
DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED © TCG 2020

DICE Layering Architecture

Version 1.0
Revision 0.19
July 23, 2020

Contact: admin@trustedcomputinggroup.org

PUBLISHED

S
P
E
C
I
F
I
C
A
T
I
O
N

mailto:admin@trustedcomputinggroup.org

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 1 © TCG 2020

DISCLAIMERS, NOTICES, AND LICENSE TERMS
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use
of information in this specification and to the implementation of this specification, and TCG disclaims all liability for
cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted
herein other than as follows: You may not copy or reproduce the document or distribute it to others without written
permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG
specifications or (b) developing, testing, or promoting information technology standards and best practices, so long
as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at admin@trustedcomputinggroup.org for information on specification licensing
through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 2 © TCG 2020

Contents
DISCLAIMERS, NOTICES, AND LICENSE TERMS ... 1

1 SCOPE ... 4

1.1 Key Words ... 4

1.2 Statement Type ... 4

2 REFERENCES ... 5

3 TERMS AND DEFINITIONS ... 6

3.1 Trusted Computing Terms .. 6

3.2 Glossary .. 6

3.3 DICE Architecture Terminology Conventions ... 6

3.4 Abbreviations .. 7

4 INTRODUCTION .. 8

5 DICE CORE CONCEPTS ... 9

5.1 Purpose ... 9

5.2 Unique Device Secret (UDS) .. 9

5.3 Components and Layers ... 9

5.4 TCB Components ... 9

5.5 TCB Component Identifier (TCI) ... 9

5.6 Compound Device Identifier (CDI) .. 9

5.7 Hardware Roots of Trust ... 10

5.8 Summary ... 10

6 DICE LAYERING ARCHITECTURE .. 11

6.1 System Layering ... 11

6.2 TCB Layering .. 12

6.2.1 TCB Capabilities ... 12

6.2.2 Other TCB Protections ... 13

6.2.3 DICE Layered Identity .. 13

6.2.4 Layered Trust Considerations .. 13

7 CERTIFICATION, ATTESTATION, AND AUTHENTICATION .. 16

7.1 Certification and Token Issuance ... 16

7.2 Attestation ... 16

7.3 Authentication ... 16

7.4 Summary ... 16

8 KEYS AND CREDENTIALS ... 17

8.1 Key Types ... 17

8.1.1 Asymmetric Keys .. 17

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 3 © TCG 2020

8.1.2 Symmetric Keys .. 18

8.1.3 Credential Types .. 18

8.2 Key Creation ... 18

8.2.1 Asymmetric Key Generation... 19

8.2.2 Symmetric Key Derivation .. 19

8.3 Security Considerations .. 20

8.3.1 Key Protection .. 20

8.3.2 Key Persistence .. 20

9 LAYERED CERTIFICATION .. 21

9.1 Certificate Hierarchy ... 21

9.2 Certification ... 22

9.2.1 Layered Certification .. 23

9.2.2 Certification Using Embedded CA .. 23

9.2.3 Certification with External CAs ... 25

10 DESIGN CONSIDERATION ... 29

10.1 External Communication ... 29

10.2 Privacy ... 29

10.2.1 Single Cloud Infrastructure ... 29

10.2.2 Factory Reset ... 29

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 4 © TCG 2020

1 SCOPE
This specification describes an architecture for device identity and attestation, which includes code integrity and other

claims. This specification formalizes the process of attestation at each layer in a device’s boot or startup sequence.

This specification details transitions between layers and the creation of seed values that are tied to the identity of each

layer. Seed values are used for key derivation operations that enable implicit attestation or other use cases involving

a Device Identifier Composition Engine hardware Root of Trust [1]. This specification formalizes mechanisms for

establishing trust in derived keys that can be used in a protocol for attestation. In addition to a strong device identity

rooted in hardware, layered attestation is an extension to typical attestation schemes in that it also relies, implicitly,

on a device’s statistically unique, cryptographically strong, identity.

1.1 Key Words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document normative statements are to be interpreted as
described in RFC-2119, Key words for use in RFCs to Indicate Requirement Levels.

1.2 Statement Type
Please note a very important distinction between different sections of text throughout this document. There are two
distinctive kinds of text: informative comment and normative statements. Because most of the text in this specification
will be of the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning and end
of each informative comment and highlighting its text in gray. This means that unless text is specifically marked as of
the kind informative comment, it can be considered a kind of normative statements.

EXAMPLE: Start of informative comment

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of MUST requires no action).

End of informative comment

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 5 © TCG 2020

2 REFERENCES

[1] Trusted Computing Group, "Hardware Requirements for a Device Identifier Composition Engine," 2018. [Online].

Available: https://www.trustedcomputinggroup.org.

[2] Trusted Computing Group, "TCG Glossary," 2017. [Online]. Available:

https://trustedcomputinggroup.org/resource/tcg-glossary/.

[3] NIST, "NIST Compouter Security Resource Center Glossary," [Online]. Available: https://csrc.nist.gov/glossary.

[4] IEEE, "802.1AR: Secure Device Identity," 2018. [Online]. Available: https://www.ieee.org/.

[5] Trusted Computing Group, "Implicit Identity Based Device Attestation," 2018. [Online]. Available:

https://trustedcomputinggroup.org/.

[6] NIST, "Recommendation for Key-Derivation Methods in Key-Establishment Schemes," 2018. [Online]. Available:

https://www.nist.gov.

[7] Internet Engineering Task Force, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation

List (CRL) Profile," 2015. [Online]. Available: https://datatracker.ietf.org/doc/rfc5280/.

[8] Internet Engineering Task Force, "CBOR Web Token (CWT)," 2019. [Online]. Available:

https://datatracker.ietf.org/doc/rfc8392/.

[9] Internet Engineering Task Force, "The Kerberos Network Authentication Service (V5)," 2015. [Online]. Available:

https://datatracker.ietf.org/doc/rfc4120/.

[10] Internet Engineering Task Force, "A Voucher Artifact for Bootstrapping Protocols," 2020. [Online]. Available:

https://datatracker.ietf.org/doc/rfc8366/.

[11] IEEE, "802.1X-2004 - IEEE Standard for Local and metropolitan area networks - Port-Based Network Access

Control," 2004. [Online]. Available: https://standards.ieee.org/standard/802_1X-2004.html.

[12] Trusted Computing Group, "Symmetric Identity Based Device Attestation," 2019. [Online]. Available:

https://trustedcomputinggroup.org.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 6 © TCG 2020

3 TERMS AND DEFINITIONS
For the purposes of this document, the following terms and definitions apply.

3.1 Trusted Computing Terms
This section contains terminology commonly understood by security, cryptology, and trusted computing practitioners.

The reader may be interested in the following terminology references:

• Trusted Computing Group Glossary [2],

• NIST Computer Security Resource Center Glossary [3].

3.2 Glossary

TERM DEFINITION

Digest The result of a cryptographic hash operation.

Device
A highly integrated platform containing a programmable component with other
optional programmable components and peripherals.

DevID, IDevID, LDevID
These terms are defined by the IEEE 802.1AR [4] standard as information that
an entity (a person or device) possesses that allow it to make a verifiable claim
of identity, i.e., to be authenticated.

Measurement
A digest of code and/or configuration data. It is implementation-specific, and
out of scope for this document, whether a measurement is over a region of
memory, a firmware or software image, or some combination thereof.

3.3 DICE Architecture Terminology Conventions
This section describes conventions for use of the DICE acronym in connection with various concepts found in the

architecture where the literal expansion of the DICE acronym may result in confusing or awkward syntax.

TERM DEFINITION

Compound Device Identifier
The Compound Device Identifier (CDI) is a secret value resulting from the
application of a cryptographic one-way function to a combination of a DICE
Layer’s secret value and the measurement of the subsequent DICE Layer.

