ietf.org/doc/draft-ietf-rats-eat/.

[10] Internet Engineering Task Force, "CBOR Web Token (CWT)," 2018. [Online]. Available:

https://tools.ietf.org/html/rfc8392.

[11] Internet Engineering Task Force, "Remote Attestation Procedures (RATS) Architecture," January 2023. [Online].

Available: https://www.ietf.org/rfc/rfc9334.html.

[12] Internet Engineering Taskforce, "RATS Conceptual Messages Wrapper," October 2022. [Online]. Available:

https://datatracker.ietf.org/doc/draft-ftbs-rats-msg-wrap/.

[13] Internet Engineering Taskforce, "Key Attestation Extension for Certificate Management Protocols," October

2022. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-lamps-key-attestation-ext/.

[14] Internet Engineering Taskforce, "Web Authentication: An API for Accessing Public Key Credentials Level 3,"

January 2023. [Online]. Available: https://w3c.github.io/webauthn/#sctn-attestation-formats.

[15] Internet Engineering Taskforce, "On Stable Storage for Items in Concise Binary Object Representation (CBOR),"

August 2022. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc9277.

[16] Internet Engineering Taskforce, "Media Type Specifications and Registration Procedures," January 2013.

[Online]. Available: https://datatracker.ietf.org/doc/html/rfc6838.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 7 © TCG 2024

[17] Internet Engineering Taskforce, "The Constrained Application Protocol (CoAP)," June 2014. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7252.

[18] W3C, "Extensible Markup Language (XML) 1.0 (Fifth Edition)," 2008. [Online]. Available:

https://www.w3.org/TR/xml/.

[19] NIST, "Guidelines for the Creation of Interoperable Software Identification (SWID) Tags," 2016. [Online].

Available: https://www.nist.gov.

[20] Internet Engineering Task Force, "The JavaScript Object Notation (JSON) Data Interchange Format," 2017.

[Online]. Available: https://tools.ietf.org/html/rfc8259.

[21] Internet Engineering Task Force, "Uniform Resource Identifier (URI): Generic Syntax," 2005. [Online]. Available:

https://tools.ietf.org/html/rfc3986.

[22] Internet Engineering Task Force, "An Internet Attribute Certificate Profile for Authorization," 2010. [Online].

Available: https://tools.ietf.org/html/rfc5755.

[23] NIST, "Security Requirements for Cryptographic Modules," 2019. [Online]. Available:

https://csrc.nist.gov/publications/detail/fips/140/3/final.

[24] Trusted Computing Group, "TCG Attestation Framework Part 1," 2023. [Online].

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 8 © TCG 2024

3 TERMS AND DEFINITIONS
For the purposes of this document, the following terms and definitions apply. Some of these terms have related

definitions in the Trusted Computing Group Glossary [1].

3.1 Glossary

TERM DEFINITION

Actor
A computing entity (e.g., device, server, service) that hosts or otherwise
implements one or more attestation Roles.

Appraisal, of Evidence
Evaluation of Evidence for the purpose of assessing Attester status according
to Reference Values.

Appraisal, of Attestation
Results

Evaluation of Attestation Results for the purpose of altering Relying Party
behavior according to the trustworthiness of an Attester.

Appraisal Policy for Attestation
Results

A set of rules that direct the evaluation by a Relying Party of the validity of
information about an Attester. Typically, such policies are authorized by the
Relying Party Owner.

Appraisal Policy for Evidence
A set of rules, instructions, configurations, or other input that directs the
evaluation by a Verifier of the validity of Evidence about and Endorsements for
the Attester. Such policies are authorized by the Verifier Owner.

Attestation

The process of generating, conveying, and appraising Claims, backed by
cryptographic Evidence, about Attester trustworthiness characteristics that
may include the trustworthiness of the supply chain, identity, device
provenance, software configuration, device composition, compliance to test
suites, functional and assurance evaluations. See [1] – Attestation.

Attestation Results
The results of Evidence appraisal that are generated by a Verifier, and typically
include information about an Attester.

Attestation Service Provider
A service provider entity that implements the Verifier role. Typically, the ASP is
remote with respect to the Device / Attester. It may also be remote relative to
a supply chain entity / Endorser and Resource Manager / Relying Party.

Attester

An attestation Role that contains at least one Attesting Environment and
implements Attester functions (e.g., measurement, reporting, storage, etc.).
Attesters convey Evidence that vouches for Attester integrity and veracity to a
Verifier.

Attribute Certificate
A structure containing signed Claims that complies with a standard certificate
format and encoding such as [2]. See Endorsements, Evidence.

Assertion
An abstract expression (or information) describing a property that is used to
appraise trustworthiness or integrity. See also Reference Value.

Claim, Measurement
A machine-readable assertion about an Attester that has trustworthiness
properties, attributes or identifiers that can be included in Evidence,
Endorsements, or Attestation Results. See [1] – Integrity Measurement.

Composite Attester The Attester in a Composite Device.

Composite Device A device with an integrated set of components.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 9 © TCG 2024

Conveyance
A mechanism for transferring Evidence, Endorsements, Attestation Results, or
policies.

Device
An implementation of an Actor that performs attestation Roles, typically an
Attester. See [1]– Trusted Device.

Device Identity
A value that identifies and authenticates an Actor such as a device, TCB, or
RoT. A Device Identity has a credential that authenticates its identifier, such as
an IEEE IDevID certificate [3].

Endorsements

Authenticatable Claims about Attester trustworthiness properties that are either
Reference Values or Endorsed Values (e.g., a Reference Integrity Manifest –
see [4]) or credentials that authenticate Attester identity (e.g., device identity
certificates, see [3], [2]).

Endorser
An attestation Role that creates, provisions, or conveys Endorsements to
Verifiers.

Evidence
Authenticatable Claims asserted by an Attester about one or more Target
Environments that is conveyed from the Attester to a Verifier.

Manifest A structure that contains Endorsements, Evidence, or Attestation Results.

Platform See Device. See [1] – Platform, Trusted Platform.

Relying Party
An attestation Role, typically an entity that manages resources or grants
access, that accepts Attestation Results from a Verifier.

Relying Party Owner
An attestation Role that conveys Appraisal Policy for Attestation Results to a
Relying Party.

Resource Manager An entity that hosts the Relying Party.

Role
Attestation behaviors and characteristics distinguished by their role name:
Attester, Endorser, Verifier, Relying Party, Verifier Owner, and Relying Party
Owner. Roles are implemented by one or more Actors.

Root of Trust See [1] – Trust, Root of Trust

Topology Model
The organizational structure of a role composition. This specification provides
a canonicalization of commonly used role compositions. These include
Passport, Background Check, and Multi-Party Background Check.

Trusted Computing Base
Protected capabilities and shielded locations that exist because of protected
state transitions. See [1] – Trusted Building Block, Trusted Component, Trusted
Device

Verifier
An attestation Role that accepts Evidence from Attesters, Endorsements from
Endorsers, and conveys Attestation Results to Relying Parties. The Verifier
typically appraises Evidence to determine Attester trustworthiness.

Verifier Owner An attestation Role that conveys Appraisal Policy for Evidence to a Verifier.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 10 © TCG 2024

3.2 Abbreviations
ABBREVIATION DESCRIPTION

ASP Attestation Service Provider

CDI Compound Device Identifier

CRL Certificate Revocation List

ECA Embedded Certificate Authority

IDevID Initial Device ID

RoT Root of Trust

TCB Trusted Computing Base

TCI TCB Component Identifier

UEID Universal Entity ID

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 11 © TCG 2024

4 INTRODUCTION
Start of informative comment

Trustworthiness attributes are not a finite set of values. Attester environments can vary widely, ranging from those

highly resistant to attack to those having little or no resistance. Configuration options, if set poorly, can result in a

highly resistant environment being operationally less resistant. Computing environments are typically updatable,

being constructed from reprogrammable hardware, firmware, software, and memory. When a trustworthy

environment changes, it is often necessary to determine whether the change transitioned the environment from a

trustworthy state to an untrustworthy state. An attestation architecture provides a framework for anticipating when

a trust relevant change occurs, what changed, and whether the change is relevant to device security. An attestation

framework also creates a context for enabling appropriate responses by applications, system software, and protocol

endpoints when trust relevant changes do occur.

A trustworthiness assertion is information that describes the properties of a device that affects the Verifier or Relying

Party perception of the device’s integrity. The set of possible assertions is expected to be determined by the

computing environments that support attestation. In many cases, there will be a set of assertions that is widely

applicable across most, if not all, computing environments of a particular type. Conversely, there will be assertions

that are unique to specific environments or devices. Therefore, this attestation architecture incorporates extensible

mechanisms for representing assertions.

