E F E

Registry of Reserved TPM 2.0 Handles and Localities

Version 1.2 Revision 1.00 November 2, 2023

Contact: admin@trustedcomputinggroup.org

PUBLISHED

DISCLAIMERS, NOTICES, AND LICENSE TERMS

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, DOCUMENT OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document and to the implementation of this document, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this document or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted herein other than as follows: You may not copy or reproduce the document or distribute it to others without written permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG documents or (b) developing, testing, or promoting information technology standards and best practices, so long as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on document licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

CHANGE HISTORY

REVISION	DATE	DESCRIPTION
1.00/0	January 6, 2013	Initial Release
1.00/1	April 1, 2015	 The meaning of bits 22 and 23 emphasized in a new table (Table 2) Specific values of bits 22 and 23 incorporated into specific handle values in Table 3.
		New Tables 4, 5, and 6 inserted in anticipation of future values of "Component OEM", "TPM OEM" and "Platform OEM" NV handles
1.10/0	Feb 6, 2019	 Added reference to the list of OIDs and Catalog. Added comment about TPM enforcing some bits of the key handle. Added requested handles by companies and TCG Workgroups Added note that organizations are responsible for sub-dividing NV Indices if necessary. Deprecated certain Platform Classes Referenced TPM 2 Library specification for numbering format instead of copying it. NOTE: Will change Revision to 0 when ported to new template and remove this note.
1.2/.9	July 26, 2023	 Added External Standards Development Organization Range Assigned a range to the FIDO Alliance
1.2/1.00	Nov 02, 2023	Published after TCG Membership and public review, Minor correction to referenced TPM Specification revision number

1 Contents

DIS	SCLAIMERS, NOTICES, AND LICENSE TERMS	1
СН	IANGE HISTORY	2
1	Introduction and Scope	5
	1.1 References	5
2	Numbers 6	
2	Handles (indices)	7
	2.1 PCR Handles	7
	2.2 NV Indices	8
	2.2.1 TPM Specification Defined	8
	2.2.2 TCG Conventional NV Indices Usage	8
	2.3 Key Handles	15
	2.3.1 Key Handle Assignments	15
	2.3.2 Key Handle and Certificate Handle Relationships	16
3	Localities 17	
4	Platform Class	18

Table of Tables

Table 1: Reserved Handles for PCR	7
Table 2: Reserved Handles for NV indices	8
Гable 3: Example NV Unassigned Usages	9
Fable 4: Known NV Index Unassigned Usages	10
Table 5: Endorsement NV Index Usages	10
Fable 6: Handles for Global NV indices assigned to Component OEMs	11
Fable 7: Handles for Global NV indices assigned to TPM OEMs	11
Fable 8: Handles for Global NV indices assigned to Platform OEMs	
Fable 9: NV Indices assigned by TCG for specific usages	13
Fable 10: NV Handles for PC Client WG	13
Table 11 NV Handles Assigned to External Standards	14
Table 12: Key Handles for Persistent Objects	15
Fable 13: Localities Reserved for Platform-Specific Workgroups	17
Fable 14: Platform Class Values	18

1 Introduction and Scope

This registry is a companion to the TPM 2.0 library specification [1]. This registry describes TCG's convention for allocating TPM 2.0 handles and localities. Many of the values in this document specify ranges for vendors to use and these ranges are reserved by TCG for those vendors' use.

1.1 References

[1] TPM 2.0 Library Specification

URL: https://trustedcomputinggroup.org/work-groups/trusted-platform-module

© TCG 2023

2 Numbers

The numbers used in this document are formatted as defined by the TPM Library specification in Section 7.3 Numbers (as of revision 1.59).

2 Handles (indices)

A handle is a 32-bit value. Its most significant octet identifies the type of resource. At any given instant, a handle's low-order bits identify a unique resource. The actual resource identified by the low-order bits may change with time.

Platform-specific workgroups choose the resources whose handles they wish to register and define those handles in their individual TCG specifications. However, all TPM 2.0 handle definitions must be consistent with the TPM 2.0 specification and the definitions in this registry.

2.1 PCR Handles

Table 1 of this registry states the range that is assigned by TCG to PCR handles. Note that Table 1 reserves the entire range of handles that is available for PCR. All handles used by PCR must be within the range stated in Table 1.