DICE Device Identifier Composition Engine, a hardware Root of Trust (RoT)

DICE Architecture
This usage refers to the set of concepts that make up the trusted computing
architecture with a Device Identity Composition Engine as its central feature.

DICE Engine See DICE. The redundancy in terms is noted and it confers no further meaning.

DICE Layer
This is a shorthand term used to describe an element of a DICE Architecture.
See Section 5.3.

DeviceID
An asymmetric key that authenticates a combination of device and firmware.
This term refers specifically to the key derived from the Compound Device
Identifier value that is produced by the DICE.

Layered Identity,
DICE Layered Identity

An identity that cannot exist without a precise chain of TCB components
because it is derived from a Compound Device Identifier.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 7 © TCG 2020

3.4 Abbreviations
For the purposes of this specification, the following abbreviations apply.

ABBREVIATION DESCRIPTION

CDI Compound Device Identifier

DICE Device Identifier Composition Engine

ECA Embedded Certificate Authority

FMC First Mutable Code

FSD Firmware Security Descriptor

HRoT Hardware Root-of-Trust

KDF Key Derivation Function

MFG Manufacturer

OID Object Identifier

OWF One Way Function

PCR Platform Configuration Register

PRF Pseudo Random Function

PSK Pre-Shared Key

RoT Root-of-Trust

RTM Root-of-Trust-for-Measurement

SVN Security Version Number

TCB Trusted Computing Base

TCI TCB Component Identifier

TEE Trusted Execution Environment

TLS Transport Layer Security

UDS Unique Device Secret

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 8 © TCG 2020

4 INTRODUCTION
This document assumes the reader is familiar with the TCG specification Hardware Requirements for a Device

Identifier Composition Engine [1], i.e., DICE. The DICE specification describes the composition of an identifier that

represents the combination of hardware and software that begins a device boot sequence. This document is a

normative specification describing how this concept is extended beyond this first layer to any number of layered

components. This is valuable because transitions between device components across layers are often security

relevant and result in increasing code size and functional complexity.

The DICE specification describes the construction of the Compound Device Identifier (CDI). In this specification that

construction also applies to transitions between components of a device’s Trusted Computing Base (TCB). A device’s

TCB consists of all security relevant components that have been loaded at a given point in the boot sequence. A TCB

component is comprised of hardware, firmware, software and/or configuration. A measurement of a TCB component

is a TCB Component Identifier (TCI). An example of a TCI value is a digest of component firmware. In some cases

where a component does not consist of measurable firmware or software, a hardware product identifier (or equivalent)

may be used.

This architecture takes a layering approach to model multi-component systems. DICE hardware is used as the

hardware Root of Trust (RoT) that anchors every layered component. The DICE hardware specification [4] describes

the hardware layer combining the DICE hardware secret (called a UDS) with a measurement of the next

firmware/software component, and providing a CDI secret to that next layer. Each layered TCB component performs

an analogous process, combining the current TCB component’s CDI secret with a measurement (TCI) of the next

TCB component, and providing the next TCB component with its own CDI.

TCB components also use their DICE Compound Device Identifier (CDI) as the input to a key generation function.

For example, this may be an asymmetric key generation function producing a key pair that may be enrolled as an

802.11AR device identity credential, known as IDevID or LDevID [4]. Keys derived from CDI values may be enrolled

with an application specific certificate authority and used to perform attestation, authentication, and certification. This

specification doesn’t specify key hardening or protection requirements; it assumes the layer that generates the private

key is sufficiently protected.

This specification requires hardware that complies with the DICE hardware specification [1]. How the Unique Device

Secret (UDS) is provisioned within a device is not in scope; only that it has been provisioned. This architecture

presents a solution that does not require manufacturers or vendors to maintain databases of UDS values.

While DICE was originally designed for resource constrained devices, this does not imply any reduced benefit to

implementing DICE in complex systems. DICE provides building blocks that systems can use to address multi-

tenancy, scalability, resiliency, and recoverability goals.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 9 © TCG 2020

5 DICE CORE CONCEPTS
This section contains the core concepts of the DICE Root of Trust and layering. Additional details on the DICE Root

of Trust can be found in [1]. The Device Identifier Composition Engine (DICE) is a hardware and firmware capability

that establishes a verifiable cryptographic identity that, assuming the Compound Device Identifier is protected as

indicated in the DICE specification, implicitly attests that an expected TCB is instantiated during the boot process.

DICE performs measurements of code (and, optionally, configuration data) and generates a cryptographically unique

value, called the Compound Device Identifier (CDI). The CDI entropy derives from a Unique Device Secret (UDS)

and is cryptographically bound to an execution environment by measuring the execution environment’s runtime code.

This code is sometimes referred to as First Mutable Code (FMC); this specification uses the term layer 0. The layer

0 measurement is combined with the UDS to produce the CDI.

5.1 Purpose
The DICE layering architecture provides a way to know which components are operational and which mutable code

is currently loaded in these components in a specific device. A cryptographically strong device identity is essential for

linking a device’s DICE hardware Root of Trust to the DICE layer performing attestation. A DICE layering architecture

provides the context in which secrets and keys are protected and provides the foundation for proving attestation

assertions.

5.2 Unique Device Secret (UDS)
The Unique Device Secret is a statistically unique, device-specific, secret value. The UDS may be generated

externally and installed during manufacture and/or generated internally during device provisioning. The UDS must be

stored in non-volatile memory on the device, e.g., eFuses, or any other suitably protected area to which the DICE can

restrict access. See the DICE hardware specification [1] for details.

5.3 Components and Layers
The device is presumed to be composed of multiple components that are layered or organized in a tree structure. A

layer is comprised of one or more components. Layers are numbered relative to the point of interaction with a DICE

implementation. By convention, the layer that receives the CDI value from a DICE implementation is layer 0.

5.4 TCB Components
A device’s Trusted Computing Base (TCB) consists of multiple components. All security relevant components are

part of the device’s TCB. This specification refers to these as TCB components.

5.5 TCB Component Identifier (TCI)
Components are individually identifiable. The measurement of a TCB component is used to construct a component

identifier. For example, a layer component identifier may consist of a digest of one or more of the following: firmware,

configuration, vendor name, product information, version, Security Version Number (SVN), and/or an instance

identifier. Multiple component instances may have the same TCI. If a TCB component contains measurable firmware

or software, then the TCI for that component includes a measurement of that firmware or software.

5.6 Compound Device Identifier (CDI)
The CDI is the result of a one-way function that accepts as input (1) the TCI of the next component and (2) the CDI

value received from the previous component.

The initial CDI in a DICE system is computed by a DICE HRoT that measures its layer 0 environment (firmware,

configuration data, identifying attributes) plus the Unique Device Secret (UDS).

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 10 © TCG 2020

5.7 Hardware Roots of Trust
Hardware Roots of Trust are presumed to be immutable, though in practice many manufacturers implement

mechanisms for correcting vulnerabilities. While the DICE hardware requirements [1] permit this, the DICE

architecture philosophy regarding hardware Roots of Trust includes the possibility that implementations of protected

capabilities and shielded location technologies have provable correctness, so it becomes feasible to avoid needing

post-production update of a HRoT.

5.8 Summary
The DICE engine, and a meaningful composition of layered components, make up a device. An identity for the device

is derived from this composition. Any device that implements the Device Identifier Composition Engine can support

device attestation [5]. Therefore, a platform comprised of multiple devices may contain multiple attestable DICE

identities (See Section 7.2).

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 11 © TCG 2020

6 DICE LAYERING ARCHITECTURE
DICE defines a hardware Root of Trust (RoT). This architecture uses DICE as the basis of a multi-layered Trusted

Computing Base (TCB). The RoT must be trusted because its misbehavior cannot be detected. A layered TCB

architecture allows a lower TCB layer to supply trusted functionality to a higher TCB layer. Successive layers may

supply increasingly sophisticated trusted functionality, but a minimal set of functions is needed to support TCB

layering.

