

TCG

TCG

EFI Protocol Specification

Family “2.0”

Level 00 Revision 00.13

March 30, 2016

Published Specification

Contact: admin@trustedcomputinggroup.org

TCG Published
Copyright © TCG 2016

EFI Protocol Specification TCG

Page 2 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

Disclaimers, Notices, and License Terms

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF
ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of
procurement of substitute goods or services, lost profits, loss of use, loss of data or any
incidental, consequential, direct, indirect, or special damages, whether under contract,
tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license,

express or implied, is granted herein other than as follows: You may not copy or
reproduce the document or distribute it to others without written permission from TCG,
except that you may freely do so for the purposes of (a) examining or implementing TCG
specifications or (b) developing, testing, or promoting information technology standards
and best practices, so long as you distribute the document with these disclaimers,
notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for
information on specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

http://www.trustedcomputinggroup.org/

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 3
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

Acknowledgements

The writing of a specification, particularly a security specification, takes many hours for
both development and review. This specification is no exception with over 60 individuals
involved in the process.

The TCG would like to acknowledge the contribution of those individuals (listed below)
and the companies who allowed them to volunteer their time to the development of this
specification. Special thanks are due to Amy Nelson, who served as the Chair of the
PC Client Working Group, Carey Huscroft, who served as Chair of the Server Working
Group, and Ronald Aigner, who was the editor during the development of this
specification.

Contributors:

 Amy Nelson, Dell, Inc.
Andreas Fuchs, Fraunhofer Institute for Secure Information Technology (SIT)

Andrew Regenscheid, United States Government
Ben Haidri, Absolute Software Corp
Benjamin Weggenmann, Fraunhofer AISEC
Benoit HOUYERE, STMicroelectronics
Bill Jacobs, Cisco Systems
Boudewijn Viiljan, Wave Systems
Carl-Daniel Hailfinger, BSI
Carsten Rolfes, Fraunhofer AISEC
Chris Fenner, Microsoft
Dan Morav, Nuvoton Technology
Danny Ybarra, WDC
Darren Krahn, Google
Dick Wilkins, Phoenix Technologies Ltd.
Dietmar Wippig, BSI
Doug Oliver, Lenovo
Eugene Myers, United States Government
Fabien Arrivé, STMicroelectronics
Faher Mourad, Gemalto
Frederick Otumfuor, American Megatrends, Inc.
Gabe Stocco, Microsoft
Gary Simpson, Advanced Micro Devices, Inc.
Ga-Wai Chin, Infineon Technologies North America Corp.
Georg Rankl, Infineon Technologies North America Corp.
Gongyuan Zhuang, Advanced Micro Devices, Inc.
Goulven GUIHEUX, AMOSSYS
Graeme Proudler, TCG
Greg Kazmierczak, Wave Systems
Guy Federokow, Juniper
James Hoff, Lenovo (United States) INC
Johan Rahardjo, Dell, Inc.
Ken Goldman, IBM
Manuel Offenberg, Seagate
Merzin Kapadia, Microsoft
Mong Sim, Atmel
Monty Wiseman, Intel Corporation
Nicolas Poirot, Bertin Technologies
Oren Tanami, Nuvoton Technology

EFI Protocol Specification TCG

Page 4 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

Paul England, Microsoft
Pierre Chifflier, Agence Nationale de la Securite des Systemes d'Information (ANSSI)
Rob deCarle, WinMagic Inc
Robert Hart, Johns Hopkins University, Applied Physics Lab
Ronald Aigner, Microsoft
Ronnie Thomas, Atmel
Sascha Wessel, Fraunhofer AISEC
Scott Piper, Lenovo (United States) INC
Shiva Dasari, Hewlett Packard Enterprise
Stanley Potter, United States Government
Stefan Thom, Microsoft
Steffen Wagner, Fraunhofer AISEC
Todd Slack, Atmel
Tom Brostrom, United States Government
Vaden Mohrmann, Dell, Inc.

Will Arthur, Intel
Yves Magnaud, ST Microelectronics

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 5
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

 Contents

1 Introduction and Concepts .. 9

1.1 Interoperability .. 9

2 References ... 10
3 Conventions .. 11

3.1 Data Structure Descriptions ... 11
3.2 Typographic Conventions .. 11

4 Abbreviations and Terminology .. 12
5 Event Log Structure .. 15

5.1 SHA1 Event Log Entry Format ... 15
5.2 Crypto Agile Log Entry Format ... 15
5.3 Event Log Header .. 18
5.4 PCR Banks ... 22
5.5 Notes to the implementer ... 22

6 EFI TPM2 Protocol ... 23

6.1 Protocol Version ... 23
6.2 Protocol Interface Structure ... 23
6.3 Description ... 24
6.4 EFI_TCG2_PROTOCOL.GetCapability ... 25

6.4.1 Prototype ... 25
6.4.2 Parameters: ... 26
6.4.3 Related Definitions .. 26
6.4.4 Description ... 28
6.4.5 Status Codes Returned: .. 29

6.5 EFI_TCG2_PROTOCOL.GetEventLog .. 30

6.5.1 Prototype ... 30
6.5.2 Parameters .. 30
6.5.3 Description ... 30
6.5.4 Status Codes Returned ... 31

6.6 EFI_TCG2_PROTOCOL.HashLogExtendEvent .. 32

6.6.1 Prototype ... 32
6.6.2 Parameters .. 32
6.6.3 Related Definitions .. 32
6.6.4 Flag Values .. 33
6.6.5 Description ... 33
6.6.6 Status Codes Returned ... 36

6.7 EFI_TCG2_PROTOCOL.SubmitCommand ... 36

6.7.1 Prototype ... 36
6.7.2 Parameters .. 36
6.7.3 Description ... 37
6.7.4 Status Codes Returned ... 37

6.8 EFI_TCG2_PROTOCOL.GetActivePcrBanks.. 37

6.8.1 Prototype ... 38
6.8.2 Parameters .. 38
6.8.3 Description ... 38
6.8.4 Status Codes Returned ... 38

6.9 EFI_TCG2_PROTOCOL.SetActivePcrBanks .. 38

6.9.1 Prototype ... 39

EFI Protocol Specification TCG

Page 6 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

6.9.2 Parameters .. 39
6.9.3 Description ... 39
6.9.4 Status Codes Returned ... 40

6.10 EFI_TCG2_PROTOCOL.GetResultOfSetActivePcrBanks .. 40

6.10.1 Prototype ... 40
6.10.2 Parameters .. 40
6.10.3 Description ... 40
6.10.4 Status Codes Returned ... 43

7 Log entries after Get Event Log service ... 44

7.1 Event Log Retrieval Sequence .. 44

7.1.1 Minimal Options Implemented ... 45
7.1.2 All Options Implemented ... 46

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 7
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

List of Figures

Figure 1: Flow diagram with minimal flow to retrieve event log .. 45
Figure 2: Flow diagram exercising all options to retrieve event log .. 46

EFI Protocol Specification TCG

Page 8 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

List of Tables

Table 1: Example 1 of Crypto Agile Log Event ... 16
Table 2: Example 2 of Crypto Agile Log Event ... 17
Table 3: Description of fields in spec ID event .. 19
Table 4: Protocol Interface Structure .. 24
Table 5: GetCapability Parameters ... 26
Table 6: Boot Service Capability Fields .. 27
Table 7: GetCapability Return Values ... 29
Table 8: GetEventLog Parameters ... 30
Table 9: GetEventLog Return Values ... 31
Table 10: HashLogExtendEvent Parameters .. 32
Table 11: EFI TCG2 Event Field Descriptions .. 33
Table 12: HashLogExtendEvent Return Values ... 36
Table 13: SubmitCommand Parameters ... 36
Table 14: SubmitCommand Return Values .. 37
Table 15: GetActivePcrBanks Parameters ... 38
Table 16: GetActivePcrBanks Return Value ... 38
Table 17: SetActivePcrBanks Parameters .. 39
Table 18: SetActivePcrBanks Return Values.. 40
Table 19: GetResultOfSetActivePcrBanks Parameters .. 40
Table 20: GetResultOfSetActivePcrBanks Return Values .. 43
Table 21: Fields for the EFI_TCG2_FINAL_EVENTS_TABLE ... 44

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 9
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

1 Introduction and Concepts

The purpose of this document is to define a standard interface to the TPM on an EFI
platform. This standard interface is useful on any instantiations of an EFI platform that
conforms to the EFI Specification. This EFI Protocol Specification is a pure interface
specification that provides no information on “how” to construct the underlying firmware
implementation.

OS loaders and OS manageability agents will use this interface to measure and log the
boot process on EFI platforms.

1.1 Interoperability

Although this specification is for TPM 2.0 devices, it contains nothing that actively
prevents the use of the specified protocol with TPM 1.2 devices.

EFI Protocol Specification TCG

Page 10 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

2 References

The following documents are referenced in this document. For dated references, only
the edition cited applies. For undated references, the latest edition of the referenced
document (including amendments) applies.

