TCG Storage Architecture
Core Specification

Specification Version 2.00
Revision 2.00

November 4, 2011

Contact: admin@trustedcomputinggroup.org

TCG

Copyright © TCG 2011

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Copyright © 2011 Trusted Computing Group, Incorporated.
Disclaimers, Notices, and License Terms

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in this specification and to the implementation of this specification, and TCG
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss
of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort,
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or
implied, is granted herein other than as follows: You may not copy or reproduce the document
or distribute it to others without written permission from TCG, except that you may freely do so
for the purposes of (a) examining or implementing TCG specifications or (b) developing, testing,
or promoting information technology standards and best practices, so long as you distribute
the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

Revision 2.00 Page ii of 318

http://www.trustedcomputinggroup.org/�

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Revision History

Version 1.00 Date Description
Rev 1.00 20 April 2009 First publication
Rev 2.00 4 November 2011 Numerous clarifications of behavior to support other released

Storage specifications.

Revision 2.00 Page iii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Revision 2.00 Page iv of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

1 INTRODUCTION ...ttt e e e e et e e e et e e e e e e esaneeeanns 21
1.1 SCOPE AN AUGIENCE ...eiiiiiiie ettt ettt ettt e s e et e s bt et e e s bt et e e sabb e e e e asnbb e e e s nbeeeesnneeas 21
2 (= LYo o K= TSP UPPT R PPOP 21
I B S (=] (=] Yot =) TSP UPPP PP 21
O =T o ¢ 11 g Yo (o Yo TSP UPP PP 22
0 R €1 o] o = I I =T 0 11 o (o o | 2SR 22

2 TRUSTED STORAGE DEVICE ARCHITECTURE ..., 25
2.1 ATCRITECIUIE OVEIVIBW ..oeeiiiie ittt sttt e e e e e e ettt e e e e s s nsteteeeeeessesnseebsaeeeaeeeeannnnees 25
2.2 ArchiteCcture COMPONENTSooiiiiiiiiitiie et e et e e s bt e e e sbb e e e s abre e e e nneeas 25
2.2.1 Multicomponent Trusted Platform (MCTP)oiiii it e e e e 25
222 [(0) PSPPI 26
2221 [(0153 Y o] o] o= 11T 1 SRR 26
2.2.3 Trusted Peripheral (TPEI) ...ttt e e e e e e e e e s et e e e e e e s s snnsrenneaeeeesannnes 26
2.2.4 SECUILY PrOVIAEIS (SPS) .iiiiiiiiiiiiiiie et i sttt st e e e s e sttt e e e e s st ae e e e eeeesssntaaeeeaeeesasssrenneaeeeesannsnes 27
2.3 Core ArchiteCture OPEratiONS . ..uueiiii e e i e e e e s e e e e e s s e e e e e s e s e s e e e e e e e snnntnrneeeeeeeanennnnes 27
231 Host <—> TPer Communication INfraStrUCLUIeccuuiiiieee it 27
2.3.2 SP Issuance & Personalization OVEIVIEW...........uuuiiiieiiiiiiiieiieeeee e s esieiieee e e e s s snieee e e e ae e e s s nneeeeeeas 28
2.3.3 Security SUDSYStEM ClaSSES OVEIVIEWeeiiiiiiiiiiiiiiieeae e e eriiiee e e e e et ee e e e e e s e e seanbaeeeeaaaeaans 29
234 Preliminary Architectural COMPONENTSueiiiiiiiiiiiiii e e e e 29

3 ARCHITECTURE ELEMENTS . ..o e 31
3.1 Architecture EIEMENES OVEIVIEWeiviiiiiiee ittt ettt e e s sntee e e e snbee e e e nnaeeesanree s 31
3.2 Data StrUuCtUIre DESCIIPLIONS ... eiieiiiie et e e e e s e e e e e e s s e e e e e e e e s s s e ereaeessnnrnreeeeaeeeesnnnnnes 31
321 Document Data FOMMALScooiiiiieeieeeeeeeee e 31
3.211 Table Definition FOIMAL ... e e s e e e e e s aeeaeeas 31
3.2.1.2 Method Sighature PSEUAO-COUEoiiiiiiiiiiiie e 32
3.2.1.3 MESSAGING DALA TYPES ... eetteieeeee ettt e e ettt e e e e et e e e e e e e s s asbbbae e e e e e s e ansbeeeaaaeeeanannes 34
3.2.14 TYPE CRECKING ..ttt e e e e et e e e e e e e e s nberaeeeeas 34
3.2.2 (D=1 e= B (=T 1 g I =t ToT oo [T Vo SRR 34
3.2.21 (D F= 1= B Y/ 012 PSP PPPPPTPPPR 35
3.2.2.2 [0o T= T] 1= SO SUPSRR 35
3.2.23 QLI L3PPSR 35
3.2.2.4 Invalid and UNeXpected TOKENScuiiiiiiiiiieiiiiie et e e s e e e e e e e nee e e e e e e e e 41
3.2.3 ComPackets, Packets & SUDPACKELS.cuiii i 43
3.231 0] 12T Y SRR 43
3.2.3.2 (0] 101 = Tod 1= A 0 T 1 1 - | RSP 43
3.2.3.3 PACKEE FOIMALeeiiiiiiiiitei ettt e e e e e e st b et e e e e e e e aanbebbbeeeaaeeeannneees 45
3.2.34 SUDPACKET FOIMALS.....ciiiiiiiiiiiiie ettt e e e e e s bbb e e e e e e e s sanbbebreeeaaeaean 46
3.235 Secure Messaging Packet FOrMALooiiiiiiiii e 49
3.24 Y= g T Yo LSRR 50
3.24.1 111 g o o IS} | = O SRR 50
3.24.2 131 g o To I =t Tod o [T o SRR 51
3.24.3 Method Result Retrieval ProtoColoiiiiiiiiiiiiic e 53
Bi2.5 TADIES oot e e b e e et e e e nnres 53
3.25.1 KINAS Of TADIES ...t e e eb e e nneeas 54
3.25.2 (O o] =To! £ PP PP PPPR 54
3.253 Unique 1dentifiers (UIDS)ueeie ittt e s 55
3.254 Unique Column Value COmMDINALIONS.oocuuiiiiiiiieeiiie e 55

I T T =1] o] F= 1= PP PRRT 56
3.3 Interface COMMUNICALIONS ..ooiiiiiiiieiie et e e e e et e e e e e e e e e s as et e e e e e s sasteteeaaaaeeesannnes 56
3.3.1 Communicating With the TPer Through the Interface Protocolcoccviiiiiiiiniiniiiie. 57

Revision 2.00 Page v of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

IR 7 1 (= ©o 011 | PSR PPP R 58
3.3.3 (70T 0] 1Y, =T =T = 0 01T o PSP PPRPNS 59
3331 [T (=TT [=To I @ o 0] 1 I LSS PRRR 61
3.3.3.2 IF-SEND to Inactive or Unsupported Reserved COmIDococceviiiieiiiiienie e 61
3.3.3.3 IF-RECV to Inactive or Unsupported Reserved COmIDccocceeiiiiieiiiiiieiie e 62
3.34 o) (o Tolo] I IR: 1YY TP PUP PP PPRTRT 62
3341 TrANSPOIT LAYET ... 64
3.34.2 INEEITACE LAY ..ttt ettt et e e e e e st b et e e e e e e e e abbb bbb e e e e e e e e annrees 64
3.34.3 B R T PSPPSR 64
3.3.4.4 COMMUNICALION LAY ...iiii ittt ee e e e et e e e e e r e e e e e st e e e e e e e e e s s s tab e e e e e e e e s snnrnneeeeaaaaaas 65
3.345 MaNAGEIMENT LAYEE ... ittt ettt e e e e e e e et e e e e et e ee bbb e e e e e eesnnes 65
3.3.4.6 Y TS (o N I = RS 66
3.3.4.7 Communication Layer COMMANASueuiiieiiiiiiiieireees e seiitieee e e e e ss st e e e e e s e s s snrneeeeaeeeans 66
3.3.5 Capability DISCOVEIYciiiiiiiieiiiiie ettt ettt ettt ebb et e sttt e e sabb e e e e aaan e e e s nneeeas 70
3.3.6 LEVEI 0 DISCOVEIYutteeeeiittiee ettt ettt ettt ettt ekt e e ekttt e e ek bt e e sabb e e e s sab e e e e sbbeeeeesbneeeeanbneeaeas 71
3.3.6.1 [F-SEND COMMANG......cciiiiiiieiiiiie it e e e st e e s e e e s e e s st eeeaassbaeeesassaeeesnsreeaessaeeeessseeeeas 71
3.3.6.2 [F-RECV COMMANG......oiiiiiiiieiiiiie it e ettt e e st e e e staeee e s sstaeeesasteeeesnsseeaessseeeeessneeens 71
3.3.6.3 FRALUIES = OVEIVIBW ...ttt ettt e ettt e e e a2 e e e e s bbbt e e e e e e e e aabbbeeeeaaeeeeaannes 72
3.3.64 TPEI FRALUIE ... 73
3.3.6.5 [Tt g o [=T 1 (0= SRR 74
3.3.6.6 Common SSC feature INFOrMAatioN............oueiiiiie i 75
3.3.7 Sessions, Methods, and TranSaACONSccciiiiiiiiiiiee et e st e e s sbaee e 76
3.3.71 LT][] £ £ PSP 76
3.3.7.2 =1 oo L ST OTPRP 80
3.3.7.3 21T T 1o PRSPPI 81
3.3.8 Stream FIOW CONLIOL ..o e e e st e e e e s e s te e e e aeeeesnnreeeeeas 83
3.38.1 T 0T [T 1o) o PR 83
3.3.8.2 BUFfEr MANAGEIMENTt s et e e st e e e e neeas 83
3.3.9 SeSSION REIADIILY ..ot e e e e e 84
3.39.1 Ta oo [0 Tox i o] o [PPSO PRTTT 84
3.39.2 Transmission ACKNOWIEAQEMENTcoiiiiiiiiiiii e 84
3.3.9.3 Transmission Negative ACKNOWIEdgemMENL.........c.cociiiiiiii e 84
3.3.94 TranSMISSION TIMEOULS.......eiiiiiiie ittt te e e sttt e et e e st e e s st e e e e e sstbeeeesbaeeessnbeeeesasbeeeaesnes 85
3.3.95 (O 071 a0 = 1= (o) o PR 85
3.3.10 Synchronous Interface CoOMMUNICALIONSuuviiieiiiiiiiiiiie e e e r e e s e e e e e snrrreeeee e 86
1R 204 0 20 A 1o o o 0T 1 o o PRSP 86
3.3.10.2 Interface COMMANGSooiiiiiiiiiiiiiie et e e e e e e e e s e s e e e e e e s snnbeeeeeeeeeaassnneneeeas 86
3.3.10.3 Synchronous Communications RESIICHONScocuiiiiiiiiie e 88
3.3.10.4 State Transition DIAGIAMcuieiiiiiiee ittt e e s sib e e e st e e e e e sbreeessabeeee s e 88
3.3.10.5 St DESCIIPLIONS.eeteiieeiee ettt et e e e e et e e e e e e e e e e bbb e e e e e e e e e anbbe e e e e e e e e e e e annbeneeeas 89
3.3.10.6 StAE TrANSITIONS ...ttt e e et e e e e e e e e e e bbb e e e e e e e e e snbbe e e e e e e e e e e aannbeneeeas 90
TR T O B A =1 ¢ (o g = =T To | 1 o PP EUT TP 91
3.4 SP Operation DESCIIPIIONS ..ottt ettt e ettt e e e e e e s s e aebeeee e e e e e sanbbaeeeaaaaeeaaannes 92
3.4.1 General SP GUIAEINESooiiiiiiiie ittt ettt e et e e st e e sbae e e e snbaeeeesnnnaeee s 92
3.4.1.1 AGIMIN SP ..ttt e ettt e e e s ettt e e sttt e e e ssbeeeesabbeeeeesabbeeeeabaeeeeanraeeeaas 92
3.4.1.2 ST PP 92
34,2 ACCESS CONIIOL ... eeiiieiieiie ettt ettt e e sttt e st bttt e s be e e e sabb et e e e anbe e e e s nbbeeesneeeas 92
3.4.21 OVEIVIEW ...ttt ettt ettt ettt ekttt e ettt e e 4kttt e e e a bttt e 4 nb bt e e s st te e e e nbb e e e e nbeeeeenbbeeeeeneee 92
3.4.2.2 0 11 1o [RERP 93
3.4.2.3 F O T o To [AN O I PSRRI 94
3.4.3 SP Issuance, Personalization, and Operational State...........cccocueiiiiiiiiiiniiiee e 94
3.43.1 [SSUING BN SP ...ttt e e e ettt et e e e e e s ab b b et e e e e e e e e nbabbeeeeeaeeeeannnrees 95

4 LIFE CY CLE OF SP S .. e eaas 96
4.1 Life CYClE OF SPS OVEIVIEBW .cccoiiiiiiieit ettt e ettt e e e e e st e e e e e e e e s s et b be e e e e e e sasnnrraeeaaeaeesaannes 96

Revision 2.00

Page vi of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

N W | =N O Vol [T - 1= PRSP 96
4.3 Life CycCle State TranSIitiONS ...t r e e e e s e e e e e e e s s s e re e e e e e e s e stnraeeaaeaeesaannnes 97
4.4 DefaUlt AULNOTITIES .ooiiiiiiii ettt et e e et e e s e bt be e e s anbeee e e nnbeeeeaneee 98
I S -1 (= = 1= o = 1Y o] PP PR 98
45.1 LSS U= SRR 98
45.2 ISSUBA-DISADIEA ...ttt e e e e e e e e e e 98
45.3 [SSUBU-FIOZEN ...ttt e e e e e ettt e e e e e s e ab bt e e ae e e e e e s e snnnbaeeaaaeaeanns 99
45.4 ISSUEA-DISADIEU-FIOZEN ..ot a e e 99
S T = V1 Yo [PSR TPRRR 99
5 SP REFERENCE ...t e e eaans 100
5.1 Globally Applicable SP VAIUEScccooiiiiiieiiee ettt e e e e e s ene e e e e e s nnnnnes 100
5.1.1 COlUMN TYPES OVEIVIEW ..ceiiiiiiiiiiiieeee ettt e e e ettt e e e e e e s bbbt e e et e e e e e s anbabeeeaaaeaesnbbeneeeeaaaaaan 100
5.1.2 TYPES ENCOAING ...ttt e e ettt e e e e e s e b bt e e e e e e e e e e e aanbeaeeaaeaeaan 104
o0 I B 0o [4 T I o 1= PP PPPUPUPRPT 105
5.1.3.1 F e O =111 1 41 o | PSR 105
5.1.3.2 @8 o [V o1 o 1SRRI 105
5.1.3.3 YO8 =)o (=17 o] o U PEUPt 106
5.1.3.4 F @ o] 1Yo (= SRR 106
5.1.35 Y O PRSP 106
5.1.3.6 = Lo LY G VA 121 T [106
5.1.3.7 o1 =T O PO PU PP OTPPP 107
5.1.3.8 AUEN_MEINOM ... e 107
5.1.3.9 AULNOTITY _ODJECT T ... 108
L0 5 O B o To o] [T 1 IO PUTT T 108
5.1.3.11 boolean ACE........oo 108
LR R I 2 o)Y (T {011V (= PO PUTT TR 109
LN I 0 T o)Y (Y = o) Y (= SR 109