Start of informative comment

The phrase “lower TCB layer” refers to a TCB component that is below (i.e., executes before) the current TCB layer.
Conversely, the phrase “higher TCB layer” refers to a TCB component that is above (i.e., executes after) the current
TCB layer. Lower TCB layers are typically less complex, of smaller code size, and implement more security-sensitive
functionality.

End of informative comment

6.1 System Layering
The layering architecture based on DICE considers the execution states that are entered progressing from a base

hardware layer (i.e., the DICE hardware Root of Trust (HRoT)). The base hardware layer is assumed to be in a

trustworthy state before transitioning to layer 0. Layer 0 is assumed to be in a trustworthy state before transitioning

to layer 1 and so on. Those familiar with the concept of a Root of Trust for Measurement (RTM) [2] will recognize the

base hardware layer as an RTM. Transitioning between layers of a DICE layering architecture involves creating a

CDI value and securely passing it to the next layer. DICE layering is similar to a trusted boot process as defined by

the Trusted Computing Group [2] with the exception that integrity measurements of a layer n are not necessarily

extended into a PCR as the CDI contains measured values that are securely passed to the next layer.

Figure 1 highlights several examples of layered systems to show a relationship to DICE layering. It is not a goal of

this specification to prescribe specific sequencing of layered objects. Instead, DICE layering architecture design goals

focus on the construction of attestable capabilities at each layer as well as resilient attack and/or corruption detection

and recovery mechanisms. Recovery from attack depends on each layer being able to recreate a layer specific key

as part of the transition to the next layer. Since each layer is measured prior to becoming active, if a layer is

compromised then all subsequent layers likewise are unable to make similar trustworthiness assertions because all

their CDI dependent keys are changed.

TEE

Enclave Runtime

Enclave Applet

Processor Boot ROM

Co-processor runtime

Embedded Function

Processor Boot ROM

Boot Loader

HLOS

Container Runtime

Dynamic RTM

Hypervisor

VM

Hypervisor Loader

Container Runtime

Layer 0

Layer 1

Layer 2

Layer 3

Layer …

Hardware

Runtime Boot Loader

Container

Complex OS Virtualization Enclave Embedded System

Container

Figure 1: Examples of system layering

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 12 © TCG 2020

6.2 TCB Layering
A layered TCB architecture uses a constrained set of TCB capabilities to construct the next TCB layer. TCB

capabilities are assumed to be protected within a hardened execution environment. The transition from one TCB

layer to the next is assumed to be protected using interaction capabilities trusted by both TCB layers.

6.2.1 TCB Capabilities
Every TCB layer (see Figure 2) MUST have trusted access to TCB capabilities that can produce the following:

1. TCB Component Identifier (TCI) – See Section 5.5. The TCI is a component-specific identifier and describes

a TCB component. Examples of TCI values include (i) a hash computed over runtime code that executes in

shielded locations, (ii) a code measurement combined with either a product identifier (e.g., vendor-model-

version or a vendor-model-SVN1), or (iii) a hash of an FPGA bitstream that can be loaded into programmable

hardware. The TCI value for any TCB component that includes firmware or software MUST include

measurement of said firmware or software. Any change to a TCB component MUST result in a different TCI

value for that TCB component. A given layer n MUST use a trustworthy mechanism for computing the TCI

value corresponding to layer n+1.

2. Compound Device Identifier (CDI) – See Section 5.6. The CDI value received by a layer n MUST be based

on a minimum of two input values: (i) the previous CDI value (CDIn-1) and (ii) the TCI of the target TCB

component (TCIn).2 The input values are combined using a one-way function (OWF). Additional values may

be included in a CDI computation for a given layer. The Unique Device Secret (UDS) supplies a statistically

unique value to the DICE HRoT layer since no previous context exists. At layers above the DICE HRoT layer,

the CDI value received from the previous TCB component supplies a statistically unique value to the current

TCB component. A component MUST use a trustworthy mechanism for producing the CDI value of a

subsequent component and a component MUST use a trustworthy mechanism for providing that CDI value to

a subsequent component.

3. One-way Function (OWF) – A cryptographic pseudo-random function (PRF) that complies with NIST SP800-

56c recommendations [6]. The PRF accepts seed (s) and data (x) values. The seed and data values for

subsequent components MUST be the CDI value received from the previous component and the TCB

Component Identity (TCI) of the next component, respectively.

Start of informative comment

Note that Figure 2 is not meant to imply that the measurement of a given layer includes the secret CDI value passed
to that layer nor the TCI value that layer computes for the subsequent layer. This would not be possible in practice,
despite the diagram’s implication otherwise. For example, the measurement of layer 1 is taken by layer 0 before
layer 1 is ever in possession of CDIL1, since CDIL1 is dependent on this measurement. Similarly, layer 1 would not
be in possession of TCIL2 until it is computed by layer 1, which can only occur after the transition from layer 0.

End of informative comment

1 The SVN is a monotonic value that the vendor uses to notify security relevant changes to a TCB component. An SVN
differs from a traditional version number in that non-security relevant changes to the component may not increment the
SVN.
2 There are scenarios in which a given layer may consist of multiple components each with an individual identity. For
example, consider trusted applications that have equivalent security properties, but are isolated from one another within a
trusted execution environment (TEE), each having unique CDI values.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 13 © TCG 2020

6.2.2 Other TCB Protections
Start of informative comment

TCB capabilities exist either in hardened execution environments or during early boot stages in which they are in
complete control of system execution. Definition of the environment and hardening criteria is out of scope for this
specification. However, a manufacturer can describe TCB protection properties using manufacturer issued
attestation certificates and manifests. Inter-TCB communication may require implementation specific hardening to
avoid possible man-in-the-middle attacks or to detect compromise in a subsequent layer prior to a layer transition.

End of informative comment

6.2.3 DICE Layered Identity
A DICE Layered Identity cannot exist without a precise chain of TCB components because it is derived from a CDI

value. This is in contrast to randomly generated identities that may also be held by a device or component. The CDI

value is an accumulation of the measurements of all preceding TCB components. A Layered Identity, therefore,

describes not only the identity of device TCB components but also their order.

6.2.4 Layered Trust Considerations

6.2.4.1 DICE HRoT Trust Considerations

This section describes trust requirements pertaining to the base hardware layer.

A DICE HRoT has the following requirements (see also [1]):

1) The UDS MUST be of sufficient security strength for its usages.

2) The UDS and measurement of layer 0 MUST contribute to the layer 0 CDI computation.

3) The DICE SHOULD NOT access other layer secrets besides the CDI value.

Start of informative comment

Since the protection of layer secrets is critical for maintaining the secrecy of private keys, it is important for the DICE
to access and/or use layer secrets in a way that avoids or prevents other entities accessing or intercepting these
values. Similarly, interference with the transition of execution from DICE to layer 0 should be infeasible.

End of informative comment

4) The DICE manufacturer or vendor SHOULD assert the DICE HRoT’s trustworthiness properties (e.g., via the

DeviceID certificate, see Section 9.2).

5) Secret values, if present, MUST be provisioned securely within the DICE and not externally visible.

Layer 0

TCIL1

f()OWF

CDIL0

TCIL0

f()OWF

UDS

DICE Layer 1

TCIL2

f()OWF

CDIL1

Layer n

FSD

f()OWF

CDILn

...
Figure 2: TCB layering architecture

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 14 © TCG 2020

6) If the DICE generates keys, then a secure entropy source MUST be part of the DICE HRoT.

6.2.4.2 Layer 0 Trust Considerations

This section describes trust requirements pertaining to layer 0.

1) All common trust considerations (see Section 6.2.4.3) apply to layer 0.

2) The DeviceID key MUST be created by a manufacturer-controlled process.

3) The DeviceID key derivation process MUST depend on the CDI value describing Layer 0

4) The manufacturer SHOULD issue a DeviceID certificate (e.g., IEEE IDevID).