1. TPM Library Specification; Family 2.0; Level 00; Revision 01.16
(http://www.trustedcomputinggroup.org/resources/tpm_library_specification) or
later

2. TCG PC Client Specific Platform TPM Profile for TPM 2.0 Version 1.00, Revision 0.43
(http://www.trustedcomputinggroup.org/resources/pc_client_platform_tpm_profil
e_ptp_specification) or later

3. UEFI Specification version 2.4 (Errata B) (http://uefi.org/specifications) or later.

4. TCG PC Client Specific Platform Firmware Profile Specification Family 2.0.

5. TCG Physical Presence Interface Specification, Family 1.2 and 2.0, Version 1.30,
revision 0.52
(http://www.trustedcomputinggroup.org/resources/tcg_physical_presence_interf
ace_specification) or later

6. TCG Algorithm Registry, version 1.22
(http://www.trustedcomputinggroup.org/resources/tcg_algorithm_registry) or
later

7. TCG Vendor ID Registry, version 1.0, Revision 0.7
(http://www.trustedcomputinggroup.org/resources/vendor_id_registry) or later

This specification also mentions the Microsoft Corporation, “Windows Authenticode
Portable Executable Signature Format,” Version 1.0, March 21, 2008.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 11
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

3 Conventions

For the purpose of this document the following conventions apply.

3.1 Data Structure Descriptions

All constants and data SHALL be represented as little-endian bit format, which requires
the low-order bit on the far left of a constant or data item and the high-order bit on the
far right. Exceptions to this, if any, will be explicit in this specification.

All strings SHALL be represented as an array of ASCII bytes with the left-most character
placed in the lowest memory location. All strings SHALL be zero terminated unless the
containing byte array has a size limitation.

In some memory layout descriptions, certain fields are marked reserved. Software must
initialize such fields to zero, and ignore them when read. On an update operation,

software must preserve any reserved field.

All structures defined in this specification are packed, except where explicitly otherwise
defined. Some compilers may insert space between fields of a structure to align them.
This functionality SHALL be disabled, so structures are packed, except where explicitly
otherwise defined.

3.2 Typographic Conventions

This document uses the following typographic conventions to illustrate programming
concepts:

Prototype This typeface indicates prototype code.

Argument This typeface indicates arguments.

EFI Protocol Specification TCG

Page 12 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

4 Abbreviations and Terminology

This specification uses the following abbreviations and terms:

Boot Services

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) The collection of interfaces and protocols that are present
in the boot environment. The services minimally provide an OS loader with access
to platform capabilities required to complete OS boot. Services are also available to
drivers and applications that need access to platform capability. Boot services are
terminated once the operating system takes control of the platform.

Boot Services Time

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) The period of time between platform initialization and the
call to ExitBootServices(). During this time, EFI Drivers and applications are loaded
iteratively and the system boots from an ordered list of EFI OS loaders.

CHAR16

The common EFI data type that is a 2-byte character. Unless otherwise specified, all
strings are stored in the UTF-16 encoding format, as defined by Unicode 2.1 and
ISO/IEC 10646 standards. Note: This definition is from Table 2-2 of the Extensible
Firmware Specification, version 1.10, December 1, 2002.

EFI Driver

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) A module of code typically inserted into the firmware via
protocol interfaces. Drivers may provide device support during the boot process or
they may provide platform services. It is important not to confuse drivers in this
specification with OS drivers that load to provide device support once the OS takes
control of the platform.

EFI Hard Disk

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) A hard disk that supports the new EFI partitioning
scheme.

EFI OS Loader

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) The first piece of operating system code loaded by the
firmware to initiate the OS boot process. This code is loaded at a fixed address and
then executed. The OS takes control of the system prior to completing the OS boot
process by calling the interface that terminates all boot services.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 13
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

Event Services

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) The set of functions used to manage EFI events. Includes
CheckEvent (), CreateEvent (), CloseEvent (), SignalEvent (), and WaitForEvent
().

GPT

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) GUID’d Partition Table: A data structure that describes
one or more partitions. It consists of a GPTHeader and, typically, at least one
GPTPartition Entry. There are two GUID partition tables: the Primary Partition
Table (located in LBA 1 of the disk) and a Backup Partition Table (located in the last
LBA of the disk). The Backup Partition Table is a copy of the Primary Partition Table.

GUID

Globally Unique Identifier: A 128-bit value used to differentiate services and
structures in the boot services environment.

Image

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) Either: (1) An executable file stored in a file system that
complies with this specification. Images may be drivers, applications or OS loaders.
Also called an EFI Image. (2) Executable binary file containing EBC and data. Output
by the EBC linker.

Image Handle

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) A handle for loading an image; image handles support the
loaded image protocol

Image Handoff State

(This definition is copied and pasted from the EFI 2.4 Specification, for the

convenience of the reader) The information handed off to a loaded image as it begins
execution; it consists of the image’s handle and a pointer to the image’s system table.

Protocol

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) The information that defines how to access a certain type
of device during boot services. A protocol consists of a Globally Unique Identifier
(GUID), a protocol revision number, and a protocol interface structure. The interface
structure contains data definitions and a set of functions for accessing the device.

EFI Protocol Specification TCG

Page 14 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

A device can have multiple protocols. Each protocol is accessible through the
device’s handle.

System Table

(This definition is copied and pasted from the EFI 2.4 Specification, for the
convenience of the reader) Table that contains the standard input and output
handles for a UEFI application, as well as pointers to the boot services and runtime
services tables. It may also contain pointers to other standard tables such as the
ACPI, SMBIOS, and SAL System tables. A loaded image receives a pointer to its
system table when it begins execution. Also called the EFI System Table.

TPM

Trusted Platform Module

UINT8, UINT16, UINT32

Basic types used in this specification to describe unsigned integers of various sizes.
The number at the end of the type defines the size of the type in bits.

Variable

Unicode / GUID pair that is used to index persistent store in EFI

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 15
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

5 Event Log Structure

This section describes the layout of an event contained in the event log that is returned
by the EFI_TCG2_PROTOCOL.GetEventLog() operation (Section 6.5). This section is for
informative purposes only to provide the reader with all required information in one
document. The normative description of the event layout can be found in the TCG PC
Client EFI Platform Specification.

Previous specifications describing the format of the boot event log, mandated the use of
SHA1 to calculate digests of events. This document refers to this event log format as
SHA1 log format. This section defines the layout for a crypto agile log format that allows
the use of hashing algorithms in addition to SHA1.

The crypto agile event log entry format introduced below uses a variable sized field for
the list of digests. To allow a parser to parse the log format, even if it contains digests
for algorithms unknown to the parser, the size of all used digests has to be defined. To
avoid a recursive problem, the log header is defined to be in SHA1 event log entry format.

5.1 SHA1 Event Log Entry Format

An event log entry (or just event) is defined to be of the following format:

typedef struct tdTCG_PCR_EVENT {

 TCG_PCRINDEX PCRIndex; //PCRIndex event extended to

 TCG_EVENTTYPE EventType; //Type of event (see EFI specs)

 TCG_DIGEST Digest; //Value extended into PCRIndex

 UINT32 EventSize; //Size of the event data

 UINT8 Event[EventSize]; //The event data

} TCG_PCR_EVENT; //Structure to be added to the

 //Event Log

typedef UINT32 TCG_PCRINDEX;

typedef UINT32 TCG_EVENTTYPE;

typedef UINT8 TCG_DIGEST[20];

The SHA1 digest of the event data (Event field in TCG_PCR_EVENT) or of external data
is stored in the Digest field of the TCG_PCR_EVENT and extended into the SHA1 PCR
identified by the PCRIndex field of the TCG_PCR_EVENT structure.

5.2 Crypto Agile Log Entry Format

To accommodate TPM devices with PCR banks that use other hashing algorithms than
SHA1, the event log entry format has been changed. It replaces the fixed sized Digest
field with a list of tagged digests.

EFI Protocol Specification TCG

Page 16 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

typedef struct tdTCG_PCR_EVENT2 {

 TCG_PCRINDEX PCRIndex; //PCRIndex event extended to

 TCG_EVENTTYPE EventType; //Type of event (see [2])

 TPML_DIGEST_VALUES Digests; //List of digests extended to

 //PCRIndex

 UINT32 EventSize; //Size of the event data

 UINT8 Event[EventSize]; //The event data

} TCG_PCR_EVENT2; //Structure to be added to the

 //Event Log

typedef UINT32 TCG_PCRINDEX;

typedef UINT32 TCG_EVENTTYPE;

typedef struct tdTPML_DIGEST_VALUES {

 UINT32 Count; // number of digests

 TPMT_HA Digests[Count]; // Count digests

} TPML_DIGEST_VALUES;

typedef struct tdTPMT_HA {

 UINT16 AlgorithmId; // ID of hashing algorithm

 UINT8 Digest[]; // Digest, depends on AlgorithmId

} TPMT_HA;

Note that although the type names from the TPM 2.0 Library Specification are used, the
encoding of the count member and the AlgorithmID are little-endian, as is the rest of
the log format.

An event will be densely packed, that is, even though there can be multiple digests in
an event, the algorithm ID of the next digest follows immediately after the last byte of
the previous digest. See the second example below for an illustration of the offsets in
the event log.

