

サイバーエスピオナージとTPM

須崎有康 Kuniyasu Suzaki

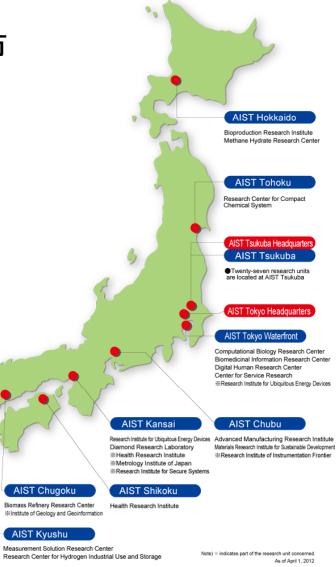
独立行政法人産業技術総合研究所 (AIST) セキュアシステム研究部門 (RISEC)

TCG日本支部(JRF)第6回公開セキュリティーワークショップ 3/December/2014

http://www.trustedcomputinggroup.org/jp/jrfworkshop/workshop6

Who am I?

独立行政法人 産業技術総合研究所 セキュアシステム研究部門 @茨城県つくば市 のコンピュータセキュリティ研究者



最近の仕事 https://staff.aist.go.jp/k.suzaki/

- 仮想化を使ったセキュリティの強化や脆弱性の 研究

- 制御システム用ホワイトリスト制御技術
- KNOPPIX日本語版のメンテナンス
 - KNOPPIX Trusted Computing Geeks も作りました

Measurement Solution Research Center

アウトライン

- モバイルガジェットの高性能デバイスを使ったサイバ ーエスピオナージ(電子的諜報活動)
- デバイスを認識させないハイバーバイザー DeviceDisEanbler
 - TPMによる暗号鍵管理

ポルトガル語の

• DeviceDisEanblerを展開させるための条件

プログラム 元になった発表 BlackHat Sao Paulo 2014 "DeviceDisEnabler: a lightweight hypervisor which hides devices to protect cyber espionage and tampering"

ALMOCO esconde dispositivos para protegê-los contra espionagem virtual e atividades inapropriadas Kuniyasu Suzaki, AIST Ultrapassando as "proteções" do Secure Desktop Marcio Almeida de Macedo. Trustwave Spiderla

モバイルガジェットにどれくらいのデバ イスが入っているか知ってますか?

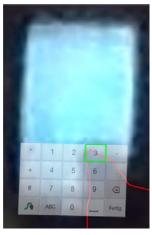
- マイクとスピーカ
- デジタルカメラ
- GPS
- ジャイロスコープ
- その他、多様なセンサー
- これらのデバイスが入ったのはそれほど昔ではない。
 - 2000年前後のPDA(携帯情報端末。例 Palm Pilot, Apple Newton)と呼ば れるものにはこのようなデバイスがないものが多かった。初期のiPadにも カメラが無かった。
- 現在のモバイルガジェットは従来のコンピュータと言うより、セン サーデバイスの塊になっている。

デバイスの性能を知ってますか?

- マイク、スピーカ
 - CD クオリティ (44.1kHz)以上
- デジタルカメラ
 - 100M pixel以上
- GPS
 - 10m以内の位置検出
- ジャイロスコープ
 - 20 Hz以上のサンプリング
- 高性能デバイスはサイバーエスピオナージ(諜 報活動)の格好のターゲット。

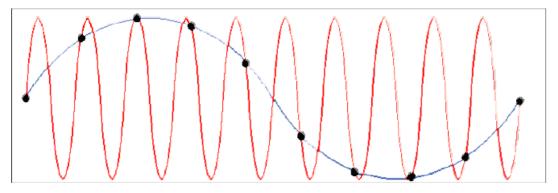
Facial Reflection Keylogger

[T.Fiebig, WOOT'14]


このカメラが顔(目)の写真 を撮ります。

親指検出

キーボードをマップ



T.fiebig, j.krissler and r.hanesch, "Security Impact of High Resolution Smartphone Cameras" woot 2014. https://www.usenix.org/conference/woot14/workshop-program/presentation/fiebig

ジャイロスコープによる盗聴

- Gyrophone [USENIX Security 14, BlackHat Europe 14] はジャイロスコープで音声の解析ができることを示した。
 - 利点: マイクの使用には許可を取る必要があるが、ジャイロスコープは必要なし。
 - 問題点:ジャイロスコープのサンプリングは 20-200Hzで音声 (male 85 180 Hz, female 165 255 Hz)が取れない。
 - **エイリアシング**によって音声が解析できることを示した。