Table 1: Reserved Handles for PCR

Handle Type	Entity that further refines the handle type	Refined handle type	Handle Range
PCR indices	TPM workgroup		00 00 00 00 ₁₆ – 00 FF FF FF ₁₆

The proper interpretation of Table 1 is that the lower 24 bits of a PCR handle have the same value as the PCR's number. For example, the handle of PCR-0 is 00 00 00 00 00 16, the handle of PCR-2 is 00 00 00 00 02 16. The handle for the same PCR (PCR-0, PCR-1, etc.) is always the same, irrespective of workgroup, although the integrity metrics recorded in a PCR may vary with workgroup.

2.2 NV Indices

2.2.1 TPM Specification Defined

The TPM 2.0 library specification Part-II section "NV Storage Structures" defines how a TPM interprets handles for NV indices. The TPM Library Specification defines bits 31-24 as reserved for NV Indices.¹

2.2.2 TCG Conventional NV Indices Usage

This section defines TCG's convention for bits 23-00.

NOTE: The TPM does not enforce the conventional usage (i.e., bits 23-00) for NV Indices defined in this section.

Table 2 defines the entire range of handles available for NV indices. How each range is used and assigned is defined by the handle type's assignee. Note that this registry does not assign NV space in a TPM.

Table 2: Reserved Handles for NV indices

Handle Type	Refined Handle Type	Source of Handle Type	Handle Range
NV indices unassigned by	ТРМ	TPM manufacturer	01 00 00 00 ₁₆ – 01 3F FF FF ₁₆
TCG See Section	Platform	Platform Manufacturer	01 40 00 00 ₁₆ – 01 7F FF FF ₁₆
2.2.2.1	Owner	Owner	01 80 00 00 ₁₆ – 01 BF FF FF ₁₆
	Endorsement	Individual handles are determined by individual workgroups	01 C0 00 00 ₁₆ – 01 C0 7F FF ₁₆
NV indices assigned by TCG per platform component level See Sections 2.2.2.2 and 2.2.2.3	Platform	Individual handles are determined by individual workgroups	01 C0 80 00 ₁₆ – 01 C0 FF FF ₁₆
	Component OEM (See Table 6 of this registry)	Technical Committee	01 C1 00 00 ₁₆ – 01 C1 FF FF ₁₆
	TPM OEM (See Table 7 of this registry)	Technical Committee	01 C2 00 00 ₁₆ – 01 C2 FF FF ₁₆

 $^{^{\}mbox{\tiny 1}}$ TPM_HT_NV_INDEX = 0x01; HR_SHIFT= 24(decimal); HR_NV_INDEX = (TPM_HT_NV_INDEX << HR_SHIFT)

Registry of Reserved TPM 2.0 Handles and Localities | Version 1.2 | Revision 1.00 | 11/2/2023 | PUBLISHED

Handle Type	Refined Handle Type	Source of Handle Type	Handle Range
	Platform OEM (See Table 8 of this registry)	Technical Committee	01 C3 00 00 ₁₆ – 01 C3 FF FF ₁₆
NV Indices assigned by TCG for specific usages See Section 2.2.2.4	TCG Specifications and Workgroups (See Table 9 and Table 10)	Technical Committee	01 C4 00 00 ₁₆ – 01 FF FF FF ₁₆

2.2.2.1 NV indices unassigned by TCG

2.2.2.1.1 General Description

An NV index within these ranges are assigned by entities outside TCG. This NV Indices do <u>not</u> have the same meaning across all platform classes. It is anticipated that some of these NV indices will be assigned by firmware or software applications.

- 1. The indices defined by one individual Owner may or may not be the same as those defined by another individual Owner.
- 2. The indices defined by one individual platform manufacturer may or may not be the same as those defined by another platform manufacturer.
- 3. The indices defined by a platform manufacturer for one type of platform may or may not be the same as those defined by the same manufacturer for another type of platform.
- 4. The indices defined by one individual TPM manufacturer may or may not be the same as those defined by another TPM manufacturer.
- 5. The indices defined by a TPM manufacturer for one type of TPM may or may not be the same as those defined by the same manufacturer for another type of TPM.