L R 700 o)V (= SRS PRTPRRN 109

L R T S T o)V (= PP PRSPRRN 109
LN 0 T «)Y 1= S 110
L0 I 0 A « Y 1= TS 110

L R T S T oY (=Y T2 O PSR PRRPRR 110

L e T e B o)/ (=TT PSPPSRI 110
LN e T B o)V (=T £ < PSRRI 110
LN R T N o)V (=TT -7 PSSR PRPRR 111
5.1.3.22 Certificates_ODJECE FeFo e e 111
5.1.3.23 CIOCK KNG ..o 111
LN I 0 S o1 (o o3 Qg 111 = PSSR 111
5.1.3.25 ColumN_0DJECE T ... i 112
5.1.3.26 cred_0DbJeCt UIArefoveeiii e 112

LI R T A o - (= PSPPI 113
B.0.3.28 DAY .ttt 113
LRI 2 o = Y =Y o 11] o S 113
5.1.3.30 ENC_SUPPOITEM ...eiiiiiiiieiiiiee ettt ettt ettt sttt ettt e e skt e e sabe e e e e sabe e e e e abbe e e e s nbbeeeeanbreeeens 113
B5.1.3.31 fEEADACK _SIZEeii ittt 114
LT e 2 - (o 1o o SR 114
5.1.3.33 fraCtion_ENUM ... 114
5.1.3.34 gEN_STALUS ..o 114
5.1.3.35 NASH_PrOtOCOIccciiiiieeiie ettt e e e e et e e e e e e nnee e 115

L R T TG T T T SR 116

L0 I i o To 11] =Y 10 o USSR 116
LR TS T 101 (Yo 1= oS USET 116
LN 1 R 101 (=T 1= S 116
LN L0 1 o1 (Yo 1= S 117

Revision 2.00

Page vii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.341
5.1.3.42
5.1.3.43
5.1.3.44
5.1.3.45
5.1.3.46
5.1.3.47
5.1.3.48
5.1.3.49
5.1.3.50
5.1.3.51
5.1.3.52
5.1.3.53
5.1.3.54
5.1.3.55
5.1.3.56
5.1.3.57
5.1.3.58
5.1.3.59
5.1.3.60
5.1.3.61
5.1.3.62
5.1.3.63
5.1.3.64
5.1.3.65
5.1.3.66
5.1.3.67
5.1.3.68
5.1.3.69
5.1.3.70
5.13.71
5.1.3.72
5.1.3.73
5.1.3.74
5.1.3.75
5.1.3.76
5.1.3.77
5.1.3.78
5.1.3.79
5.1.3.80
5.1.3.81
5.1.3.82
5.1.3.83
5.1.3.84
5.1.3.85
5.1.3.86
5.1.3.87
5.1.3.88
5.1.3.89
5.1.3.90
51391
5.1.3.92
5.1.3.93
5.1.3.94
5.1.3.95
5.1.3.96

Revision 2.00

RSV 1722 < PSSR 117
KBY 256 iiiiiii ittt e e e e e e e ———eee e e e na———rareeeeeaaananraaaaeaeenaas 117
KEYS _AVAIL CONAS ...eiiiiiieei ittt et e et e e 117
=T T PO PU PP PP PR 118
o A =TT o To S - | TP PP PP PTPPP 118
@ CYCIE_STALE ...ttt e e e et e e e e e e s e b ae e e e e e an 118
LOGLISt ODJECE T . a e 119
[oTo I (0 1V A (=] PP PUTTT R UORUPUPRRT 119
(0T Y= [T o U PURRR 120
ATz Ve o)1 (= T PR PPRRR 120
AT P o)V (=TT 72U OPURRRR 120
T D 02 (=TT OSSR 120
Mediakey Ob] UIAIef 121
MethodID_OBJECT _Tef ... e 121
TSI = Vo Lo TN = O PP PP PP PPPRPP 121
T T PR PRRRR 121
1T U 1 (= T =T 10 1o I 122
1Y/ 11 I P PETT T UOTPPPRRR 122
Lo a1t = 0 11 o ¢ [122
L= 0 0T PP PPPPPPPP 122
(o] o] 1= Tox A (= USSP 122
0= To Lo [T g T T £/ = PR 123
2 55751110 (o RSP 123
00 = o1 N 1Y/ 01 123
(=T g Tod oY o A (=T0 [LTS U PP PPPPPPPT PRSPPIt 124
((ST] o (o1 o A1 = L (OO PPPPPPPPPPPPPPIN 124
[(STSTCY Y] 0[S PP P PP 124
Y=o] [0 £ PP 125
LSY=Tolo] [0 ST =1 o 1V o o F USSR 125
SPTemplates_0DJECE _ref ... e 125
S35 O PPUPPOTPRP 126
L8148 T] (Tl 4T Lo [TR 126
SYMMELHC_MOAE _MEAIA........cceiiiiiii e e e e s e e e s s e saarreeeee s 127
1= 1] LT 0 o SRR 127
table_0r _ODJECE Tef ... 128
Table 0DJECE Fef .. ————— 128
L2211 [= PSPPSR OPPPPRPT 128
Template_ODJECT _Tef ... s 128
1077 8L 0 [PP PP PR OPPPRTPT 129
TYPE _ODJECE T e 129
0o PRSP 129
(U111 (=10 =] TP 129
U110 (=T =T o PR 129
(UL (=To [= 102 PSSR 130
(U110 (=0 =] 2R 130
U] (=0 1= o2 130
U]] (=0 = o0 130
U] (=0 = o 130
U1 (=T o =] AT O PP PP PP PP PTPPP 131
U1 (=T o =] S S O TP PP PP PTPPP 131
U1 (=T o =] S PP PP PP PP OTPRP 131
(U111 C=To = g | SRR 131
(U111 (=10 =] R TP 131
(UL) (=To [=T 7 PR 132
(U1 (=0 [= ST SRR 132
(U1 (=To [=T ST PR 132

Page viii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

LN X A U {101 (= To 1= - TS 132
LT 1S Y 1 2T To 1= SR 132
LN EC TN e B =T T SRR 133
5.1.3. 100 YEAI _ENUM ...tiiiiiiieii ittt e e ettt e e e s e st e e e e e s ek et e e e e s e as b e e e e e e e e e s s n e et e e e aennnrees 133
B5.1.4 ADSITACT TYPES ..etiiieiiiiie ettt ettt ettt ettt ettt e s e s ettt e sk b bt e e sk b e e e e e bb e e s e ebe e e e s nbn e e nnn s 134
5.14.1 Name Representations in Abstract Type Named Value Componentscccccceeeeennee 134
5.14.2 ADSEract TYPE DefiNitiONS.....cccoi it e e e e e e e e e e e e sannees 134
5.15 MELNOA SLAUS COUESeeiiiiiiiitiiee ettt e e e e et e e e e e s e abbbe e e e e e e e e aanbbnbbeeeaaaaan 143
5.151 SUGCKCESS. ... ittt ettt e e ettt e e e bt e e e ah bt e e et b e e e e bbeeeeeabae e e e anreeeeaneee 144
5.15.2 NOT_AUTHORIZED......coiiiiiiie ittt ettt e e e bae e e e e nneeas 144
5.1.5.3 SP BUSY it e e e e e b e e e e abae e e e anreeeeaneee 144
5.154 SP_FAILED. ..o e neee 144
5.155 SP_DISABLED ...ttt nb e e e aae e e e e 144
5.1.5.6 Y S T 1@)74 = N SRR 145
5.1.5.7 NO_SESSIONS AVAILABLE........ooi ittt 145
5.1.5.8 UNIQUENESS CONFLICT ...eiiiiiiiit ettt iae e s s etae e e nnrae e e enre e e e enees 145
5.1.5.9 INSUFFICIENT _SPACEoii ittt ettt st s ae e e st e e e asbae e e e nbee e e aneee s 145
5.1.5.10 INSUFFICIENT _ROWS.....oii ittt sttt sttt sieae e sstaee e e s sntaeeesnssaeaesstaeeesnreeees 145
5.1.5.11 INVALID_PARAMETERoiiiitiiiiiiiitt ittt s ettt ettt e stee e s e sntaee e s sntaa e e snaaeaesnneeee s 145
5.1.512 TPER_MALFUNCTIONoitiiiiiiiiiiiiite ittt esieee ettt e sitee e sstaeee s s sntaeeessnsaeeesntaeeesnneeeeas 145
5.1.5.13 TRANSACTION_FAILUREcotiiiiiiii ittt ee et e et e e s sntae e e s snbeeaean 145
5.1.5.14 RESPONSE_OVERFLOWoiiiiiitiiiiiiiiie e iitieiee ettt e sieee e s ssteee e stbeaeessnbaeeessntaeeessnneeeeans 146
5.1.5.15 AUTHORITY_LOCKED _OUTitiiiiiiiiiiiiiee e siiiie s esiieee e sttee et ee s stbeee e s sbteeessnbaeeessnnneeeans 146
L0 700 G T Y OSSPSR 146
5.2 Session Manager MEethOdSo e e s r e e e e e e e e e ennes 147
5.2.1 L@ YT QT PO PURRR 147
5.2.2 TPer Properties MEthOcoiuiiiiiiiiii e et 147
5221 PropertiesS (Method)ooo i e 147
5.2.2.2 REtNEVING PrOPEITIES ...t e et re e e e e e e e as 148
5.2.2.3 SettiNg HOSIPIOPEITIES ...ttt e et e e e e e rreeeae e e e as 150
5.2.2.4 CommMUNICAtIONS MINIMIUMSeiiiiie et e e e e s et e e e e e e e e snnrnneeeaaas 151
5.2.3 SeSSIoN Startup MELNOAS........cc.uiiiiiiie e e e e e e e s e s e e e aeaee s 156
5.2.3.1 StartSESSION MELNOMooiiiiiiii et e e s e e e s sraeeeeeane 156
5.2.3.2 SYNCSESSION MELNOM ... e e s e e e s s e e e e aeeeen 158
5.2.33 StartTrustedSesSIoN METhOMouuiiiiiiiie e 159
5.2.3.4 SyNCTrustedSesSioN MEthOU.........ccoi i e s 160
5.2.35 CloSESESSION MENOM.......c e e e e e e as 161
IR T = - 1Y T =T 0 1] = = PSS 161
5.3.1 L@ YT QT P PPRRR 161
53.1.1 Base Template Tables and MethodS OVEIVIEW............ooiuuiiiiiiieiiiiiieiee e 161
5.3.2 Dal@ SITUCTUIES ... e 162
5.3.2.1 General Metadata Group - SPInfo (Object TabIe) ..., 162
5.3.2.2 General Metadata Group - SPTemplates (Object Table)cccccccovvviiiieeee e, 163
5.3.2.3 Table and Method Metadata Group - Table (Object Table)cccccccevvviiiiiieeeeciii i, 164
5.3.2.4 Table and Method Metadata Group - Column (Object Table)cccoccvvvieeeeeiiiiiniinnen. 166
5.3.2.5 Table and Method Metadata Group - Type (Object Table)cccccceeevvviciiiieee e, 167
5.3.2.6 Table and Method Metadata Group - MethodID (Object Table)..........ccccvvvveeeeeiiiiiviennnn. 168
5.3.2.7 Table and Method Metadata Group - AccessControl (Object Table)cccccceeevvicvvvennnnn. 169
5.3.2.8 Table and Method Metadata Group - SecretProtect (Object Table)........cccccovveeeiniienene 171
5.3.2.9 Access Control Metadata Group - ACE (Object Table).........ccocceviiiiiiiinii, 172
5.3.2.10 Access Control Metadata Group - Authority (Object Table)cccoocvveiiiiiiiiniiiieieen 173
5.3.2.11 Access Control Metadata Group - Certificates (Object Table) ..., 177
5.3.2.12 Credential Table Group - C_PIN (Object Table).........c.uueeeiiiiiiiiiiieeeeee e 178
5.3.2.13 Credential Table Group - C_RSA 1024 (Object Table)ccccvvvveeeiiiiiiieeeee e, 179
5.3.2.14 Credential Table Group - C_RSA 2048 (Object Table)ccccvvvvveeeiiiiiiieecee e, 181
5.3.2.15 Credential Table Group - C_AES 128 (Object Table)ccccoccviviereeeiiiiiiiiieeee e 183