モバイルガジェットの活用シナリオ

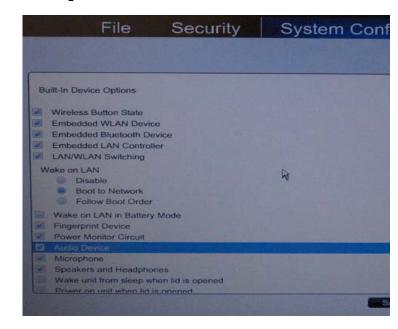
- モバイルガジェットは重要情報を扱う工場、会議、病院 で広く使われるようになった。
- 管理者は仕事で使うモバイルガジェットで不要なデバイ スを利用禁止にしたい。

工場

リモートミーティング

その他の脅威

- モバイルガジェットのデバイスは攻撃者ばかりでなく、ユ ーザ(社員)も使いたい!
- ユーザ(社員)が対応策を回避するかもしれない。
- 管理者は攻撃者ばかりでなく、ユーザも対象として対策 技術を考えなくてはならない。

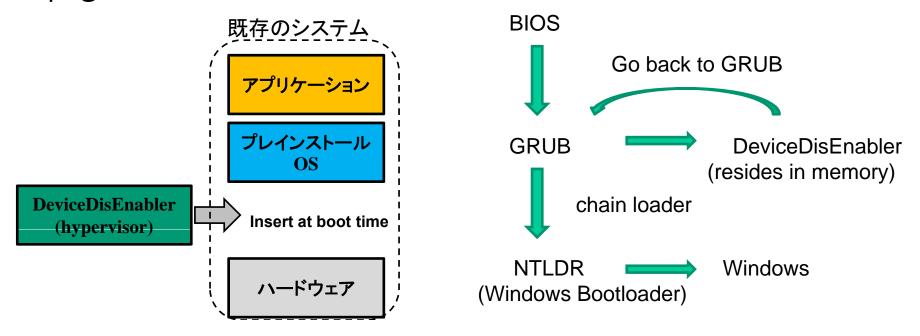

現在の対応策

- BIOS/EFI によってデバイスを使用不可にする
 - 有効だが、全てのモバイルガジェットで有 効なわけではない。

• セキュリティグッズ プロテクションキャップ セキュリティシール(カメラ用)

これらはユーザの良心に依存。

提案する対策方法

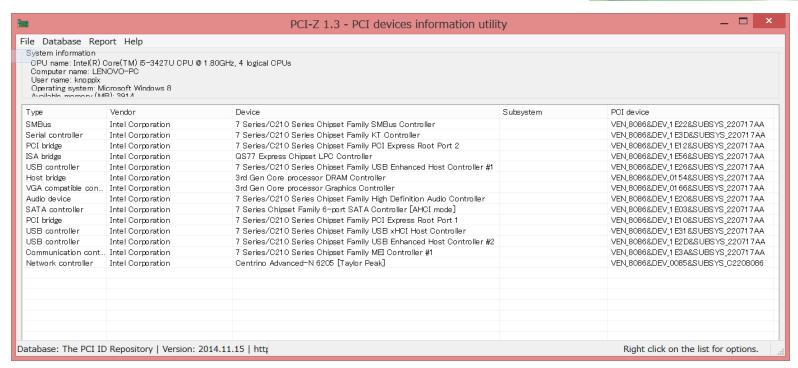

• "DeviceDisEnabler (DDE)": サイバーエスピオナー ジと改竄を防止する軽量ハイパーバイザー

特徵

- 1. 多くのモバイルガジェットに適用とするため、軽量で 既存OSに挿入可能なハイパーバイザー
- 2. OSからデバイスを隠蔽
- 3. 改竄防止
 - ハードディスクの一部をDDEが暗号化するので、 DDEなしではOSを立ち上げることが出来ない。
 - 暗号鍵はユーザから隠蔽されている。

挿入可能なハイパーバイザー

- 軽量のタイプI (ベアメタル) ハイパーバイザー
 - パラパススルーアーキテクチャ(BitVisor[VEE'09])
 - デバイスモデルが無く、ゲストOSがデバイスに直接アクセスできる
 - 小さなトラステッドコンピューティングベース(TCB)
 - HostOS 無しはTCBを小さくできる
- DDE はブートローダのチェインロードを使ったOSの起動前に挿入される