5) If layer 0 is not modifiable outside of a manufacturer-controlled process, then both the DeviceID key and certificate

MUST NOT be modifiable outside of said process.

Start of informative comment

If the DeviceID key certificate is expected to be irrevocable and not expire, then is it expected that layer 0 is not
modifiable outside a manufacturer-controlled process.

End of Informative Comment

6) Any change to the layer 0 TCB MUST result in a different DeviceID key.

6.2.4.3 Common Layer Requirements

This section describes layer trust requirements pertaining to layers 0 thru n.

Trust requirements common to all layers are as follows:

1) A DICE layer MUST be constructed from shielded locations and protected capabilities [2].

2) A DICE layer MAY be constructed using shielded locations and protected capabilities used by previous DICE

layers. This consideration SHALL NOT apply to layer 0.

Start of informative comment

The definition of a shielded location is a place (memory, register, etc.) where it is safe to operate on sensitive data.
Since a DICE layer operates on sensitive data (e.g., its CDI value) to which it must have exclusive access, the
location of this data constitutes a shielded location as long as said DICE layer has exclusive access.

The set of commands with exclusive permission to access shielded locations are considered protected capabilities.
This definition includes code that constitutes a given DICE layer since it has exclusive permission to access shielded
locations.

Considerations 1 and 2 are intended to protect layer secrets while they are in use.

End of informative comment

3) A DICE layer MUST protect its secret CDI value and private keys derived therefrom.

4) A DICE layer MUST NOT implicitly trust a layer that executes after it.

Start of informative comment

A DICE layer assumes that all layers below are trustworthy, including the DICE HRoT layer. Trusting a layer implies
one also trusts previous layers and their hardware roots.

End of informative comment

5) A DICE layer MUST create its own secrets, private keys, and trust anchors, or obtain them from a previous layer.

6) DICE layer n keys MUST be generated by layer n or by a previous layer.

7) The CDI value provided to layer n MUST contribute to the layer n+1 CDI computation.

8) If a DICE layer implements a CA, the CA MUST be an Embedded Certificate Authority (ECA) that certifies layer

specific keys following ECA defined procedures (see Section 9.2).

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 15 © TCG 2020

9) If a device provides attestation of layer n, that attestation MUST be provided by layer n or by layers below.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 16 © TCG 2020

7 CERTIFICATION, ATTESTATION, AND AUTHENTICATION
This section describes important TCB capabilities that build on a DICE layering architecture.

7.1 Certification and Token Issuance
Certification of a DICE layered component refers to the issuance of a certificate or token that links the next layer TCB

to the current layer TCB. Public keys for a next layer can be generated and certified in the current layer before passing

control to the next layer. Certification related capability may exist in a given layer TCB when it is appropriate for the

layer to certify keys.

Certification may be applied to both asymmetric and symmetric key types. Asymmetric keys are certified using a

certificate (e.g. X.509v3 [7]). Symmetric keys are issued in tokens (See RFC8392 (CWT) [8] and RFC4120 (Kerberos)

[9]).

Certification using certificates has two forms (i) the TCB layer generates the key pair and signs the certificate for the

next layer TCB (See Section 9.2.2.1) or (ii) the next layer TCB generates the key pair and obtains a certificate from

the previous layer TCB (See Section 9.2.2.2).

Certification using tokens involves the certifying TCB constructing a token containing the TCI of the next layer TCB,

the next layer CDI, and a symmetric key derived from the CDI.

The method by which the symmetric key is shared or exchanged with a verifier is out of scope for this document.

7.2 Attestation
Attestation of a DICE layered component refers to the use of a symmetric or asymmetric key that is approved by the

layer Embedded Certificate Authority for attestation (See Section 9.2). Attestation asserts trustworthiness properties

about a TCB layer or component. Trustworthiness properties may be explicit – meaning properties are enumerated

and an encoding of them is available for inspection by an attestation verifier. Trustworthiness properties may be

implicit – meaning properties are inferred by a verifier based on a condition or state that wouldn’t otherwise be

possible.

A DICE TCB layer that supports attestation inspects a subsequent layer TCB or component to collect its

trustworthiness properties. A TCI computation collects trustworthiness properties inherent in code and settings used

to execute a subsequent layer TCB. The inspecting TCB layer also creates attestation evidence about a subsequent

layer that is used by an attestation verifier. Evidence may be certified by the inspecting TCB layer’s ECA or signed

by an attestation key (See Section 8.1) such that a verifier can associate the attestation key with the trustworthiness

properties of the TCB that controls the key.

7.3 Authentication
Authentication of a DICE layered component refers to the use of a symmetric or asymmetric key that is authorized to

authenticate the device. A DICE layer that participates in device authentication protocols (e.g., RFC 8366 [10], IEEE

802.1X [11]) includes this capability in its TCB.

7.4 Summary
A DICE layer TCB can be configured to include additional capabilities beyond those required for secure transition to

a next layer. This specification identifies additional certification, attestation and authentication capabilities for DICE

layer TCBs. Other additional capabilities may be appropriate. Designers SHOULD determine whether a TCB

capability is essential. Limiting TCB complexity helps manage the TCB attack surface. Therefore, careful

consideration should be made before including additional capabilities.

This DICE layering architecture anticipates increased TCB complexity in later layers. Consequently, later layers

may be more vulnerable to compromise. A possible response to compromise may involve returning control to lower

DICE layers that may be less vulnerable to compromise and capable of restoring proper operation.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 17 © TCG 2020

8 KEYS AND CREDENTIALS
The TCB in each layer may manage several types of keys. This section defines key types, expected use, generation

and derivation requirements, and protection assumptions.

8.1 Key Types
The following sections are descriptions of the types of keys (both symmetric and asymmetric) and credentials that

may be used in a DICE layering architecture.

8.1.1 Asymmetric Keys

8.1.1.1 Embedded Certificate Authority (ECA) Keys

An ECA Key is an asymmetric key that a TCB component uses to issue (sign) certificates for keys generated for the

current or subsequent TCB layer. For example, keys generated at a higher TCB layer could obtain a certificate issued

by a lower TCB layer. When the derivation of an ECA Key is deterministic and dependent on the combination of a

CDI value and the TCB component identifier (TCI), then use of an ECA Key (for signing ECA certificates) is an implicit

statement of Layered Identity. ECA Keys MUST only sign data that is known to the TCB layer. For example, ECA

Keys are not used to sign opaque structures from outside the TCB layer.

8.1.1.2 Attestation Keys

An Attestation Key is any asymmetric key used to sign attestation evidence. When the derivation of an Attestation

Key is deterministic and dependent on a CDI value then use of an Attestation Key to sign attestation evidence is an

implicit statement of Layered Identity. Like ECA Keys, Attestation Keys MUST only sign data structures that are

known to the TCB. For example, Attestation Keys are not used to sign opaque structures from outside the TCB layer.

However, including data from outside the TCB layer, like a random nonce, is expected as part of a signed response

to an attestation request.

8.1.1.3 Identity Keys

An Identity Key is an asymmetric key used for signing authentication challenges (i.e., statements of Layered Identity,

whether implicit or explicit) is an identity key. For example, the leaf in an ECA x509 certificate chain used for TLS

client authentication uses an Identity Key.

8.1.1.4 Summary

Table 1 provides a summary of asymmetric key types and their respective functions. Asymmetric keys can have

multiple attributes.

 CERTIFICATION ATTESTATION IDENTITY NOTES

ECA Key ✓ ✓ ✓ Only sign known data

Attestation Key ✓ ✓ Only sign known data

Identity Key ✓ May sign opaque challenge
Table 1: Asymmetric key types and their permitted usage types

8.1.1.5 DeviceID and Alias Keys

The DeviceID and Alias Keys are instances of DICE key types. The DeviceID key is the asymmetric key derived from

the CDI value that is computed by the DICE. It is dependent on the combination of the device’s UDS value and the

measurement of Layer 0. The DeviceID key is a long-lived identifier for a device and is used to sign one or more

certificates for keys generated on behalf of a higher TCB layer. Therefore, the DeviceID key is an ECA Key. The

DeviceID key may be used to sign certificates that also contain attestation evidence, so it is also an Attestation Key.