Revision 2.00 Page ix of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.16 Credential Table Group - C_AES 256 (Object Table)ccceecvviiveeeeiiiiiiiieeee e 184
5.3.2.17 Credential Table Group - C_EC_160 (Object Table).......ccccccevvirriiirreeeiiiiciiiieee e 185
5.3.2.18 Credential Table Group - C_EC_192 (Object Table).........ccceviiieiiiiiiiiiiiiieee e 187
5.3.2.19 Credential Table Group - C_EC_224 (Object Table).........ccceveuieeiiiiiiiiiiiieee e 189
5.3.2.20 Credential Table Group - C_EC_256 (Object Table).........cccecuveeiiiiiiiiiiiiiiee e 191
5.3.2.21 Credential Table Group - C_EC_384 (Object Table).......cccccoiiiiiiiiiiiiiiiiiiiieeee e 192
5.3.2.22 Credential Table Group - C_EC_521 (Object Table).......ccccceuiiiiiiiiiiiiiiiiiieeee e 194
5.3.2.23 Credential Table Group - C_EC_163 (Object Table).......cccccoviiiiiiiiiiiiiiiiiieeee e 196
5.3.2.24 Credential Table Group - C_EC_233 (Object Table)......ccccccceeviiriiieiie e 199
5.3.2.25 Credential Table Group - C_EC_283 (Object Table)......cccccceeviviiiieie i 201
5.3.2.26 Credential Table Group — C_HMAC_160 (Object Table)ccccveeeeiiiiiiiieeeeeee e, 203
5.3.2.27 Credential Table Group — C_HMAC_256 (Object Table)........ccccceveeeviiiciiiiiieeeee e, 204
5.3.2.28 Credential Table Group — C_HMAC_384 (Object Table)cccccveeeviiiciiiiiieee e, 204
5.3.2.29 Credential Table Group — C_HMAC_512 (Object Table)cccccovvreiiriiiiiiniieeiieen 205
5.3.3 1711 o o £ PP 206
5.3.3.1 SP Method Group - DeleteSP (SP Method)cueeiiiiiiiiiiiiei e 206
5.3.3.2 Basic Table Method Group - CreateTable (SP Method) ... 206
5.3.3.3 Basic Table Method Group - Delete (Object Method)ccooiiiiiiiiiiiiiieeee e, 207
5.3.34 Basic Table Method Group - CreateRow (Table Method) ... 208
5.3.35 Basic Table Method Group - DeleteRow (Table Method) ..., 208
5.3.3.6 Basic Table Method Group - Get (Table and Object Method)..........cccocceeeeeiiiiiiiieeenneenn, 209
5.3.3.7 Basic Table Method Group - Set (Table and Object Method)cccocceveeeiiiiiiiieeneneenn, 209
5.3.3.8 Basic Table Method Group - Next (Table Method).........cc.uvvvveieiiiiciiiee e, 211
5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method).........cocciiievee i 211
5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)ccccvviveiieeiiiiiinnnen. 212
5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)............cccvvveeiiniiiiiniiinnen, 212
5.3.3.12 Access Control Method Group - Authenticate (SP Method).........cccccveiiiiinniiiiiinieen, 213
5.3.3.13 Access Control Method Group - GetACL (Meta-Method).........c.cooviiiiiiiiiiiiiiiiee e 213
5.3.3.14 Access Control Method Group - AJdACE (Meta-Method)...........cceeiiiiiiiiiiieiaiiiiieen, 214
5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)............occcvieeeieiiiiiiiinineen. 215
5.3.3.16 Key Related Method Group - GenKey (Object Method)..........cccuveeeiieiiiiiiiiiiiieee 215
5.3.3.17 Key Related Method Group - GetPackage Method (Object Method).............ccccceevnnneee 216
5.3.3.18 Key Related Method Group - SetPackage Method (Object Method)cccceeevnnneee. 217
5.3.4 D 1= o] o] 1o o PSPPSR 218
5341 F U1 LT o Tor=1 (o] o I PP PR 218
5.34.2 I 1o (=Y Vg = Vo 1= o 4= | S 229
5343 ACCESS CONLIOL...eiiiieieiitieee et e e e e et te e e e e e s s aaabeeeeaeeeesasssetneeeeeeesannnnes 234
534.4 DeletiNg The SPo 236
5.3.4.5 SetPackage Method OPEration............ocueieiiiiiiiiiiiiee et 236
5.3.4.6 Default LOgQING SELHNGS. .. .uueeeiieeie ittt e e e e e e e e e snnbeaeeaae e e as 236
TG T 11 (T O3 o] [SO 237
5.35.1 Base Template-Specific Life Cycle State Descriptions/EXCepLions...........ccoovvuveveeeeeennn. 237
T AN o o 1T g I =T 0 0 o] F= LT PPTT T 237
S R @ 1= o T PRSP 237
5.4.2 Dal@ SITUCIUIESo e e e e e e e e e e e e e e e e e 237
54.2.1 TPer Metadata Group - TPerInfo (Object Table).......cccveeeiviciiiiiie e, 237
5.4.2.2 TPer Metadata Group - Serial Number CONtENESccvveeiiiiiiiiiieee e 239
5.4.2.3 TPer Metadata Group - CryptoSuite (Object Table).........ccoccvvveeveiiiiiicie e, 239
5424 SPs on the TPer Group - Template (Object Table)ccccooiiiiiiiiiiiii e 240
5425 SPs on the TPer Group - SP (Object Table) ... 241
54.3 1711 o o £ PRSP 242
5431 ISSUESP (SP METhO) ...eeiiiiiiie et e e et e e e enees 242
5.4.4 DS o g o] 1 o] o S S UPPTP T UURTPPRTP 243
5.4.4.1 Templates and the AdMIN SP ... 243
5.4.4.2 Deleting SPs via the AdMIN SP ... 244
5.4.4.3 AAIMIN SP SESSIONS ...ettiieiitieie ittt s e st e e st ee e e st e e e e asb e e e ssbeeesabbeeesanbaeeeeennses 244

Revision 2.00 Page x of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.4.4.4 AULNOTTEIES ...ttt ettt e e st e e e s bb e e s e snbee e e s nnbaeeesnneeas 244
5.4.4.5 (D= 7= 10] oo o T To TR T= 1 1] o LSRR 245
5.4.5 LITE CYCIE ettt b e e naneeas 245
545.1 Admin Template-Specific Life Cycle State Descriptions/EXCeptions..........ccccevvvvererinnen. 245
T O [Yo Qi IY=T 1 1] o] = L PSS 246
5.5.1 OVBIVIBW ...ttt ettt ettt e e oo ookttt e e e+ 44k ab e bttt et e e o4 e aabbbe e e e e e e e e e nbbbebeeeeaaeesannbabaeeaaaeeeannnnens 246
5.5.2 TEIMINOIOQY ..eeeeiiiiiiiiiiiiit ettt ettt ettt e e e e e sttt et e e e e s s an bbbt e e e e e e e annbbeseeeeaeesaannbaneeaaeaaanns 246
55.3 Dal@ SITUCTUIESo 246
5.5.3.1 ClockTime (ObJeCt TADIE)uuviiiiii i 246
TR0 S Y = g T Yo LS SRS 248
5.54.1 GetClock (Table MEethOd)........uuuiii i e e e e e e e 249
5.5.4.2 ResetClock (Table Method)cocuiiiiiiie e e s e e e 249
5.5.4.3 SetClockHigh (Table Method)........ccoi i 249
5544 SetLagHigh (Table Method)..........c.ooiiiiii e 250
5545 SetClockLow (Table Method)c.uvveiiiiiiiiie e 250
5.5.4.6 SetLagLow (Table Method) ..o 251
5.5.4.7 IncrementCounter (Table Method) ... 251
555 DS g o] 1 o] o S S UUPTPUPRTPPRTP 252
555.1 SEtNG the TIMIE ... et e e e e e e e e e s e eeaaeeean 252
55.5.2 1Y o) le] (o] o TodN @ o ¥ [o] =] S PRSP 254
5.5.5.3 INCIEMENTAL CIOCK ...t s st s st e e et e e e nnreas 254
5554 B L0011V Lo P PP PRI 255
5.5.5.5 S o 1T RN I 41 TS 255
5.5.5.6 Y o] 1T I = Vo N I 0= PSR 255
5.5.5.7 (Y= T= Lo T To TRt 1= 1T T PR 255
5.5.5.8 RESEtiNG the ClOCK........eiiiiiiie e 256
5.5.5.9 Default LOgging SttNGS.vviiiiiiiee ittt e e 256
5.5.6 LITE CYCIE ittt sttt b e e e naneeas 256
5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/EXCeptions..........cccccovvviuviveennn. 256
N I 1 g Y/ o) (o I K =10 11] F= L= O PSP P PP TTPRP 257
5.6.1 OVBIVIBW ..ottt ettt e e oottt a4 e o4 ok be e bttt et e e o4 s aa kb be e e e e e e e e e nbbtebeeeeaaeesanbnbaneaaaeeeaannnnn 257
LG = 1 1 4T3 To] (oo |V PURRR 257
5.6.3 Dal@ SITUCTUIES ... e e e e e e e e e e e e e e e e e e e 257
5.6.3.1 Cryptographic Support Group - H_SHA 1 (Object Table)cccccevvvvviieeeeee e 257
5.6.3.2 Cryptographic Support Group - H_SHA 256 (Object Table)ccoccveeveeeeiviiiiieiieeeenn 258
5.6.3.3 Cryptographic Support Group - H_SHA 384 (Object Table)ccccvvvveeeeeiiiciiieieeeee, 259
5.6.3.4 Cryptographic Support Group - H_SHA 512 (Object Table)ccoocveeeeeeeiiiiiieiieeeenn 260
5.64 1711 o o £ PRSP 261
5.6.4.1 Random Number Related Method Group - Random (SP Method)..........ccccceeeviiiiennnnen. 261
5.6.4.2 Random Number Related Method Group — Stir (SP Method) ..., 261
5.6.4.3 Decryption Method Group — Decryptlnit (Object Method)cooiiiiiiiiiiiiiiiiiiieeeeeee 262
5.6.4.4 Decryption Method Group - Decrypt (Object Method) ..., 263
5.6.4.5 Decryption Method Group — DecryptFinalize (Object Method)...........ccccccoeoviiiiiiieeennnen, 264
5.6.4.6 Encryption Method Group — Encryptinit (Object Method)...........c.cooccivieeee i, 264
5.6.4.7 Encrytion Method Group - Encrypt (Object Method)ccceeveiiiiiiiiiiiee e, 265
5.6.4.8 Encryption Method Group — EncryptFinalize (Object Method).........cccccceveeeiiviiiiieneneen. 266
5.6.4.9 Y To [I (@]] [=ex 8 1Y 1= 1 1 o o | I PR 266
5.6.4.10 Verify (ObJECt MENOA)iiiii it e e e e e e e e e e e e s e nnnneeerees 267
5.6.4.11 Hash Method Group — Hashlnit (Object Method)cccceiiiiiiiinii e 268
5.6.4.12 Hash Method Group — Hash (Object Method)c.covviiiiiiiiiiee e 269
5.6.4.13 Hash Method Group — HashFinalize (Object Method)ccccceiiiiiiiiniiiiceee 270
5.6.4.14 HMAC Method Group — HMACInit (Object Method)...........ceeviiieeiiiiiee e 270
5.6.4.15 HMAC Method Group — HMAC (Object Method)...........ccoveeiiiiiieeiiiiiie e 271
5.6.4.16 HMAC Method Group — HMACFinalize (Object Method)ccccceeeeiiiiiiiieeceeeeee e, 272
5.6.4.17 XOR (SP MENOM)ceiiiiiiiiiiiiiiiie ittt sttt e et e e st e e sbr e e e snbaee e e s snnaeee s 272
5.6.5 [T g o] (0] o SRR PPRRR 274

Revision 2.00

Page xi of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.6.5.1 (072 || o] [oTod =T PRSP 274
5.6.5.2 [F= 1] 11 o PSSR 274
5.6.5.3 A PSPPSR 275
5.6.5.4 DO = SRR 276
5.6.5.5 1[04 11 o o TP PU PP PPPR 276
5.6.5.6 V22111171 o PSPPSR 277
5.6.5.7 [1ol Y o111 o [PP UUTT R UORUPPPRRT 278
5.6.5.8 (D =Tox oY/ o] 1]V F PP UPTT R UOTUPUPRRT 279
5.6.5.9 (D=1 7= 10] oo o aTo JRST= 1] 0o L= SRR 280
B5.6.6 LIfE CYCIE ettt b e a e e naa e e e nnaees 280
5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptionscccccceeecvvveennn. 280
T A o Tod (] o Yo T =T 0] o] = PSSR 281
I A0 R O 1= o T PP PRR 281
5711 BT 0011 aTe] (o] | PP PP PUU PP PPPPPPPPPR 281
5.7.2 Dal@ SITUCTUIES ... 282
5721 LockingINfo (OBJECT TABIE)......ciiiiiiieiee e 282
5.7.2.2 LOCKING (ODJECE TADIE).. ... e e e e 283
5.7.2.3 Media Encryption Key Table Group - K_AES 128 (Object Table)........ccccccovviuiiieennennnn. 287
5.7.2.4 Media Encryption Key Table Group - K_AES 256 (Object Table)........ccccccovviiiieeneennnn. 287
5.7.2.5 MBRCONIrol (OBJECE TADIE) ..veeiieeii e e e e e e s e a e e e e e e e aans 288
5.7.2.6 2T S (=) (= 1= o] 1= PRSP 289
5.7.3 [T o] (o o PRSPPI 289
5.73.1 LocKiNg State DESCHPLIONS ...veiiieeieiiieiee e i e e e st e e e e s e s e e e e e e s s ae e e e e e s e annreneeeeeeeanns 289
5.7.3.2 Reading/WIitiNG USEI DAt@......c.cciiiiiiiiiiiee sttt e s e e e s st een e e e e e s e nnnnaeneeeeeeeanns 295
5.7.3.3 Creating LOCKING RANGESuvviiiiiiee ittt e e st e e e e e s e e s s ae e e e e e e s snnanneeeee s 297
5.7.3.4 Zero Length LOCKING RANGES.cooiiiiiiiiiiiie ettt ettt e e 297
5.7.3.5 Changing RangeStart and RangeLength Valuescccooiiiiiiiiiniiieee e 297
5.7.3.6 =T =0 = SRS TPR 298
5.7.3.7 SR o Ted o] 1o] o H PP PPUT R UORUPUPRRT 298
5.7.3.8 Default LOgQING SELHNGS. .. .uueieiiaiie ittt e e e e e e e e e e snnbeneeaae e e as 301
I A S 11 (Y O3 o] [SO 301
5.74.1 Locking Template-Specific Life Cycle State Descriptions/EXCeptions...........ccccevveeeeenn. 301
S T o To B =T 001 o] = = TP UPP 302
IR 20 R O 1= o T PP 302
5.8.1.1 L= 2.1 0T] T) 302
5.8.2 DALA STUCTUIEScoiitiieeee ettt et et e e e e e e b e e e et e e e s e s st b e e e e e e aeesaannbrnneeaeeeaans 302
58.2.1 oo (O] o] 1T R =1 o] =) O PP PT PP PP PP PPPRP 302
5.8.2.2 LoOgLiSt (ODJECE TADIE)ceiieiiee e 304
5.8.3 1711 o o £ PRSP 305
5.8.3.1 AddLog (Table MEethOd)cciiiiiieiiiiie et e e e enenes 305
5.8.3.2 CreateLog (Table Method).........ceii e e e 306
5.8.3.3 ClearLog (Table Method)..........cooi e e e 307
5.8.3.4 FlushLog (Table Method).......cceiiiiiiiiiiiiec e e e e e e e e 308
5.8.4 [T g o] (0] o SRR PPRRR 308
5.8.4.1 BN/ 0 =ES 3ol 0T [[T o SRR 308
5.8.4.2 [Yo T =1 1= PRSP 308
5.8.4.3 (oo =T o (ST @ 0 T= =1 1o o SRR 309
5.8.4.4 Deleting @ Log Table........c..vvviiiiee e e e 310
5.8.4.5 SPeCIfYiNg @ LOG TaDIEcooiiiiii e 310
5.8.4.6 Default LOgging SettNGS.uviiiiiiiee ittt e s 310
5.8.5 LITE CYCIE ittt sttt b e e e naneeas 310
5.85.1 Log Template-Specific Life Cycle State DescriptionS/EXCeptions.........cccccovvviuviieeneeennn. 310