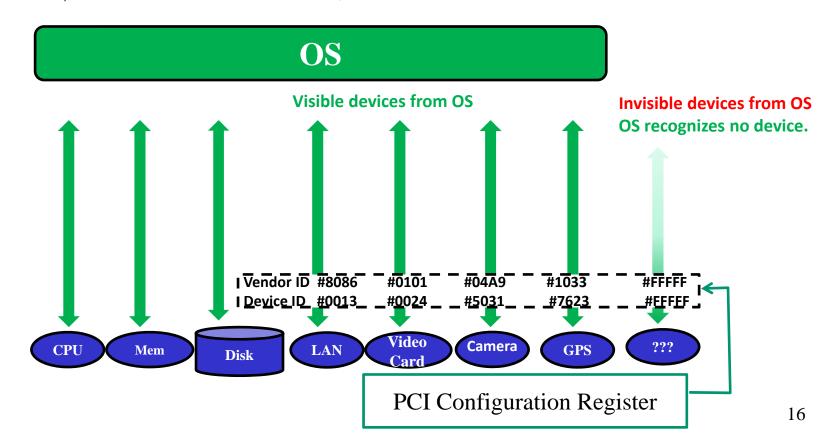
(2) PCIデバイスの隠蔽

- モバイルガジェットには多くのPCIデバイスがある
- Tool: PCI-Z
 - http://www.pci-z.com/

(ThinkPad Helix)

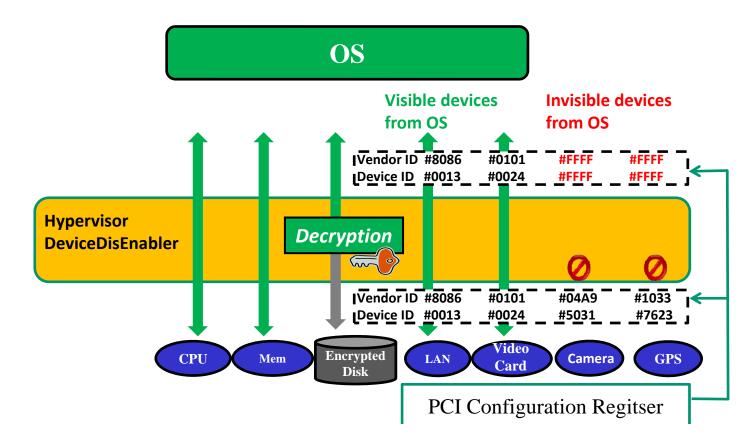
OSがPCI上のデバイスを認識する仕組み

- OS がPCIバス上のデバイスを認識するには、"PCI configuration Register"の情報を使う。
 - これにはベンダーID, デバイスID, デバイスクラス, メモリマップアドレスなどの情報含む。
 - ベンダーID はPCI-SIGによって定義されている


PCI Configuration Register

• I/O port: 0x0cfc

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16	15 14 13 12 11 10 09 08	07 06 05 04 03 02 01 00	
Device ID		or ID	0x00
Device Status	Device Control		0x04
Class Code		Revision ID	0x08
Header Type			0x0c
Base Ac	ddress 0		0x10
Base Address 1			0x14
Base Address 2			0x18
Base Address 3			0x1c
Base Address 4			0x20
Base Address 5			0x24
			0x28
Subsystem ID	Subsystem Vendor ID		0x2c
			0x30
Reserved			0x34
Reserved		0x38	
	Interrupt Pin	Interrupt Line	0x3c
			0x40
Undefined			~
			0xfc


通常のOSによるデバイス認識

- PCIバス上のデバイスを知る為に、OSはI/Oポートをスキャンする。
- x86/AMD64アーキテクチャCPU ではI/O 命令 (i.e., IN and OUT) を使ってI/Oポートにアクセスする。
 - VendorID, DeviceIDが"#FFFF"の場合はデバイスが無いことを示す。

DDEによるデバイス隠蔽

- I/O命令がOSから呼び出されるとIntel/AMDの仮想化アーキテクチャにより、ハイ パーバイザー(DDE)に制御が移る。
- DDEはPCI configuration Registerの内容を検査してOSから隠すべきデバイスと認 識した場合、VendorIDとDeviceIDに#FFFFを返す。
- OS はPCIバスにデバイスが無いものと認識し、そのデバイスは使われない。