To illustrate the crypto agile log event format, here is an EV_SEPARATOR event as

example:

Table 1: Example 1 of Crypto Agile Log Event

Field Name Offset Size (in bytes) Content

PCRIndex 0x00 4 2

EventType 0x04 4 EV_SEPARATOR (4)

Digests 0x08

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 17
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

Field Name Offset Size (in bytes) Content

Digests.Count 0x08 4 1

Digests.Digests 0x0C

Digests.Digests[0].AlgorithmID 0x0C 2 SHA1 (4)

Digests.Digests[0].Digest 0x0E 20 0x90, 0x69 0xca, 0x78,
0xe7, 0x45, 0x0a, 0x28,
0x51, 0x73, 0x43, 0x1b,
0x3e, 0x52, 0xc5, 0xc2,
0x52, 0x99, 0xe4, 0x73

EventSize 0x22 4 4

Event 0x26 4 0x00, 0x00, 0x00, 0x00

The encoding as byte stream would look like follows. The start of the line describes the
offset for the first byte in the line.

0000: 02 00 00 00 04 00 00 00 – 01 00 00 00 04 00 90 69

0010: ca 78 e7 45 0a 28 51 73 – 43 1b 3e 52 c5 c2 52 99

0020: e4 73 04 00 00 00 00 00 – 00 00

The following is the same separator event using two PCR banks:

Table 2: Example 2 of Crypto Agile Log Event

Field Name Offset Size (in bytes) Content

PCRIndex 0x00 4 2

EventType 0x04 4 EV_SEPARATOR (4)

Digests 0x08

Digests.Count 0x08 4 2

Digests.Digests 0x0C

Digests.Digests[0].AlgorithmID 0x0C 2 SHA1 (4)

Digests.Digests[0].Digest 0x0E 20 0x90, 0x69 0xca, 0x78,
0xe7, 0x45, 0x0a, 0x28,
0x51, 0x73, 0x43, 0x1b,
0x3e, 0x52, 0xc5, 0xc2,
0x52, 0x99, 0xe4, 0x73

Digests.Digests[1].AlgorithmID 0x22 2 SHA-256 (0xb)

EFI Protocol Specification TCG

Page 18 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

Field Name Offset Size (in bytes) Content

Digests.Digests[1].Digest 0x24 32 0xdf, 0x3f, 0x61, 0x98,
0x04, 0xa9, 0x2f, 0xdb,
0x40, 0x57, 0x19, 0x2d,
0xc4, 0x3d, 0xd7, 0x48,
0xea, 0x77, 0x8a, 0xdc,
0x52, 0xbc, 0x49, 0x8c,
0xe8, 0x05, 0x24, 0xc0,
0x14, 0xb8, 0x11, 0x19

EventSize 0x44 4 4

Event 0x48 4 0x00, 0x00, 0x00, 0x00

The second example as byte stream looks like this:

0000: 02 00 00 00 04 00 00 00 – 02 00 00 00 04 00 90 69

0010: ca 78 e7 45 0a 28 51 73 – 43 1b 3e 52 c5 c2 52 99

0020: e4 73 0B 00 df 3f 61 98 – 04 a9 2f db 40 57 19 2d

0030: c4 3d d7 48 ea 77 8a dc – 52 bc 49 8c e8 05 24 c0

0040: 14 b8 11 19 04 00 00 00 – 00 00 00 00

Note that the algorithm ID of the SHA-256 digest at offset 34 follows directly after the
last meaningful byte of the SHA-1 digest. Also, EventSize at offset 68 follows directly
after the last meaningful byte of the SHA-256 digest.

5.3 Event Log Header

To allow parsers to identify the log format based on the content of the log, the first event
of the log is formatted as a TCG_PCR_EVENT structure independent of the format for
the rest of the log. A parser may read the first event of type TCG_PCR_EVENT and
because of its fixed size, easily find the event data. The fields of the event log header are
defined to be PCRIndex of 0, EventType of EV_NO_ACTION, Digest of 20 bytes of 0, and
Event content defined as TCG_EfiSpecIDEventStruct. This first event is the event log
header.

The TCG PC Client Specific Platform Firmware Profile contains a definition for the
content of the event log header – the TCG_EfiSpecIDEventStruct structure. This

document contains a copy for reference:

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 19
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

typedef struct tdTCG_EfiSpecIdEventStruct {

 BYTE[16] signature;

 UINT32 platformClass;

 UINT8 specVersionMinor;

 UINT8 specVersionMajor;

 UINT8 specErrata;

 UINT8 uintnSize;

 UINT32 numberOfAlgorithms;

 TCG_EfiSpecIdEventAlgorithmSize[numberOfAlgorithms] digestSizes;

 UINT8 vendorInfoSize;

 BYTE[VendorInfoSize] vendorInfo;

} TCG_EfiSpecIDEventStruct;

Where the type TCG_EfiSpecIdEventAlgorithmSize structure is defined as:

typedef struct tdTCG_EfiSpecIdEventAlgorithmSize {

 UINT16 algorithmId;

 UINT16 digestSize;

} TCG_EfiSpecIdEventAlgorithmSize;

The specification version field in the TCG_EfiSpecIDEventStruct defines which fields of
the structure are valid. The minimum version for the above version of the structure are
specVersionMajor = 2, specVersionMinor = 0, specErrata = 0.

Table 3: Description of fields in spec ID event

Type Name Description

BYTE[16] Signature The null terminated ASCII
string “Spec ID Event03”.

SHALL be set to {0x53, 0x70,
0x65, 0x63, 0x20, 0x49,
0x44, 0x20, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x30,
0x33, 0x00}.

UINT32 platformClass The value for the Platform
Class. The enumeration is

EFI Protocol Specification TCG

Page 20 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

Type Name Description

defined in the TCG ACPI
Specification Client Common
Header.

UINT8 specVersionMinor The TCG EFI Platform
Specification minor version
number this BIOS supports.
Any BIOS supporting this
version (2.0) SHALL set this
value to 0x00.

UINT8 specVersionMajor The TCG EFI Platform
Specification major version

number this BIOS supports.
Any BIOS supporting this
version (2.0) SHALL set this
value to 0x02.

UINT8 specErrata The TCG EFI Platform
Specification errata for this
specification this BIOS
supports. Any BIOS
supporting this version and
errata (2.0) SHALL set this
value to 0x00.

UINT8 uintnSize Specifies the size of the
UINTN fields used in various
data structures used in this
specification. 0x01 indicates
UINT32 and 0x02 indicates
UINT64.

UINT32 numberOfAlgorithms The number of hashing
algorithms used in this event
log (except the first event). All
events in this event log use all
hashing algorithms defined
here.

EfiSpecIdEventAlgorithmSize[] digestSizes An array of size
numberOfAlgorithms of value
pairs. Each value pair
consists of two UINT16
members. The first member is
a TCG defined hashing
algorithm ID. The second
member is the size of the
digest for the respective
hashing algorithm. If the log

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 21
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

Type Name Description

contains SHA1 digest, one
value pair would be {0x4,
0x14}.

UINT8 vendorInfoSize Size in bytes of the
VendorInfo field. Maximum
value SHALL be FFh bytes.

BYTE[] vendorInfo Provided for use by the BIOS
implementer. The value might
be used, for example, to
provide more detailed
information about the specific

BIOS such as BIOS revision
numbers, etc. The values
within this field are not
standardized and are
implementer-specific.
Platform-specific or -unique
information SHALL NOT be
provided in this field.

A log parser can use the information in digestSizes to iterate the TCG_PCR_EVENT2
elements in the remainder of the crypto agile log. A parser performs the following steps
for each TCG_PCR_EVENT2:

1. Read 4 bytes as PCRIndex.

2. Read 4 bytes as EventType.

3. Read 4 bytes as count of digest values.

4. For each digest value:

a. Read 2 bytes as algorithm ID of the current digest value

b. Look up the digest size for this algorithm ID using the digestSizes table from the
log header.

c. Read the number of bytes determined in the previous step as digest.

5. Read 4 bytes as EventSize.

6. Read the number of bytes determined in the previous step as EventData.

All crypto agile events have the digests listed in the same sequence. That is, if the first
crypto agile log has the SHA1 digest appear first followed by the SHA-256 digest, all
subsequent events also have the SHA1 digest appear first followed by the SHA-256
digest.

When the EFI_TCG2_PROTOCOL.GetEventLog() operation (Section 6.5) is called, all
events must contain digests for all active PCR banks, i.e. hashing algorithms. That is, if
the log header event defines digest sizes for SHA1 and SHA256 hashing algorithms, all
events must contain SHA1 and SHA256 digests.

EFI Protocol Specification TCG

Page 22 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

5.4 PCR Banks

A Platform Configuration Register (PCR) is a memory location in the TPM that has some
unique properties. The size of the value that can be stored in a PCR is determined by
the size of a digest generated by an associated hashing algorithm. A SHA-1 PCR would
be a PCR that can store 20 bytes – the size of a SHA-1 digest. To store a new value in a
PCR, the existing value is extended with a new value as follows: The existing value is
concatenated with the argument of the Extend operation. The resulting concatenated
value is then used as input to the associated hashing algorithm, which generates a
digest of the concatenated value. This computed digest becomes the new value of the
PCR.

 PCRn = HASHalg(PCRn-1 || ArgumentOfExtend)

The argument to the extend operation is the same size as the digest of the hashing
algorithm associated with the PCR.