6 APPENDIX 1 - REQUIRED UID ASSIGNMENTS. ..., 312
6.1 Required UID ASSIGNMENTS OVEIVIEWuuviiiieeeiiiiiiiiiee e e e e e eeiiteee e e e e s ssntare e e e e e s s s s sntnsreeeaeesesnnnens 312

Revision 2.00 Page xii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

6.2 Reserved UIDs
6.3 Assigned UIDs

Revision 2.00

Page xiii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Table 01
Table 02
Table 03
Table 04
Table 05
Table 06
Table 07
Table 08
Table 09
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32

Figures
Diagram of the Core ArChitECIUIEcoiuuiii it 25
CommuUNICAtIONS INFIASIIUCIUNE.coiuiiiii it 28
TPer-Host COMMUNICALIONcciiiiiieiiiiee ettt e et e e et e e s st e e e e snbe e e e sbae e e e s enees 58
ComlID State TranSitioN DIAGIaAM.........ccoiiiiiiiieeee e e iiierr e e e e e s s e e e e e e s e srrarrereeeesesnsnraareaeeesans 60
TPer-Host Communication ProtOCOI LAYEIScceiiiiiiiiiiiiiee et e e e 63
(04 [o 1] oo = BT TS 1S (o] o T PP PUTTUR R PPPUPPRRRT 86
Synchronous Communications State Transition Diagram.............coeoiiiiiiiiiieeiniiiieeeeeeee 89
ACCESS CONLIOL ...ttt e ettt e e e e e bbb e e e e e e e e s anbb b e e e aa e e e e annneees 93
[SSUBINCE ...ttt e 95
Life Cycle State TranSItiONS..........oiiiiiiiiiiiie ittt e e e e saneeee s 96
LOCKING SEAtE DIAGIAMeeiieiiiiie ettt ettt e st e e s et e e e enbne e e e e enenas 290
LBA Range Re-encryption State DIiagram..........ceeiiueireiiiiieieiiiiee e 299
Tables
Global TerMINOIOQYeeeeieiiiiiiii ettt e e e s et e e e e e e e s e anbreeeeaaeeaans 22
Column NUMDBET ASSIGNMENT.......oiiiiiiiii it ebbe e e 31
FOO TabIe DESCIIPLION ...ttt ettt e e st e e sbb e e e sabn e e e e s aanneee s 32
TOKEN TYPES .ttt ettt e et e e st et e e a b bt e e e n b bt e e e b b e e e e nbe e e e anre e e e eneee 35
LI) VA A (o I L= Yol) 4 S 36
BT) V2% A (e . 1 =X o7 To 1T [36
Y o] g Y (o ¢ I D L= T o] 1o TSRS 37
(5 o] g Y 1o ¢ I8 =1 s oo [15T R 37
0-Length BYtE ENCOINGcceceiiiiiiiiiie e e ettt e e e e e setrte e e e e e e s st tae e e e e e e s e snnnba e s e e e e e e snnraneaneeaeeean 37
Medium ALOM DESCHPLIONuviiiiie et e e e e e s e e e e e s e s s tbeae e e e e e s e snnbeeeeaaeeasaannnes 38
Medium ALOM ENCOAINGooiiiiiiie ettt e e e e e e et e e e e e e s e saabbeeeaaaeaeeaanne 38
LONG ALOM DESCHPLION ..ceiiiiiiiitiieie ettt ettt e e e e e st e et e e e e e s et bbaeeaaeesaannbbeeeaaaaeeaaannes 38
(o] oo 2N (o] o ¢ I8 =t s Te o [T Vo PP PPPRTTTN 38
EMPty AtOM DESCHIPHION ..cceeiitteiei ettt e e e e e e s s bbb e e e e e e e s e sannbeeeaaaeaeeaanne 39
Start Transaction StatUS COUES.uuiiiiiiiiiiiii e r e e s e e e e e s e snnreeeeeeeeeaan 40
ENd Transaction StatUS COOES......cuiieiiiiiiiiiiiiie ettt e e e e e s st e e e e e e s s snnnaeeeeeeeeeaan 41
(O70] 4o = Tt 1= A o 1 1 T | ST POTPRSRR 43
PACKET FOIMALeiiiiiiii ettt e ettt e st e e s sab et e e s sbbe e e e sbbeeeesnbaeeeeas 45
YU o = Vo] (= A I8 = RSOOSR 47
Data SUDPACKEE FOIMALcocuuiiiiiiiiie ettt e e e e e snaeee s 47
Credit Control SUDPACKET ... e e e e e s rar e e aeaae s 48
Secure Messaging Packet — Payload Field.............cccviieiie i 49
Secure Messaging Packet Payload— SecureData Field............cccccceeiiiiiiiiiiieie e 49
Interface Command — Command BIOCKoocuuiiiiiiiiieie e 56
[(0] (ool I | I LT PPPUPPRRT 57
(070] 1011 2 ANSIS (o 11 0 T=T o] £ T TP 59
GET_COMID CommMaNd BIOCK............ueiiiiiiiiiiiiiie ettt 64
GET_COMID PaylOadccciiiiiieiiiiie ettt seae e s staa e e st e e e snbe e e s anareeeannnnaeaesanneas 65
HANDLE _COMID_REQUEST Command BIOCK...........cccvviiiiiiii e 66
GET_COMID_RESPONSE Command BIOCK...........ccuuuiriieeiiiiiiieiieeee e sssieieeee e e e s s sivneeeeeee e 66
NO RESPONSE AVAIIADIE ... e e e e 67
VERIFY_COMID_VALID REUUESE.....ccitiiieiiitiie ettt siiee ettt st e e st e e nnneee e 67

Revision 2.00 Page xiv of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61
Table 62
Table 63
Table 64
Table 65
Table 66
Table 67
Table 68
Table 69
Table 70
Table 71
Table 72
Table 73
Table 74
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82
Table 83

VERIFY_COMID_VALID Command RESPONSEuuvereeeiiiiiiiiieeeeeiiissiieeeeeaesssnsnseeesasessnnsnnnes 68
DALE VAIUES ...ttt ettt e skttt e e sttt e e e sa b et e e et be e e e e abbe e e e anbbeeeenareeeean 68
STACK_RESET Command REQUESTuviiiiieiiiiiiiieie et ee e s sttene e e e e e e e e s sanraane e e e e e 69
STACK_RESET Command RESPONSE........uuuiiiieeeiiiitiiiiieeeeeeesiinteeeee e e e s sintaseeaaessesssnsnaneesesssns 69
STACK_RESET PENAING ...evttiiiiiiieiiiiiteiiiite e sttt e siee et eessstte e e e ssbaee e ssbeeesssbeeessnsaeeeesnnses 70
Level 0 Discovery Response Data FOIMAL..........ccuuuuiiiiiiiiiiiiieeieee et ee e 71
Level 0 Discovery Header FOMMAL.........o.uuiiiiiiiiiiie et e e e e 72
FRALUIE COUBSttt ettt et e e e e e s aa b ettt e e e e e s e abbbeeeeeeaeeaaasnbeeeeaaeeeaans 73
Feature Descriptor TemMpPlate FOMMALooiiiiiiiiiiiiee e 73
TPEr FEAIUIE DESCIIPION ...cuttiie ettt ettt ettt e bt e e et e et e e e bt e e s abre e e e e anrnas 74
LOCKING FEAIUIE DESCIIPIONveiieiiiiee ettt ettt e et e e e e s e e e saneeee s 75
CommON SSC INFOMMALION........ciiiiiee e e r e e e e e snrraeeeeeaee s 75
IF-RECV ComPacket Field Values SUMMAIYcovviiiiiiiiieiieee e scieee e e e en e e e e e e e ennnes 87
Y @ =11 1 1= o | R 105
@ o] ¥ 1 o 1 USSR 106
Y O =Y o] (=17 (o] o USSP 106
Y @ o] o] 1o A = SRR 106
Y O TP 106
2 To AV (VA 1410 o (= TP R TP 106
adv_key _mode ENUMEration ValUES...........uuuiiiiiiiiiiiieeiiee ettt 107
oL = To 1 PP RTTT PRI 107
attr_flags SELVAIUEScoiiiii e 107
AUEN_METNOM. ...t s e e et e e et e e e e e e 107
auth_method ENUMEration VAlUEScccuuiiiiiiiiiiiie et 107
F 0 11 aTo T 1A o1t = SRR 108
0100 (1= T o PRSP PR 108
boolean ENUMEration VAIUESeiiiiiiiiiiiiiiee et 108
oToT 0] L= T o T 2 O SR PUSRR 108
boolean ACE ENUMEration ValUES............ueviiiiiiiiiiiiiiic et seee e e e e e e nntae e e e e 109
[0}V LT (0 YA = SRS 109
o)V L = o] L= = PSP UPRU PSRN 109
0)V4 (=2 S PP TT PO PUPPRT 109
[0)V4 (=2 T PP 109
0)V4 (=2 T 1P OPUUPURRTN 110
0] (ST TP TP PU PP PUPPRPT 110
(0] (ST PP PRSP PPPUPPTPT 110
0] (ST 1O TP PU PP PUPPPPT 110
o)1 (=TS OSSR 110
072 (=TS PSSR 111
(07T 1] {Tor=1 (=TT o][o R (= S 111
(o3 oYt Qi (1 o PSSR 111
clock_Kind ENUMErAtioN VAIUESccieeiiiiiiiiiiie ettt e e et ee e e e e s s nnrnneeeee s 111
(o3 0Tt Qi 11 .11 SRR 112
(7o) (11001 o] o =Tt A = PR UTTT PR 112
ol g=To I o] o T=Tot V1o [] TP UPTTT PR 112
[0 o= PR RRPT TSR 113
[| OO PO P PP PUPPPTPPPT 113
(o oV =Y 0180 O PO PP PP PP PTPR 113
< o0 o] o To T4 (= To (TP PUP PP PP 113
enc_supported ENUMEratioN ValUEScccuvvviiiieiiiiiiee e ee et e e e e e eenaee e 113
(=TS0 = ol Q= = YR 114

Revision 2.00 Page xv of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 84
Table 85
Table 86
Table 87
Table 88
Table 89
Table 90
Table 91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 97
Table 98
Table 99
Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
Table 112
Table 113
Table 114
Table 115
Table 116
Table 117
Table 118
Table 119
Table 120
Table 121
Table 122
Table 123
Table 124
Table 125
Table 126
Table 127
Table 128
Table 129
Table 130
Table 131
Table 132
Table 133
Table 134

[= 1o 11 o PSR 114
L= T2 o 1 o 1= 0o o R 114
(o] QTS £= LU PRSP PPTUUPPPPPPIN 114
gen_status ENUMETration VAlUES..........ccooiiiiiiiiiiee e s s e e e s et e e e e e s s nnrnreeeee s 115
g E= 1Y T o] o) (o o7 PSSR PUSRR 115
hash_protocol ENumMeration ValUESoooiiiiiiiiiiiii et 115
H U < e s 116
OUI _BNUML ... 116
11T o =] S PSP PU PP PR 116
11T o 1= S R PP PP PPPPPPRPT 116
1T o =] S PP SPU PP PPPPRPT 117
GV 2 T PSSR 117
RSV S 117
LGSV AT A L1 0 L £SO USSR 117
keys_avail_conds ENUMEration VAlUES..........cccoiiiiiiiiiiee e e e ee e 118
= T RS 118
R A (=T g o) - | USSR 118
last_reenc_stat ENUMEration VAIUES...........ccoiiiiiiiiiiiiiiii et e e e e satan e e e 118
@ CYCIE _STALE ..ttt e et e e e e et e e e e e e e e e e e e nnbreeaaaeeeaan 119
life_cycle_state ENUMEration ValUEScooiiiiiiiiiiiiiai e 119
(oo | TS o] o] [=Tox A £=3 PP T TP 119
oTo I (o)1 N (= O PP PT PP PPPPRPT 119
[oTo JEST] (=T TP PRSP PPTSPPPPRPT 120
[0g_select ENUMEratioN VAIUES..........coiiiiiiiiiiiiee ettt 120
T DG o)V (= OSSR 120
T e o)1 (=TT 7SSOSR 120
T Ve 0)Y7 (=TT OSSPSR 120
Mediakey Ob] UIAIETcoii e e e e e et eeaaeeean 121
[T g oo 11 o] o] =T od ui =) SRR 121
[TETSET= Lo [T To TR0/ o1 USSR 121
IVINULE <ttt ettt e e e e e e e e o et ettt e e e e e o bbbttt e e e e e e e e e nbbbee e e e e e e e e nnbereaaaaaaaeas 121
11U 1 C= T =T 010 Ty o USSR 122
1Y) 11 o PP PRRPRT 122
MONEN _BNUM ... e 122
(=10 01T P PP UPPPPRPPTRRRPPPPI 122
(o] o] =0t A (= T TSP PP PR PPPR 123
(2= Lo o [e To T 1Y o1 I TP PRSP PP UPPPROT 123
padding_type ENUMEration ValUESc..uueiiiiiiiiiiiiiec et e e e e e e st en e e e e 123
2 ESTY1Y 0] o PSSR 123
0L (0] (=T o1 N 1Y/ 01 123
(ST Ted oY oL (=T0 [0 [T S PSR PPPPP 124
(ST g led Y o S = TSP 124
reencrypt_state ENUMEration VAlUEScooiiiiiiiiiiiiii e ee e e s siteee e e e e e e snnnnne e e e e 124
(ST 1Y o[L ST U T PP TP TP 125
FESEL_TYPES SO VAIUBS....cco ittt e e e st eaeeaaeeeas 125
ST =To o] o [0 £SO URPT TR 125
1T oto] a0 KT =T 01U] o o EO O PP PP PP PPPP PP 125
SPTeMPIAtES_ODJECE _TEF ..o 125
1S PSPPSR 126
LS4 1 1] (o3 42T Yo [R 126
symmetric_mode EnNuMEration ValUES...........ccuuuivirieeiiiiiieiieeec e e e e e e e 126