The DeviceID key is typically certified during manufacturing and therefore provides device provenance.

The Alias Key is an asymmetric key that is computed using the last CDI value in the chain of TCB components. The

Alias Key and corresponding certificate are typically leaf nodes in the DICE derivation chain and contain attestation

information about top-level device firmware. The Alias Key is used to sign attestation evidence; therefore, it is an

attestation key.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 18 © TCG 2020

Lastly, since the DeviceID and Alias Key are both CDI-derived keys, both are DICE Layered Identities and considered

Identity Keys.

8.1.1.6 Design Considerations

While CDI values are secret, TCI values might not be, see section 6.2.1. A combination of these values forms a seed

for a keypair, the usage of which constitutes an implicit statement of Layered Identity. For a keypair to act as an

implicit identity key, the seed from which it is derived MUST contain the measurement (i.e., CDI) of the TCB component

that it identifies.

8.1.2 Symmetric Keys

8.1.2.1 Symmetric Alias Key

While most of this specification pertains to scenarios in which asymmetric cryptography is used, there are important

use cases that use only symmetric encryption. For these scenarios, a Symmetric Alias Key is used, analogous to the

asymmetric Alias Key described in section 8.1.1.5. A Symmetric Alias Key is generated based on the CDI value and,

optionally, a PSK ID Hint chosen by the verifier. Like the asymmetric Alias Key, this pre-shared key is used for

Symmetric Key Attestation and Layered Identity. See the Symmetric Identity Based Device Attestation specification

[12] for more information.

8.1.2.2 Wrapping Keys

For scenarios in which it is undesirable to regenerate asymmetric key pairs on each boot, a symmetric wrapping key

may be used to persist previously derived asymmetric keys. For example, instead of layer 0 recreating the DeviceID

key on each boot, layer 0 may use a value derived from the CDI as a seed for a symmetric key that is used to encrypt

the DeviceID before persisting it to storage. Since the wrapping key is based on the CDI value, layer 0 is unable to

reconstitute the correct DeviceID key pair without also possessing the correct CDI value.

8.1.3 Credential Types
IEEE802.1AR compliant credentials are referred to as Initial Device Identifiers (IDevID) and Local Device Identifiers

(LDevID) [4]. They relate to DICE layer identities as follows:

• IDevID – A credential containing a DeviceID (key) that is issued by a device manufacturing process. The

credential describes device manufacturer provenance. The DICE TCB layer that generates an IDevID

(typically layer 0) SHOULD be either immutable or mutable under the control of the device manufacturer. A

DICE DeviceID becomes an IDevID when a certificate is issued that conforms to IEEE802.1AR requirements.

For a DICE DeviceID to be considered an IDevID, the identity MUST be an instance identifier (see Section

6.2.1). The IDevID issuer MUST verify that the component containing, i.e., protecting, the private key and

identifier is bound to the device. DeviceID keys may be enrolled with a manufacturer’s certificate authority

(CA) and may comply with IEEE802.1AR requirements.

• LDevID – A credential containing a DeviceID-derived (key) that is issued by the device owner process,

typically created on deployment in the owner’s network. The DICE TCB layer that generates an LDevID

(typically layer n, where n > 0) SHOULD allow creation of an owner specific LDevID. If the TCB layer is

mutable, the owner SHOULD control mutability.

Key type specific seed derivations SHOULD include data input to the one-way function that disambiguates the key

type. For example, an LDevID key could be seeded where the seed = PRF (CDI, “LDevID”).

8.2 Key Creation
There are multiple acceptable ways to derive symmetric and asymmetric keys from CDI values. This specification

does not provide an exhaustive list of algorithms that may be used for this purpose. However, this section does

provide examples of commonly used algorithms.

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 19 © TCG 2020

8.2.1 Asymmetric Key Generation
Asymmetric keys can be used to attest trustworthiness properties of a TCB layer. If implicit attestation is used, the

key generation function MUST be deterministic based on the CDI.

Since asymmetric key generation is seeded using the CDI, layering semantics are implicitly represented in the

resulting asymmetric key pair. In Figure 3 for example, layer n uses the CDI value it received from layer n-1 to

generate a layer n key.

8.2.1.1 ECDSA

The ECDSA key generation function can be made deterministic by selecting a repeatable seed value, see RFC6979.

The seed SHOULD be based on the TCB context by using a value derived from the current layer CDI value. The

resulting random number MUST be used as the random number input to the ECDSA key generation function.

8.2.1.2 RSA

The RSA key generation function can be based on the TCB context by using a value derived from the current layer

CDI value to seed the random number generator that produces p and q primes.

Start of informative comment

ECDSA is usually favored over RSA for constrained environments due to smaller key size and improved sign
operation performance.

End of informative comment

8.2.2 Symmetric Key Derivation
Symmetric key creation uses a Key Derivation Function (KDF) that complies with NIST SP800-56C recommendations.

The UDS, or a CDI value derived using the UDS, MUST be used to seed the KDF. The length of CDI MUST be

sufficient to ensure derived symmetric keys do not cryptographically overlap the CDI seed value, or the CDI value

MUST be augmented with additional information that ensures cryptographic overlap is avoided. Figure 4 illustrates

an example of this.

8.2.2.1 Device Identity and Attestation Using Symmetric Keys

See the Symmetric Identity Based Device Attestation specification [12] or more information on device identity and

attestation using symmetric keys.

Figure 3: Asymmetric key generation example

Hardware

DICE

...

Layer 0

CDIL0

f()KGEN

AKeyL0

Layer 1

CDIL1

f()KGEN

AKeyL1

Layer n

CDILn

f()KGEN

AKeyLn

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 20 © TCG 2020

8.3 Security Considerations
The following sections outline security considerations for key derivation, protection, and management in a layered

architecture.

8.3.1 Key Protection
Knowledge of layer specific TCB context values (TCI, CDI, UDS, etc.) would allow an attacker to derive or generate

the keys for a given layer. The attacker could then impersonate the layer. The TCB layer MUST protect UDS, CDI,

private keys, and symmetric keys to a level that is sufficient for the expected use.

The private portion of a key MUST NOT be exposed above the layer that is trusted to protect it. Furthermore, before

key protection responsibilities are passed to the next DICE layer, the current DICE layer may need to erase private

key material or inputs used to generate keys in shielded locations to avoid inappropriate duplication or unauthorized

use.

8.3.2 Key Persistence
In a DICE architecture it is expected that CDI values will change when there is a code change to a layer TCB. If

private keys are made persistent with no reliance on a CDI value then a change to the layer TCB code would be

ignored by the persisted key, resulting in a key that would implicitly attest to a configuration that is not in use. This

misrepresents the actual identity, behavior, and trustworthiness state of the TCB layer.

DICE layer keys or secret values used to generate them MUST NOT be stored in unprotected storage that persists

beyond the lifetime of the DICE layer that controls it. The keys and secret values provided to a device by a

manufacturer MUST NOT be allowed to persist outside of the device’s shielded locations.

Nevertheless, it is not a requirement that layer specific key pairs be re-generated on every reset cycle. Some devices

may not have sufficient processing power to enable acceptable boot times. Several acceleration strategies exist, one

example is key wrapping, see section 8.1.2.2. Using the CDI value received from the previous layer or component, a

symmetric wrapping key is derived. This key is then used to wrap (encrypt) and unwrap (decrypt) persisted

asymmetric private keys. On first boot, the asymmetric keys are wrapped and may be persisted in untrusted storage.

Upon subsequent reboots the asymmetric keys are obtained from storage and unwrapped. Note that if the layer TCB

code is updated, the current set of asymmetric keys must be revoked, and new asymmetric keys generated from the

new TCB layer.