Multiple PCR that are associated with the same hashing algorithm are usually referred
to as a PCR bank.

The TCG PC Client Specific Platform TPM Profile for TPM 2.0 defines that there should be
at least one PCR bank with 24 registers, of which the first 16 can be reset to a well-
defined initial value only by resetting the TPM. This way the TPM can ensure that the
value of a PCR can only be modified via the Extend operation.

Each of the PCR within a PCR bank is addressed through its index – the PCR index.
Each PCR at an index contains the sequence of extended digests of a subgroup of events.
The TCG PC Client Specific Platform Firmware Profile Specification Family 2.0 defines the
measurements for each PCR index. Usually an array notation is used to differentiate the
PCR in a bank: PCR at index zero is written as PCR[0]. Each PCR bank has PCR for each
index. If the SHA-1 and SHA-256 PCR banks are active, there is a PCR[0] for SHA-1 and
a PCR[0] for SHA-256.

The TPM PCR are used as checksums of all log events that are defined to be extended
(or measured) in the TPM. A validator can compute the expected PCR values and
compare them to the PCR values of the TPM. Because the TPM PCR cannot be modified
arbitrarily, a match between expected PCR value and TPM PCR value indicates an
unmodified log.

5.5 Notes to the implementer

The implementer of this interface can determine the values for the digest sizes as follows:
Firmware uses the TPM 2.0 TPM2_GetCapability() command to identify the active PCR
banks. It can then call the TPM2_Hash() command with a zero value (for instance) for
each algorithm. The returned value of TPM2_Hash() allows the implementer to determine
the size of the digest for this algorithm. Firmware can then use the algorithm ID and
digest size values to generate the mapping for the log header event.

If the implementer uses the TPM2_Event() command to hash and extend an event to all
active PCR banks in one operation, the return value is a TPML_DIGEST_VALUES
structure. This return value is formatted in TPM encoding and cannot be placed as is
into the event log. The count field and the algorithmID field for the digests have to be
re-encoded to little endian encoding. Because the implementer already determined the
digest sizes for the algorithms above, it can parse the TPML_DIGEST_VALUES easily to
re-encode them.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 23
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

6 EFI TPM2 Protocol

The EFI TPM2 protocol is used to communicate with a TPM implementation in UEFI –
to send commands to a TPM, use it for trusted operations, and to provide access to the
firmware log of measurements extended in the TPM. The implementation of the protocol
maintains an event log of measurements recorded in the TPM in SHA1 log format or
crypto agile log format. Implementers may create additional event logs with other
formats, but this version of the protocol does not define a way to retrieve them.
Implementers may choose to store only one format and convert the log to the requested
format.

UEFI provides mechanisms to retrieve the below protocol structure given the specified
GUID. The function pointers in the protocol structure can then be used to invoke the
various functions. This specification defines the arguments to these functions, the
functionality that should be implemented, and the return value.

The EFI TCG2 protocol SHALL use the following GUID.

GUID –
#define EFI_TCG2_PROTOCOL_GUID \

{0x607f766c, 0x7455, 0x42be, 0x93, \
0x0b, 0xe4, 0xd7, 0x6d, 0xb2, 0x72, 0x0f}

6.1 Protocol Version

A user of this protocol should call the EFI_TCG2_PROTOCOL.GetCapability operation

(Section 6.4) to determine the functionality implemented by this interface. There are
earlier implementations of this protocol that implement a subset of the functions and
capabilities defined here.

6.2 Protocol Interface Structure

typedef struct tdEFI_TCG2_PROTOCOL {

 EFI_TCG2_GET_CAPABILITY GetCapability;

 EFI_TCG2_GET_EVENT_LOG GetEventLog;

 EFI_TCG2_HASH_LOG_EXTEND_EVENT HashLogExtendEvent;

 EFI_TCG2_SUBMIT_COMMAND SubmitCommand;

 EFI_TCG2_GET_ACTIVE_PCR_BANKS GetActivePcrBanks;

 EFI_TCG2_SET_ACTIVE_PCR_BANKS SetActivePcrBanks;

 EFI_TCG2_GET_RESULT_OF_SET_ACTIVE_PCR_BANKS

 GetResultOfSetActivePcrBanks;

} EFI_TCG2_PROTOCOL;

EFI Protocol Specification TCG

Page 24 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

Table 4: Protocol Interface Structure

Parameter Description

GetCapability This service provides information about the TPM and
firmware capabilities

GetEventLog Get a pointer to a firmware event log

HashLogExtendEvent This service will cause the EFI TCG2 protocol driver to
extend an event and (optionally) write the event to the
crypto agile log.

SubmitCommand This service submits a TPM command directly to the
TPM.

GetActivePcrBanks Returns a bitmap of currently active TPM PCR banks.
(Only implemented for ProtocolVersion 1.1 or above.)

SetActivePcrBanks Tries to set the active TPM PCR banks according to the
provided bitmap. (Only implemented for ProtocolVersion
1.1 or above.)

GetResultOfSetActivePcrBanks Retrieves the result of a previous invocation of
SetActivePcrBanks. (Only implemented for
ProtocolVersion 1.1 or above.)

6.3 Description

The EFI_TCG2_PROTOCOL abstracts TPM activity. This protocol instance provides a
Boot Service and is instantiated as a Boot Service Driver.

Boot Service Drivers are terminated when ExitBootServices() is called and all memory
resources consumed by the Boot Services Drivers are released for use in the operating
system environment.

This Boot Service must create an EVT_SIGNAL_EXIT_BOOT_SERVICES event. This
event will be notified by the system when ExitBootServices() is invoked.

EVT_SIGNAL_EXIT_BOOT_SERVICES is a synchronous event used to ensure that

certain activities occur following a call to a specific interface function; in this case, that
is the cleanup that needs to be done in response to the ExitBootServices() function.
ExitBootServices() will not clean up after drivers that have been loaded. Drivers must
clean up after themselves by creating an event with type
EVT_SIGNAL_EXIT_BOOT_SERVICES and a Notification Function that is within the
driver itself. Then, when ExitBootServices() has finished its cleanup, it signals the event
type EVT_SIGNAL_EXIT_BOOT_SERVICES.

For implementation details about how a Boot Service instantiated as an EFI Driver
creates this required EVT_SIGNAL_EXIT_BOOT_SERVICES event, see Section 6.1 of
UEFI Specification 2.4.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 25
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

6.4 EFI_TCG2_PROTOCOL.GetCapability

The EFI_TCG2_PROTOCOL.GetCapability() function call provides protocol capability
information and state information.

The EFI_TCG2_BOOT_SERVICE_CAPABILITY structure is not packed. The memory
layout of the unpacked structure may introduce padding between fields in the structure
to align each field according to its size. For the x86 architecture and the use of standard
compilers (gcc, Microsoft Visual C++ compiler, Borland C++ compiler) an unpacked
structure will introduce padding between the individual fields to align them according
to their size. The following example demonstrates the padding.

struct example {

 UINT8 first;

 UINT16 second;

 UINT16 third;

 UINT32 fouth;

};

The field “first” has an offset of 0 bytes and is one byte in size. In a packed structure the
field “second” would start at offset 1 byte. Because “second” is 2 bytes in size, it will be
aligned to a 2 byte offset within an unpacked structure. This introduces a padding of 1
byte between the fields “first” and “second”. “Third” has an offset of 4 bytes and is 2
bytes in size. Because “fourth” is 4 bytes in size, it will be aligned to a 4 byte offset within
an unpacked structure. This second padding between “third” and “fourth” is 2 bytes in
size.

The EFI_TCG2_BOOT_SERVICE_CAPABILITY in an unpacked format, compiled on the
x86 architecture with standard compilers, will generate a padded structure that is 36
bytes in size.

6.4.1 Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCG2_GET_CAPABILITY) (

 IN EFI_TCG2_PROTOCOL *This,

 IN OUT EFI_TCG2_BOOT_SERVICE_CAPABILITY *ProtocolCapability

);

EFI Protocol Specification TCG

Page 26 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

6.4.2 Parameters:

Table 5: GetCapability Parameters

Parameter Description

This Indicates the calling context.

ProtocolCapability The caller allocates memory for a
EFI_TCG2_BOOT_SERVICE_CAPABILITY structure and sets the size
field to the size of the structure allocated. The callee fills in the fields
with the EFI protocol capability information and the current EFI TCG2
protocol state information up to the number of fields which fit within the
size of the structure passed in. The structure is not packed.

6.4.3 Related Definitions

The protocol capability structure allows a caller to determine which of the functions in
the protocol can be called and which arguments can be used.

The event log format definitions specify whether firmware supports the SHA-1 log format
(EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2) or the crypto agile log format
(EFI_TCG2_EVENT_LOG_FORMAT_TCG_2) or both (both bits set in a bitmask).