This range is divided into sub-ranges allocated to the platform component that uses the NV Index. Example usages are in Table 3 below.

Table 3: Example NV Unassigned Usages

Refined Handle Type	Example Usage
TPM	TPM Manufacturer-specific information about the TPM which is not represented by a Capability.
Platform	Platform information which is kept secure using Platform Policies
Owner	OS or application specific usages

2.2.2.1.2 Known Usages

Within these ranges Table 4 identifies known NV Index ranges or specific NV Indices in use. Note these values are informative and are not enforced by TCG. It is possible other uses exist (some may overlap those listed

here) that are not identified. Entities wanting to list their usage should contact TCG admin at: admin@trustedcomputinggroup.org.

Table 4: Known NV Index Unassigned Usages

Refined Handle Type	NV Index or NV Range	Known usage
TPM	<n a=""></n>	
	01 40 00 00 - 01 40 FF FF ₁₆	Dell, Inc.
Platform	01 70 00 00 – 01 70 FF FF ₁₆	Dell, Inc.
Owner	<n a=""></n>	

2.2.2.2 NV indices assigned by TCG per platform component level

2.2.2.2.1 Endorsement

This range contains NV Indices to support the Endorsement Hierarchy such as Endorsement Certificates, Endorsement Key templates, etc.

Within the Endorsement Certificate range, the Infrastructure Working Group has defined specific NV Indices to allow EK authorization. See the relevant specification for a description of each NV Index range. The following range is reserved for creating these policies.

Table 5: Endorsement NV Index Usages

	rabie of Eliabrochicite III ilia	err o sages
Usage	NV Index or NV Range	Description / Specification
EK Policies	01 C0 7F 00 ₁₆ – 01 C0 7F FF ₁₆	Policy NV Indices TCG EK Credential Profile

2.2.2.2. Platform

This range contains NV Indices to support Certificates to identity the Platform such as Platform Certificates.

2.2.2.3 NV indices Assigned to OEMs

Component OEMs (such as chipset manufacturers), TPM OEMs, and platform OEMs, may request the TCG Technical Committee to assign global handles for resources. The only such global handles are those defined in this registry.

The ranges assigned have a large address space. TCG expects to issue a minimal (ideally only one) range per registrant. For large or complex organizations, each registrant is expected to sub-divide, if necessary, its range amongst its various internal units.

2.2.2.3.1 NV Handles for Component OEM

Table 6 reserves the handles of global NV indices for Component OEMs. They are in the range 01C1 0000-FFFF₁₆ stipulated by Table 2 of this registry.

Table 6: Handles for Global NV indices assigned to Component OEMs

Purpose / Registered to	Handle value / Range
Intel, Corp.	01 C1 01 00 ₁₆ – 01 C1 01 3F ₁₆
Cisco	01 C1 01 40 ₁₆ – 01 C1 01 7F ₁₆
IBM	01 C1 01 80 ₁₆ – 01 C1 01 BF ₁₆
Microsoft	01 C1 01 C0 ₁₆ – 01 C1 01 FF ₁₆
AMD	01 C1 02 00 ₁₆ – 01 C1 02 3F ₁₆
HP	01 C1 02 40 ₁₆ – 01 C1 02 7F ₁₆
HPE	01 C1 02 80 ₁₆ – 01 C1 02 BF ₁₆

2.2.2.3.2 NV Handles for TPM OEMs

Table 7 reserves the handles of global NV indices for TPM OEMs. They are in the range $01C2\ 0000$ -FFFF₁₆ stipulated by Table 2 of this registry.

Table 7: Handles for Global NV indices assigned to TPM OEMs

Purpose	Handle value
Infineon	01 C2 00 00 ₁₆ – 01 C2 00 7F ₁₆

2.2.2.3.3 NV Handles for Platform OEMs

Table 8 reserves the handles of global NV indices for Platform OEMs. They are in the range 01C3 0000-FFFF₁₆ stipulated by Table 2 of this registry.

Note: Requesters are urged to implement the lowest values within their range. This would allow splitting ranges in the future (with the requestor's permission) if address space becomes scarce.