Figure 4: Symmetric key derivation example

Hardware

DICE

...

Layer 0

CDIL0

f()KGEN

SKeyL0

TCIL0

Layer 1

CDIL1

f()KGEN

SKeyL1

TCIL1

Layer n

CDILn

f()KGEN

SKeyLn

TCILn

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 21 © TCG 2020

9 LAYERED CERTIFICATION
Device manufacturer certificates describe the trust properties of the DICE HRoT. Manufacturers of DICE devices may

implement a CA hierarchy consisting of a manufacturing root CA with one or more subordinate CAs that issue device

identity and attestation certificates.

Device identity certificates (e.g., IDevID, or DeviceID certificates) embed a cryptographic identity in the device early

in the manufacturing process so as to satisfy device provenance expectations – namely, that a verifier may be

reasonably assured that the device interacting with the verifier is of reputable origin.

Start of informative comment

The IEEE 802.1AR use of the term “device” (e.g., in IDevID) more closely aligns with the TCG definition of the term
“platform” (see Section 3). While the DICE hardware specification [1] is typically associated with embedded devices
specifically, this is not a requirement. In this specification the term “device” differs from the 802.1AR definition in
that a “device” is not required to have an IDevID.

End of informative comment

Device attestation certificates assert that the device’s manufacturer has embedded a cryptographic key in a device.

It allows a verifier to determine which manufacturer created the device. The device certificate is used to authenticate

evidence (statements about its current configuration and operational state) supporting the claim that the device is not

under the control of malicious actors. Traditionally, this process is referred to as attestation [2].

Device onboarding should seek to evaluate both forms of attestation as a condition of the device’s acceptance into

an owner’s domain. Acceptance can be described as a transfer of ownership of the device from the manufacturing

and supply chain ‘domain’ that currently has physical and virtual control over the device to another domain that

physically acquires, manages, and uses the device. The new owner typically configures the device with a new device

identity (e.g., LDevID) and new attestation certificate so the device can be managed and used in the new domain and

so control surfaces that existed in the previous domain are closed or placed under joint control with the new owner.

DICE certificate enrollment and certification practices SHOULD establish trust following a coordinated hand-off of the

device from the current owner’s domain to the new owner’s domain. It also should support the new owner’s desired

device management and trust practices. This may include periodic reattestation, reconfiguration, and reinstallation or

update of device firmware including the TCB elements.

9.1 Certificate Hierarchy
A DICE architecture may rely on Public Key Infrastructure (PKI) for device provenance. The device manufacturer

SHOULD implement a certificate hierarchy that issues device certificates. The device manufacturer and other supply

chain entities SHOULD issue device attribute certificates or manifests containing trustworthiness assertions that

pertain to DICE trustworthiness. Figure 5 shows an example certificate hierarchy consisting of a root CA that certifies

Root CA Sub CA1
End Entity Certificate

Attribute Certificate
or Manifest

Figure 5: Certificate hierarchy with Attribute Certificate or Manifest

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 22 © TCG 2020

a subordinate CA that issues an end entity certificate. The subordinate CA may issue attribute certificates or sign

manifests containing reference assertions. The end entity certificate may also contain reference assertions.

Figure 6 illustrates a sample certificate hierarchy with an Embedded CA (ECA). The device containing an ECA

performs both the ECA role and the end-entity role. The ECA issues the end-entity certificate, which extends the

certificate path length. Some services commonly performed by a CA may not be supported by the ECA. These may

include issuing certificate revocation lists (CRL), performing online certificate status checking, and certificate storage.

Identity, attestation, and embedded certificate authority (ECA) keys can be certified using both external and embedded

CAs. This results in issuance of a certificate. The decision to enroll and which CA to enroll with is use case specific.

A DICE TCB layering architecture anticipates the possibility for enrollment at any layer, beginning with layer 0, and

with both external and embedded CAs. It also anticipates attestation as a precondition to certificate issuance.

Embedded CAs may issue attribute certificates or sign manifest structures containing attestation information that

pertains to a layer specific end entity certificate, see Figure 7.

Certificate formats are described in this specification according to x509v3 (see RFC5280 [7]) but are not intended to

be exclusively x509.

9.2 Certification
An embedded certificate authority (ECA) is functionality contained within a DICE layer TCB that allows DICE layer

keys to be certified. Certification allows higher DICE layers and external entities to verify trustworthiness at or below

the DICE layer that contains the ECA. Trust in the ECA may depend on trust found in dependent layers and is rooted

in the DICE HRoT. Therefore, a consumer of an ECA issued certificate may need to trace trust dependencies through

Figure 6: Certificate hierarchy with Embedded CA

Figure 7: Certificate hierarchy with Embedded CA

ECA
Root CA Sub CA1

End Entity

Layer N Layer N + 1

Device

...

ECA
Root CA Sub CA1

Layer N Layer N + 1

Device

...
End Entity

Attribute Certificate
or Manifest

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 23 © TCG 2020

DICE layers to DICE manufacturers. Consumers of an ECA issued certificate may also expect to obtain the

manufactures’ root certificates to terminate path validations.

9.2.1 Layered Certification
In the layered enrollment example in Figure 8 each TCB layer has generated a layer specific identity key. Layer 0

has obtained a manufacturing certificate (CAMFGCertL0) that can be used as initial device identity, i.e., an IDevID.

Layer 0 implements an embedded certificate authority (ECAL0) that was used to issue a certificate (ECAL0CertL1) to

the layer 1 TCB. Layer 1 also implements an ECA. It was used to issue a layer 2 certificate (ECAL1CertL2). The

device owner issued a local device identity (LDevID) certificate to the layer 2 TCB (CAOWNCertL2). The layer 2 TCB

implements an ECA that was used to issue a certificate to the next layer.

9.2.2 Certification Using Embedded CA
Certification using an Embedded Certificate Authority (ECA) allows a current layer TCB to issue a certificate that

extends trust to a higher layer TCB. There are two models for intra-layer certification: (i) the ECA policy prescribes

when and how to issue higher layer certificates and (ii) a higher layer creates a Certificate Signing Request (CSR).

9.2.2.1 Direct Layered Certificate by an ECA

The ECA may issue certificates according to a policy that is embedded in the ECA firmware or is securely configured.

The policy describes how and when to issue layer specific certificates. The ECA generates the to-be-certified key

pair and authorizes ECA certificate issuance. The ECA may securely provision the key pair to the higher layer TCB

or may allow the key to be accessed by the higher layer TCB over a secure channel.

The certification steps, illustrated in Figure 9, are:

1. The layer n TCB measures layer n+1 firmware to create a TCB identifier TCILn+1.

2. The layer n TCB uses the TCI value to compute a CDI for layer n+1.

3. The layer n TCB uses CDILn+1 to generate a key pair for layer n+1.

4. The layer n ECA issues a certificate certifying the identity of layer n+1.

Layer 1

LDevIDL1

ECAL1

ECAL0 CertL1

DeviceID

ECAL0

CAMFG CertL0

Layer 0 Layer 2

LDevIDL2

ECAL2

ECAL1 CertL2

Layer n

Alias Key

ECALn-1 CertLn

...

/ /

MFG CA

CAOWN CertL2

Owner CA

Figure 8: Layered certification example

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 24 © TCG 2020

5. The layer n TCB provisions the layer n+1 TCB with its CDI, private key, and certificate. Supplying the private

key is optional at this step since layer n+1 could use the CDI to regenerate the private key.

9.2.2.2 Layered TCB Certification using CSR

An ECA may accept certificate enrollment requests from a higher layer TCB. The ECA MUST verify the CSR

originates from the TCB component named in the CSR Subject. For example, a CSR may be accompanied by a layer

attestation that proves layering semantics to the ECA or the CSR arrives over a trusted communication path.

The enrollment steps are, illustrated in Figure 10, are:

1. layer n TCB measures layer n+1 firmware to create a TCB identifier TCILn+1.