#define EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2 0x00000001

#define EFI_TCG2_EVENT_LOG_FORMAT_TCG_2 0x00000002

typedef UINT64 EFI_PHYSICAL_ADDRESS;

typedef UINT32 EFI_TCG2_EVENT_LOG_BITMAP;

typedef UINT32 EFI_TCG2_EVENT_LOG_FORMAT;

typedef UINT32 EFI_TCG2_EVENT_ALGORITHM_BITMAP;

typedef struct tdEFI_TCG2_VERSION {

 UINT8 Major;

 UINT8 Minor;

} EFI_TCG2_VERSION;

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 27
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

typedef struct tdEFI_TCG2_BOOT_SERVICE_CAPABILITY {

 UINT8 Size;

 EFI_TCG2_VERSION StructureVersion;

 EFI_TCG2_VERSION ProtocolVersion;

 EFI_TCG2_EVENT_ALGORITHM_BITMAP HashAlgorithmBitmap;

 EFI_TCG2_EVENT_LOG_BITMAP SupportedEventLogs;

 BOOLEAN TPMPresentFlag;

 UINT16 MaxCommandSize;

 UINT16 MaxResponseSize;

 UINT32 ManufacturerID;

 UINT32 NumberOfPcrBanks;

 EFI_TCG2_EVENT_ALGORITHM_BITMAP ActivePcrBanks;

} EFI_TCG2_BOOT_SERVICE_CAPABILITY;

The supported event log formats in the variable SupportedEventLogs are specified as a
bitmap using the values EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2 and
EFI_TCG2_EVENT_LOG_FORMAT_TCG_2 as currently specified bits.

The hashing algorithms in the variables HashAlgorithmBitmap and ActivePcrBanks are
specified as bitmaps. The hashing algorithm bitmaps are defined in the TCG Algorithm
Registry and defined as follows:

#define EFI_TCG2_BOOT_HASH_ALG_SHA1 0x00000001

#define EFI_TCG2_BOOT_HASH_ALG_SHA256 0x00000002

#define EFI_TCG2_BOOT_HASH_ALG_SHA384 0x00000004

#define EFI_TCG2_BOOT_HASH_ALG_SHA512 0x00000008

#define EFI_TCG2_BOOT_HASH_ALG_SM3_256 0x00000010

Table 6: Boot Service Capability Fields

Field Description

Size Allocated size of the structure. The structure is not packed.

StructureVersion Version of the EFI_TCG2_BOOT_SERVICE_CAPABILITY
structure itself. For this version of the protocol, the Major version
SHALL be set to 1 and the Minor version SHALL be set to 1.

EFI Protocol Specification TCG

Page 28 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

Field Description

ProtocolVersion Version of the EFI TCG2 protocol. For this version of the protocol,
the Major version SHALL be set to 1 and the Minor version SHALL
be set to 1.

HashAlgorithmBitMap Supported hash algorithms (this bitmap is determined by the
supported PCR banks in the TPM and the hashing algorithms
supported by the firmware)

SupportedEventLogs Bitmap of supported event log formats (see above)

TPMPresentFlag False = TPM not present

MaxCommandSize Max size (in bytes) of a command that can be sent to the TPM

MaxResponseSize Max size (in bytes) of a response that can be provided by the TPM

ManufacturerID 4-byte Vendor ID (see TCG Vendor ID registry, Section “TPM
Capabilities Vendor ID”)

NumberOfPcrBanks Maximum number of PCR banks (hashing algorithms) supported.
No granularity is provided to support a specific set of algorithms.
Minimum value is 1.

ActivePcrBanks A bitmap of currently active PCR banks (hashing algorithms). This
is a subset of the supported hashing algorithms reported in
HashAlgorithmBitMap. NumberOfPcrBanks defines the number of
bits that are set.

6.4.4 Description

The EFI_TCG2_PROTOCOL Get Capability function call provides EFI protocol version
and capability information as well as state information about the EFI TCG2 protocol.
The caller SHALL set the Size field of the EFI_TCG2_BOOT_SERVICE_CAPABILITY
structure allocated. The structure is not packed. It is expected future versions of this
function call may add additional fields to the structure. The Size value passed in by the
caller will determine which fields the function will be able to populate. For example:

ProtocolCapability.Size = sizeof(EFI_TCG2_BOOT_SERVICE_CAPABILITY);

For this version of the specification:

1. If the This or the ProtocolCapability parameters are NULL, the functional call
will return EFI_INVALID_PARAMETER.

2. If the input ProtocolCapability.Size < size of the
EFI_TCG2_BOOT_SERVICE_CAPABILITY up to and including the vendor ID
field, the function will set ProtocolCapability.Size equal to size of the
EFI_TCG2_BOOT_SERVICE_CAPABILITY up to and including the vendor ID
field and will return the error code EFI_BUFFER_TOO_SMALL, the values of the
remaining fields will be undefined.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 29
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

3. If the input ProtocolCapability.Size <
sizeof(EFI_TCG2_BOOT_SERVICE_CAPABILITY) the function will initialize the
fields included in ProtocolCapability.Size. The values of the remaining fields will
be undefined.

4. The following return values SHALL be set:

ProtocolCapability.StructureVersion.Major = 1

ProtocolCapability.StructureVersion.Minor = 1

ProtocolCapability.ProtocolVersion.Major = 1

ProtocolCapability.ProtocolVersion.Minor = 1

5. If the platform does not have a TPM then the following values SHALL be

returned:

ProtocolCapability.SupportedEventLogs = 0

ProtocolCapability.HashAlgorithmBitmap = 0

ProtocolCapability.TPMPresentFlag = FALSE

ProtocolCapability.MaxCommandSize = 0

ProtocolCapability.MaxResponseSize = 0

ProtocolCapability.ManufacturerID = 0

ProtocolCapability.NumberOfPcrBanks = 0

ProtocolCapability.ActivePcrBanks = 0

6.4.5 Status Codes Returned:

Table 7: GetCapability Return Values

Return Code Description

EFI_SUCCESS Operation completed successfully.

EFI_DEVICE_ERROR The command was unsuccessful. The ProtocolCapability
variable will not be populated.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect. The
ProtocolCapability variable will not be populated.

EFI_BUFFER_TOO_SMALL The ProtocolCapability variable is too small to hold the
smallest sized response. The capability structure argument
will be partially populated (required Size field will be set).

EFI Protocol Specification TCG

Page 30 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

6.5 EFI_TCG2_PROTOCOL.GetEventLog

The EFI_TCG2_PROTOCOL Get Event Log function call allows a caller to retrieve the
address of a given event log and its last entry.

6.5.1 Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCG2_GET_EVENT_LOG) (

 IN EFI_TCG2_PROTOCOL *This,

 IN EFI_TCG2_EVENT_LOG_FORMAT EventLogFormat,

 OUT EFI_PHYSICAL_ADDRESS *EventLogLocation,

 OUT EFI_PHYSICAL_ADDRESS *EventLogLastEntry,

 OUT BOOLEAN *EventLogTruncated

);

6.5.2 Parameters

Table 8: GetEventLog Parameters

Parameter Description

EventLogFormat The type of the event log for which the information is requested.

EventLogLocation A pointer to the memory address of the event log.

EventLogLastEntry If the event log contains more than one entry, this is a pointer to the
address of the start of the last entry in the event log in memory. For
information about what values are returned in this parameter in the
special cases of an empty event log or an event log with only one
entry, see the Description section below.

EventLogTruncated If the event log is missing at least one entry because an event would
have exceeded the area allocated for events, this value is set to
TRUE. Otherwise, the value will be FALSE and the event log will be
complete.

6.5.3 Description

The firmware manages an event log of the measurements recorded in the TPM during
the boot process. During the boot process, before UEFI platform initialization, an entry
is made in the event log for each measurement extended in the TPM. In the UEFI
environment, each time a call is made to EFI_TCG2_PROTOCOL.HashLogExtendEvent()
to extend a measurement in the TPM, an event is generally recorded in the event log
containing the extended measurement. If the area allocated by firmware for the event

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 31
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

log was too small to hold all events added, the function call indicates the event log was
truncated and has missing entries.

The event log area returned by this function is released when ExitBootServices() is
called. Callers of this method SHALL not access the area after ExitBootServices() has
been called. For this version of the specification:

1. If EventLogFormat does not equal EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2
or EFI_TCG2_EVENT_LOG_FORMAT_TCG_2, the function call SHALL return
EFI_INVALID_PARAMETER.

2. If the EventLogFormat does equal EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2
and one of the currently active PCR banks is the SHA1 bank, the function
SHALL return a log conforming to the SHA1 log format. If EventLogFormat does
equal EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2 and SHA1 is not an active
PCR bank, the function SHALL return EFI_INVALID_PARAMETER.

3. If the EventLogFormat does equal EFI_TCG2_EVENT_LOG_FORMAT_TCG_2,
the function SHALL return a log conforming to the crypto agile log format.

4. If no TPM is present, the function SHALL set the following values and return
EFI_SUCCESS:

EventLogLocation = NULL

EventLogLastEntry = NULL

EventLogTruncated = FALSE

5. The EventLogLocation value SHALL be set to the start of the event log specified
by the requested format in memory.

6. If the specified event log:

1. does not contain any events then EventLogLastEntry SHALL be set to 0

2. contains exactly one entry then EventLogLastEntry SHALL be set to the
same value as EventLogLocation

3. contains more than one event then EventLogLastEntry SHALL be set to
the start address of the last event of the specified event log

7. If a prior call to EFI_TCG2_PROTOCOL.HashLogExtendEvent returned
EFI_VOLUME_FULL then EventLogTruncated SHALL be set to TRUE, otherwise
it SHALL be set to FALSE.