DDEによるデバイス隠蔽

- DDEは2種類のタイプでデバイスを隠蔽できる
 - デバイス種類 (Vendor ID and Device ID)
 - 個々のデバイスでなく、ベンダーのこの製品という単位
 - カテゴリ毎 (PCI device class codeの定義による)

Vendor ID	Vendor name
0x05ac	Apple, Inc.
0x04B3	IBM
0x1010	Video Logic Ltd.
0x104D	Sony Corporation
0x1061	8x8 Inc.
0x106B	Apple Inc.
0x13B5	ARM Ltd
0x12E1	Nintendo Co. Ltd.
0x13B5	ARM Ltd
0x15AD	VMware Inc.
0x15C6	Technical University Of Budapest
0x8086	Intel Corporation
0x8087	Intel
0xA304	Sony
0xF5F5	F5 Networks Inc.

Class code	Class Name
0x00	Unclassified device
0x01	Mass storage controller
0x02	Network controller
0x03	Display controller
0v 0 4	Multimedia controller
0x05	Memory controller
0x06	Bridge
0x07	Communication controller
0x08	Generic system peripheral
0x09	Input device controller
0x0a	Docking station
0x0b	Processor
0x0c	Serial bus controller
0x0d	Wireless controller
0x0e	Intelligent controller
0x0f	Satellite communications controller
0x10	Encryption controller
0x11	Signal processing controller
0x12	Processing accelerators
0x13	Non-Essential Instrumentation
0xff	Unassigned class

(3) 改竄防止

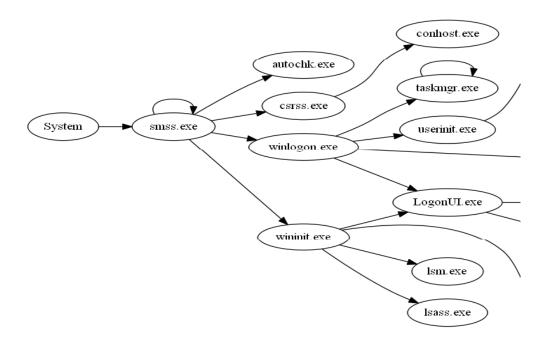
残念ながらユーザがハイパーバイザーを取り除いて、 あるいは改竄して、デバイスを使う可能性を排除できな L10

DDEの対応策

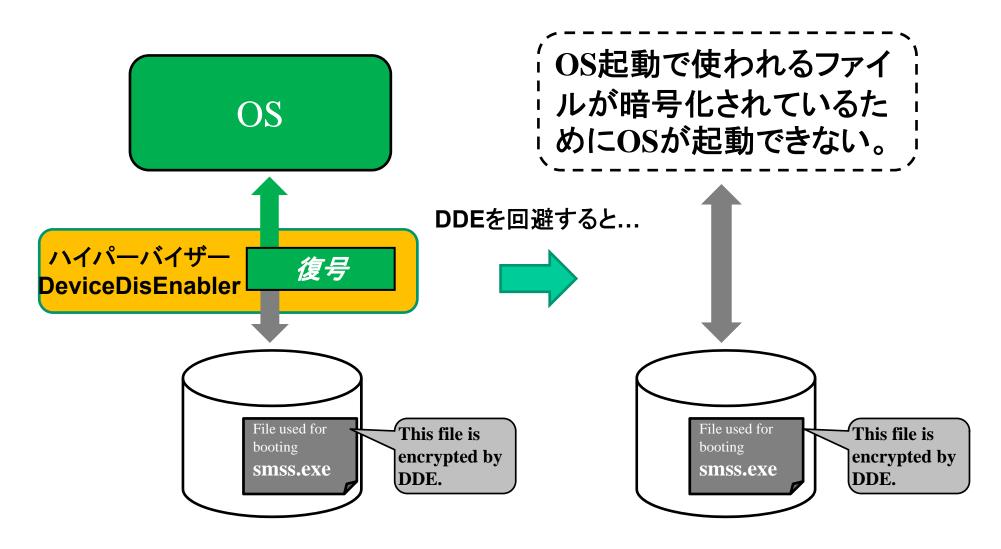
- DDEはディスクの一部を暗号化し、DDE無しではOSが起動で きないようにしたい。