Revision 2.00 Page xvi of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 135 symmetric_mMode _MEAIAc.uuiiiieiei e e e e e e s s e e e e e e s snnra e e e e eeeeen 127
Table 136 symmetric_mode_media Enumeration ValUEs...........ccceveiiiiiiiiiie e e e 127
QIR0 L= A v o] L= 41 o USSR 127
Table 138 table_Kind ENUMEratioN ValUES...........cccuuiiiiie ettt e e e ettt e e e e e e s rae e e e e e s s snnrneeeaaeeennns 128
BRI 101 (SR RCTe I v o (=Y o] g o] o] [=Tox A (= SRR 128
Table 140 Table _ObJECT _Fef ... it e e e e e e e e e s s e aeeeaaaeeanns 128
Table 141 table ref. ... 128
Table 142 Template _0DJECT _Tef e are e e e e 128
= 1o (I o A Y o T T o = PSP PPSOPUPPRPPPP 129
Table 144 TYPE_ODJECT _TeF .. ettt e e st e e e sbb e e e e sbnee e 129
LI Lo =0 T 1o RSO 129
= 1o (I LG R U a1 (=To =T TP PSP OPU PP PPPPPN 129
QIR0 L= A U110 =Y =Y e OSSO 129
Table 148 UINEOET 128......cciiieiieiiee e e e ettt e e e e e e s et e et e e e s s st e eeeeessaasstaaeeeaeesasassseneeeeeeeesaansnraneneeeesanns 130
QIR0 L= L U110 =Y o =Y 2SSOSR 130
IR Lo L= ST O U110 (=Y =Y 2 O USRS PRRR 130
QIR0 Lo S A U110 (=Y =Y 3t RSO PPRRR 130
I o] Sy A U110 (=Y =Y 2 U PPRRR 130
TaDIE 153 UINEOEE 256...ccc ittt e e ettt et e e e e e s aaa b bt e e e e e e e e e aabbeeeeeeaeesaannbaneeaaaaaanns 131
TaDIE 154 UINTEOEE _28....cii ittt et e e e e ettt e e e e e e e e aanbeeeeaee e e e s babbebbeeeaeesaannnbeneeaaeeaanns 131
TaDIE 155 UINTEOEE B0...eiiii ittt ettt e e e e e ettt b e et e e e s e s aaa b e eeeeeeeeaasabbeebeeeaeesaanbnbaneeaaaeaanns 131
TADIE 156 UINTEYET 36 . .eiiiiiiiiie ittt ettt e ettt e e e sttt e e st bt e e e sa b et e e st b e e e e e abb e e e e sabreeessnbeeeeans 131
TaADIE 157 UINTEYET ...ttt e e bttt e e st bt e e sa b et e e ek bt et e e abbe e e e sabeeeessabeeeeaas 131
Table 158 UINTEYEI _A8... .o ittt ettt e et e e e e sh b et e e e ekt e e e e e abb e e e e sabbeeessabeeeeaas 132
QI o] L= S I U110 =Y =T RSOOSR 132
QI o] L= G 1O U110 (=Y =T g TSSO 132
QI o1 L= G 3 A U110 =Y =T < 7SSOSR 132
Table 162 VEIIY MOAE ...ceii ittt e e e e e s e e e e e e s s et eeeeeeeessasattesaeeeeeesaaanranneaaeeeanns 132
Table 163 verify_mode ENUMEration ValUESccuvviiiiiiiiiiiiiee ettt e e e tntane e e e e 133
I 10 (ST K S =T T RSP SOPP 133
TADIE 165 YOOI BNUM ...eiiiii ittt e e oo e bt bttt e e e e e e s aabeeeeeaeeeaababebeeeeeaeesaannnbeneeaaaeaanns 133
TaDIE 166 STALUS COUES ..ottt ettt e e et e e et e e e e e e ean b b et e e ee e e s e asabbeeeeeeaeeeaannnbeneaaaeaeanns 143
Table 167 PropertieS Method RESPONSEcoiii et e e bbb e e e e e e 148
Table 168 Communications INitial ASSUMPLIONS.........uuiiiiiiiiiiieiiee e e e ereeeeeae e e 151
Table 169 SPINTO TaDIE DESCIIPLIONcueiiie ittt e et e e snnaneee s 162
Table 170 SPTemplates Table DeSCHPLONccoiiiiiiiiiiee et 163
Table 171 Table Table DESCHPLION.......cc.uttiiiiiiei ettt e e eb e et ee e saneee s 164
Table 172 Column Table DESCIIPLONuviiiieee e e e e e s e e e e e e s st areeeeeeeean 166
Table 173 Type Table DESCIPON.cii et e e e e e e e e e s et e e e e e e s e snsrneeeeneeeeean 167
Table 174 MethodID Table DESCHIPONuuiiieei it e e s e e e e e e s e s s e e e e e e s snnnreareeeeeeen s 168
Table 175 AccessControl Table DESCIIPLONiicciiiiie e e s e e e e e e st rr e e e e e e e e aans 169
Table 176 SecretProtect Table DESCIIPLION.......c.iii et e e e et e e e s s e e e e e e s e rerre e e e e e s s enanraeeeaaeesanns 171
Table 177 ACE Table DESCIPLIONcccoiiiiiiiiieee et e e e s s e e e e e e st e e e e e e e e s sstabeeeeaeesesnsraanseeaaeaeas 172
Table 178 Authority Table DESCHPLIONeiiiiiiiiiie e e e e e et ee e e e e e e as 173
Table 179 Secure COIUMN VAIUES........oo ettt e e e e et e e e e e e e e snbbeeeaeaaaaeean 175
Table 180 Certificates Table DESCHIPLION.ccciiii ittt e e e e be e eeeaaeeeaaes 177
Table 181 C_PIN Table DESCHIPONciiutiiieiiiiii ettt e e b e s annaneee s 178
Table 182 C_RSA 1024 Table DESCHPLON.......cciiiiiie ittt ettt e e e sireee e 179
Table 183 C_RSA 2048 Table DESCHIPLON.......cciiiiiieiiiiiee ettt e e sibeee e 181
Table 184 C_AES_128 Table DESCIPLION......ciiiiiiicieieeiie e e s esiiie e e e e s e ssrree e e e e e s essnannrerr e e e e e s ssanraneeeeeesanns 183
Table 185 C_AES_128/C_AES 256 ResidualData Column Values After
Encrypt/Decrypt/EncryptFinalize/DecryptFiNaliZe...........cooccviiiiiie e 184

Revision 2.00 Page xvii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 186
Table 187
Table 188
Table 189
Table 190
Table 191
Table 192
Table 193
Table 194
Table 195
Table 196
Table 197
Table 198
Table 199
Table 200
Table 201
Table 202
Table 203
Table 204
Table 205
Table 206
Table 207
Table 208
Table 209
Table 210
Table 211
Table 212
Table 213
Table 214
Table 215
Table 216
Table 217
Table 218
Table 219
Table 220
Table 221
Table 222
Table 223
Table 224
Table 225
Table 226
Table 227
Table 228
Table 229
Table 230
Table 231
Table 232
Table 233
Table 234
Table 235
Table 236

C_AES 256 Table DESCIPLON......uuiiiiiee it ee s e e e e s r e e e e e s e s ee e e e s s annrnaeeeees 184
C_EC _160 Table DESCIIPLIONuvviiieeeeeiecitieiee e e e e e s s s sitteee e e e e e st e e e e e s e e s ennnraeeeeeesssnnnrnneeeees 185
AACS Values fOr C_EC 160ccciuiiiieiiiiieeiiiieess st essiieeeesieee et e e s s snbaeeessssaeeesssaeeesneeeenas 187
C_EC _192 Table DESCIIPLIONuuiiiieieeeieiiiieite e e e e e e eestrree e e e e e s ssttabe e e e e e s e e s s ntataeeeeeeessnnnrnneeeaens 187
FIPS P-192 Values fOor C_EC 192ccoiiiiiiiiie ettt e e e e 188
C_EC_224 Table DESCHIPLONeeieieeiee ettt ettt e ettt a e e s e e e st e e e e e e e e snnbneeeaaens 189
FIPS P-224 Values fOr C_EC 224cocuiii ettt see e st a e snaae e 190
C_EC_256 Table DESCHIPLIONteiiieieeeieiiieiee ettt e ettt e e e e s e e et ae e e e e e e e snnbneeeaaeas 191
FIPS P-256 Values for C_EC 256cccuviiiiiiiiiiiiiiee s cteee e st e st e e siaee s stae e e s snnae e e snnnaeas 192
C_EC_384 Table DESCHPLONeiiiiiiiieiiie ittt ettt nbe e e 192
FIPS P-384 Values for C_EC 384ccccuiiieiiiie ettt ettt e e 194
C_EC_521 Table DESCHPLONeiiiiiiiie ittt enbe e 194
FIPS P-521 Values for C_EC 521ccccceiiiiiie et et e e e s seeen e e e e e e s e ennntanne e e e e e 196
O = O N R Ir= 1o LT 1= g o] (o] o I 196
FIPS K-163 Values fOor C_EC 1683cccceiiiiieeeesitiiiiee e e e e s ssteneeee e e s s s snnnreenessaessssnsntnneeaaessanns 198
C_EC 233 Table DESCIIPLIONuviiiieie e e ittt e e e e e e s e sseeee e e e e e s ettt e e e e e s e e s s statae e e e e e e s snnnrnneeeaes 199
FIPS K-233 Values fOor C_EC 233 ...ttt et et e e 200
C_EC 283 Table DESCIIPLIONuuiiiieiee e ittt e e e e e e e estrree e e e e e s sittate e e e e e s e e s s santrereeeeessnnnraneeeaes 201
FIPS K-283 Values for C_EC 283cocciiieiiiiie ettt e siae e stee s siaae e snnae e snaaeas 202
C_HMAC _160 Table DESCIIPLONccuvviieiiiiiieiiiiee sttt e stee e eiae e s etae e et aeeessntaeaeesreeeeennes 203
C_HMAC _256 Table DESCIIPLONccuviiieiiiiiieiiiiie sttt stee et e s stre e e et ae e e s sntaeaeenraeeeennes 204
C_HMAC_384 Table DESCIIPONcueeiieiiiiii ettt 204
C_HMAC_512 Table DESCIIPLON ...coueeiiiiiiiiie ittt 205
Default Base Template AUINOTTIESoouiiiiiiiiei et 219
ACE_expression ENCoding EXamMPIE.......ceiee i 235
TPerInfo Table DEeSCIPLION.......cii et s e e e e e e e s e e e e e s s st e e e e e e s e nnnneeeeeees 238
GUDID Column Contents DESCIPLIONcuuvviiieie i it e e e e s sseee e e e e e s s e e e e e e e e s senaeeeee s 239
CryptoSuite Table DESCIPLON........uuiiiie e e e e s s e e e e e s sraraaeeeae s 239
Template Table DESCIHPLION.ii e e e e ee e e e e s e st b e e e e e e s e sanreeeeees 240
Y o I 1o LT 1YY ot o) 1o o RS 241
Default Admin Template AUTNOFTIESuiiiiii e 244
Clock Template TermMiNOIOQYuueeieieeiieiiiiii ettt e e e e e e e e e e e e e e e e rnanreeeaeas 246
ClocKTIme Table DeSCIIPLION.ttt e e e e e e e e e e e aanreeeaeas 247
Crypto Template TerminOIOQYeceiiiiiiiiiiiiiiia e ee e eaae s 257
H_SHA_1 Table DESCIIPLON.......eiiiiiiiieitie ettt 257
H_SHA_256 Table DESCIPLION.cuveiieiiiiiieitiee ettt 258
H_SHA_384 Table DESCIPLION.ccuveiieiiiieie ittt e e 259
H_SHA 512 Table DESCHIPON.ciiiiiiicieieiiie e e sttt e e e e e s st e e e e e s ss s arrar e e e e e s e snnreneeaaeenanns 260
Locking Template TermMinNOIOQYccceiiccurrieiieeeiiiiiitieee e e e e s st r e e e e s s e ssarrrae e e e e e s e ennreneeeeeesanns 281
LockingInfo Table DESCIIPLIONuiiee et e e s s e e e e s s rrer e e e e e s e snnreeeeeeeeeanns 282
Locking Table DESCIIPLONuiiieiie et e e e e e e e e e rreeaeeeee s 283
K_AES 128 Table DESCHPLIONciiiiiiiiciitiiie e e e ettt e e e s st e e e e e s e sanbrraae e e e e e s e snnreeeeaaeeeaans 287
K_AES 256 Table DESCHPLIONciiiiiiiiiiiiiie e e e e sttt e e e s seteae e e e e s s et rraae e e e e e s e snnreeeeaaeeeanns 287
MBRCONtrol Table DESCHPLIONiiiiiiiiiieiiie ettt e e e e e s e senbeeeaaaeeeaans 288
Interface Read COMMANG ACCESS.......uuuiiiiia ittt e e e ettt e e e e e e e e e e e abbbee e e e e e s e anneees 295
Interface Write COMMANT ACCESSuuiiiiiiaaiiiiiie e e ettt e e e e e e e e e e bbb e eaa e e e e saneees 296
Log Template TerminOIOgYccoiuuiieiiiiiei ittt e e 302
LOQ TabIE DESCIIPHON. ... tiiie ittt ettt e e st e e e enb e e e e 302
LOQGLISt TabIE DESCIIPLIONeeiitiiieiiiiie ettt ettt e e e 305
LOGKINd COIUMN VAIUES ...ttt sttt e e e s e e e e e e e s st e e e e e e s s ennrneeeeeeeeeean 309
System LOg ENtry StrUCTUIE........coo e 309

Revision 2.00 Page xviii of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 237
Table 238
Table 239
Table 240
Table 241
Table 242
Table 243
Table 244
Table 245
Table 246
Table 247
Table 248

MethodID Table and Table Table LSB Value Ranges Assignmentcccccceevvvecvvineeeeeennn. 312
Type Table Reserved LSB Valuge RANGES.........ccovieeiiiiiiiiiieee s et ee e e e snieeee e e e e e s nneeeee s 312
SPECIAl PUIPOSE UIDSuviiiiiiiii ittt e st ae e e e e e s et e e e e e e s s antbe e e e e e e e s s sannrnnees 313
JLIE= 101 LT 6 113 314
Session Manager Method UIDS.........oiii it e e anrre e e e e e e s snnrnaeeeee s 315
1= oo L1 SO RR 315
F 0 110 To 12 U 1 1 5 L T TR PPRPTR 316
Single ROW Table ROW UIDSuuiiiiiiiiiiiieie ettt e e e anae e 317
Table DEfaUIt ROWS ...ttt e e e e e e s s ee e e e e s st r e e e e e e e e s snseeeeeas 317
Template TADIE UIDS. ...ttt e et e e e e s nbbeeeeaaes 317
SPTeMPIALES TADIE UIDScoiiiiiieiiiiie ettt 318
SeCretProteCt TaDIE UIDS.......ooo ettt e e e e e e e s e nnneeeeees 318

Revision 2.00 Page xix of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Revision 2.00 Page 20 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

1 Introduction

1.1 Scope and Audience
Begin Informative Content

The TCG Storage specifications are intended to provide a comprehensive architecture for putting
selected features of Storage Devices under policy-driven access control. The capabilities of the
Storage Device are able to be configured to conform to the policies of the trusted platform. The
controlled features include access to secure storage areas and the life cycle state of the Storage
Device as a Trusted Peripheral (TPer). This document also serves as a specification for TPers where
that is deemed appropriate.