6.5.4 Status Codes Returned

Table 9: GetEventLog Return Values

Return Code Description

EFI_SUCCESS Operation completed successfully.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect (e.g. asking for
an event log whose format is not supported).

EFI Protocol Specification TCG

Page 32 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

6.6 EFI_TCG2_PROTOCOL.HashLogExtendEvent

The EFI_TCG2_PROTOCOL HashLogExtendEvent function call provides callers with an
opportunity to extend and optionally log events without requiring knowledge of actual
TPM commands. The extend operation will occur even if this function cannot create an
event log entry (e.g. due to the event log being full).

6.6.1 Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_TCG2_HASH_LOG_EXTEND_EVENT) (

 IN EFI_TCG2_PROTOCOL *This,

 IN UINT64 Flags,

 IN EFI_PHYSICAL_ADDRESS DataToHash,

 IN UINT64 DataToHashLen,

 IN EFI_TCG2_EVENT *EfiTcgEvent

);

6.6.2 Parameters

Table 10: HashLogExtendEvent Parameters

Parameter Description

This Indicates the calling context.

Flags Bitmap providing additional information (see below).

DataToHash Physical address of the start of the data buffer to be hashed.

DataToHashLen The length in bytes of the buffer referenced by DataToHash.

EfiTcgEvent Pointer to data buffer containing information about the event.

6.6.3 Related Definitions

The EFI_TCG2_EVENT_HEADER data structure contains information relevant when a
digest should be extended – the PCRIndex. If firmware generates a log entry for this
event the EventType entry and PCRIndex entry can be used to fill the header of the log
event. The digest that is computed from the DataToHash is used to fill the Digests field
in the log entry. The content of the Event field is then used to fill the EventData field of
the log entry. The size of the Event field is determined by subtracting the value of the
HeaderSize field and size of the Size field (sizeof(UINT32)) from the value of the Size field.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 33
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

typedef struct tdEFI_TCG2_EVENT {

 UINT32 Size;

 EFI_TCG2_EVENT_HEADER Header;

 UINT8 Event[];

} EFI_TCG2_EVENT;

typedef struct tdEFI_TCG2_EVENT_HEADER {

 UINT32 HeaderSize;

 UINT16 HeaderVersion;

 TCG_PCRINDEX PCRIndex;

 TCG_EVENTTYPE EventType;

} EFI_TCG2_EVENT_HEADER;

typedef UINT32 TCG_PCRINDEX;

typedef UINT32 TCG_EVENTTYPE;

Table 11: EFI TCG2 Event Field Descriptions

Field Description

Size Total size of the event including the Size component, the header and the
Event data.

HeaderSize Size of the event header itself (sizeof(EFI_TCG2_EVENT_HEADER)).

HeaderVersion Header version. For this version of this specification, the value SHALL be 1.

PCRIndex Index of the PCR that is extended (0 – 23).

EventType Type of the event that is extended (and optionally logged).

6.6.4 Flag Values

The Flags variable is a bitmap providing additional data as follows:

#define EFI_TCG2_EXTEND_ONLY 0x0000000000000001

This bit SHALL be set when an event SHALL be extended but not logged.

#define PE_COFF_IMAGE 0x0000000000000010

This bit SHALL be set when the intent is to measure a PE/COFF image.

6.6.5 Description

The EFI_TCG2_PROTOCOL Hash Log Extend Event function call calculates the
measurement of a data buffer (possibly containing a PE/COFF binary image) and causes

EFI Protocol Specification TCG

Page 34 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

the EFI TCG2 protocol driver to extend the measurement. In addition, the service
optionally creates an event log entry and appends it to the event log for each event log
format supported by the service. The service allows a caller to make use of the TPM
without knowing anything about specific TPM commands.

The use of this function to measure PE/COFF images must be done before relocations
have been applied to the image. Note: Use caution using this method to measure
PE/COFF images. Generally, implementations that load PE/COFF images strip
important data during the load process from the image and may change the image
section alignment in memory. The net result is calculating the hash of an in-memory
image does not match the actual measurement for the image as properly calculated
when it is loaded from storage media.

Upon invocation, the function SHALL perform the following actions:

1. If any of the parameters This, DataToHash, or EfiTcgEvent are NULL, the function
SHALL return EFI_INVALID_PARAMETER.

2. If the EfiTcgEvent.Size is less than EfiTcgEvent.Header.HeaderSize + sizeof(UINT32),
the function SHALL return EFI_INVALID_PARAMETER.

3. If the EfiTcgEvent.Header.PCRIndex is not 0 through 23, inclusive, the function
SHALL return EFI_INVALID_PARAMETER.

4. If the Flags bitmap has the PE_COFF_IMAGE bit SET but the PE/COFF image is
corrupt or not understood the function SHALL return EFI_UNSUPPORTED.

5. The function allows any value for the EfiTcgEvent.Header.EventType parameter.

6. The function SHALL calculate the digest (measurement) of the data starting at
DataToHash with a length of DataToHashLen. When measuring a PE/COFF image,
the EventType SHALL be as defined in TCG PC Client Specific Platform Specification
(for example, when measuring an EFI Boot Application, the EventType SHALL be
EV_EFI_BOOT_SERVICES_APPLICATION) and the EfiTcgEvent value SHALL be the
value of the EFI_IMAGE_LOAD_EVENT structure.

The HashLogExtendEvent service SHALL hash the PE/COFF image in accordance
with the procedure specified in “Calculating the PE Image Hash” section of the
“Windows Authenticode Portable Executable Signature Format” document. Note that
the function can use the TPM to calculate the digest using TPM2_PCR_Event.

7. The function SHALL successfully send the TPM2_PCR_Extend command to the TPM
to extend the PCR indicated by EfiTcgEvent.Header.PCRIndex with the measurement
digest. If the command cannot be sent successfully, the function SHALL return
EFI_DEVICE_ERROR. Firmware SHALL extend digests for all active PCR banks.

Note: firmware may use TPM2_PCR_Event() to send the DataToHash to the TPM,
which will compute the hash for all active PCR banks and return the respective
digests. If DataToHash is too big to be passed as parameter to TPM2_PCR_Event()
the commands TPM2_HashSequenceStart(), TPM2_SequenceUpdate(), and
TPM2_EventSequenceComplete() can be used.

8. If a previous call to this function returned EFI_VOLUME_FULL and the
EFI_TCG2_EXTEND_ONLY bit is set in the Flags parameter, the function SHALL
return EFI_VOLUME_FULL. (No attempt is made to add the event log entry to the
event log(s).)

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 35
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

9. For a SHA1 log format (EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2), the function
SHALL build a TCG event log entry as follows: (Note: The TCG_PCR_EVENT structure
SHALL be considered byte-aligned.)

a. TCG_PCR_EVENT.PCRIndex = EfiTcgEvent.Header.PCRIndex

b. TCG_PCR_EVENT.EventType = EfiTcgEvent.Header.EventType

c. TCG_PCR_EVENT.Digest = <the SHA1 measurement digest calculated above>

d. TCG_PCR_EVENT.EventSize = EfiTcgEvent.Size – sizeof(UINT32) -
EfiTcgEvent.Header.HeaderSize

e. TCG_PCR_EVENT.Event = EfiTcgEvent.Event (Note: this is a memory copy of
EventSize bytes)

10. For a crypto agile log format (EFI_TCG2_EVENT_LOG_FORMAT_TCG_2), the
function SHALL build a TCG event log entry as follows:

a. TCG_PCR_EVENT2.PCRIndex = EfiTcgEvent.Header.PCRIndex

b. TCG_PCR_EVENT2.EventType = EfiTcgEvent.Header.EventType

c. TCG_PCR_EVENT2.Digests.Count = number of digest, i.e. active PCR banks

d. For each active PCR bank:

i. TCG_PCR_EVENT2.Digests[currentPcrBank].algId = algorithm ID of that PCR
bank

ii. TCG_PCR_EVENT2.Digests[currentPcrBank].digest = <digests according to
the currently active PCR bank >

Note: The digests SHALL appear in the same order in all events.

Note: Because the digest values are of different size and the event structure is densely
packed, the used array notation is symbolic and should be replaced with a correct offset
calculation in the implementation.

e. TCG_PCR_EVENT2.EventSize = EfiTcgEvent.Size – sizeof(UINT32) -
EfiTcgEvent.Header.HeaderSize

f. TCG_PCR_EVENT2.Event = EfiTcgEvent.Event (Note: this is a memory copy of
EventSize bytes)

11. The function MAY build similar event log entries for other supported event log
formats.

12. If the event log entry created above does not fit in the area allocated for the TCG log,
the function SHALL return EFI_VOLUME_FULL.

13. If the firmware supports additional event log formats and any of the events created
for those event logs would exceed the area allocated for the event log, the function
SHALL return EFI_VOLUME_FULL.

14. The function SHALL append the events created to their corresponding event logs and
the service SHALL update its internal pointer to the start of the last event for each
event log.

The description of the construction of the event log is explicit to clearly define expected
behavior. Other implementation that provide the same behavior at the protocol level
are acceptable.

EFI Protocol Specification TCG

Page 36 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

6.6.6 Status Codes Returned

Table 12: HashLogExtendEvent Return Values

Return Code Description

EFI_SUCCESS Operation completed successfully.