Computing environments can be structurally complex and consist of multiple components (memory, CPU, storage,

networking, firmware, software). Components are often linked and composed to form computational pipelines,

arrays, networks, etc. Not every component is expected to be capable of attestation, and attestation capable

components may not be capable of attesting to every computing element that interacts with the computing

environment. This attestation architecture anticipates use of information modeling techniques that describe

computing environment architectures so that verification operations may rely on the information model as an

interoperable way to navigate structural complexity.

The attestation capability itself is a computing environment. The act of monitoring trustworthiness attributes,

collecting them into an interoperable format, integrity protecting, authenticating, and conveying them employs a

computing environment - one that is separate from the one being attested. The trustworthiness of the attestation

capability is also a consideration for the attestation architecture. It should be possible for a Verifier to understand

the trustworthiness properties of the attestation capability for any set of assertions of an attestation flow. This

attestation architecture anticipates recursive trust properties and the need for termination. Ultimately, a portion of

the computing environment trustworthiness is established via non-automated means. For example, design reviews,

manufacturing process audits, and physical security. For this reason, a trustworthy attestation mechanism depends

on trustworthy manufacturing and supply chain practices.

End of informative comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 12 © TCG 2024

5 ATTESTATION ARCHITECTURE
Start of informative comment

This section offers a review of attestation framework requirements and layering architecture [3]. Attestation can take

many forms ranging from local to remote and implicit to explicit. Implicit and explicit attestation are defined more

completely in [5]. This attestation architecture can use both implicit and explicit attestation in both local and remote

deployments. All forms of attestation can coexist, and implicit and explicit attestation forms are not mutually

exclusive and can be asserted in the same attestation event.

A set of roles and conceptual messages capture attestation flow. Roles are performed by Actors (deployed entities)

that together instantiate different deployment models. Roles and Actors may combine or partition attestation flow

into a variety of possible deployments. However, deployment models do not fundamentally modify the expected

attestation flow where the conceptual message always originates from the identified role, and always is consumed

by the identified role.

This attestation architecture defines certificate extensions that may be used to construct attestation Evidence or

Reference Values.

The basic functions of this attestation architecture are the creation, conveyance, and appraisal of attestation

Evidence. The Attester creates attestation Evidence that is conveyed to a Verifier for appraisal. The appraisals

compare Evidence with Endorsements. Endorsements are the possible values that the Verifier expects to find in

Evidence. Endorsements are obtained from manufacturers, vendors, and other supply chain entities called

Endorsers. There can be multiple forms of appraisal (e.g., software integrity verification, device composition and

configuration verification, device identity and provenance verification). Attestation Results are the output of

appraisals that are conveyed to Relying Parties. Attestation Results provide the basis by which the Relying Party

may determine a level of confidence in subsequent operations.

This architecture defines attestation Roles (i.e., Attester, Verifier, Endorser, Relying Party, and Owner) and the

messages they exchange. Message structure and the various ways in which Roles may be hosted, combined and

divided are also part of the architecture. Messages are protected either by a data structure approach (e.g., X.509

certificates, RFC8392) and/or by a conveyance protocol (e.g., RFC5246).

Evidence
Attestation

Results

Endorsements

Appraisal Policy
For

Evidence

Endorser

Attester

Verifier
Owner

RP
Owner

Relying
Party

Appraisal Policy
For

Attestation Results

Verifier

Figure 1: Attestation Roles and message flow

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 13 © TCG 2024

5.1 Attestation Roles
The attestation roles architecture primarily focuses on the trust model elements of a system. There are five roles

defined by the attestation roles architecture, as illustrated in Figure 1. Roles consume and/or produce attestation

related information. There are a variety of possible configurations in which role interactions may occur. The

attestation roles architecture is a canonical model for a broad range of attestation scenarios. Different scenarios

may require topological and/or deployment specific considerations. The primary objective of the attestation roles

architecture is to define the functions pertaining to roles and the information exchanged between roles. Attestation

roles may be combined and separated as needed to accommodate the requirements of a deployment or use case.

The roles’ workflow produces and consumes attestation messages (see §5.2). There are a variety of possible

configurations. The workflow shown in Figure 2 is the canonical interaction. The canonical interaction is preserved

across topological models described in §5.3.

5.1.1 Attester Role
The Attester Role provides attestation Evidence to a Verifier. The Attester has an attestation identity that is used to

authenticate Evidence. The attestation identity is often established as part of a manufacturing process that embeds

identity credentials in the entity that implements an Attester.

Figure 2: Device with Attesting Environment and Target Environment

The Attester consists of an Attesting Environment and a Target Environment. The Attesting Environment collects

assertions, called Claims, about the trustworthiness properties of the Target Environment. Claims are packaged as

Evidence by the Attesting Environment, integrity protected and authenticated. The Attesting Environment may also

supply additional claims that attest the freshness and recentness of collected claims.

Each TCB in a layered device can be an Attesting Environment that may generate Evidence.

When a DICE layer LN is a Target Environment, the DICE layer LN-1 is an Attesting Environment that attests the

state of layer LN, and so forth.

In this scenario, prior to executing layer N, layer N is the Target Environment that is measured by the layer N-1

Attesting Environment (assuming layer N-1 implements the Attester role). When layer N-1 transitions control to layer

N, layer N acts as the Attesting Environment for Layer N+1 (assuming layer N also implements the Attester role),

and so forth.

The Attester may interact with the Endorser to obtain device identity and Endorsed Values. Typically, this happens

as part of a manufacturing process involving the construction of the device.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 14 © TCG 2024

If the Attester and Endorser roles are implemented across DICE layers, the previous layer (LN-1) may implement an

Endorser role while the current layer (LN) or higher layers (LN+y) may implement the Attester role.

5.1.2 Endorser Role
An Endorser role is typically implemented by a supply chain entity that creates reference Endorsements (i.e., values

or measurements that are known to be correct, e.g., a reference manifest). Endorsements contain assertions about

a device’s intrinsic trustworthiness properties. Endorsers implement manufacturing, productization, or other

techniques that establish the trustworthiness properties of the Attesting Environments. DICE RoT and TCB layers

contain Attesting Environments. There may be multiple Endorsers for a given device or DICE layer. Endorsers

typically authorize Endorsements using digital signatures. For example, certificates [6], manifests [7], [8], or

packages.

5.1.3 Verifier Role
The Verifier role is implemented by an Actor that accepts Endorsements and Evidence, and then conveys

Attestation Results to one or more Relying Parties. Typically, for remote attestation, a service provider entity

implements this role. The Verifier has a trust relationship with its Owner(s) and obtains and applies Appraisal

Policies for Evidence as part of Evidence appraisal. The Verifier needs to authenticate Owner policies and the

Verifier is trusted to correctly apply supplied policies.

5.1.4 Verifier Owner Role
The Verifier Owner role provides the policy oversight for the Verifier. The Verifier Owner generates Appraisal Policy

for Evidence and conveys the policy to the Verifier. The Verifier Owner sets policy for acceptable (or unacceptable)

Evidence and Endorsements that may be supplied by Attesters and Endorsers. The policies determine the

trustworthiness state of the Attester and how best to represent the state to Relying Parties in the form of Attestation

Results.

The Verifier Owner manages Endorsements supplied by Endorsers and may maintain a database of acceptable

and/or unacceptable Endorsements. The Verifier Owner authenticates Endorsements and maintains a list of

trustworthy Endorsers.

Verifier Owner policies are conveyed to Verifiers. The Verifier works on behalf of the Verifier Owner.

A Verifier Owner is typically implemented by an Actor that deploys management consoles, network management

equipment, security enforcement equipment, etc., or performs operational and system lifecycle management

functions. The Verifier Owner and Verifier, or Verifier Owner and Relying Party, typically have an established legal

or business relationship.

5.1.5 Relying Party Role
The Relying Party role is typically implemented by a resource manager that accepts Attestation Results from a

Verifier. The Relying Party trusts the Verifier to correctly evaluate Attestation Evidence and Appraisal Policies, and

to produce correct Attestation Results. The Relying Party evaluates Attestation Results according to Appraisal

Policies for Attestation Results that it receives from the Relying Party Owner.

The Relying Party may take actions based on its evaluation and appraisals. For example, actions may include

admitting or denying access, applying remediations, making entries in an audit log, or triggering a financial or other

form of transaction. Actions taken by a Relying Party are out of scope of the Attestation Roles model with one

exception; a Relying Party may return Results to the Attester for sharing with other Relying Parties.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 15 © TCG 2024

5.1.6 Relying Party Owner Role
The Relying Party Owner Role (RP Owner) has policy oversight over the Relying Party. The RP Owner sets

appraisal policy regarding acceptable (or unacceptable) attestation results about an Attester produced by the

Verifier.

The RP Owner attestation policies are made available to the relevant services, management consoles, network

equipment, etc., that enforce the policies set by the RP Owner. These are ancillary to this specification’s definition

of RP Owner and out of scope for this specification.