問題点

- 残念ながらOS(Windows)の起動を止めるのは簡単ではない。

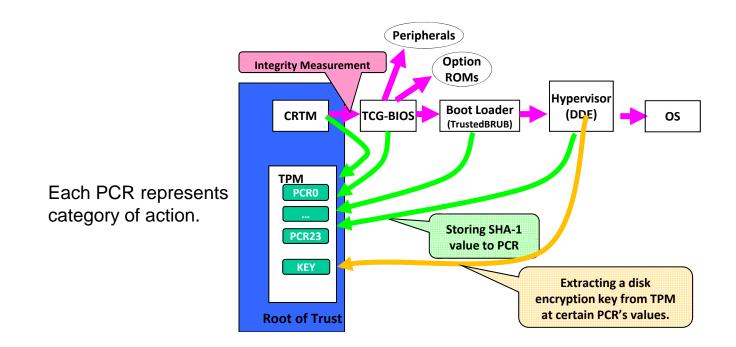

OSのブートを止める困難点

- BitVisor はハードディスクの領域(blocks)を暗号化する機能を持っている。
 - ディスクが盗まれた場合の機密保持には有効
- 残念ながら、BitVisorのディスク暗号化機能をそのまま OS(Windows) のパーティションに適用できない。なぜな らブートシーケンス内でハイパーバイザーを経ないでア クセスしている。
 - 推測: Kennelを立ち上げるブートシーケンスのどこがでBIOSを 使ったディスクアクセスがあり、それをBitVisorが補足できない
 - このため、パーティション丸毎の暗号化ではOSを起動できない
 - (補足)LinuxならminirootとRootFSのパーティションを分けて、 RootFSのみ暗号化することで解決できる。


Windowsの起動の止め方

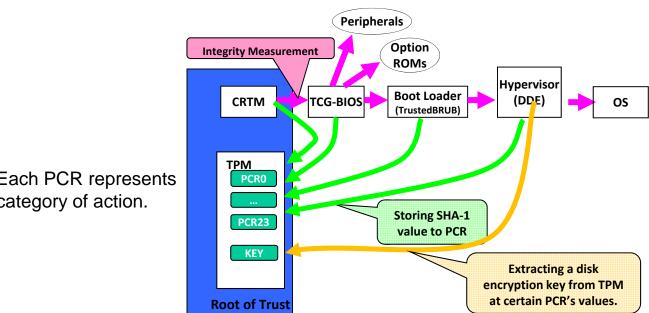
- カーネルの起動を止めるのでなく、カーネルの起動後 のユーザ空間の処理を止める。
- OSのユーザ空間のブートシーケンスを解析して、起 動に必要なファイルのいずれかを暗号化する。
- 今回はsmss.exeを選択

DDEによるWindows起動の停止


暗号鍵の隠蔽

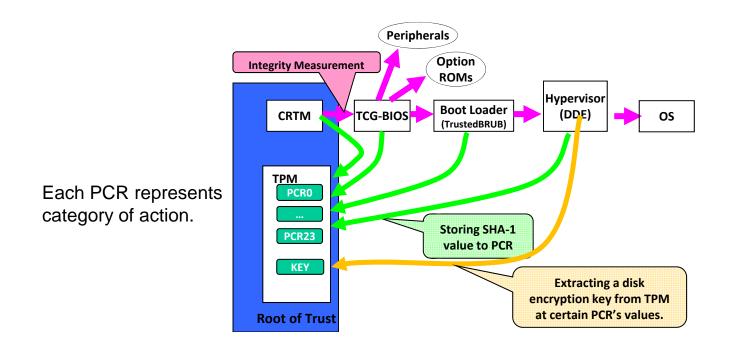
- DDEの暗号鍵はユーザに知られてはならない。
- BitVisor では暗号鍵をただ単にバイナリに含ませる だけ。
 - これでは、攻撃者は簡単にバイナリを比較することで鍵を 取りだすことができる。
- セキュリティチップTPM (Trusted Platform Module)に 鍵を隠す方法を実装した。
 - "Trusted Boot"と"TPM non-volatile storage"の活用

TPMに鍵を隠蔽する方法 (1/3)


- TPMを基軸とするTrusted Bootはブートシーケンスを計測し、それ の完全性を検証する仕組みを持つ(Chain of Trust)。
 - 各ブートシーケンスのSHA-1値は、"extend" 操作でTPMのPCR (Platform Configuration Register) に保存される。
 - *PCR*=*SHA*-1(*PCR* + *SHA*-1(*Component*))
 - PCRの値からどのようなブートシーケンスを行ったか検証可能。

TPMに鍵を隠蔽する方法 (2/3)

- Chain of Trustを維持するためには各コンポーネントが次のコンポ ーネント計測する機能が必要。
 - BIOSITTCG-BIOS
 - ブートローダはTrusted GRUB



Each PCR represents category of action.