EFI_DEVICE_ERROR The command was unsuccessful.

EFI_VOLUME_FULL The extend operation occurred, but the event could not be
written to one or more event logs.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

EFI_UNSUPPORTED The PE/COFF image type is not supported.

6.7 EFI_TCG2_PROTOCOL.SubmitCommand

This service enables the sending of commands to the TPM.

6.7.1 Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCG2_SUBMIT_COMMAND) (

 IN EFI_TCG2_PROTOCOL *This,

 IN UINT32 InputParameterBlockSize,

 IN UINT8 *InputParameterBlock,

 IN UINT32 OutputParameterBlockSize,

 IN UINT8 *OutputParameterBlock

);

6.7.2 Parameters

Table 13: SubmitCommand Parameters

Parameter Description

This Indicates the calling context.

InputParameterBlockSize Size of the TPM input parameter block.

InputParameterBlock Pointer to the TPM input parameter block.

OutputParameterBlockSize Size of the TPM output parameter block.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 37
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

Parameter Description

OutputParameterBlock Pointer to the TPM output parameter block.

6.7.3 Description

The EFI_TCG2_PROTOCOL Submit Command function call provides a pass-through
capability from the caller to the system’s TPM.

The caller is responsible for building the command byte-stream to be sent to the TPM
and is also responsible for interpreting the resulting byte-stream returned by the TPM.
The TPM in and out operands for each TPM command are defined in the TPM Library
specification.

Note that the returned status codes reflect the outcome of the function invocation and

not the success (or failure) of the underlying TPM command.

The firmware SHALL not return TPM2_RC_RETRY prior to the completion of the call to
ExitBootServices().

Implementer’s Note: the implementation of this function should check the return value
in the TPM response and, if it is TPM2_RC_RETRY, resend the command. The
implementation may abort if a sufficient number of retries has been done.

6.7.4 Status Codes Returned

Table 14: SubmitCommand Return Values

Return Code Description

EFI_SUCCESS The command byte stream was successfully sent to the
device and a response was successfully received.

EFI_DEVICE_ERROR The command was not successfully sent to the device or a
response was not successfully received from the device.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

EFI_BUFFER_TOO_SMALL The output parameter block is too small.

6.8 EFI_TCG2_PROTOCOL.GetActivePcrBanks

This service returns the currently active PCR banks.

EFI Protocol Specification TCG

Page 38 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

6.8.1 Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCG2_GET_ACTIVE_PCR_BANKS) (

 IN EFI_TCG2_PROTOCOL *This,

 OUT UINT32 *ActivePcrBanks

);

6.8.2 Parameters

Table 15: GetActivePcrBanks Parameters

Parameter Description

This Indicates the calling context

ActivePcrBanks Pointer to the variable receiving the bitmap of
currently active PCR banks.

6.8.3 Description

The EFI_TCG2_PROTOCOL.GetActivePcrBanks function call returns the bitmap of
currently active PCR banks (see explanation in Section 5.4). Values in this bitmap
SHALL be from the EFI_TCG2_BOOT_HASH_ALG_* list of values. The returned bitmap is the

same as the ActivePcrBanks field in the EFI_TCG2_BOOT_SERVICE_CAPABILITY structure.

6.8.4 Status Codes Returned

Table 16: GetActivePcrBanks Return Value

Return Code Description

EFI_SUCCESS The bitmap of active PCR banks was stored in the
ActivePcrBanks parameter.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

6.9 EFI_TCG2_PROTOCOL.SetActivePcrBanks

This service sets the currently active PCR banks.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 39
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

6.9.1 Prototype

typedef

EFI_STATUS

(EFIAPI *EFI_TCG2_SET_ACTIVE_PCR_BANKS) (

 IN EFI_TCG2_PROTOCOL *This,

 IN UINT32 ActivePcrBanks

);

6.9.2 Parameters

Table 17: SetActivePcrBanks Parameters

Parameter Description

This Indicates the calling context

ActivePcrBanks Bitmap of the requested active PCR banks.

6.9.3 Description

This function determines first if the requested bitmap of PCR banks is valid. A valid
bitmap is a subset of EFI_TCG2_BOOT_SERVICE_CAPABILITY.HashAlgorithmBitmap
and SHALL have at least one bit and at most
EFI_TCG2_BOOT_SERVICE_CAPABILITY.NumberOfPcrBanks bits set. If the requested
bitmap is invalid, this function call SHALL return EFI_INVALID_PARAMETER.

If the requested bitmap of PCR banks is valid, the function compares it to the currently
active PCR banks. If the bitmaps are the same, the function returns EFI_SUCCESS.

If the requested bitmap differs from the currently active PCR bitmap, the function call
stores a request to change the active PCR banks in a location where it can be read on
the next boot. Refer to the TCG PPI Specification for examples on how to handle such
requests. The function call returns EFI_SUCCESS.

Subsequent calls to EFI_TCG2_PROTOCOL.SetActivePcrBanks() in the same boot cycle
will overwrite previously stored values. Consider the following case: The currently active
PCR bank is SHA1. An invocation of EFI_TCG2_PROTOCOL.SetActivePcrBanks()

requests a change to SHA256. A subsequent invocation of
EFI_TCG2_PROTOCOL.SetActivePcrBanks() with argument SHA1 will effectively erase
the previous request. Because on reboot the currently active PCR bank is SHA1, there
will be no change to the PCR banks.

When EFI_SUCCESS is returned, the caller should reboot the machine. A change of the
active PCR banks only takes effect on the next reboot. The caller should only invoke
EFI_TCG2_PROTOCOL.SetActivePcrBanks() if a change of the PCR banks is required.

When the caller initiates the reboot, firmware will use the platform authorization value
to call TPM2_PCR_Allocate() to change the allocation of the active PCR banks. Firmware
has to reboot again to allow the change of PCR banks in the TPM to take effect. If the

EFI Protocol Specification TCG

Page 40 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

operation was successful, the EFI_TCG2_BOOT_SERVICE_CAPABILITY.ActivePcrBanks
will reflect the change of PCR banks.

6.9.4 Status Codes Returned

Table 18: SetActivePcrBanks Return Values

Return Code Description

EFI_SUCCESS The bitmap in ActivePcrBank parameter is already active.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

6.10 EFI_TCG2_PROTOCOL.GetResultOfSetActivePcrBanks

This service retrieves the result of a previous invocation of SetActivePcrBanks.

6.10.1 Prototype

typedef

EFI_STATUS

(EFIAPI * EFI_TCG2_GET_RESULT_OF_SET_ACTIVE_PCR_BANKS) (

 IN EFI_TCG2_PROTOCOL *This,

 OUT UINT32 *OperationPresent,

 OUT UINT32 *Response

);

6.10.2 Parameters

Table 19: GetResultOfSetActivePcrBanks Parameters

Parameter Description

This Indicates the calling context

OperationPresent Non-zero value to indicate a SetActivePcrBank operation was
invoked during the last boot.

Response The response from the SetActivePcrBank request.

6.10.3 Description

The invocation of EFI_TCG2_PROTOCOL.SetActivePcrBanks() requires two reboots of
the system: The caller of EFI_TCG2_PROTOCOL.SetActivePcrBanks() has to initiate a
reboot, so firmware can perform the required action when platform authorization for the
TPM is present. When firmware boots after a call to

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 41
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

EFI_TCG2_PROTOCOL.SetActivePcrBanks(), it will attempt to change the PCR bank(s)
in the TPM using the TPM command TPM2_PCR_Allocate(). Firmware should store the
result of that operation. Firmware has to reboot again, because changes initiated by the
TPM2_PCR_Allocate() command only take effect after the TPM power cycles. Now
firmware is able to return the result of EFI_TCG2_PROTOCOL.SetActivePcrBanks()
operation.

EFI_TCG2_PROTOCOL.GetResultOfActivePcrBanks() needs two output values: one is to
signal if there has been a request at all - OperationPresent. If it has a non-zero value,
then the Response output value contains the result of the operation. The result of the
operation may contain values indicating that a user rejected the operation, or the TPM
error code, when the TPM operation was executed but returned an error. If the Response
output value is zero, the operation succeeded.

An error free sequence would have the following steps:

1. Firmware launches the OS boot-loader – firmware stays present.

2. Boot-loader invokes EFI_TCG2_PROTOCOL.SetActivePcrBanks(), which stores
the request, possibly in a UEFI variable. The function may perform some initial
checks before setting the UEFI variable and returning a response. For instance,
if the requested PCR banks are the same as the currently active PCR banks, it
may return EFI_SUCCESS without storing the request in the UEFI variable. Or
if the requested bitmap has no PCR bank set,
EFI_TCG2_PROTOCOL.SetActivePcrBanks() returns
EFI_INVALID_PARAMETER without storing the request.

3. Boot-loader initiates reboot.

4. Firmware checks the UEFI variable that has been set in step 2.

5. If a request is stored in the UEFI variable, firmware does:

a. Perform sanity checks on the request, if necessary.

b. Clear UEFI variable.

c. Display a user PPI confirmation screen according to PPI flag settings.

d. If user rejects, store response and go to step 6.

e. If user confirms PPI request, execute TPM2_PCR_Allocate() command.

f. Store TPM response.

g. Reboot.