Note that, as with some other Attestation Roles, the Replying Party Owner Role and the Relying Party Role may be

co-located. This means that a single Actor (e.g., a cloud service provider) may implement both the Relying Party

Owner Role and the Relying Party Role directly.

5.2 Role Messages
Role messages consist of assertions about trustworthiness properties. Role messages flow between the various

roles. The Actor exchanging a role message authenticates the message so that the Actor receiving the message

can determine that the originator of the message is expected to perform the role, and so that message integrity is

protected. The originator of the message ensures message veracity that the receiver verifies as part of the

attestation trust model. Role messages consist of trustworthiness assertions, or Claims. Claims are explicitly

realized in tag-value form or as an expression in a data definition language. Actors evaluate role message veracity

according to the reputation or trust anchor of the entity asserting the claim.

5.2.1 Evidence
Evidence is a role message containing assertions, i.e., Claims, from the Attester. Evidence should contain freshness

and recentness Claims that help establish Evidence relevance. For example, a Verifier supplies a nonce that can

be included with the Evidence supplied by the Attester. Evidence typically describes the state of the device or entity.

Normally, Evidence is collected in response to a request, i.e., challenge. Evidence may also describe historical

device states, e.g., the state of the Attester during initial boot. It may also describe operational states that are

dynamic and likely to change from one request to the next. Attestation protocols may be helpful in providing timing

context for correct evaluation of Evidence that is highly dynamic.

If the Attesting Environment at layer N-1 collects claims about a Target Environment at layer N, a DICE layer (LN-1)

may supply Evidence about layer (LN) in a certificate, dynamically issued by layer (LN-1).

A Target Environment may assert Claims about itself or some other environment. Such claims are accepted if the

Verifier accepts the Evidence about the Target Environment.

5.2.2 Appraisal Policy for Evidence
An Appraisal Policy for Evidence is an input to a Verifier that contains policies that reconcile trustworthiness Claims

in Evidence with expected operational conditions involving the Attester.

5.2.3 Endorsements
Endorsement structures contain Assertions that are signed by an Actor performing the Endorser role. Endorsements

are Endorsed Values and Reference Values that may be used by Verifiers when appraising Evidence.

A DICE layer (LN-1) may supply Endorsements about layer (LN) when Endorsement values are created by layer (LN-

1). For example, if layer N-1 randomizes layer N memory layout as part of loading an executable into memory and

subsequently collects measurements for the randomized memory layout of layer N. Reference Values for layer N

may be supplied by a layer (N-1).

5.2.3.1 Endorsed Values

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 16 © TCG 2024

Endorsed Values are trustworthiness properties that are asserted by an Endorser that do not have matching

Evidence. Endorsed Values derive from design, implementation, validation, and manufacturing processes applied

to the Attester. The Endorser may claim the trustworthiness properties are immutable or intrinsic.

5.2.4 Attestation Results
Attestation Results are messages containing the results of attestation Evidence appraisals. Attestation Results may

contain Claims or other application specific Assertions meaningful to the Relying Party. Attestation Results are

authenticated, and integrity and confidentiality protected by the Verifier. Attestation Results from a Verifier are

presumed to comply with Verifier Owner policies. Consequently, Attestation Results are actionable values in the

context of the Relying Party.

5.2.5 Appraisal Policy for Attestation Results
An Appraisal Policy for Attestation Results is an input to a Relying Party that contains policies that reconcile

trustworthiness claims in Attestation Results with expected operational conditions involving the Attester.

5.2.6 Message Freshness
The freshness of Role messages affects trustworthiness. The efficacy of trustworthiness properties can deteriorate

over time or change after the collection and reporting of Evidence. For example, when an operational mode

changes, or a configuration setting is applied, or environmental conditions change, or physical damage or wear

occurs.

Message freshness may be achieved in the following ways:

a) Requester supplied nonce

b) Timestamp

c) Validity period

It may be necessary to include freshness claims as part of Evidence or in conveyance protocols.

5.3 Topology Models
Attestation message exchanges may occur according to a variety of stereotypical patterns. This section identifies

several popular message exchange patterns.

5.3.1 Passport Model
The passport model illustrated in Figure 3 defines a sequence of message exchanges that fits a well-known pattern.
The inspiration for the Passport Topology Model is government issued passports. The passport holder presents
identity credentials to the passport issuer who constructs the passport document. The passport document contains
markings or other factors that enables a third party to verify the authenticity of the passport document.

Figure 3: Passport Topology Model

(a) Evidence

Policy

Access Control,
Remediation,

Etc...

Verifier

Relying
Party

(b) Attestation
Results

Attester
Policy

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 17 © TCG 2024

The sequence of steps in the passport model for attestation consists of the following:

a) The Attester presents the Evidence message to a Verifier. The Verifier checks message freshness, integrity,
and origin. It may be necessary for the Verifier to first provide a nonce to the Attester to guarantee freshness.
The Assertions within the message are evaluated against a Policy that identifies Assertions that are
acceptable, unacceptable, or unspecified by the Owner. The Verifier creates a Results message containing
Assertions or other expressions that represent the attestation evaluation result. The results message is
signed by the Verifier or otherwise contains a credential allowing a Relying Party to authenticate the Results
from the Verifier.

b) Attestation Results are delivered to the Attester and later forwarded to the Relying Party. The Relying Party
authenticates Results, originating from the Verifier, that were provided by the Attester. The Relying Party
may verify freshness from both Attester and Verifier. The Relying Party processes the Results according to
application defined actions.

In the case of a failed attestation, the Relying Party may need to take one or more implementation-specific actions,
such as access control alerts, logging, and/or remediation. Protocols implementing the passport model may need
to anticipate ways to perform implementation-specific actions as the conclusion of the previous sequence of steps.

5.3.2 Background Check Model
The background check model illustrated in Figure 4 defines a sequence of message exchanges that fits a
background check pattern where the entity receiving credentials is unable to directly process them. Instead, they
are processed by a backend entity.

The sequence of steps in the background check model for attestation consists of the following:

a) The Attester presents the Evidence message to a Relying Party. The Relying Party checks message
freshness, integrity, and origin. It may be necessary for the Relying Party to first provide a nonce to the
Attester to guarantee freshness. The Relying Party forwards Evidence to the Verifier.

The Verifier checks message freshness, integrity, and origin. It may be necessary for the Verifier to first
provide a nonce to the Relying Party (which the Relying Party, in turn, provides to the Attester prior to
Evidence collection) to guarantee freshness. The Verifier performs appraisal of Evidence as defined in step
(a) of the passport model.

b) The Verifier delivers Results to the Relying Party. The Relying Party evaluates Results as defined in step
(b) of the passport model.

In the case of a failed attestation, the Relying Party may need to take one or more implementation-specific actions,
such as access control alerts, logging, and/or remediation. Protocols implementing the passport model may need
to anticipate ways to perform implementation-specific actions as the conclusion of the previous sequence of steps.

Figure 4: Background Check Topology Model

(a) Evidence

Policy

(b) Attestation
Results

Access Control,
Remediation,

Etc...

Verifier

Relying
Party

Attester
Policy

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 18 © TCG 2024

5.3.3 Multi-party Background Check Model
The multi-party background check model illustrated in Figure 5 defines a sequence of message exchanges similar
to the background check model except that there are multiple Relying Party entities involved.

The sequence of steps in the multi-party background model for attestation is the same as the steps for the
background check model. The multi-party background check model differs in that the Attester forwards the Results
to additional Relying Parties that each will evaluate the Results.

The role interactions described here, as well as others not explicitly illustrated, all preserve the basic pattern

described by the Attestation Roles Architecture diagram (See §5.1). The other patterns described are additions to

the basic pattern that do not alter the basic role function.

The topological models presented in this section are for illustrative purposes and are not intended to imply a

limitation on the number of role interactions, nor their organization or complexity.

5.4 Assignment of Roles to Actors
Entities that implement Attestation Roles are known as Actors. There are many possible ways to assign roles to

Actors. This section identifies common patterns involving role-actor combinations. Actor entities are the deployment

environments that host and implement attestation roles (e.g., users, organizations, execution environments, service

providers, servers, networks, devices, TEEs, DICE layers, Roots of Trust, etc.).

Actors implement interfaces or protocols used to convey role messages. Conveyance mechanisms are either local

or remote. Local conveyance exists when the same Actor is used to perform multiple roles where role message

conveyance is internal to that actor. Local conveyance means the protocols for authenticating, protecting, and

transmitting role messages are trusted and opaque from the perspective of the co-resident roles. See Figure 6.

Figure 5: Multi-Party Background Check Topology Model

(a) Evidence

Policy

(b) Attestation
Results

Attestation Results +
 Access Control, Remediation,

Etc.

(c) Results
Access,

Remediation,
Etc.

Verifier

Attester Relying
Party A

Relying
Party B

Policy

Policy

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 19 © TCG 2024

The Actor abstraction helps separate the operational elements of attestation from trust model elements.