TPMに鍵を隠蔽する方法 (3/3)

- 暗号鍵はTPM内に保存することが可能。その鍵は特定 のPCR値のみに取り出せるように設定できる。
 - PCR値が変化すれば(DDEが改竄されれば)、PCR値が異な り、暗号鍵を取りだすことが出来ない。
- これによりユーザはDDEを使わざるを得えない。

Chain of Trust

- ThinkPad Helixでのブートシーケンス
 - 起動で使われるデバイスやソフトウェアは TPMに記録される
 - PCR = SHA 1(PCR + SHA 1(Component))

各PCR はそれぞれが 担当する計測値を保持

```
PCR
        SHA1
                                         Event
0 4b81c044c1472a34c73da87d7ad3a64ba62e9047 08 [S-CRTM Version]
6 fcad787f7771637d659638d92b5eee9385b3d7b9 05 [Wake Event 6]
0 8841e9e7d8eb4c753d2ef7dc9f89a07c756cb30b 07 [S-CRTM Contents]
0 3d9766e45814d6374d9a85aa519071dc82574017 01 [POST CODE]
1 b83f6c64a1727add477a94874f3f11f29d531c47 09 [CPU Microcode]
4 9069ca78e7450a285173431b3e52c5c25299e473 04 []
2 199804c152f10535cd88f8f5d607ae55e9e2f3ef 06 [Option ROM]
5 cd0fdb4531a6ec41be2753ba042637d6e5f7f256 80000007 []
0 afbf30b554a35d0ba6a469934d35cf9f58eec6af 80000009 []
1 8de522ea7b732f0bf261ed931245c5c7e75fedbb 80000009 []
0 9069ca78e7450a285173431b3e52c5c25299e473 04 []
1 9069ca78e7450a285173431b3e52c5c25299e473 04 []
2 9069ca78e7450a285173431b3e52c5c25299e473 04 []
3 9069ca78e7450a285173431b3e52c5c25299e473 04 []
5 9069ca78e7450a285173431b3e52c5c25299e473 04 []
6 9069ca78e7450a285173431b3e52c5c25299e473 04 []
7 9069ca78e7450a285173431b3e52c5c25299e473 04 []
1 1f3c97f0b6d45a46ec1aa91e5868322dea94d76c 80000002 []
4 cle25c3f6b0dc78d57296aa2870ca6f782ccf80f 05 [Calling INT 19h]
4 d564bb707b030e193fdd3ddae8818703225c49c3 05 [Booting BCV Hard
4 f2e7a20ef1397308f937841b55040905ff7cabca 0d [IPL]
5 c358aaa78d400ad539f90d542e5519aa4e403714 0e [IPL Partition Data]
4 e479a239ff8d17b2391782a86e19ca873ec6536c 0d [IPL]
```


TPM non-volatile storage

- TPM は"*TPM non-volatile storage*"と呼ぶストレージシ ステムがあり、特定のPCR値の時にのみデータが取り 出せる。
- DDEの暗号鍵をTPM non-volatile storageに保存して、 DDEの改竄を防ぐ。
 - DDEが改竄されるとPCR値が異なり、鍵が取り出せない。
- Reference
 - TPM Main Part 3 Commands, Specification Version 1.2, Level 2 Revision 116, 1 March 2011

http://www.trustedcomputinggroup.org/files/static_page_files/72C33D71-1A4B-B294-D02C7DF86630BE7C/TPM_Main-Part_3_Commands_v1.2_rev116_01032011.pdf