6. Firmware launches OS boot-loader – firmware stays present.

7. Boot-loader calls EFI_TCG2_PROTOCOL.GetResultOfSetActivePcrBanks() and
retrieves response from 5.d or 5.f. See below for possible values.

8. On the next reboot the response gets deleted.

Firmware SHALL store the response of an invocation of SetActivePcrBanks in a location
that is available at least as long as the EFI_TCG2_PROTOCOL is available and return
this stored response on each invocation of GetResultOfSetActivePcrBanks.

The use of EFI_TCG2_PROTOCOL.SetActivePcrBanks() is similar to the use of a physical
presence interface request as specified in the TCG Physical Presence Interface
Specification. Refer to the TCG PPI specification on how to handle user interaction to
approve such a change and storage of request and response.

EFI Protocol Specification TCG

Page 42 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

EFI_TCG2_PROTOCOL.GetResultOfSetActivePcrBanks() should set OperationPresent
and Response to values defined for the function “Return TPM Operation Response to OS
Environment” in the TCG PPI specification. To allow reuse of existing implementations,
OperationPresent is the value of the requested PPI operation (23 – SetPCRBanks).
Response should use the following values:

0: Success

0x00000001..0x00000FFF: Corresponding TPM error code

0xFFFFFFF0: User Abort or timeout of dialog

0xFFFFFFF1: Firmware Failure

One possible, valid implementation reuses the storage location, e.g. UEFI variable, used
to store PPI requests and responses for the full OS that uses the ACPI PP interface. A
sequence of steps could be:

1. The OS request a PPI operation through the ACPI PP interface. The request is
stored in the single request location.

2. The OS reboots.

3. Firmware boots and detects a request.

4. Firmware acts on the request.

5. Firmware stores the response.

6. Firmware loads OS boot-loader.

7. The boot-loader request a change of PCR banks and this request is stored in the
single request location.

8. Boot-loader reboots.

9. Firmware boots and detects the request.

10. Firmware acts on the request. (If firmware determines that no action should be
performed, the response location is not modified.)

11. Firmware stores the response. It overwrites the response from the OS. Because
the response contains the requested operation plus arguments, the OS will be
able to detect if the response is actually for its request. This is a valid scenario,
as PPI covers this as a dual-boot scenario.

12. Firmware (reboots and) loads the OS boot-loader.

13. The boot-loader checks the response.

14. Boot-loader loads OS.

15. OS checks PPI response from boot-loader and detects different request or
different request parameters.

Another valid firmware implementation may store the request and response for the
EFI_TCG2_PROTOCOL in a different location from the location for PPI request and
response. This should not create conflicts, but care should be taken as to which
response is presented to which caller. For example:

1. The OS request a PPI operation through the ACPI PP interface. The request is
stored in the PPI specific location.

2. The OS reboots.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 43
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

3. Firmware boots and detects a request in the PPI specific request location.

4. Firmware acts on the PPI request.

5. Firmware stores the response in the PPI specific location.

6. Firmware loads the OS boot-loader.

7. The boot-loader requests a change of PCR banks and this request is stored in
an EFI_TCG2_PROTOCOL specific location.

8. Boot-loader reboots.

9. Firmware checks the EFI_TCG2_PROTOCOL specific request location (after not
finding something in the PPI specific location) and performs the request action.

10. Firmware stores the response in the EFI_TCG2_PROTOCOL specific location.

11. Firmware (reboots and) loads the OS boot-loader.

12. The boot-loader checks the EFI_TCG2_PROTOCOL specific response.

13. Boot-loader loads OS.

14. OS checks PPI specific response.

If firmware implements the PPI ACPI protocol and stores PPI request in the same location
as request from EFI_TCG2_PROTOCOL, it SHALL store the response for the remainder
of the boot cycle.

6.10.4 Status Codes Returned

Table 20: GetResultOfSetActivePcrBanks Return Values

Return Code Description

EFI_SUCCESS The result value could be returned.

EFI_INVALID_PARAMETER One or more of the parameters are incorrect.

EFI Protocol Specification TCG

Page 44 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

7 Log entries after Get Event Log service

This table may be documented in future versions of the UEFI Specification.

All events generated after the invocation of EFI_TCG2_GET_EVENT_LOG SHALL be
stored in an instance of an EFI_CONFIGURATION_TABLE named by the VendorGuid
of EFI_TCG2_FINAL_EVENTS_TABLE_GUID, defined by:

GUID –

#define EFI_TCG2_FINAL_EVENTS_TABLE_GUID \

{ 0x1e2ed096, 0x30e2, 0x4254, \

{ 0xbd, 0x89, 0x86, 0x3b, 0xbe, 0xf8, 0x23, 0x25 } }

The associated table contents SHALL be referenced by the VendorTable of
EFI_TCG2_FINAL_EVENTS_TABLE:

typedef struct tdEFI_TCG2_FINAL_EVENTS_TABLE {

 UINT64 Version;

 UINT64 NumberOfEvents;

 TCG_PCR_EVENT2 Event[NumberOfEvents];

} EFI_TCG2_FINAL_EVENTS_TABLE;

#define EFI_TCG2_FINAL_EVENTS_TABLE_VERSION 1

Table 21: Fields for the EFI_TCG2_FINAL_EVENTS_TABLE

Field Description

Version The version of this structure. Versioning allows for possibly appending
new fields at end in the future.

NumberOfEvent Number of events recorded after invocation of GetEventLog API

Event List of events of type TCG_PCR_EVENT2. There are NumberOfEvents
events in that list.

See the UEFI 2.4 (Errata B) specification for guidance on the runtime accessible memory
types for these tables and the service used to install these tables.

7.1 Event Log Retrieval Sequence

The following sequence diagrams depict the potential flow of the TCG log.

TCG EFI Protocol Specification

Family “2.0” TCG Published Page 45
Level 00 Revision 00.13 Copyright © TCG 2016 March 30, 2016

7.1.1 Minimal Options Implemented

EvtLogL
Event 1
Event 2

FinalEvts
Event 3

GetEvtLog

OS Boot Loader

EBS

EBS
Generates

Event 3

FinalEvts
Event 3

EFI_FW

FinalEvts
Event 3

P
la

tf
o

rm

R
es

et

Measurements:
Generate

Event 1 & 2

FinalEvts
{NULL}

EvtLogL
Event 1
Event 2

EvtLogL
Event 1
Event 2

Legend
EFI_FW = Platform EFI firmware implementing this specification
EvtLogL = EFI_TREE_GET_EVENT_LOG.EventLogLocation
FinalEvts = EFI_CONFIGURATION_TABLE.TCG_TREE_FINAL_EVENTS_TABLE
EBS = EVT_SIGNAL_EXIT_BOOT_SERVICES

 Generates an event
 Put into FinalEvts

 GetEvtLog protocol no longer exists
 EFI_FW likely destroys EvtLogL

EFI_FW boots and likely creates
more event. Only 2 depicted here
to retain symmetry with more
complex examples.

FinalEvts table persists thru life of platform boot. Is available,
but likely never needed or referenced.

Figure 1: Flow diagram with minimal flow to retrieve event log

EFI Protocol Specification TCG

Page 46 TCG Published Family “2.0”
March 30, 2016 Copyright © TCG 2016 Level 00 Revision 00.13

7.1.2 All Options Implemented

EvtLogL
Event 1
Event 2
Event 3
Event 4

FinalEvts
Event 3
Event 4
Event 5
Event 6

GetEvtLog

OS Boot Loader

EBS

EBS
Generates

Event 5

FinalEvts
Event 3
Event 4
Event 5

EFI_FW

FinalEvts
Event 3
Event 4
Event 5
Event 6

P
la

tf
o

rm

R
es

et

Measurements:
Generate

Event 1 & 2

FinalEvts
{NULL}

EvtLogL
Event 1
Event 2
Event 3
Event 4

EvtLogL
Event 1
Event 2

EFI App 1

FinalEvts
{NULL}

Measurement:
Generate
Event 3

FinalEvts
Event 3

EvtLogL
Event 1
Event 2
Event 3

GetEvtLog

EvtLogL
Event 1
Event 2

EFI App 2

FinalEvts
Event 3

Measurement:
Generate
Event 4

FinalEvts
Event 3
Event 4

EvtLogL
Event 1
Event 2
Event 3
Event 4

GetEvtLog

EvtLogL
Event 1
Event 2
Event 3

EFI App

EvtLogL
Event 1
Event 2
Event 3
Event 4

Generates
Event 6

FinalEvts
Event 3
Event 4
Event 5
Event 6

EFI_FW

Legend
EFI_FW = Platform EFI firmware implementing this specification
EvtLogL = EFI_TREE_GET_EVENT_LOG.EventLogLocation
FinalEvts = EFI_CONFIGURATION_TABLE.TCG_TREE_FINAL_EVENTS_TABLE
EBS = EVT_SIGNAL_EXIT_BOOT_SERVICES

Generates a
measurement

Also , generates a
measurement

 Does not generate an event
 Causes subsequent events to be

created in both EvtLogL and FinalEvts

Figure 2: Flow diagram exercising all options to retrieve event log