The intended audience for this document is Storage Device manufacturers and developers that wish to
tie trusted Storage Devices into trusted platforms.

End Informative Content

1.2 Key Words

Key words are used to signify the requirements in the specification. The key words “SHALL,” "SHALL
NOT," “SHOULD,” "SHOULD NOT," “MAY,” and “OPTIONAL" are used in this document. These key
words are to be interpreted as described in [8]

The key word "OBSOLETE" is used to indicate that the designated methods, tables, or values that may
have been defined in previous standards are not defined in this standard and SHALL NOT be reclaimed
for other uses in future standards. However, some degree of functionality may be required for items
designated as OBSOLETE to provide for backward compatibility.

Invocation of methods defined as OBSOLETE may result in an error status method response returned
by devices conforming to this specification.

Tables and values defined as OBSOLETE may result in an error status method response returned by
devices conforming to this specification when attempts to reference those tables or values are made.

Bits, bytes, fields, and values identified as “Reserved” are set aside for future standardization. Their
use and interpretation MAY be specified by future versions of this or other standards. A reserved bit,
byte, field, or value SHALL be cleared to zero where applicable, or in accordance with a future version
of this standard. A communicator SHALL NOT check reserved bits, bytes, fields, or values.

Values identified as “Reserved for TCG” SHOULD NOT be used by implementers in a manner other
than that required by the TCG specifications.

1.3 References
[1] Trusted Computing Group (TCG), “Storage Work Group Use Case White Paper —v 1.0”

[2] Trusted Computing Group (TCG), “TCG Storage Interface Interactions Specification,
Version 1.0

[3] Trusted Computing Group (TCG), “TCG Storage Protection Mechanisms for Secrets”,
Version 1.0

[4] Advanced Access Content System (AACS), "Introduction and Common Cryptographic
Elements", Revision 0.91

[5] [ANSI INCITS 452-2008], “Information technology - AT Attachment 8 - ATA/ATAPI
Command Set (ATA8-ACS)"

Revision 2.00 Page 21 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[INCITS T10/1731-D], “Information technology - SCSI Primary Commands - 4 (SPC-4)"

Internet Engineering Task Force (IETF), "Character Mnemonics & Character Sets" (RFC
1345)

Internet Engineering Task Force (IETF), "Key words for use in RFCs to Indicate Requirement
Levels" (RFC 2119)

Internet Engineering Task Force (IETF), " Augmented BNF for Syntax Specifications: ABNF"
(RFC 5234)

National Institute of Standards and Technology (NIST), "Secure Hash Standard", FIPS
Publication 180-2

National Institute of Standards and Technology (NIST), "Digital Signature Standard (DSS)",
FIPS Publication 186-2

National Institute of Standards and Technology (NIST), "Advanced Encryption Standard
(AES)", FIPS Publication 197

National Institute of Standards and Technology (NIST), "The Keyed-Hash Message
Authentication Code (HMAC)", FIPS Publication 198

National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation - Methods and Techniques", NIST Special Publication 800-38A

National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation —The CMAC Mode for Authentication", NIST Special Publication 800-
38B

National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation — The CCM Mode for Authentication and Confidentiality”, NIST Special
Publication 800-38C

National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC", NIST Special Publication
800-38D

RSA Laboratories, "PKCS #1: RSA Cryptography Standard (v 2.1)"

Standards for Efficient Cryptography, "SEC2: Recommended Elliptic Curve Domain
Parameters", Version 1.0

1.4 Terminology

1.4.1 Global Terminology

Table 01 Global Terminology

Term Definition
'(A\Céeis Control Element A Boolean expression of authorities.
ACE

Access Control List (ACL) List of ACEs.

Admin SP

The SP that is used in the issuance of other SPs, and provides
information about the state of SPs on the TPer as well as the TPer
itself.

Revision 2.00 Page 22 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Term Definition

An Authority associates a credential with an authentication

Authority operation.

Encoding format of data. Data is encoded in different ways
Data Types depending on the context in which the data is being used (stream
encoding, table encoding, etc.)

Host Application Software that communicates with the TPer.
An interface command, such as the ATA (T13) TRUSTED SEND or
IF-SEND SCSI (T10) SECURITY PROTOCOL OUT command used to

transmit data from the host to the TPer.

An interface command, such as the ATA (T13) TRUSTED RECEIVE
IE-RECV or SCSI (T10) SECURITY PROTOCOL IN command used by the
host to retrieve data from TPer.

Issuance The act of creating an SP on a TPer from one or more templates.

MAC Message Authentication Code

Session communications are by messages defined by a messaging
Messaging protocol. Messages from a Host convey remote method calls on an
SP and other messages return the results.

A Method is a remote procedure call to an SP that initiates an action

Method on the SP.
Object Any row of an Object Table.
) This is the content of tables, and exists through power cycles,
Persistent State resets, and spin up/spin down cycles.
Personalization The act of configuring an issued SP.
A collection of one or more Host Application resources that utilizes
Platform Host or provides a specific service or set of services.
Read command See: Read user data
Read user data An operation requested by the host to transfer user data to the host
Session communications that support message confidentiality,
Secure Messaging message integrity/authenticity, or both.

) Identifies the components from the Core Specification that are
Security Subsystem Class Mandatory, Optional, Excluded, or Not Required for a particular
(SSC) class of security subsystem.

Security Provider (SP) A collection of Tables and Methods with access control.
Security Identifier (SID) The authority that represents the TPer owner.

A temporary information exchange that occurs between a host
) application and an SP, and that is established at a certain point in
Session time and closed at a later point in time. All communications with
SPs occur within sessions.

] A Storage Device is any device that provides digital storage
Storage Device (SD) services.

Revision 2.00 Page 23 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

Term

Definition

Storage Media

Storage Media refers to the non-volatile or persistent storage in a
Storage Device.

Storage Work Group (SWG)

One of the TCG working groups whose purpose is to define security
building blocks for the Storage Device.

Stream Encoding

The encoding mechanism as defined in section 3.2.2.

SymK

Convenient notation for symmetric key (shared secret) cryptography.

The basic data structures within an SP. Tables store persistent SP

Table state defined in this specification.

Templates are sets of tables and methods, grouped by feature, from
Template which SPs are created.
TPer A Trusted Peripheral.

A series of one or more method invocations grouped to enable
Transaction atomicity and state rollback by the host application to a pre-defined

point. Methods are invoked either within or outside of transactions.

Transient State

State of an SP that does not persist past the end of a session. This
includes authentication state of authorities, changes made in a
Read-Only session, or changes made within an uncommitted
transaction.

Trusted Commands

Interface protocol commands (IF-SEND or IF-RECV) used to
communicate with an SP.

Unique Identifier (UID)

Unique 8-byte identifier that identifies objects within tables, tables,
methods, and the SP itself. UIDs are unique within an SP, but not
across SPs.

User data

Data that may be transferred between the host and the device using
read commands and write commands

Write command

See: Write user data

Write user data

An operation requested by the host to modify user data, which may
include transferring data from the application client to the device

Revision 2.00

Page 24 of 318

TCG Copyright 2011

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

2 Trusted Storage Device Architecture

2.1 Architecture Overview
Begin Informative Content

The TCG Storage Architecture supports use cases and threat models developed for the TCG Storage
use cases (see [1]). Peripherals based on this architecture are called Trusted Peripherals or TPers.

End Informative Content

2.2 Architecture Components
Begin Informative Content

The architecture is illustrated in Figure 1 , which shows a single Multicomponent Trusted Platform
(MCTP) with one Trusted Peripheral (TPer). An MCTP supports 1 or more TPers. Figure 1 shows just
one example. Other possibilities include multiple hosts communicating with a single Storage
Device/TPer, a single host communicating with multiple Storage Devices/TPers, etc.

End Informative Content

Figure 1 Diagram of the Core Architecture

MCTP

‘ Storage Device
| TPer

SP
Table Object 1

APP1 . [Ore Table |
|'_ Table Wethods G ACLE |

Host

Authority Object 1

APP 2
N | Ore A uthority |

[Authority Methodz A CLs |

APP 3

Irgerface

b P Wetmdz 8ACE

—I_I_

2.2.1 Multicomponent Trusted Platform (MCTP)

Begin Informative Content

Revision 2.00 Page 25 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

A Multicomponent Trusted Platform (MCTP) describes a platform in which one or more hosts,
applications, peripherals, or devices participate in the trust state. In an MCTP, various host applications
communicate with the TPer through a peripheral interface such as ATA or SCSI.

End Informative Content

2.2.2 Host

Begin Informative Content

For the purposes of this specification, a Host is the entity that initiates ATA (T13) TRUSTED
SEND/RECEIVE commands or SCSI (T10) SECURITY PROTOCOL IN/OUT commands under Security
Protocol 0x01-0x06.

End Informative Content

2.2.2.1 Host Applications
Begin Informative Content

Host applications initiate sessions to communicate with a TPer in order to create, query or change the
persistent state of the TPer data structures.

End Informative Content

2.2.3 Trusted Peripheral (TPer)

Begin Informative Content

The Trusted Peripheral (TPer) resides in the Storage Device. The TPer manages trusted storage-
related functions and data structures. Two main aspects to the TPer use cases as they pertain to the
TCG Storage Architecture are:

a. Data confidentiality and access control over TPer features and capabilities: TPer
functions and capabilities are built upon policy driven setup and the use of cryptographic
access control over TPer content. Such features and capabilities include access controlled
readable and writeable data areas, and access control to built-in firmware functions or
hardware functions in the TPer. It is possible for a single trusted host application to gain
exclusive access to subsets of these features and capabilities. The protection provided by this
exclusive access extends to confidentiality of instructions and data in transit between the
trusted host application (or a TPM it uses) and the TPer.

b. TPers and Hosts bilateral enrollment and connection: Enrollment establishes the conditions
under which data/instruction connections are established between TPers and hosts. The
access control conditions for enrollment could be different than those for connection. The
data/instruction consequences of a failure to be enrolled or connected MAY be different for
different TPers and hosts. The permissions/authorizations required for enrollment and
connection of a TPer with a host could be different than the permissions/authorizations required
for enrollment and connection of a Host with a TPer.

The TCG Storage Architecture provides for a system of tables where the content and meaning of the
table entries are potentially different for different types of Storage Devices with different features and
capabilities.

This TCG Storage Architecture’s access control system scales with the available Storage Device
resources. Storage Device resources include processor performance, memory space, and media
capacity. TPer data tables, methods, and capabilities are able to be fixed (and limited) or host
application-definable up to the limit of the Storage Device’s available resources.

End Informative Content

Revision 2.00 Page 26 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

2.2.4 Security Providers (SPs)

The TPer MAY contain one or more Security Providers (SPs). A Security Provider is a set of tables and
methods that control the persistent trust state of the SP and MAY patrticipate in control of the persistent
trust state of the TPer. Each SP SHALL have its own storage, functional scope, and security domain.

Begin Informative Content

A Security Provider supports specific TPer functionality. SPs support functions such as authentication,
secured attribute-value storage, disk encryption/decryption, backup, time stamping, and event logging.
SPs are created by the manufacturer during Storage Device creation, or through the Issuance process
(see SP Issuance section 2.3.2).

A Security Provider provides a way for the host and manufacturer to define which TCG functions are
performed; who has access to these functions; how the TPer and SPs communicate with the Host;
when these events are permitted; and when the events are logged.

A Security Provider is made up of the following components:

a. Tables . The two types of tables are described in Section 3.2.5. Tables consist of rows and
columns.

b. Table content is the persistent state information of the SP.

c. Methods. Method operations include functions such as: table additions, table deletion, table
read access, and table backup.

d. Authorities specify passwords or cryptographic proofs required to become authenticated within
a session to the SP.

e. Access Control Lists (ACLs) and Access Control Elements (ACEs) bind methods to the
authorities that are permitted to invoke them.

End Informative Content

2.3 Core Architecture Operations

2.3.1 Host <—> TPer Communication Infrastructure
Begin Informative Content

The Host communicates with SPs using interface commands generically known as "Trusted
Commands." Trusted Commands are interface-specific protocols (i.e. T10 SECURITY PROTOCOL
IN/OUT Protocol 0x01-0x06, or T13 TRUSTED SEND/RECEIVE Protocol 0x01-0x06). This
specification defines the payload content of those commands.

The SP communication protocol that defines the contents of Trusted Commands uses a layered
communication system consisting of the following elements:

a. Methods.
b. Transactions.

c. Sessions.

Revision 2.00 Page 27 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Figure 2 Communications Infrastructure
‘ Methods ‘

‘ Transactions (optional) ‘

‘ Sessions ‘

‘ ATAISCS| Interface Commands ‘

The only way to communicate with an SP is via a session. Only the host is able to open a session.
Methods are invoked within sessions.