TPM non-volatile storageのインターフェイス

• TPM non-volatile storageへは TCG-BIOSが提供する APIによってアクセスできる。

API of TCG BIOS	Description
TPM_NV_DefineSpace	 TPM non-volatile storageの領域を確保するAPI 領域へのアクセスは"index" 番号を通して行う 特定PCR値の時のみにアクセスできるように制限可能
TPM_NV_WriteValue	●TPM non-volatile storageにデータを書き込むAPI ●登録したPCR値の時のみアクセスできる。
TPM_NV_ReadValue	●TPM non-volatile storageにデータを読み出すAPI ●登録したPCR値の時のみアクセスできる。

TPM non-volatile storageの具体例

- Index番号によってアクセス可能
- この領域へはPCR[0-7,12-14] が特定値(ハッシュ値)の時のみ アクセス可能。

On ThinkPad Helix

```
# tpm_nvinfo
   NVRAM index : 0x00010016 (65558)
    PCR read selection:
                                            PCRs to verify
    PCRs : 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14
    Localities: 0x7
    Hash: bcea2524269cafd359d69caa850e209481feeec4 Hash of values
                                                           of PCRs
    PCR write selection:
                                            PCRs to verify
    PCRs : 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14
    Localities: 0x7
    Hash: bcea2524269cafd359d69caa850e209481feeec4
                                                          Hash of values
                                                           of PCRs
    Permissions : 0x00000000 ()
    bReadSTClear: FALSE
    bWriteSTClear: FALSE
    bWriteDefine: FALSE
             : 32 (0x20)
   Size
```

PCRの具体例

On ThinkPad Helix

Trusted GRUB はPCR[12-14]を利用

Original DDE

TPM non-volatile storageから鍵を取り出 すにはPCR[0-7, 12-14]を使う。

PCR[0-7] はTrusted GRUB以前のブー トシーケンスを検証するのに使う。

DDEが改変されるとPCR[12-14] が変わ り、鍵が取り出せない。

FPCR-00: 27 CD 64 2F DA 95 EA 09 3B 8C AE BC 68 9F FA C7 2A 59 76 01 PCR-01: E2 60 C4 57 A9 DC 8B C1 3C 5D E8 23 9F 2B 6B 71 86 19 72 19 PCR-02: F2 E5 65 2A DC 7F 57 8A F0 89 9D F1 0F 6B AE A1 PCR-03: B2 A8 3B 0E BF 2F 83 74 29 9A 5B 2B DF C3 1E A9 PCR-04: AA C6 8F 43 8F 5C 23 4E BD 70 F7 46 7D 51 18 4E BD A3 CA 55 PCR-05: 01 C2 F5 26 13 11 B9 6F 4B BF A4 39 14 AC CA 6B 「PCR-06: EE 1B 0F 99 7D 75 17 B2 86 BC 9D 73 A4 CF 74 2C 65 A7 69 BE PCR-07: B2 A8 3B 0E BF 2F 83 74 29 9A 5B 2B DF C3 1E A9 55 AD 72 36 PCR-08: 93 41 C4 1A 6D EA 42 08 65 16 B8 4B AF AF 48 3C CD 96 36 91 PCR-09: 1B 60 78 EA 42 8E FA 3A 2A D2 A9 7E 22 04 90 7C 1A E6 33 A9 PCR-10: 3D C7 DF C4 CB B0 EC D3 9F B2 75 14 4B 41 E0 42 52 AF C1 17 00 00 00 00 PCR-12: 98 CB C3 5A 43 22 54 CB CB DD E6 04 30 B1 89 D9 31

鍵取り出しの失敗例

• DDE が改変されるとTPM non-volatile storageから暗 号化鍵が取り出せない。

```
panic(CPU0): tpm_nv_acquirekey
s:shell r:reboot ?
```


現状の動作環境

- DDE は下記の条件のノートPC、タブレットで動作可能
 - x86/ADM64 CPU
 - TPM 1.2
 - TCG BIOS (EFIは非対応)
 - PCI デバイスのみ制御可能
 - OS 非依存(動作確認はWindows 7,8,Linuxで行った)

対応モバイルガジェットの拡大計画

- 要点はTPMとTCG-BIOS
 - TPMの対応
 - atom CPUを使ったモバイルガジェットにはTPMが付いているものが 少ない。
 - ARM CPUを使ったモバイルガジェットにはTPMが付いているものが 少ない。
 - 例外: Samsung Chromebook2ではTPMが付いている。
 - TCG-BIOS
 - MS Surface はTPMが付いているが、起動がEFIのみなので未対応。

ビデオデモ

- 3つのブート
 - Windows8のスタンドアローンブート
 - smss.exe がDDEよって復号されないのでブートが失敗する。
 - Customized DDE
 - 暗号鍵が取得できないのでブートが失敗する。
 - DDE起動後のWindows8の起動
 - 正しくブート!