Table 8: Handles for Global NV indices assigned to Platform OEMs

Purpose	Handle value
r dipose	Trancie value
Intel	01 C3 01 00 ₁₆ - 01 C3 01 3F ₁₆
	04 00 04 40 04 00 04 75
Cisco	01 C3 01 40 ₁₆ – 01 C3 01 7F ₁₆
HPE	01 C3 01 80 ₁₆ – 01 C3 01 BF ₁₆
· · ·	
IBM	01 C3 01 C0 ₁₆ – 01 C3 01 FF ₁₆
Juniper	01 C3 02 00 ₁₆ – 01 C3 02 3F ₁₆
damper	01 03 02 0016 01 03 02 01 16
General Electric	01 C3 02 40 ₁₆ – 01 C3 02 7F ₁₆
Doythoon Inc	01 C3 02 80 ₁₆ – 01 C3 02 BF ₁₆
Raytheon, Inc.	01 C3 02 6016 - 01 C3 02 BF16
HP	01 C3 02 C0 ₁₆ – 01 C3 02 FF ₁₆
1115	0.0000000000000000000000000000000000000
AMD	01 C3 03 00 ₁₆ – 01 C3 03 3F ₁₆
Qualcomm	01 C3 03 40 ₁₆ – 01 C3 03 7F ₁₆

2.2.2.4 NV Indices assigned by TCG for specific usages

2.2.2.4.1 General Description

Individual TCG workgroups may assign handles for specific NV Indices within the ranges defined in Table 2. The NV Index for a particular type of object (e.g., a certificate) in one type of platform may be different from the NV Index for the same type of object in another type of platform.

2.2.2.4.2 NV Indices assigned by TCG for specific usages

Table 9: NV Indices assigned by TCG for specific usages

	signed by TCG for specific usages
Purpose	Range
PC-Client workgroup	01 C4 00 00 ₁₆ – 01 C4 FF FF ₁₆
Server workgroup	01 C5 00 00 ₁₆ – 01 C5 FF FF ₁₆
Virtualized Platform workgroup	01 C6 00 00 ₁₆ – 01 C6 FF FF ₁₆
MPWG	01 C7 00 00 ₁₆ – 01 C7 FF FF ₁₆
Embedded workgroup	01 C8 00 00 ₁₆ – 01 C8 FF FF ₁₆
Infrastructure workgroup	01 C9 00 00 ₁₆ – 01 C9 FF FF ₁₆
<reserved></reserved>	01 CA 00 00 ₁₆ – 01 CF FF FF ₁₆
TPM Workgroup	01 D0 00 00 ₁₆ – 01 D0 FF FF ₁₆
External Standards Development Orgs	01 D1 00 00 ₁₆ – 01 D1 FF FF ₁₆
<reserved></reserved>	01 D2 00 00 ₁₆ – 01 FF FF FF ₁₆

2.2.2.4.3 Workgroup Specific Usages

2.2.2.4.3.1 NV Handles for PC Client WG

Table 10 reserves the handles of global NV indices for PC Client WGs. They are in the range 01C4 0000₁₆ – FFFF₁₆ stipulated by Table 2 of this registry.

Table 10: NV Handles for PC Client WG

Purpose	Handle value		
GPIO	01 C4 00 00 ₁₆ – 01 C4 00 0F ₁₆		
Reserved	01 C4 00 10 ₁₆ – 01 C4 00 FF ₁₆		
Enhanced Peripheral Interface	01 C4 01 00 ₁₆ – 01 C4 01 FF ₁₆		

2.2.2.4.4 External Standards Development Organizations

This range is assigned to standards development organizations (SDO) that have requested TCG register a range of NV indices which they will manage. These are not enforced by TCG and are not defined in a TCG specification. These are provided for informational purposes to help various industries use the TPM.

TCG does not provide higher resolution use of the NV Indices beyond the range assigned to the SDO. The SDO is responsible for allocating from within their assigned range for that SDO's purposes (i.e., likely their own specification.)

Standards Development Organizations may initiate a request for an NV Index range by contacting admin@trustedcomputinggroup.org.

Table 11 NV Handles Assigned to External Standards

Assignee	Handle value
FIDO Alliance	01 D1 00 00 ₁₆ – 01 D1 00 FF ₁₆
Reserved	01 D1 01 00 ₁₆ – 01 D1 FF FF ₁₆

2.3 Key Handles

2.3.1 Key Handle Assignments

The TPM enforces bits 31-24 for all persistent keys, and enforces bit 23 to distinguish platform hierarchy keys from storage/endorsement hierarchy keys. However, bits 22-16, which distinguish storage from endorsement are by convention only and are not enforced by the TPM.