Normally, when the methods and associated responses are completed, the host closes the session.
Other interface-specific commands (i.e. ATA/SCSI) are able to be interleaved among IF-SEND/IF-
RECV commands at any time.

Secure Messaging enables the host and TPer to pass encrypted or integrity protected messages
(methods and their associated responses) during sessions. Message encryption is recommended but
not required. When secure messaging is in use, it is done regardless of and in addition to any
encryption done on the communications channel.

In the simplest communications case the host is just the platform host to which the TPer is directly
attached or attached over a network. The host application could also be some other platform host that
communicates with the immediate platform host, which then relays the session stream to the TPer over
a network. In another case, the TPer could be wirelessly connected to a host application, or part of a
SAN and connected to multiple hosts. The TPer could be directly attached to the platform host, and
connected to multiple Host Applications either also directly attached to that platform, attached remotely,
or both.

End Informative Content

If the device is capable, one or more Read-Only sessions MAY be established simultaneously to a
single SP. Typically, changes made to an SP during a Read-Only session SHALL NOT persist past the
end of that session. Non-transient changes that persist past the end of a session are noted, where
applicable. A case of a non-transient change permitted in a Read-Only session is automatic forensic
logging, if enabled.

Read-Write Sessions MAY or MAY NOT alter persistent state information (table content). A Read-Write
session (one which has the capability of making non-transient changes to an SP) SHALL be unable to
run simultaneously with any other sessions to the same SP.

2.3.2 SP Issuance & Personalization Overview
Begin Informative Content

When TPers are capable of SP issuance, special resources called templates are required. Templates
define the initial tables and methods upon which new SPs are based when issued.

The Base Template provides to SPs the tables and methods required for authentication and access
control management. SPs are built from a combination of templates, and always include at least a
subset of the Base Template. Some templates that extend the capabilities provided by the Base
Template are: Admin Template, Clock Template, Crypto Template, Locking Template, and Log
Template.

All SPs incorporate at least a subset of the Base Template’s tables and methods.
Personalization is the customization of a newly created SP. The primary purposes of personalization
are modification of the SP’s initial table data and/or the administrative authority on that specific SP, as

Revision 2.00 Page 28 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

well as creating additional authorities and customization of the default access control settings.
Personalization typically refers to the initial customization of an SP, but the personalization process
continues throughout the life of an SP.

End Informative Content

2.3.3 Security Subsystem Classes Overview
Begin Informative Content

The Core Specification defines the set of TCG-related functions supportable by a TPer. However, every
TPer is not required to support all functionality defined in this specification. There are multiple “classes”
of Core Specification compliance, called Security Subsystem Classes (SSCs). Each Security
Subsystem Class specification is a companion document to the Core Specification.

Security Subsystem Classes explicitly define the minimum acceptable Core Specification capabilities of
a TPer in a specific “class”.

Security Subsystem Classes define only TCG-related functionality. TPer attributes such as host
interface type, storage capacity, data rates, and seek times are not key Security Subsystem Class
attributes, though TPer resources such as available memory, storage capacity, and processing power
influence which Security Subsystem Class(es) a TPer supports.

End Informative Content

A TPer MAY have only some of the capabilities (tables, methods, access controls, etc.) defined in this
Core Specification and MAY include additional capabilities through table definitions and/or methods. A
Security Subsystem Class SHALL NOT replace a capability called out in the Core Specification with the
same capability implemented in different tables, methods, and access controls.

2.3.4 Preliminary Architectural Components

This section identifies a series of architectural components in this specification that are to be
considered as preliminary. Implementations of any these elements as defined in this specification MAY
NOT be compliant with either SSCs or future versions of this specification.

a. Secure session start up. This applies to challenge response authentication and key
exchange that occurs during session startup. In addition, if two SP Authorities refer to the
same ResponseExch authority, and therefore use the same public-private keypair for
encrypting the HostSessionKey to be sent to the TPer,, then there is an escalation replay
attack possible where one authority can successfully replay the commands of another.

b. Session Timeouts, Flow Control, and Session Reliability in regards to control
sessions. This includes, but is not limited to, session timeouts, acknowledgements,
negative acknowledgements, transmission timeouts, packet sequence numbers, and credit
exchange.

c. The Log Template and related logging functionality. In addition to the Log Template,
this applies to components in other templates that relate to logging, such as those in the
Base Template's Authority and AccessControl tables. Methods to manage the logging
functionality presented in the AccessControl table are also TBD.

d. The Clock Template and functionality related to timekeeping. In addition to the Clock
Template, this applies to components in other templates that relate to timekeeping, such as
those in the Base Template's Authority table.

e. Admin SP discovery mechanisms related to TemplatelD columns. This also applies to
the TemplatelD column in tables in Templates other than the Admin Template.

f. Default ACL values for access control associations when a new table or object is
created. This affects the values are placed in the ACL columns of the AccessControl

Revision 2.00 Page 29 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

table when a new table or object is created and associated rows are created in the Table,
Column, ACE, and AccessControl tables.
Mechanisms for retrieval of meta-ACL column values from the AccessControl table.

The Crypto Template and functionality related to host-requested on-device
cryptographic operations. This includes on-device encryption, decryption, etc. This does
not include the Random method.

i. Certificate related components, including the Certificates table and the
PresentCertificate column of the Authority table.

j- Issuance related components, including the IssueSP method.

Revision 2.00 Page 30 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3 Architecture Elements

3.1 Architecture Elements Overview
Begin Informative Content

This section introduces global TCG storage-related document format, data structures, and functional
behavior.

End Informative Content

3.2 Data Structure Descriptions

3.2.1 Document Data Formats
Begin Informative Content

This specification defines three distinct but closely related data models:
Tables: Data stored in tables is of a maximum fixed size.

Messaging: Data moving across the interface is encoded into byte streams. These streams
carry encodings for method calls, parameters, and results, as well as other control information.

c. Exposition Pseudo-code: This provides a C-like representation of methods and table structure
and contents. The definition of the exposition pseudo-code is in section 3.2.1.2.

Data is encoded in different ways depending on the context in which the data is being used. One data
context is data stored in tables. Another data context is data crossing the interface in messaging — this
is called “Stream Encoding”.

This section introduces the different basic data types, provides a brief introduction on how these types
are used, and shows how they are displayed in this document. See Section 3.2.2 for additional details
regarding data types and data type Stream Encoding.

End Informative Content

3.2.1.1 Table Definition Format
Begin Informative Content

Each table in this specification is defined in a manner that follows the format described in this section.
A table's structure follows the format that appears in Table 03.
End Informative Content

The description table column "Column Number" identifies the number assigned to that column, which is
unigue within that table and is used to address the column in methods and other tables. See Table 02
for how Column Numbers are assigned. Column numbers assigned in TCG specs will be assigned
from the range of numbers reserved for TCG usage.

Table 02 Column Number Assignment
Column Number Range | Description

0x00-0xFFFEFFFF Reserved for TCG usage

OXFFFFO000-0xFFFFFFFF | Vendor Unique

Revision 2.00 Page 31 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The description table column "Column Name" identifies the name of the column. This is the name
assigned to that column in the Column table, a Base Template table that stores metadata about each
column in each table in an SP.

The description table column "IsUnique" identifies whether that column is required to be part of the
unigue set of column values for that table (See 3.2.5.4).

The description table column "Type" identifies the format of the data stored in that column. The
definition of the type itself is found in the Type table, a Base Template table that stores metadata about
each type used in an SP. Each type used in this specification is defined in 5.1.3.

Each column being described is defined in its own subsection that follows the description table.

Table 03 Foo Table Description
Column Number |Column Name IsUnique Column Type

0x00 ID uid
0x01 Username name
0x02 SerialNumber uinteger_4

3.2.1.2 Method Signature Pseudo-code
Begin Informative Content

Method signatures are pseudo-code representations of TCG methods, which are used to describe
method parameters, types and snippets of code without having to use the byte encodings directly.

End Informative Content
In this document, MethodName is the UID of the method being invoked and:

a. Session Manager method calls are written as follows, where “SMUID” is 0x00 0x00 0x00 0x00
0Ox00 Ox00 Ox00 OxFF: SMUID.MethodName[<Parameters>]

b. SP method calls are written as follows, where "ThisSP" is 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x01: ThisSP.MethodName[<Parameters>]

c. Table method calls are written as follows, where TableUID is the UID of the table (see 3.2.5.3)
upon which the method is being invoked: TableUID._MethodName[<Parameters>]

d. Object methods are written as follows, where ObjectUID is the UID of the object (see 3.2.5.3)
upon which the method is being invoked: ObjectUlD.MethodName[<Parameters>]

For example:
a. Invoking the Properties method: SMUID.Properties[<Parameters>]
b. Invoking an SP method: ThisSP.Random[<Parameters>]
c. Adding an entry to a log table: SomeLogTableUID.AddLog[<Parameters>]
d. Encrypting host data: C_AES_1280bjectUID.Encrypt[<Parameters>]

A method signature example is displayed in this document as:

<InvokingID>._<MethodName>[
Required Parameter(s),

Optional Parameter(s)

1

Revision 2.00 Page 32 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

[Result]

The InvokingID (the table or object UID to which the method applies) and MethodName (the method's
UID column value as it is defined in an SP's MethodID table) appear first in the signature. The
parameters follow, enclosed in "list" delimiters ("[" and "]"). The "=>"is a separator between the method
parameters and the method results. The method results are displayed within the "list" delimiters ("["
and "1".

Methods are made up of two kinds of parameters: required and optional.

a. Inthe pseudo-code signature, required parameters are given names for ease of reference. The
right-hand portion of the parameter is the type, interface (see 3.2.2) or abstract (see 5.1.4), to
be supplied for that parameter.

Required parameters are formatted as follows:

a. Parameter-Name : Parameter-type

b. Inthe pseudo-code method signature, optional parameters are given in the form of Named
values (see 3.2.1.3), and are submitted to the method invocation as Named values. The right-
hand portion of the parameter is the type, interface (see 3.2.2) or abstract (see 5.1.4), that is
supplied for that parameter. The name supplied to the parameter is expositional, provided for
ease of reference.

Optional parameters are formatted as follows:

b. Parameter-Name = Parameter-type

The result portion of a method's signature is formatted similarly to the above required and optional
parameters, using the same conventions for results required to be returned for successful method
invocations ("required results") and results returned only in certain situations ("optional results").

The pseudo-code method signatures utilize the following key symbols:

a. Equals sign ("=") — Any appearance of "=" in a method's parameter list or result list (including
in abstract type definitions) indicates the required use of an interface Named value, where the
type of the required value is to the right of the "=". The "="is not represented in the streamed
method data, but indicates that the name and the value are encompassed by the Named value
indicator tokens (see 3.2.2.3.2.1).

b. Colon (":") — When represented in abstract types or method signatures, a colon indicates that
the string to the left of the colon is only a pseudo-code identifier associated with the type to the
right of the colon. The type to the right of the colon is the type of the value to be transmitted on
the interface.

c. Separating brackets ("[", "]") — Square brackets in method signatures are used to mark
places in the stream where List tokens (see 3.2.2.2) are used to encapsulate values. Brackets
are required to be present in the streamed method invocation, and are represented in the
stream by list encoding tokens.

d. "list" — The word "list" is used to indicate that the bracketed grouping immediately following is a
list (see 3.2.2.3.2.2). Ellipses ("...") in pseudo-code method signatures are used to indicate that
multiples of the immediately preceding type appears within the list (e.g. list [type ...]). Note
that in some contexts, a list MAY be required to be empty or to contain only a single element.
Neither the word "list" nor the ellipses affect the streamed method data.

e. Commas (",") — Commas in the pseudo-code method signatures are used to separate items in
a list, options in a typeOr value, or to separate parameters, and do not affect the streamed
method data.

f. Curly braces ("{", "}") — Curly braces are used to provide additional information regarding the
type that precedes them (e.g. specifying a specific type of UID reference for a uidref type) or to
encapsulate the options for a typeOr value, and do not affect the streamed method data.

Revision 2.00 Page 33 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.2.1.3 Messaging Data Types

For stream encoding, because of the manner in which data is encoded and transferred across the
interface, the types used in method parameter and result values are described using two basic types:

a. Byte-string values are a sequence of n bytes that are used to represent strings, blobs, bit
vectors, etc.

b. N length integer values are whole numbers that are either signed or unsigned.

Due to the nature of method parameters and results, there are two additional constructs defined for
messaging that serve as grouping mechanisms for the basic types: Named values and List values.

a. Named values. The name (a byte-string/integer/uinteger value) followed by its value (any
messaging type, i.e. byte-string values, N length signed or unsigned integer values, list values,
or Named values).

b. List values. Zero or more values of some type, grouped into an ordered list. List tokens are
used to encapsulate method parameters and method results.

Named values and List values serve multiple uses. One use of Named values is to identify optional
method parameters in stream encoding. List tokens are used to encapsulate method parameters or to
separate the InvokinglD/MethodID from the method parameters in the stream encoding. For more
information on stream encoding, see 3.2.2.

3.2.1.4 Type Checking
Begin Informative Content:

It is reasonable to consider the parameter list of each method call as a struct with both required and
optional member types. Since this is the case, whenever a particular method is received, the TPer is
able to check the types of the received parameters to ensure they match the expected types for that
method's signature.

For methods that have dynamic parameter requirements (such as the Get and Set methods), it is
necessary to consider the composition of the table upon which the method is operating. Using the Set
method as an example, the method parameters include identifiers for columns and the values to be
assigned to each of those columns. Because the definition of a table is known and fixed, the TPer is
able to treat each table as a struct (for the purposes of type checking), with components equivalent to
the columns of that table.

With the knowledge of the columns that make up the table/object upon which the method is operating,
as well as the type of each of those columns, the TPer is able to initially determine if the value sent is of
the correct type for each column. The TPer is able to accomplish this without having to perform strong
type checking on whether or not the value is valid for actual assignation to that column (i.e. the TPer is
able to initially verify that a particular parameter is a uinteger without having to determine if its size is
within bounds for the column).

End Informative Content

3.2.2 Data Stream Encoding

Begin Informative Content
The messaging model provides for stream encoding of multiple remote procedure calls and multiple
responses, with the purpose of permitting large data blocks to be broken up and submitted in parts, for

the parts to be acted on, and for the results to be returned in parts. This streaming model permits
results to be asynchronously returned before all the parts are received.

Revision 2.00 Page 34 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

This section details how values and control markers are encoded into byte sequences for transport over
session streams (byte streams).