2. The layer n TCB uses the TCI value to compute a CDI for layer n+1.

3. The layer n TCB securely provisions CDILn+1 to layer n+1.

4. The layer n+1 TCB uses CDILn+1 to generate a key pair for layer n+1.

5. The layer n+1 TCB constructs a CSR consisting of the public key (PKLn+1), TCB identifier (TCILn+1) and other

information that may be needed for layer n to correctly identify the layer n+1 component (such as TCILn+1 +

index). Note the layer n+1 TCB may have other values it wishes to include in the CSR.

6. The layer n ECA verifies the values received from layer n+1 by verifying that the signature was created by the

layer n+1 private key (KLn+1) using the CSR public key (PKLn+1).

7. The layer n ECA uses the original layer n+1 TCI and CDI values or rederives them to form CDInew.

Start of informative comment

The CDI value is regenerated because layer n does not trust information provided by layer n+1.

End of informative comment

8. The layer n ECA extracts the supplied TCI value from the certificate and verifies that it matches the original

value. The layer n ECA ensures the CDInew is the same as CDILn+1. Computation of the CDI value is described

in section 6.2.1.

9. The layer n ECA regenerates the layer n+1 key pair (PKnew, Knew).

10. The layer n ECA verifies the layer n+1 public key is the same as the regenerated key (PKnew) and removes

the private key (Knew).

11. The layer n ECA issues a certificate using the CSR template.

Figure 9: Direct Layered Certification by an ECA

Layer n Layer n+1

TCBLn+1

CertLn+1

1. Measure Layer n+1 : TCILn+1

5. CDILn+1, KLn+1, CertLn+1

ECALn

TCBLn

2. Compute CDILn+1

3. Generate (PKLn+1, KLn+1)

4. Sign Cert = [PKLn+1, TCILn+t,]KLn

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 25 © TCG 2020

9.2.2.3 ECA Certificate Issuance Considerations

Some ECA implementation details are out-of-scope for this specification. This section contains guidelines to ECA

implementers.

(i) An ECA may not remember whether certificates have been previously issued, hence the ECA may

unknowingly re-issue the same certificate if asked. It may be desirable for ECAs to select certificate attributes

such as Issuer, Validity Period, Subject, or Serial Number that have deterministic properties.

(ii) Excessive use of an ECA signing key may decrease its effective lifetime due to cryptanalysis.

(iii) An ECA may issue certificates for different key usages beyond those defined by the RFC5280 KeyUsage

constraint. For example, attestation usage is not defined at the time of this writing. The issuing ECA may

wish to disambiguate fixed purpose certificates by adding additional common name parameters to the Subject

name or by including certificate extensions that indicate an expected usage semantic.

(iv) An ECA may not be able to accept certificate revocation requests. Therefore, setting the KeyUsage cRLSign

attribute to FALSE and specifying a certificate revocation distribution point (CRLDistributionPoints) extension

that refers to a non-ECA entity may be appropriate.

9.2.3 Certification with External CAs
A DICE TCB layer may interact with an external CA (i.e. not an ECA) in order to obtain device identities. Device

identities may be obtained during manufacturing or when the device is onboarded into a network.

Device manufacturers typically provision device identities during manufacturing and follow one of two general

approaches; (i) both the device keys and device identity credential are provisioned to the device while in a non-

operational state or (ii) the device keys are generated by the device and the identity credential is created in

response to a credential creation request from the device.

9.2.3.1 Manufacturer Issued IDevID Certificate with Device Generated Keys

This section describes the steps for initial device identity (e.g., IDevID) creation when the manufacturer’s

provisioning system is not trusted to protect device secret keys.

Figure 10: Layered TCB Certification using a CSR

Layer n+1

TCBLn+1

CertLn+1

5. Create certificate

([PKLn+1, TCILn+1,]KLn+1)

1. Measure Layer n+1 : TCILn+1

ECALn

TCBLn 3. CDILn+1

11. CertLn+1 = [PKLn+1, TCILn+t,]KLn

2. Compute CDILn+1

6. Verify message #5
7. Re-compute CDInew

8. Verify CDInew = CDILn+1

9. Re-generate PKnew

10. Verify PKnew = PKLn+1

4. Generate (PKLn+1, KLn+1)

Layer n

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 26 © TCG 2020

Start of informative comment

Special manufacturer firmware may be used during manufacture of a device. The firmware has knowledge of the
measurements of production firmware. After provisioning the device, the manufacturer firmware is removed and
replaced with a production firmware image.

End of informative comment

The provisioning steps, illustrated in Figure 11, are:

1. The manufacturer, using a manufacturing process and possibly manufacturer provisioned device firmware,

provisions the layer 0 TCB and TCB identity (TCIL0).

2. The layer 0 TCB or manufacturing firmware computes its CDI value.

3. The layer 0 TCB or manufacturing firmware generates an initial device identity key pair (PKL0, KL0).

4. The layer 0 TCB or manufacturing firmware supplies a certificate creation request (a.k.a., CSR) to the

manufacturer’s CA containing its identity (TCIL0) and public key (PKL0). The request is integrity protected

using the private key (KL0) or another key used by the manufacturer.

5. The manufacturer’s CA verifies the CSR signature.

6. The manufacturer’s CA verifies the CSR TCI value matches the provisioned TCI value.

7. The manufacturer’s CA issues an IDevID certificate using the TCI and public key.

8. The IDevIDL0 device certificate may be provisioned to the device.

A traditional certificate signing request (CSR) is self-signed by the private portion of the device identity key (e.g., KL0)

to prove to the registration entity (e.g., CA) that it possesses the private key. However, self-signing doesn’t attest the

security properties employed to protect the private key. For this, manufacturing processes and firmware may be used

to convey the appropriate device state.

9.2.3.2 Manufacturer Issued IDevID Certificate with Provisioned Keys

This section describes the steps for initial device identity (e.g., IDevID) creation when the manufacturer’s

provisioning system is trusted to protect device secret keys.

The provisioning steps, illustrated in Figure 12, are:

1. The manufacturer computes the layer 0 TCI

2. The manufacturer computes the layer 0 CDI.

3. The manufacturer generates the device identity key pair (PKL0, KL0).

4. The manufacturer’s CA issues an IDevID certificate using the TCI and public key.

Figure 11: Example initial device identity (IDevID) certification by a manufacturer.

Layer 0

CAMFG4. CSR = [PKL0, TCIL0]KL0

1. Provision TCBL0, TCIL0)

8. CertL0 = [PKL0, TCIL0]KMFG

Manufacturer

TCBL0

IDevIDL0

CertMFG

IDevID
CertL0

2. Compute CDIL0

3. Generate IDevIDL0 (PKL0, KL0)

5. Verify CSR
6. Verify TCIL0

7. Issue CertL0

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 27 © TCG 2020

5. The manufacturer provisions the layer 0 TCB, TCB identity (TCIL0), CDI, private key (KL0) and IDevIDL0

certificate using a manufacturing process.

The manufacturing certificates issued by the manufacturing CA (e.g., CAMFG) may contain additional information or

implied semantics relating to attestation attributes. Alternatively, the manufacturer and supply chain entities may issue

attribute certificates or reference manifests.

9.2.3.3 Owner Issued LDevID Certificate

Figure 13 illustrates an example of a device owner who may take possession of the device from a supply chain entity

and issue a local device identity (e.g., LDevID) using a CA of the owner’s choice. The owner may likewise include

attestation attributes and issue attribute certificates and attestation manifests to facilitate attestation operations within

the local owner’s network.

The owner may determine a different device layer (e.g., Layer 2) is most appropriate for operation within the owner’s

network. Hence, a device onboarding step might create a CSR using a local (LDevID) public key (e.g., PKL2). The

device attests to the security of the LDevID by supplying attestation evidence of the TCB layering back to the Root of

Trust layer. For example, the manufacturer issued certificate and embedded CA issued certificates that were supplied

to the owner CA for trust evaluation. The owner CA will issue local device ID certificates if attestation evidence is

sufficient.