Deployment architectures can differ significantly to address business, performance, geographic, or political and

regulatory considerations. Actor names, credentials, and infrastructure often are reflective of the deployment

architecture. For example, an Actor identified by organization name may be issued a certificate that is used to

authenticate the Actor to another Actor. Their certifying infrastructures may be leveraged by attestation

infrastructure to convey attestation information and to link roles to authentication credentials.

5.4.1 Role-Actor Composition
This section describes scenarios where two or more Actors are combined or co-located. The roles performed by

discrete Actors are co-located but are not collectively considered a new hybrid role. Rather, they are recognized as

separate roles being hosted by the same device, service, or entity. Actor composition semantics may also apply

when virtual environments are dynamically instantiated. Both environments may exist on the same physical device

yet have different actor contexts.

5.4.1.1 Co-located Verifier and Relying Party Example

The Resource Manager Actor composition illustrated in Figure 7 co-locates an Attestation Service Provider (ASP)

that normally performs the Verifier role with a Resource Manager that normally performs the Relying Party role. The

user may dedicate a single server, multiple servers inside a private network, or outsource to a cloud services

provider for hosting both roles. Verifier and Relying Party role message interactions have local conveyance

properties.

Figure 6: Attestation Actors

Supply Chain Entity
(SCE)

Management Console A
(MCA)

Device Attestation Service
Provider (ASP)

Resource Manager
(RM)

Convey
Evidence

Convey
Attestation

Results

Convey
Endorsements

Convey
Appraisal Policy

For Evidence

Management Console B
(MCB)

Convey
Appraisal Policy for
Attestation Results

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 20 © TCG 2024

5.4.1.2 Composite Attestation Example

In a Composite Device attestation scenario, components have attestation capabilities that generate Evidence.

Evidence is conveyed locally to a Composite Attester that assembles the various sets of Claims. The Evidence

might also include Claims the Composite Attester directly collects or provides. The Composite Attester conveys

Evidence to a remote service provider that hosts a Verifier. Figure 8 provides an illustration of this example.

Figure 7: Role-Actor Composition – Combined Verifier and Relying Party Example

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 21 © TCG 2024

5.4.1.3 Local Verifier Example

In a local Verifier scenario, local components are Attesters that use a local conveyance mechanism to deliver

Evidence to the local Verifier for appraisal. The appraisal becomes Attestation Results that are conveyed to a

remote Resource Manager that hosts the Relying Party. This example, illustrated in Figure 9, shows the local Verifier

having a Local Verifier Owner, so appraisal policies are locally conveyed. The local Verifier relies on Endorsements

from a supply chain entity that are remotely conveyed.

Figure 8: Role-Actor Composition – Composite Device Attestation Example

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 22 © TCG 2024

5.4.1.4 Layered Device Attestation Example

In a layered device attestation scenario, a set of layered components each attest the state of the next component.

Evidence from each layer is verified by a remote Verifier using an attestation service: therefore, most Evidence is

protected for remote appraisals but is conveyed locally. A layered Attester identifies the next layer Attester

designated to convey its Evidence. The designation becomes part of the Evidence it produces. This is illustrated in

Figure 10.

5.4.2 Actor Composition Summary
Actor composition allows flexibility when determining which Roles an Actor may perform. When multiple Roles are

performed by the same Actor, Roles do not interfere with each other.

Figure 9: Role-Actor Composition – Local Verifier Example

Figure 10: Role-Actor Composition – Layered Attester Example

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 23 © TCG 2024

Local conveyance of Role information must be trustworthy, but its definition is out-of-scope for this specification as

it is implementation-specific. Remote conveyance expects that Role information will be communicated via untrusted

transports and therefore needs to be protected. Protocol binding specifications are needed to address specific

threats.

The examples presented in this specification are for illustrative purposes and are not intended to imply a limitation

on the number, organization, or complexity of Role-Actor compositions.

End of informative comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 24 © TCG 2024

6 Layered Device Attestation
Layered attestation refers to the traversal of DICE layers where the current layer attests to the state of the next layer.

Evidence about the next layer is signed by the current layer. Trust in a current DICE layer depends on the

trustworthiness of all previous layers.

Start of informative comment

Consequently, a Verifier of layered attestation evaluates attestation Evidence of the dependent layers before it can

reason about trust in the current layer.

Verifiers recognize when an Attester is performing layered attestation. Inclusion of attestation Evidence in a

certificate extension issued to a DICE layer by a previous DICE layer helps a Verifier to deduce the presence of

layered attestation. The Verifier of a layered attestation always processes this certificate extension if it is supplied.

End of informative comment

Figure 11: Layered Attestation

Attestation Verifiers require attestation Evidence. There are several possible techniques for conveying Evidence to a

Verifier. This specification specifies the following approaches:

(i) X.509 identity certificates and certificate revocation lists (CRLs) that contain Evidence

(ii) X.509 attribute certificates containing Evidence

(iii) Manifests containing Evidence.

6.1 Evidence as X.509 Certificate Extensions
This section defines X.509v3 certificate and CRL extensions. These extensions encode reference Endorsements

about a Target Environment. Certificates containing these extensions are RFC5280 [6] compliant.

Certificate revocation involving a DICE layer can benefit from the added context that attestation Evidence provides.

Certificate Evidence extensions can be used with certificate revocation lists. Consequently, it may be appropriate to

include Evidence extension in CRLs.

A certificate issuer uses an extension to assert the trustworthiness claims that apply to the Attesting Environment that

protects the subject private key that is identified by the certificate subject public key. When the certificate is presented

to a Verifier, the reference Endorsements are available for trustworthiness evaluation.

A CRL issuer uses an extension to assert that these trustworthiness claims apply to the Attesting Environment that

protects the subject private key that is identified by the certificate serial number that identifies the certificate that

identifies the subject public key. A Verifier, having the CRL, may use Endorsements contained in the extension to

evaluate the TCB properties associated with the revocation request. Endorsements in a CRL describe claims that are

no longer trustworthy.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 25 © TCG 2024

The following extensions use an OID arc from the TCG namespace.

Start of informative comment

It is recommended that Verifiers process all Evidence extensions defined by this specification if present in a

certificate, to ensure the Target Environment is trustworthy.

End of informative comment

6.1.1 TCB Info Evidence Extension
This extension defines attestation Evidence about a Target Environment that is measured by an Attesting Environment

that controls the Subject key. The certificate Subject and SubjectPublicKey MAY identify the entity (a.k.a., Target

Environment) to which the DiceTcbInfo extension applies. When this extension is used, the measurements in

Evidence usually describe software or firmware that will execute within the Target Environment.

The AuthorityKeyIdentifier extension MUST be supplied when the DiceTcbInfo extension is supplied. This

allows the Verifier to locate the signer’s certificate.

Start of informative comment

Inclusion of the DiceTcbInfo extension is optional. However, if omitted, an alternative method for conveying the

DiceTcbInfo information to the Verifier needs to be provided.

End of informative comment

The DiceTcbInfo extension SHOULD be marked critical. The DiceTcbInfo extension SHOULD be included with

CRL entries that revoke the certificate that originally included the DiceTcbInfo extension.

The DiceTcbInfo OID is as follows:

The DiceTcbInfo fields are:

DiceTcbInfo ::== SEQUENCE {

 vendor [0] IMPLICIT UTF8String OPTIONAL,

 model [1] IMPLICIT UTF8String OPTIONAL,

 version [2] IMPLICIT UTF8String OPTIONAL,

 svn [3] IMPLICIT INTEGER OPTIONAL,

 layer [4] IMPLICIT INTEGER OPTIONAL,

 index [5] IMPLICIT INTEGER OPTIONAL,

 fwids [6] IMPLICIT FWIDLIST OPTIONAL,

 flags [7] IMPLICIT OperationalFlags OPTIONAL,

 vendorInfo [8] IMPLICIT OCTET STRING OPTIONAL,

 type [9] IMPLICIT OCTET STRING OPTIONAL,

 flagsMask [10]IMPLICIT OperationalFlagsMask OPTIONAL

}

Name Fields:

• vendor – the entity that created the measurement of the Target Environment (e.g., a TCI value).

• model – the product name associated with the measurement of the Target Environment.

• layer – the DICE layer associated with this measurement of the Target Environment.

• index – a value that distinguishes different instances of the same type of Target Environment.

• type – a machine readable description of the measurement.

TCG Arc: tcg OBJECT IDENTIFIER ::= {2 23 133}

DICE Arc: tcg-dice OBJECT IDENTIFIER ::= { tcg platformClass(5) 4 }

tcg-dice-TcbInfo OBJECT IDENTIFIER ::= {tcg-dice 1}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 26 © TCG 2024

Measurement Fields:

• version – the revision string associated with the Target Environment.

• svn – the security version number associated with the Target Environment.

