Security Automation (examples of application)

- Network Access Control (NAC) / Trusted Network Connect (TNC)
- Continuous Monitoring (CM)
- Security Information and Event Management (SIEM)
- Virtual Infrastructure Management (VIM) / Orchestration
Basis for Automated Assessments/Assertions/Decisions

- **NAC**: system state, endpoint identification, policies
- **CM**: inventory catalog, topology, maintenance schedule
- **SIEM**: event correlation, asset catalogs, incident categories
- **VIM**: SLA, state of resource consumer / provider, optimization
Roles in Security Automation

- **Consumer of Information**
 - NAC, CM, SIEM, VIM, etc.

- **Producer of Information**
 - Clients, Server, network components, etc.
 - IDS, netmon/netflow, Icinga, etc.
 - Logfiles, SNMP/MIBs, CLI, SOAP, REST, websockets, etc.
Key Factor for Security Automation

- The **basis** for decision-making has to be **provided** for security automation
- This **basis** is also **acquired** via automated procedures
- The **quality** of this **basis** is the **key factor** to security automation

- „To know what to do, you have to know **what you have**“
- Assets with **interconnected** relationships that produce information
- **Context** is everything
Pro-Active vs. On-Demand

• Having the right information at the **right time**.
 • Aggregation & correlation **takes time**.
 • Collecting context information without corresponding requirements…
 • … can violate privacy requirements or compliance guidelines.

• Having **up-to-date** information…
 • requires a well maintained / managed **acquisition process**.
 • can fail if it is not available **ad-hoc**.
 • requires a **fallback**.

• **You can do both** to double check (and reveal inconsistencies).
Quantity vs. Quality

• Producer of Information produce a default set of security related information
 • that is most of the time…
 • unstructured
 • incomplete
 • in dire need of refinement
 • that does not scale well if aggregated blindly

• Documentation is the basis for quality.
 • Security Goals
 • Producer, Consumer, and a well structured information flow between them.
Configuration vs. State

• A matter of scalability…
• …and feasibility.

• Configuration and state are sometimes difficult to distinguish.
 • Sometimes an endpoint attribute can be both…
 • …depending on the context.

• Both are an important basis for determining identity
 • Identity is an assertion.
 • Unique identifier are therefore valuable.
Attributes vs. Events

- An endpoint attribute has a **value** that can be acquired (via automatic procedures).
- An event is the **change** of an attribute **value** at a specific time.

- Multiple attributes can be converted into events
- Events can be converted into multiple attributes

- **Events** are typically processed in **streams** and require the continuous availability of processing capacity.
- **Attributes** are typically processed in **bulks** (collections/bundles/bursts) that can be processed
Integration into Business Processes

- Structured Security Information is a **commodity**.
 - Producing security events & Collecting endpoint attributes.
 - Providing a **standardized** communication schema.
- Producing security information requires a **management** process.
 - Risk Management
 - Asset Management
 - Configuration Management
- Security information needs a **purpose** to provide a benefit.
 - Understanding produced and consumed information.
 - Homogenizing / aggregating it requires understanding it.
Creating Context

• Homogeneity
 • Event Transport
 • Attribute Collection
 • Security Information Repositories

• Lingua Franca
 • To fit the puzzle pieces, there has to be a pattern,
 • a common understanding, a common language.
 • Examples: IDMEF, SCAP, IF-MAP, SACM

• …and the flexibility to do what you need to do.
What do I have to do?

- Gap-Analysis
 - What do you have?
 - What do you need to satisfy your requirements?
 - Typical goals: compliance, resilience, confidentiality.

- Create more than a list of things / checklists.
 - Relationships and dependencies
 - Service graphs
 - Supported business processes