The onboarding and ownership acquisition steps, illustrated in Figure 13, are:

1. The layer 2 TCB creates a CSR using a layer 2 generated public key (PKL2). Note: this example shows the

TCIL2 as the local device identity, but the owner may select a different value.

2. The owner supplies an attestation nonce N1.

3. The layer 2 TCB attests the device by returning the nonce, certificate chain generated by the device’s ECA.

The attestation message is signed using a layer 2 attestation key.

4. The owner CA verifies the CSR signature.

5. The owner CA verifies the device attestation. Note: the certificate chain contains attestation evidence at

each layer supplied by the ECA at each layer as part of certificate issuance.

6. The owner CA issues a local device identity (LDevIDL2) certificate.

7. The owner CA may provision the LDevIDL2 certificate to the layer 2 TCB.

Figure 12: Example initial device identity (IDevID) certification by a manufacturer.

Layer 0

CAMFG

5. Provision TCBL0, TCIL0, CDIL0,

KL0, (CertL0 = [PKL0, TCIL0]KMFG)

IDevID
CertL0

Manufacturer

TCBL0

IDevIDL0

CertMFG

1. Compute TCIL0,
2. Compute CDIL0

3. Generate IDevIDL0 : (PKL0, KL0)
4. Issue CertL0

CertMFG

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 28 © TCG 2020

Start of informative comment

The device will not be able to authenticate to the local network unless it completes booting into layer 2 where the
LDevIDL2 private key resides.

End of informative comment

Figure 13: LDevID certification by owner CA

Layer 1

LDevIDL1

 CertL1

IDevIDL0

CertL0

Layer 0 Layer 2

LDevID
KL2

 CertL2

CAOWN

LDevID
CertL2

1. CSR = [PKL2, TCIL2]KL2

3. Attest [N1, TCIL2,
 Certchain]KL2

7. CertL2 = [PKL2, TCIL2]KOWN
CertMFG

Owner

2. Nonce N1
4. Verify CSR
5. Verify Attestation
6. Issue LDevID CertL2

DICE Layering Architecture

DICE Layering Architecture | Version 1.0 | Revision 0.19 | 7/23/2020 | PUBLISHED Page 29 © TCG 2020

10 DESIGN CONSIDERATION
This section provides guidance on some of the design considerations that come with implementing a layered DICE

architecture.

10.1 External Communication
Communication over a network or external bus is typically complex and not expected to be present in early layers of

a DICE architecture, even if it will eventually be part of the device TCB. The DICE HRoT and layer 0 code should be

kept as simple as possible. Code necessary to access a network, for example, is too complex.

10.2 Privacy
It is the responsibility of device firmware to manage device state and establish secure communication with external

services. Therefore, device firmware is responsible for fulfilling user or device privacy requirements to the extent

necessary, given the requirements of the environment in which a device operates.

There are design considerations in this specification that may favor infrastructure models versus consumer models.

While these tradeoffs are acceptable in the context of the assumptions made here, they may not be favorable in all

environments.

10.2.1 Single Cloud Infrastructure
Of the privacy-relevant design considerations, the most notable is whether a device will be expected to communicate

with a single infrastructure during its operational lifetime. Cloud infrastructure may be explicitly aware of the identity

of each device it services as well as attestation data, in addition to other device characteristics. There are

environments in which this is not only a feature, but a necessity.

Conversely, there are device vendors and users for whom this is unacceptable. For these scenarios, device firmware

must be implemented in a way that minimizes the potential for device tracking.

One strategy for minimizing tracking is by continuing the key derivation and certificate chain beyond the Alias Key and

certificate or by periodically recycling an Alias Key using a local CA that hides the device certificate path but vouches

for the trustworthiness of the Alias Key. This abstracts the device’s hardware identity and prevents relying parties

from corelating a DeviceID to multiple transactions involving the same device. The device may authorize the

correlation by explicitly sharing this information with the service.

10.2.2 Factory Reset
There is often the expectation that devices can be reprovisioned to erase any existing device state including initial

device identity. This specification does not preclude the implementation of a device reset mechanism.

To implement device reset, system designers have four basic options:

1. Modification of the UDS value on the device, for example, via the use of a random element to obtain a new
UDS value

2. A modification or configuration change to Layer 0

3. Both 1 and 2

4. For devices with immutable UDS values and long-lived Layer 0 Code, the derivation of the DeviceID key pair
cannot depend solely on the CDI value for the device. The DeviceID key pair for these devices cannot avoid
including a modifiable value that can be changed as part of device identity re-provisioning.

To protect against roll back of device identity on a device that has been reprovisioned, any changes to the UDS or

Layer 0 for the purpose of reprovisioning MUST be irrevocable. Each of the above options will result in a new device

identity and an unrecoverable loss of the existing device identity and any derived secrets.

	DISCLAIMERS, NOTICES, AND LICENSE TERMS
	1 SCOPE
	1.1 Key Words
	1.2 Statement Type

	2 REFERENCES
	3 TERMS AND DEFINITIONS
	3.1 Trusted Computing Terms
	3.2 Glossary
	3.3 DICE Architecture Terminology Conventions
	3.4 Abbreviations

	4 INTRODUCTION
	5 DICE CORE CONCEPTS
	5.1 Purpose
	5.2 Unique Device Secret (UDS)
	5.3 Components and Layers
	5.4 TCB Components
	5.5 TCB Component Identifier (TCI)
	5.6 Compound Device Identifier (CDI)
	5.7 Hardware Roots of Trust
	5.8 Summary

	6 DICE LAYERING ARCHITECTURE
	6.1 System Layering
	6.2 TCB Layering
	6.2.1 TCB Capabilities
	6.2.2 Other TCB Protections
	6.2.3 DICE Layered Identity
	6.2.4 Layered Trust Considerations
	6.2.4.1 DICE HRoT Trust Considerations
	6.2.4.2 Layer 0 Trust Considerations
	6.2.4.3 Common Layer Requirements

	7 CERTIFICATION, ATTESTATION, AND AUTHENTICATION
	7.1 Certification and Token Issuance
	7.2 Attestation
	7.3 Authentication
	7.4 Summary

	8 KEYS AND CREDENTIALS
	8.1 Key Types
	8.1.1 Asymmetric Keys
	8.1.1.1 Embedded Certificate Authority (ECA) Keys
	8.1.1.2 Attestation Keys
	8.1.1.3 Identity Keys
	8.1.1.4 Summary
	8.1.1.5 DeviceID and Alias Keys
	8.1.1.6 Design Considerations

	8.1.2 Symmetric Keys
	8.1.2.1 Symmetric Alias Key
	8.1.2.2 Wrapping Keys

	8.1.3 Credential Types

	8.2 Key Creation
	8.2.1 Asymmetric Key Generation
	8.2.1.1 ECDSA
	8.2.1.2 RSA

	8.2.2 Symmetric Key Derivation
	8.2.2.1 Device Identity and Attestation Using Symmetric Keys

	8.3 Security Considerations
	8.3.1 Key Protection
	8.3.2 Key Persistence

	9 LAYERED CERTIFICATION
	9.1 Certificate Hierarchy
	9.2 Certification
	9.2.1 Layered Certification
	9.2.2 Certification Using Embedded CA
	9.2.2.1 Direct Layered Certificate by an ECA
	9.2.2.2 Layered TCB Certification using CSR
	9.2.2.3 ECA Certificate Issuance Considerations

	9.2.3 Certification with External CAs
	9.2.3.1 Manufacturer Issued IDevID Certificate with Device Generated Keys
	9.2.3.2 Manufacturer Issued IDevID Certificate with Provisioned Keys
	9.2.3.3 Owner Issued LDevID Certificate

	10 DESIGN CONSIDERATION
	10.1 External Communication
	10.2 Privacy
	10.2.1 Single Cloud Infrastructure
	10.2.2 Factory Reset