• fwidlist – a list of FWID values. FWIDs are computed by the DICE layer that is the Attesting Environment

and certificate Issuer. Generally, construction and evaluation of a FWID list is defined by Reference Values.

FWIDLIST ::== SEQUENCE SIZE (1..MAX) OF FWID

FWID ::== SEQUENCE {

 hashAlg OBJECT IDENTIFIER,

 digest OCTET STRING

}

• hashAlg – an algorithm identifier for the hash algorithm used to produce a digest value. The algorithm

identifier MUST match the object identifier used in the RIM containing the Reference Values.

Start of informative comment

Note: algorithm identifiers are not necessarily limited to those defined by TCG.

End of informative comment

• digest – a digest of firmware, initialization values, or other settings of the Target Environment.

• flags – a list of flags that enumerate potentially simultaneous operational states of the Target Environment

(see §6.1.1.1).

• vendorInfo – vendor supplied values that encode vendor, model, or device specific state.

When filling in the DiceTcbInfo extension, the issuer (layer N) must ensure that any field that contributes to the

CDI that generates the subject key (such that a change in the value will cause a change in the CDI) is included in a

field of the DiceTcbInfo extension.

Start of informative comment

Constant values, i.e., values that are physically unchangeable on the device, need not be included in

measurements and, therefore, need not be included in a DiceTcbInfo extension.

End of informative comment

The Verifier queries a database containing Endorsements that correspond to this Evidence using a combination of

any fields from the DiceTcbInfo.

Start of informative comment

For example, the Verifier could query by digest or by vendor, model, type and version values. The vendor, model,
type, layer and index fields of the DiceTcbInfo extension describe the measurement and are chosen by the entity

performing the measurement. The remaining fields of the DiceTcbInfo extension describe properties of the entity

being measured.

Endorsements describe how a digest is computed.

Note: both Verifier and Attesting Environments need to consistently apply the digest computation method.

End of informative comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 27 © TCG 2024

6.1.1.1 Operational Flags

Operational flags are Evidence claims that, when collected, describe environmental attributes affecting trustworthy

operation. For each mode, the Attesting Environment (e.g., layer N-1) determines whether the Target Environment

(layer N) currently has, or will have, one or more properties.

OperationalFlags ::= BIT STRING {

 notConfigured (0),

 notSecure (1),

 recovery (2),

 debug (3),

 notReplayProtected (4),

 notIntegrityProtected (5),

 notRuntimeMeasured (6),

 notImmutable (7),

 notTcb (8),

 fixedWidth (31)

}

• notConfigured – The Target Environment is not configured for normal operation.

• notSecure – The Target Environment is insecure.

• recovery – The Target Environment is recovering (e.g., from a failure).

• debug – The Target Environment can be debugged.

Start of informative comment

The specific debug resources that may be accessed are environment specific. The Target Environment and
system software typically determine which debug resources are accessible.

End of informative comment

• notReplayProtected – The Target Environment is vulnerable to replay attack.

• notIntegrityProtected – The Target Environment is vulnerable to modification by unauthorized updates.

• notRuntimeMeasured – The Target Environment is not measured after being loaded into memory.

• notImmutable – The measured Target Environment is mutable.

• notTcb – The Target Environment measurements are not measurements of a Trusted Computing Base

(TCB).

• fixedWidth – This field (bit 31) is used to force a fixed width for the OperationalFlags bit string,

regardless of which bits may be unused. Setting the fixedWidth bit will ensure the OperationalFlags

field is 32 bits in length and, therefore, the resulting encoding will always contain a length of four (4) bytes.

Start of informative comment

An ASN.1 BIT STRING length is determined by the highest order bit that is SET. Some implementations benefit

from a predictable fixed size encoding for X.509 certificates. Setting the fixedWidth bit in OperationalFlags

guarantees a 32-bit OperationalFlags BIT STRING length which, in turn, guarantees the underlying encoding

of this field will always be four (4) bytes in length.

As its purpose is only to guarantee that the encoding of OperationalFlags is of a fixed width, the

fixedWidth bit is of no evidentiary value. The fixedWidth bit is not needed in Endorsements, and is otherwise

ignored.

End of informative comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 28 © TCG 2024

A value of 1 (SET) in an OperationalFlags bit means the corresponding mode is active. A value of 0 (CLEAR)

means the corresponding mode is not active. If the corresponding mask bit (see section 6.1.1.2) is CLEAR, the mode
is unknown.

Operational flags can be incorporated into attestation Evidence in several ways:

a) An operational flag might indicate that different firmware is used when in an alternative mode. The firmware

digest values may differ, according to the firmware used, resulting in a different CDI value. The Reference

Values manifest for the Target Environment image MUST specify which operational flags are allowed in an

alternative mode by defining an OperationalFlagsMask mask for the alternative mode.

b) The operational flag MAY be reported using the DiceTcbInfo.flags bits. Hence a CDI value could be

unintuitively different when operating in an alternative mode despite the firmware being the same.

c) The operational flag MAY be reported using DiceTcbInfo.vendorInfo.

d) The operational flags MAY be attested using an Evidence format other than DiceTcbInfo.

e) The operational flags MAY represent something other than normal operation and, as a result, the Attesting

Environment (layer n-1) MAY withhold the CDI for the Target Environment (layer n). If the Target Environment

attempts to obtain its CDI from the Attesting Environment, the Attesting Environment MUST generate a fault

to indicate an abnormal Target Environment operation: and that none of options (a), (b), (c), or (d) are in use.

This specification does not define whether combinations of modes are mutually exclusive. The vendor of the Target

Environment SHOULD incorporate that information when defining Endorsed Values, Reference Values, and Evidence.

When both OperationalFlags and OperationalFlagsMask are provided, each OperationalFlags bit,

except for fixedWidth, MUST be ignored, regardless of value, unless the corresponding bit position within the

OperationalFlagsMask bit string is SET.

If OperationalFlags is provided but OperationalFlagsMask is not provided, then each OperationalFlags

bit, except for fixedWidth, SHALL be interpreted as if the corresponding OperationalFlagsMask bit is SET.

Start of informative comment

The fixedWidth bit was not present and was unnecessary for previous versions of this specification because,

regardless of how operational flags are set, the resultant length of the OperationalFlags encoding was constant.

End of informative comment

6.1.1.2 Operational Flags Mask

The OperationalFlagsMask bit string is used to communicate which bits within the OperationFlags bit string

are meaningful. When a bit is SET in the OperationalFlagsMask bit string, the bit at the corresponding position

in OperationalFlags, apart from the fixedWidth bit (see section 6.1.1.1), is meaningful to a Verifier.

The OperationalFlagsMask bits directly correspond to the bits defined within the OperationalFlags bit string.

The definition for OperationalFlagsMask is as follows:

OperationalFlagsMask ::= BIT STRING {

 notConfigured (0),

 notSecure (1),

 recovery (2),

 debug (3),

 notReplayProtected (4),

 notIntegrityProtected (5),

 notRuntimeMeasured (6),

 notImmutable (7),

 notTcb (8),

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 29 © TCG 2024

 fixedWidth (31)

}

If a bit in the OperationalFlagsMask bit string is SET, then the bit in the corresponding position in the

OperationalFlags bit string SHALL be interpreted, irrespective of value.

If a bit in the OperationalFlagsMask bit string is CLEAR, then the bit in the corresponding position in the

OperationalFlags bit string SHALL be ignored, irrespective of value.

For example, if OperationalFlagsMask.debug is SET then if OperationalFlag.debug is CLEAR, it is

interpreted as an assertion that debug mode is not active. However, if OperationalFlagMask.debug is CLEAR

then the OperationalFlags.debug bit has no meaning regardless of its value and is ignored.

See section 6.1.1.1 for a description of the fixedWidth bit. It has the same purpose and meaning within the

OperationalFlagsMask field as fixedWidth does for OperationalFlags.

6.1.1.3 DiceTcbInfoAlias

Start of informative comment

This section defines an extension identical to DiceTcbInfo but with an alternative identifier, as an option for legacy

implementations that use the DiceTcbInfo OID {tcg-dice 1} in a vendor-specific manner that does not conform

to the DiceTcbInfo definition in section 6.1.1.

Prior to the definition of DiceTcbInfo, some implementations had used the {tcg-dice 1} identifier to reference

vendor-defined extension formats. In such cases, Verifiers need to detect vendor-specific (non-conforming)
implementations through a vendor-defined mechanism. Vendors with such implementations are responsible for
notifying Verifiers of such non-conforming implementations and for providing the criteria by which these non-
conforming implementations can be detected (for example, by checking the certificate issuer for O=VENDOR).

Vendors with non-conforming uses of {tcg-dice 1} are recommended to use the DiceTcbInfoAlias extension

for all conforming implementations so that Verifiers are required to provide special handling only when both OID={tcg-
dice 1} AND vendor criteria is met.