Just Fun!

Trusted GRUB has 3 boot options

- Windows 8
- Hacked DDE (Customized DeviceDisEnabler)
- DDE

まとめ

- モバイルガジェットの高解像度デバイスはサイバーエ スピオナージ(諜報活動)で使われる危険性がある。
 - 一管理者はこれらの不要なデバイスを職場で禁止したい。
- デバイスをOSから隠蔽する軽量ハイパーバイザー "DeviceDisEnabler"を提案した。
- DeviceDisEnabler はTPMを活用した改竄防止機能を 含んでおり、ユーザからの回避を防ぐ。
- 今後の予定
 - EFI boot対応。(Microsoft Surfaceでの活用)
 - USBデバイス隠蔽
 - ARM対応

Special Thanks

- 八木都志樹 Toshiki Yagi, AIST
- 吉本道隆 Michitaka Yoshimoto, AIST
- 古原和邦 Kazukuni Kobara, AIST
- BitVisorの開発者の皆様
 - http://www.bitvisor.org/

これらのデバイスが何か問題でも?

• Yes!

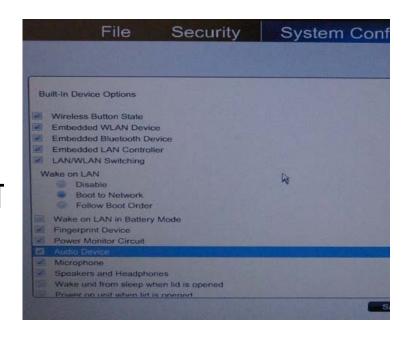
- 高性能デバイスはサイバーエスピオナージ(諜 報活動)の格好のターゲット。
 - 既に幾つかの事例や研究結果がある。

マイクを使った盗聴

- 報道によるとマルウェア "Bundestrojaner" (連邦トロジ ャン)が空港で税関・出入国管理を通過する際にインス トールされた。
 - 連邦トロジャンはコードの中にあった「C3PO-r2d2-POE」とい うストリングから「R2D2」も呼ばれる。
- 連邦トロジャンはSkypeの通話を盗聴し、リモートのサ イトにデータを転送していた。
- 連邦トロジャンはChaos Computer Club (CCC) によって 2011年に発見。
 - WikiLeaksによるとドイツの州政府からの発注。

GPSによる悪意あるトラッキング

- 日本の「カレログ」が有名だが、海外では"Cerberus"や "mSpy"が堂々と販売されている。
 - カレログはGPSコントロールマネージャとして販売。社会問題に なり、サービスを停止。



Current Countermeasures

- BIOS/EFI によってデバイスを使用不可にする
 - 有効だが、全てのモバイルガジェットで有 効なわけではない。
- Samsung KNOX はデバイスを使用不可 に出来るが、Samsung's Androidのみ。
- セキュリティグッズ プロテクションキャップ セキュリティシール(カメラ用)

これらはユーザの良心に依存。

OSのブートを止める困難点

- BitVisor はハードディスクの領域(blocks)を暗号化する機能を持っている。
 - ディスクが盗まれた場合の機密保持には有効
- 残念ながら、BitVisorのディスク暗号化機能をそのまま OS(Windows) のパーティションに適用できない。なぜな らブートシーケンスでハイパーバイザーを経ないでアク セスしている。
 - 推測: Kennelを立ち上げるブートシーケンスのどこがでBIOSを 使ったディスクアクセスがあり、それをBitVisorが補足できない
 - このため、パーティション丸毎の暗号化ではOSを起動できない
 - (補足)LinuxならminirootとRootFSのパーティションを分けて、 RootFSのみ暗号化することで解決できる。

- ARM仮想化拡張機能
 - ARM Architecture Virtualization ExtensionおよびLarge Physical Address Extension (LPAE)は、ARMアーキテクチ ャ準拠のプロセッサ向け仮想マシン ハイパーバイザ
- ARMv7A virtualization extensions
- ARM Cortex A15 processor
 - ハイパーバイザー用のHYP Mode。