The TPM 2.0 library specification Part-III section "TPM2" EvictControl" defines handles for persistent objects:

- 1. If auth is TPM_RH_OWNER, the handle for persistent objects is in the inclusive range of 81 00 00 00₁₆ to 81 7F FF FF₁₆.
- 2. If auth is TPM_RH_PLATFORM, the handle for persistent objects is in the inclusive range of 81 80 00 00₁₆ to 81 FF FF FF₁₆.

Table 12 of this registry states the TCG's convention for handles of keys that have been rendered persistent via the command TPM2_EvictControl. Note that Table 12 reserves just part of the entire range of handles that is available for persistent keys and reserves just the ranges for persistent primary keys. The remainder of the range of handles for persistent keys is available for persistent non-primary keys.

Table 12: Key Handles for Persistent Objects

Scope	Hierarchy	Handle Type	Range
		Storage Primary Key	81 00 00 00 ₁₆ – 81 00 00 FF ₁₆
	Storage	Reserved	81 00 01 00 ₁₆ – 81 00 7F FF ₁₆
		Available	81 00 80 00 ₁₆ – 81 00 FF FF ₁₆
Hypervisor, Operating System or	Operating System or	Endorsement Primary Key	81 01 00 00 ₁₆ – 81 01 00 FF ₁₆
Applications		Reserved	81 01 01 00 ₁₆ – 81 01 7F FF ₁₆
		Available	81 01 80 00 ₁₆ – 81 01 FF FF ₁₆
		Infrastructure WG	81 02 00 00 ₁₆ – 81 02 00 FF ₁₆
		Reserved	81 02 01 00 ₁₆ – 81 03 FF FF ₁₆
Platform	Platform	Platform Keys (all)	81 80 00 00 ₁₆ – 81 80 00 FF ₁₆
Reserved	Reserved	Reserved	81 80 01 00 ₁₆ – 81 FF FF FF ₁₆

This registry assigns handle ranges for just 256 "Storage primary keys", 256 "Endorsement primary keys", and 256 "Platform primary keys". The handle for a particular primary key in one platform may be different to the handle for the same type of primary key in another platform. This is because a workgroup may choose to define handles for persistently stored primary keys that use just the cryptographic algorithms that are mandatory in that workgroup's specifications, for example.

Handle types marked as Reserved, should not be used as these may be designated later by TCG. Handle Types marked as Available are for use by platform manufacturers, Hypervisor or Operating systems (or applications) but should remain within the ranges designated as Available within the appropriate Hierarchy.

2.3.2 Key Handle and Certificate Handle Relationships

Unlike TPM 1.2, TPM 2.0 does not require persistent endorsement keys. They can be repeatedly created as transient keys on demand, while a persistent EK would consume scarce NV space.

If an EK is made persistent, it may be easier for software if there is a relationship between the EK persistent handle and the EK certificate NV Index. For example, if an Endorsement Certificate within the Endorsement Certificate range in Table 2 has an Endorsement Primary Key within Table 12 the offset of each entity could be the same within each respective range. For example, an Endorsement Certificate at NV Index 01 C0 00 21₁₆ (offset 21₁₆ starting from the beginning of the assigned NV Index range) could have an Endorsement Primary Key at handle 81 00 00 21₁₆ (offset 21₁₆ starting from the beginning of the assigned key handle range).

3 Localities

Platform-specific workgroups request localities for stated purposes. The values of localities for those purposes are assigned by the Technical Committee and recorded in this registry.

Localities are a scarce resource. Therefore, all assigned values must be actually used: ranges with unused values cannot be pre-assigned to individual platform-specific workgroups.

The locality value is represented as a byte. Locality values have two separate interpretations.

- 1. Localities 0 through 4 are interpreted as bits in the byte with 0000 0001₂ representing locality 0 and 0001 0000₂ representing locality 4. This representation allows multiple localities to be represented in a single byte as long as the localities are in the range of 0-4.
- 2. A second interpretation applies to localities above 4. These are called extended localities. For extended localities, the locality byte is an integer value representing the locality. Because of the format for localities 0-4, the first extended locality is 32₁₀. The range of extended localities is 32₁₀-255₁₀. An extended locality value may indicate only one locality at a time.