End of informative comment

DiceTcbInfoAlias is identical to DiceTcbInfo, except as noted here:

The DiceTcbInfoAlias extension criticality flag SHOULD be marked critical.

The DiceTcbInfoAlias extension SHOULD NOT be used when either the DiceTcbInfo or DiceTcbInfoSeq

can reasonably be used.

6.1.2 Multiple DiceTcbInfo Structures Extension
The initial state of a Target Environment may be represented by multiple measurements, for example, when it is

composed of elements supplied by different vendors or when other inputs (for example fuses) that affect the

functionality of the Target Environment need to be measured. This certificate extension defines a sequence of

DiceTcbInfo structures, one for each measurement.

The declaration of DiceMultiTcbInfo is as follows:

tcg-dice-MultiTcbInfo OBJECT IDENTIFIER ::= {tcg-dice 5}

DiceTcbInfoSeq ::= SEQUENCE SIZE (1..MAX) OF DiceTcbInfo

tcg-dice-TcbInfoAlias OBJECT IDENTIFIER ::= {tcg-dice-TcbInfo 1}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 30 © TCG 2024

Use of both the DiceTcbInfo and DiceTcbInfoSeq extensions independently as top-level entities is not

recommended. However, if both are used, the DiceTcbInfo extension SHALL be treated as the first element of the

list of DiceTcbInfo structures contained in DiceTcbInfoSeq.

The DiceTcbInfoSeq extension criticality flag SHOULD be marked critical.

6.1.3 Compression Extension for Multiple DiceTcbInfo Structures
Start of informative comment

Fields of a DiceTcbInfo structure that are repeated for each entry in a sequence can be compressed using the

DiceTcbInfoComp extension. This certificate extension compresses a DiceTcbInfoSeq by extracting the

elements of a DiceTcbInfoSeq that would be repeated within each DiceTcbInfo structure, and instead including

the repeated fields only once in a single DiceTcbInfo structure, in commonFields. The entries within the

DiceTcbInfoSeq provided in evidenceValues do not contain these repeated fields.

Including a field within the commonFields structure causes the evidenceValues sequence to be interpreted as

if each field in commonFields is also part of each structure in the evidenceValues sequence.

End of informative comment

The OID declaration is as follows:

tcg-dice-MultiTcbInfoComp OBJECT IDENTIFIER ::= {tcg-dice 8}

The ASN.1 definition is as follows:

DiceTcbInfoComp ::= SEQUENCE SIZE (1..MAX) OF TcbInfoComp

TcbInfoComp ::= {

 commonFields [0] IMPLICIT DiceTcbInfo,

 evidenceValues [1] IMPLICIT DiceTcbInfoSeq

}

The DiceTcbInfo extension in commonFields SHALL comprise all fields that are common to every entry within

the DiceTcbInfoSeq sequence in evidenceValues.

Every DiceTcbInfo extension in the DiceTcbInfoSeq sequence in evidenceValues MUST be different to any

DiceTcbInfo extension in commonFields.

When decompressing, the DiceTcbInfo extension in commonFields SHALL be prepended to every

DiceTcbInfo extension in the DiceTcbInfoSeq sequence in evidenceValues.

6.1.4 UEID Extension
This extension contains a UEID [9] that identifies the device containing the private key and is identified by the

certificate’s subjectPublicKey. In the case of its inclusion as a CRL extension, the device containing the private key is

identified by the certificate serial number, which identifies the certificate containing the subjectPublicKey.

The OID declaration of DiceUeid is as follows:

tcg-dice-Ueid OBJECT IDENTIFIER ::= {tcg-dice 4}

The ASN.1 definition is as follows:

TcgUeid ::= SEQUENCE {

 ueid OCTET STRING

}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 31 © TCG 2024

When filling in the UEID extension, the issuer must ensure that the content of this extension contributes to the CDI

which generated the subject key (such that a change in the field value will cause a change in the CDI).

6.1.5 CWT Claims Set Evidence Extension
The CBOR Web Token (CWT) specification [10] defines a CBOR encoding of a claim set that may be used to contain

Evidence. A variant of CWT that does not contain integrity protection, unprotected CWT Claims Set (UCCS) defines

a certificate Evidence extension containing UCCS formatted Evidence.

The tcg-dice-UCCS-evidence is an unsigned structure because the certificate signature authenticates, and

integrity protects UCCS contents.

The OID declaration of DiceUccsEvidence is as follows:

The ASN.1 definition is as follows:

UccsEvidence ::= SEQUENCE {

 uccs OCTET STRING

}

This extension MAY be used in addition to or in place of DiceTcbInfoSeq or DiceTcbInfo.

When filling in the UCCS extension, the issuer MUST ensure that this field contributed to the CDI that generated the

subject key (such that a change in the field value will also reflect a change in the CDI).

The DiceUccsEvidence extension criticality flag SHOULD be marked critical.

6.1.6 Manifest Evidence Extension
A SWID or CoSWID manifest may be used to contain Evidence.

The OID declaration of DiceManifestEvidence is as follows:

tcg-dice-manifest-evidence OBJECT IDENTIFIER ::= {tcg-dice 7}

The tcg-dice-manifest-evidence object identifier is used with the Manifest sequence (See §6.5.1.1). The

extension SHOULD contain information equivalent to DiceTcbInfoSeq or DiceTcbInfo sequences.

The tcg-dice-manifest-evidence MUST use an unsigned manifest because the certificate signature

authenticates, and integrity protects, manifest contents.

When filling in the manifest Evidence extension, the issuer MUST ensure that this field contributed to the CDI that

generated the subject key (such that a change in the field value will also reflect a change in the CDI).

The DiceManifestEvidence extension criticality flag SHOULD be marked critical.

6.1.7 AuthorityKeyIdentifier Certificate Extension
If the AuthorityKeyIdentifier extension is supplied, the keyIdentifier must identify the Issuer public key.

6.1.8 Conceptual Message Wrapper Extension
Start of Informative Comment

The conceptual message wrapper extension is used to convey a conceptual message, such as Evidence or

Attestation Results [11], in an X.509 certificate extension. Typically, X.509 extensions are described using an ASN.1

tcg-dice-UCCS-evidence OBJECT IDENTIFIER ::= {tcg-dice 6}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 32 © TCG 2024

encoding format, but other encapsulation formats may be used. For example, [12] defines a message wrapping

structure that may be encoded using CBOR or JSON.

This section defines a Conceptual Message Wrapper (CMW) certificate extension that uses a CBOR or JSON

encoding of a type-value array containing a content type identifier, a conceptual message, and a conceptual

message type. The CMW content may contain multiple conceptual messages of varying types. The conceptual

message type structure enumerates each conceptual message type contained in the CMW content.

A conceptual message may also have a CBOR tag [7] that encodes the message type followed by the conceptual

message. This certificate extension supports all three forms of conceptual messages: CBOR encoded CMW array,

JSON encoded CMW array, and CBOR tagged conceptual message.

Conceptual messages may be used by Certificate Authorities (CA) when issuing new certificates or refreshing

existing certificates. The conceptual message wrapper extension may be useful to certificate enrollment requests

as described in [13].

Conceptual message may be used by Web authentication protocols that rely on public key credentials such as

X.509 certificates. [14] describes a Web API for exchanging public key credentials containing attestation conceptual

messages.

End of Informative Comment

The OID declaration of DiceConceptualMessageWrapper is as follows:

tcg-dice-conceptual-message-wrapper OBJECT IDENTIFIER ::= {tcg-dice 9}

 The ASN.1 definition is as follows:

The ConceptualMessageWrapper extension MAY be used in addition to or in place of DiceTcbInfoSeq or

DiceTcbInfo extensions.

The ConceptualMessageWrapper sequence SHALL contain an OCTET STRING containing a CBOR, JSON, or

tagged CBOR encoded conceptual message wrapper in either the array form, see §3.1 of [12], or the tagged CBOR

form, see [7], [15], and [12].

The ConceptualMessageWrapper sequence contents, in the array form, are described by the following CDDL:

 ConceptualMessageWrapper ::= SEQUENCE {

 cmw OCTET STRING

}

 cmw = [type, value, ? bytes .bits cm-type]

 type = coap-content-format / media-type

 coap-content-format = uint .size 2

 media-type = text .abnf ("media-type" .cat RFC6838)

 value = cbor-bytes / base64-string

 cbor-bytes = bytes

 base64-string = text .regexp "[A-Za-z0-9_-]+"

 cm-type = &(reference-values: 0,

 endorsements: 1,

 evidence: 2,

 attestation-results: 3

)

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 33 © TCG 2024

When filling in the tcg-dice-conceptual-message-wrapper extension, the issuer MUST ensure that this

Evidence extension contributed to the CDI that generated the certificate’s subject key (such that a change in the

Evidence will reflect a change in the CDI).

The tcg-dice-conceptual-message-wrapper extension criticality flag SHOULD be marked critical.

Inclusion of the tcg-dice-conceptual-message-wrapper extension is OPTIONAL.

Start of Informative Comment

Refer to [16] and [11] for guidance on text encoding constraints that are applied to the media-type statement.

The conceptual message wrapper in the array form, see [12], is used when the conceptual message type has been

registered as a media-type [16] or as a coap-content-format [17]. The CBOR tag form, see [11], is used

when the conceptual message type has been registered as a CBOR tag, see [7], or when a CBOR tag is derived

from a coap-content-format using the TN() transform as defined in [15].

The ConceptualMessageWrapper sequence contents can be encoded as JSON, CBOR, or tagged CBOR. A

parser decodes the octet string into a byte buffer and then does a 1-byte lookahead, as illustrated in the following

pseudo code, to decide which format to use to decode the remainder of the byte buffer:

 switch b[0] {

 case 0x82:

 return CBORArray

 case 0x5b:

 return JSONArray

 default:

 return CBORTag

 }

When the conceptual message wrapper extension is marked critical, the recipient is expected to fully parse and

process the Evidence, including CBORArray, JSONArray or CBORTag contents.

End of Informative Comment

6.2 CRL Extensions
The Evidence extensions defined above MAY be included as a certificate revocation list (CRL) extension.

Start of informative comment

If DiceTcbInfo or DiceTcbInfoSeq extensions are present in a CRL entry, then the Verifier needs to use a

DiceTcbInfo for verification instead of verifying against issuer and serialNumber fields as normal. If a match

condition is found, the Verifier considers the Target Environment invalid.

If a traditional revocation is needed, the CRL is issued with serialNumber only (omitting DiceTcbInfo or

DiceTcbInfoSeq). Revoking a certificate containing Evidence extensions (e.g., DiceTcbInfo or

DiceTcbInfoSeq) also invalidates the Evidence contained within the revoked certificate.

a) A certificate is revoked if a DiceTcbInfo entry in the CRL matches the DiceTcbInfo or a subset of a

DiceTcbInfoSeq in the certificate (i.e., DiceTcbInfo in CRL = DiceTcbInfo in Certificate or DiceTcbInfo in

CRL ⊆ DiceTcbInfoSeq in Certificate).

b) A certificate is revoked if a DiceTcbInfoSeq in the CRL matches a subset of the DiceTcbInfoSeq in the

certificate (i.e., DiceTcbInfoSeq in CRL ⊆ DiceTcbInfoSeq in Certificate).

End of informative comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 34 © TCG 2024

6.3 Evidence as an X.509 Attribute Certificate
Evidence might be created using an X.509 attribute certificate that is signed by an attestation key. Evidence is

collected about a Target Environment by the Attesting environment that controls the attestation signing key.

Attribute certificate structures that contain Evidence SHOULD include a caller-supplied freshness nonce.

The OID declaration of DiceTcbFreshness is as follows:

The ASN.1 definition is as follows:

The DiceTcbFreshness extension SHOULD be marked critical.

6.4 Evidence as a Manifest
Evidence might be created using a manifest that is signed by an attestation key. Evidence is collected about a Target

Environment by the Attesting Environment that controls the attestation signing key.

6.5 Endorsements
Attestation Verifiers require attestation Endorsements. Endorsers (i.e., manufacturers and suppliers) create

Endorsements that contain Endorsed Values and Reference Values. Reference Values are used by a Verifier to

appraise Evidence. Endorsements may also contain Endorsed Values that are assertions that are not matched with

Evidence, but are associated with the Attester, and may be used by an Appraisal Policy.

This specification specifies the following approaches for encoding Endorsements:

(i) X.509 identity certificate extensions.

(ii) X.509 attribute certificates.

(iii) Manifests, e.g., CoRIM, SWID.

Including Endorsements with an identity certificate adds a manufacturing constraint that Endorsed Values, Reference

Values and certificate public keys must all be known at the time the certificate is issued.

6.5.1 Endorsements as X.509 Certificate Extensions

6.5.1.1 Manifest as an X.509 Certificate Extension

Start of informative comment

X.509 certificates [6] support extensions that may contain attestation manifests. The DiceEndorsementManifest

certificate extension contains a manifest structure that is signed by an Endorser. The manifest may contain Endorsed
Values and Reference Values about one or more Target Environments. The manifest can be used by a Verifier to
appraise Evidence, for example, DiceTcbInfo.

The certificate signature provides integrity protection of the DiceEndorsementManifest contents. The certificate

signer may not be the originator of the manifest. If so, the Endorser should integrity protect the manifest before
including it in the certificate (see [22]).

End of informative comment

tcg-dice-TcbFreshness OBJECT IDENTIFIER ::= {tcg-dice 11}

DiceTcbFreshness::= SEQUENCE {

 nonce OCTET STRING

}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 35 © TCG 2024

The OID declaration of DiceEndorsementManifest is as follows:

The Manifest Format fields are:

• format – defines the manifest schema and encoding format:

o swid-xml – The manifest format is XML [18] and contains a SWID Tag manifest as defined by [19].

o coswid-cbor – The manifest format is CBOR [7] and contains a CoSWID manifest as defined by [8].

o coswid-json – The manifest format is JSON [20] and contains a CoSWID manifest.

o tagged-cbor – The manifest format is CBOR [8] and contains a manifest as defined by a CBOR tag
(e.g., #6.xxx(bytes). CBOR tags are assigned by the IANA [21] registry.

• manifest – a signed or unsigned manifest containing Endorsed Values or Reference Values about a Target
Environment.

Inclusion of the tcg-dice-endorsement-manifest extension is OPTIONAL.

6.5.1.2 Endorsement URI as an X.509 Certificate Extension

Start of informative comment

This extension contains a URI that locates a manifest. The manifest contains Endorsed Values or Reference Values
about one or more Target Environments. The manifest can be used by a Verifier to appraise Evidence such as
DiceTcbInfo.

End of informative comment

The OID declaration for DiceEndorsementManifestUri is as follows:

tcg-dice-endorsement-manifest-uri OBJECT IDENTIFIER ::= {tcg-dice 3}

The ASN.1 definition is as follows:

EndorsementManifestURI ::== SEQUENCE {

 emUri UTF8String,

}

The DiceEndorsementManifestUri field is:

• emUri – is a universal resource identifier [21] that contains an object reference to a manifest. For example, a
SWID Tag schema contains a ‘tagId’ attribute that may be encoded in an emURI.

tcg-dice-endorsement-manifest OBJECT IDENTIFIER ::= {tcg-dice 2}

The ASN.1 definition is as follows:

Manifest ::== SEQUENCE {0

 format ManifestFormat,

 manifest OCTET STRING,

}

ManifestFormat ::= ENUMERATED {

 swid-xml (0),

 coswid-cbor (1),

 coswid-json (2),

 tagged-cbor (3)

}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 36 © TCG 2024

6.5.2 Endorsements Using X.509 Attribute Certificates
Start of informative comment

X.509 attribute certificates [22] may contain attribute values that endorse an Attester.

End of informative comment

Attribute certificate structures, other than the Endorsement certificate extensions defined here, that contain

Endorsements, are outside the scope of this specification.

6.5.3 Endorsements Using Stand-alone Manifests
Endorsement manifests are any authenticatable data structure that contains Endorsements, and typically rely on a

schema that defines syntactic and semantic constraints that apply to manifest construction, parsing and processing.

6.6 Attestation Results
Start of informative comment

Attestation Verifiers generate Attestation Results that may be conveyed to a Relying Party.

End of informative comment

6.6.1 Attestation Results as X.509 Certificate Extensions
Start of informative comment

Attesters may produce multiple instances of Evidence to completely attest a device. Some Attestation Results may
be conveyed indirectly to a Relying Party via the Attester entity. Attestation Results may be forwarded, via the Attester,
to a Relying Party. Attestation Results are integrity protected by the Verifier but may rely on the Attester for conveyance
/ forwarding. An X.509 certificate may contain Attestation Results.

End of informative comment

The tcg-dice-conceptual-message-wrapper may be used to convey Attestation Results within an X.509

certificate extension.

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 37 © TCG 2024

7 Attesting Environment
This section provides additional guidance, requirements, and design considerations for Attesting Environments.

7.1 Compound Device Identifiers
The Attesting Environment (i.e., the issuer of Evidence) MUST ensure that each field that has contributed to a

corresponding CDI value appears in Evidence. If a CDI value of an Attester changes, then at least one Evidence field

has also changed, and vice versa. This ensures consistency between what is asserted as Evidence and actual

conditions described by Evidence.

When generating attestation keys, if the subject key is not derived or generated using the CDI or the CDI is not

consistent with actual conditions, then implicitly attested component state may be inaccurate. For fields included in

Evidence, the issuer MUST ensure that it derives the value by measuring the Target Environment whenever a change

is made.