Table 13 of this registry states the assignment of locality values to TCG workgroups, and the interpretation of a locality value. Table 13 reserves all possible locality values.

Table 13: Localities Reserved for Platform-Specific Workgroups

Workgroup Defining the locality	Locality value	Description of the locality
PC-Client	0016	The Static RTM, its chain of trust and its environment
	01 ₁₆	An environment for use by the Dynamic OS
	0216	Dynamically Launched OS (Dynamic OS) "runtime" environment
	03 ₁₆	Auxiliary components
	0416	Trusted hardware component
Unallocated	05 ₁₆ – 1F ₁₆	It is impossible to implement these localities because of legacy constraints and the representation of locality as a Byte
MPWG	2016	L_TEE: a locality indicating access from code within the same TEE as the receiving TPM Mobile
	21 ₁₆	L_ATPM: a locality indicating access from an Application TPM Mobile residing in the same TEE as a Platform TPM Mobile. Used for attestation.
Virtualized Platform	22 ₁₆	Unknown
Workgroup	23 ₁₆	Unknown
	24 ₁₆	Unknown
<reserved values=""></reserved>	24 ₁₆ – FF ₁₆	Reserved by the Technical Committee

4 Platform Class

Table 14 contains values used to assert the class (or type) of platform. These are just canonical numeric values used by TCG specifications to identify a platform's class as defined by that specification.

The values in Table 14 are stated in hexadecimal, however, the actual representation of the values including the number of octets and endianness is not declared in this document. The representation of these values is defined by the specification utilizing them.

Note there are also OIDs defined to designate platform class. Those are listed in the OID registry.

Note to editor: It's likely when Table 14 is modified the OID registry should also be modified to include the new definition.

NOTE: Adding a canonical set of string values representing Platform Class is within scope of this document, however, there are no specific use cases for them therefore none are defined. If a string value (e.g., "pc_client") is needed contact the TCG Technical Committee.

Di Maria Olara		Table 14. Flationiii Class Va	
Platform Class	Value	Comments	Example Use ²
Unclassified	0016	not platform specific	TPM_PS_MAIN
PC Client	01 ₁₆	PC Client (see NOTE 1)	TPM_PS_PC
PDA	02 ₁₆	PDA (includes all mobile devices that are not specifically cell phones)	TPM_PS_PDA
CELL_PHONE	03 ₁₆	Cell Phone	TPM_PS_CELL_PHONE
SERVER	04 ₁₆	Server WG (see NOTE 1)	TPM_PS_SERVER
PERIPHERAL	05 ₁₆	Peripheral WG	TPM_PS_PERIPHERAL
TSS	0616	Deprecated ³	TPM_PS_TSS
STORAGE	07 ₁₆	Storage WG	TPM_PS_STORAGE
AUTHENTICATION	0816	Authentication WG	TPM_PS_AUTHENTICATION
EMBEDDED	0916	Embedded WG	TPM_PS_EMBEDDED
HARDCOPY	0A ₁₆	Hardcopy WG	TPM_PS_HARDCOPY
INFRASTRUCTURE	0B ₁₆	Deprecated	TPM_PS_INFRASTRUCTURE
VIRTUALIZATION	0C ₁₆	Virtualization WG	TPM_PS_VIRTUALIZATION
TNC	0D ₁₆	Deprecated	TPM_PS_TNC
MULTI_TENANT	0E ₁₆	Deprecated	TPM_PS_MULTI_TENANT

Table 14: Platform Class Values

Registry of Reserved TPM 2.0 Handles and Localities | Version 1.2 | Revision 1.00 | 11/2/2023 | PUBLISHED

² As documented in the TPM 2 Library Specification

³ While these values indicated as Deprecated are documented in the TPM 2 Library, their use is not anticipated.

Platform Class	Value	Comments	Example Use ²
TC	0F ₁₆	Deprecated	TPM_PS_TC

NOTE 1: In the TCG ACPI specification PC Client has a value of 00₁₆ and Server has a value of 01₁₆.

END