7.2 Security Validation
Start of Informative Comment

It is often necessary or desirable to ensure an Attester, and therefore, an Attesting Environment, has been validated

and complies with a standard set of security requirements. The Federal Information Processing Standard (FIPS)

Publication 140-3 [23] is one important example. It is a U.S. government standard that defines minimum security

requirements for cryptographic modules in information technology products. This section provides guidance to help

facilitate compliance for DICE-based Attesters.

7.2.1 Cryptographic Keys
Cryptographic keys in FIPS must be generated from the output of an approved Deterministic Random Bit Generator

(DRBG). First, a DRBG is instantiated to create its initial internal state, as illustrated in Figure 12. Once instantiated,

a DRBG acts as a one-way function in combination with a monotonic counter and optional entropy for prediction

resistance. The monotonic counter represents the DRBG’s internal state.

For DICE implementations in which in which it is not possible or desirable to reinstantiate the DRBG with the same

random seed on each power-on reset cycle, an asymmetric key of any DICE type (ECA, attestation, identity) can

be generated exactly once and stored. The dependency of the generated keys on a CDI is achieved by inputting its

creation components into the DRBG. After generated keys are created, they can be stored instead of being

regenerated by reusing DRBG state. A retrieval mechanism can be used to protect the generated keys. A retrieval

Figure 12: Cryptographic Key Origination in FIPS, DRBG States

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 38 © TCG 2024

mechanism that relies on a CDI value (and therefore, code measurements) is required to guarantee that any change

to the original creation components of a key result in either a different key or an inability to retrieve the key.

Therefore, a key retrieval mechanism of adequate cryptographic strength is required to accommodate all key types.

The strength of the retrieval mechanism must be equal to or higher than the cryptographic strength of the keys to

which the retrieval mechanism controls access.

7.2.2 Retrieval Mechanisms
A key retrieval mechanism controls access to stored asymmetric keys. One way to control access is to encrypt an

asymmetric key with an encryption key linked to the creation components of the asymmetric key. This way both

asymmetric and encryption keys are derived from the same origin and are bound cryptographically. The asymmetric

key is generated once, and the encryption key is recalculated periodically. Any change to the creation components

produces an invalid decryption key and precludes retrieval of the valid asymmetric key. An attractive feature of this

approach is the ability to store encrypted asymmetric keys in untrusted memory. However, doing so allows for

unauthorized modification and substitution which FIPS requires protection against, so additional measures, such

as integrity checks, are required. The strength of this retrieval mechanism is dependent on the combination of

selected encryption, key derivation, and integrity protection algorithms. See Figure 13.

Another way to control access is to employ a logical safeguard mechanism. To retrieve a valid asymmetric key from

storage, the requesting party must prove the integrity of key creation components by calculating a retrieval token.

Because the requesting party itself is one of the creation components, access is by default self-authenticated. A

major benefit of this approach is the possibility of replacing encryption and key derivation algorithms by a single

hash function.

In FIPS, a cryptographic key is associated with a single purpose and cryptographic algorithm. As a result, the

encryption-based approach requires the CDI to be separated from an encryption key as they are used by different

algorithms. On the other hand, the token-based approach allows for creation of a single value per layer (the CDI)

which is then used for both linkage to subsequent layers, and access to stored asymmetric keys.

Figure 13: Key Generation for Retrieval Mechanisms

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 39 © TCG 2024

7.2.3 Protected Storage
Protected storage is used by retrieval mechanisms to support integrity checks. Regardless of whether the keys are

stored encrypted or not, unauthorized modification of stored values need to be detected. In addition to integrity

checks, the token-based approach also stores and protects expected retrieval tokens for comparison with the

periodically calculated tokens.

7.3 Evidence

7.3.1 Freshness
A freshness attribute should be included with collected claims that describes the period of time where changes to

Evidence could have escaped detection by the Attesting Environment. Verifiers are expected to determine whether

freshness values are sufficient.

7.3.2 Privacy
If the manifest, attribute certificate, or identity certificate containing attestation extensions does not contain the

component’s identity or firmware measurement, then an attestation Verifier might not be able to associate

attestation Evidence with an appraisal policy for Evidence.

Evidence and Endorsement values conveyed over a public network might be subject to privacy sensitive

observation. It is the responsibility of the conveyance protocol carrying Evidence or Endorsement values to

confidentiality protect its payloads.

End of Informative Comment

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 40 © TCG 2024

8 Appendix A – Complete ASN.1
This appendix summarizes the OIDs and structures defined in this specification.

8.1 OIDs

8.2 Structures
DiceTcbInfo ::== SEQUENCE {

 vendor [0] IMPLICIT UTF8String OPTIONAL,

 model [1] IMPLICIT UTF8String OPTIONAL,

 version [2] IMPLICIT UTF8String OPTIONAL,

 svn [3] IMPLICIT INTEGER OPTIONAL,

 layer [4] IMPLICIT INTEGER OPTIONAL,

 index [5] IMPLICIT INTEGER OPTIONAL,

 fwids [6] IMPLICIT FWIDLIST OPTIONAL,

 flags [7] IMPLICIT OperationalFlags OPTIONAL,

 vendorInfo [8] IMPLICIT OCTET STRING OPTIONAL,

 type [9] IMPLICIT OCTET STRING OPTIONAL,

 flagsMask [10]IMPLICIT OperationalFlagsMask OPTIONAL

}

FWIDLIST ::== SEQUENCE SIZE (1..MAX) OF FWID

FWID ::== SEQUENCE {

 hashAlg OBJECT IDENTIFIER,

 digest OCTET STRING

}

OperationalFlags ::= BIT STRING {

 notConfigured (0),

 notSecure (1),

 recovery (2),

 debug (3),

 notReplayProtected (4),

 notIntegrityProtected (5),

 notRuntimeMeasured (6),

 notImmutable (7),

 notTcb (8),

 fixedWidth (31)

}

tcg OBJECT IDENTIFIER ::= {2 23 133}

tcg-dice OBJECT IDENTIFIER ::= { tcg platformClass(5) 4 }

tcg-dice-TcbInfo OBJECT IDENTIFIER ::= {tcg-dice 1}

tcg-dice-TcbInfoAlias OBJECT IDENTIFIER ::= {tcg-dice-TcbInfo 1}

tcg-dice-endorsement-manifest OBJECT IDENTIFIER ::= {tcg-dice 2}

tcg-dice-endorsement-manifest-uri OBJECT IDENTIFIER ::= {tcg-dice 3}

tcg-dice-Ueid OBJECT IDENTIFIER ::= {tcg-dice 4}

tcg-dice-MultiTcbInfo OBJECT IDENTIFIER ::= {tcg-dice 5}

tcg-dice-UCCS-evidence OBJECT IDENTIFIER ::= {tcg-dice 6}

tcg-dice-manifest-evidence OBJECT IDENTIFIER ::= {tcg-dice 7}

tcg-dice-MultiTcbInfoComp OBJECT IDENTIFIER ::= {tcg-dice 8}

tcg-dice-conceptual-message-wrapper OBJECT IDENTIFIER ::= {tcg-dice 9}

tcg-dice-attestation-evidence OBJECT IDENTIFIER ::= {tcg-dice 10}

tcg-dice-TcbFreshness OBJECT IDENTIFIER ::= {tcg-dice 11}

DICE Attestation Architecture

DICE Attestation Architecture | Version 1.1 | Revision 0.18 | 1/6/2024 | PUBLISHED Page 41 © TCG 2024

OperationalFlagsMask ::= BIT STRING {

 notConfigured (0),

 notSecure (1),

 recovery (2),

 debug (3),

 notReplayProtected (4),

 notIntegrityProtected (5),

 notRuntimeMeasured (6),

 notImmutable (7),

 notTcb (8),

 fixedWidth (31)

}

DiceTcbInfoSeq ::= SEQUENCE SIZE (1..MAX) OF DiceTcbInfo

DiceTcbInfoComp ::= SEQUENCE SIZE (1..MAX) OF TcbInfoComp

TcbInfoComp ::= {

 commonFields [0] IMPLICIT DiceTcbInfo,

 evidenceValues [1] IMPLICIT DiceTcbInfoSeq

}

TcgUeid ::== SEQUENCE {

 ueid OCTET STRING

}

UccsEvidence ::== SEQUENCE {

 uccs OCTET STRING

}

Manifest ::== SEQUENCE {0

 format [0] ManifestFormat,

 manifest [1] OCTET STRING,

}

ManifestFormat ::= ENUMERATED {

 swid-xml (0),

 coswid-cbor (1),

 coswid-json (2),

 tagged-cbor (3)

}

EndorsementManifestURI ::== SEQUENCE {

 emUri UTF8String,

}

TaggedEvidence ::= SEQUENCE {

 taggedEvidence OCTET STRING

}

AttestationResults ::= SEQUENCE {

 taggedAttestationResults OCTET STR

}