End Informative Content

There are no predefined limits on the size or length of these data streams. An SSC or TPer
implementation MAY limit the maximum size of encoded values.

3.2.2.1 Data Types

As introduced in 3.2.1.3, messaging data is encoded using two basic types of values combined with two
grouping mechanisms that are applied to those two basic types. Combined, these four types are able
to represent all of the basic and derived data types.

a. Integers: Integer values are used to represent numbers, Booleans, and enumerations. The
implementation is free to use other representations in other circumstances, converting as
necessary. Sign representation for signed integers is two's complement.

b. Bytes: These are sequences of bytes and are used to represent strings, cryptographic keys,
bit-vector encoded sets, blobs, etc.

c. List: Zero or more values of any type, grouped into an ordered list. All items in the list must be
of the same type.

d. Named: The name (a byte-string/integer/uinteger value) followed by its value (any messaging
type). A Named value attaches an identifier to some other value (ex. size=32).

3.2.2.2 Endianness
The endianness of integers transmitted across the interface is big endian.

3.2.2.3 Tokens

Values of the four basic types are packaged into tokens, each of which is a TLV (tag, length, value)
sequence of bits that specifies a single data value.

Table 04 Token Types

Byte .
Hex Acronym |Meaning
0 1 2 3
0S| d<5.0> 00..7F Tiny atom
0 |B|S | n<3..0> 80..BF Short atom
0B|S n<10..0> CO0..DF Medium atom
11/1/0|00B|S n<23..16> n<15..8> |n<7..0>|EO..E3 Long atom
E4..EF TCG Reserved
1j2/1/1/0/0/0/0 FO SL Start List
l12/11100002 F1 EL End List
1j2/1/1/0/01120 F2 SN Start Name
121111100111 F3 EN End Name
F4..F7 TCG Reserved
1j2/11/1/12/0/0/0 F8 CALL |call
12111112001 F9 EOD |End of Data
l111/2/2/0100 FA EOS |End of session
111220101 FB ST Start transaction
l12/1112/10/0 FC ET End transaction
FD..FE TCG Reserved

Revision 2.00 Page 35 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Byte
0 1 2 3
117111111 FF MT Empty atom

Hex |Acronym |Meaning

The Token Types identified in Table 04 are divided into 3 subgroups:

a. Simple Tokens - Atoms: tiny, short, medium, long, and empty atoms

b. Sequence Tokens: Start List, End List, Start Name, and End Name

c. Control Tokens: Call, End of Data, End of Session, Start Transaction, End Transaction
Tokens 0xE4-0xEF, OxF4-0xF7 and OxFD-OxFE are reserved for use by TCG.
An SSC MAY define support for only a subset of the available tokens, as well as the behavior of the
TPer when unsupported tokens are transmitted by the host.

3.2.2.3.1 Simple Tokens — Atoms Overview

Atoms are used to encode data of various sizes and types. Atoms MAY be tiny atoms, which are one
byte in length; short atoms which have a 1-byte header and contain up to 15 bytes of data; medium
atoms which have a 2-byte header and contain up to 2047 bytes of data; or long atoms which have a 4-
byte header and which contain up to 16,777,215 bytes of data.

Tiny atoms only represent integers, whereas short, medium, and long atoms are used to represent
integers or bytes (with the “B” bit set).

A continued value is used to represent a long byte sequence when the total length is not known in
advance. A continued value is represented by a sequence of two or more atoms.

Each atom in a continued value MAY be a short atom, medium atom, or long atom. The BS bits are set
to 11b for all atoms except the last atom, for which the BS bits are set to 10b. All representations of
continued values are considered equivalent encodings of the same value.

Integer and uinteger values SHOULD be encoded using the shortest possible atom.

3.22.3.1.1 Tiny atoms
Tiny atom header and data are all contained in eight bits.

Table 05 Tiny Atom Description
Header+Data
Tiny atom |sign data
0 S dddidd|d

The encoding is as follows:

Table 06 Tiny Atom Encoding

.Tm.y Atom This bit is set to Ob to indicate the atom is a tiny atom
indicator
Sign Value Interpretation
indicator Ob The data is treated as unsigned integer data.
1b The data is treated as a signed integer.
Data bits These represent the data value, an unsigned value in the range of 0...63 or a signed

value in the range of —32...31. The interpretation is based on the setting of the sign bit.

Revision 2.00 Page 36 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.2.23.1.2 Short atoms
Short atoms consist of a one-byte header and between 0 and 15 bytes of data.

Table 07 Short Atom Description

Header (1 byte) Data
byte/ sign/
Short Atom |, 16 er |continued length |(0...15 bytes)

10 B S |nninn d| .. |d
The encoding is as follows:

Table 08 Short Atom Encoding

_Shqrt Atom These two bits are set to 10b to indicate the atom is a short atom.
indicator
Byte/integer Value Interpretation
indicator Ob The data bytes represent an integer value and the S bit indicates if that
value is signed.
1b The data bytes represent a byte sequence and the S bit indicates
whether or not this value is continued into another atom.
.Sicgj].n/continued Value Interpretation
indicator
Ob The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final
segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.
Length These bits specify the length of the following data byte sequence. The permitted

range is from 0 to 15, inclusive.

A length of 0 SHALL only be permitted for non-continued bytes tokens The encoding of a 0-length byte
value is displayed in Table 09.

Table 09 O-Length Byte Encoding

Header (1 byte)

byte/ sign/
integer |continued

110 1 0O |0/00|0

A 0O-length byte value is encoded using only 1 byte: 1 01 00 00 0. This value would be encoded in
the token stream as OxAO.

Short Atom length

3.2.23.1.3 Medium atoms
Medium atoms consist of a two-byte header, and between 1 and 2047 bytes of data.

Revision 2.00 Page 37 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 10 Medium Atom Description
Header (2 bytes) Data

0 1

Medium | byte/ sign/
Atom |integer |continued

120/ B S nninininnininininin| d d

length (1..2047 bytes)

The encoding is as follows:

Table 11 Medium Atom Encoding

Medium Atom These three bits are set to 110b to indicate the atom is a medium atom.

indicator
Byte/integer Value Interpretation
indicator Ob The data bytes represent an integer value and the S bit indicates if that
value is signed.
1b The data bytes represent a byte sequence and the S bit indicates
whether or not this value is continued into another atom.
.Sié;.n/continued Value Interpretation
indicator
Ob The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final
segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.
Length These bits specify the length of the following data byte sequence. The value O is

not a legal value. The permitted range is up to 2047.

3.2.23.1.4 Long atoms
Long atoms consist of a four-byte header, and between 1 and 16M-1 bytes of data.

Table 12 Long Atom Description

Header (4 bytes) Data
0 1 2 3
Long byte/ | sign/ (1..16,777,215
Atom reserved integer |continued Length bytes)
11110 0 | O B S nnininninjninnininininin nininjnnininjninin| d d

The encoding is as follows:

Table 13 Long Atom Encoding

.LO’?Q Atom These four bits are set to 1110b to indicate the atom is a long atom.
indicator
reserved These bits are reserved and SHALL be set to 0b.

Revision 2.00 Page 38 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Byte/integer Value Interpretation
indicator Ob The data bytes represent an integer value and the S bit indicates if that
value is signed.
1b The data bytes represent a byte sequence and the S bit indicates
whether or not this value is continued into another atom.
_Sig_n/continued Value Interpretation
indicator
Ob The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final
segment of a continued byte sequence.
b The interpretation of the data depends on the byte/integer indicator bit.
B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 16,777,215.

3.2.23.15 Empty Atom
The Empty atom is one byte consisting of eight 1 bits.

Table 14 Empty Atom Description
Header (1 byte)
Empty Atom
111111111

The Empty atom MAY appear at any point in the stream encoding where any other atom is able to
appear, including between the atoms of a continued value and after the End of Session, and it SHALL
be ignored.

Begin Informative Content

The Empty atom does not encode values. The Empty atom allows other values in the data subpacket
contained in that part of the stream to be aligned with multi-byte boundaries for efficiency. It also allows
areas of a fixed buffer to be filled with a value that is able to be safely ignored.

End Informative Content

3.2.2.3.2 Sequence Tokens
Composite values, such as Named values and lists, are represented by a sequence of tokens.

3.2.2.3.2.1 Named

Named values have the expositional form name=value and are used to represent a name-value pair. A
Named value is a sequence of tokens: a Start Name token (SN), followed by a non-continued byte-
string/uinteger/integer value that specifies the name, followed by any value (including list or a Named
value), followed by an End Name token (EN).

3.2.23.22 List

Revision 2.00 Page 39 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Lists are ordered sequences of elements of the form [el,e2, ... ,ei]. List elements MAY be tokens,
lists, or Named values. A list is encoded as a Start List token (SL) followed by a sequence of zero or
more elements followed by an End List token (EL).

3.2.2.3.3 Control Tokens
Control tokens are single byte tokens that are used to specify special actions.

3.2.2.33.1 Call (CALL)
This token is used to indicate the start of a method invocation.

3.2.23.3.2 End of Data (EOD)

This token is used to signal the end of the parameters, or the result, of a method invocation. This token
is used in message streams by both the host and the SP.

3.2.2.3.3.3 End of Session (EOS)

The host application utilizes this token to signal to the SP that it is ending the session. The SP
responds to this token with an End of Session token of its own in its response stream.

3.2.2.3.3.4 Start Transaction (ST)
The host application utilizes this token to open a transaction.

When the host begins a transaction, the Start Transaction token is sent by the host to the SP along with
the status, a uinteger, required for that transaction control token. The status supplied by the host with
the Start Transaction token SHOULD be a 0x00, and SHALL be ignored by the TPer.

When the SP delivers its response to the host application's message, the SP's message SHALL mirror
that of the host by including Start Transaction tokens in the corresponding places in the message
stream. The TPer SHALL supply the status of the Start Transaction request. If the host sends a non-
zero status code with the Start Transaction token, the device SHALL respond with a status code of
0x00, unless the transaction was unable to start.

If the host transmits a Start Transaction token that causes the transaction nesting limit to be exceeded,
the TPer SHALL abort the session (see Properties Section for details on the transaction nesting limit).
If for any reason the TPer is unable to start a transaction as requested by the host, the TPer SHALL
abort the session.

Table 15 Start Transaction Status Codes
Start Transaction Status Code (uinteger) | Meaning

0x00 Success

>0x00 Reserved

3.2.2.3.3.5 End Transaction (ET)
The host application utilizes this token to commit or abort the associated open transaction level.

When the host ends the transaction, the End Transaction token is sent by the host to the SP along with
the uinteger status required by the host for that transaction control token.

When the SP delivers its response to the host application's message, the SP's message SHALL mirror
that of the host by including End Transaction tokens in the equivalent places in the message stream
along with the actual status of the End Transaction request.

The host SHOULD send a status code of 0x00 or 0x01 with an End Transaction token. A status code of
0x00 signals to the device that the host is committing that transaction level. A status code of 0x01

Revision 2.00 Page 40 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

signals to the device that the host is aborting that transaction level and the TPer SHALL abort that
transaction level.

If the host sends a status code of 0x00, the device SHALL attempt to commit that transaction level, and
SHALL return either 0x00 in the case of a successfully committed transaction or 0x01 in the case of an
unsuccessfully committed transaction.

If the host sends a status code with an End Transaction token that the device does not support, the
device SHALL abort the transaction and return a status code of Ox01.

Host delivery of the End Transaction token with a status code other than 0x00 signals that the host is
aborting the transaction. The TPer SHALL abort that transaction level.

SP delivery of the End Transaction token with a status code other than 0x00 signals that the SP
aborted the transaction.

Table 16 End Transaction Status Codes
End Transaction Status Code (uinteger) | Meaning

0x00 Commit
0x01 Abort
>0x01 Reserved

3.2.2.34 Out of Order Control Tokens

In cases where the host transmits out of order control tokens the TPer SHOULD abort the session.
These cases include (but are not limited to):

a. Multiple consecutive control tokens of the same type where this repetition is not permitted. This
includes the Call, End of Data, and End of Session tokens.
b. Out of order control tokens
Any tokens encoded after an End of Session token SHALL be ignored by the TPer.

3.2.2.4 Invalid and Unexpected Tokens

3.224.1 Invalid Tokens
An invalid token is a token that is not supported by the TPer’s current communications configuration.

The list of invalid tokens is as follows:
1. Atoken whose size is greater than the TPer’'s MaxIndTokenSize property.
2. Atoken whose size is greater than the TPer's MaxAggTokenSize property.

3. A continued token, if the TPer does not support continued tokens (the ContinuedTokens
property is reported by the TPer as FALSE).

4. Transaction Control tokens, if the TPer does not support transactions (the MaxTransactionLimit
property is omitted from the TPer’s Properties method response).

5. Unsupported simple tokens (ie if an SSC does not require support for certain simple tokens).
6. A TCG Reserved token.

When an invalid token appears in a communication from the host, the TPer SHALL behave as follows:

Revision 2.00 Page 41 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

1. For regular sessions the TPer SHALL abort the session associated with the Packet that
contained the violating token. Results for methods that were completed before the violating
token was encountered SHALL be sent to the host.

2. For control sessions the TPer SHALL stop processing the packet where the violating token
occurs, and ignore the remainder of the packet. Results for methods completed before the
violating token was encountered SHALL be sent to the host.

3.2.2.4.2 Unexpected Tokens

An unexpected token is an otherwise valid and supported token that, based on the construction of a
Subpacket payload, is not a token of the type that is expected, by the construction of the Subpacket
payload, to occupy a particular position in that payload.

Begin Informative Content

For example, in the construction of a method invocation, the beginning of the Subpacket payload
(discounting empty atoms) has the following structure:

1. Call —the Call token

2. InvokingID — a byte token

3. MethodID — a byte token

4. StartList —the StartList token

If the beginning of the Subpacket payload was sent by the host as follows: Call token + uinteger token +
byte token + StartList token; then the uinteger token that appears between Call and the byte token
would be unexpected, as the expected token is a byte token.

End Informative Content

Given no other encoding errors in the Subpacket payload, or any other layer of the protocol stack, the
result of inclusion of an unexpected token SHALL be on e of the following, based on the conditions
stated in each item:

1. For aregular session, abort the session (Note that the TPer is always free to abort the session
at any time for any reason). For a control session, ignore the remainder of the packet. Results
for methods that were completed before the violating token was encountered SHALL be sent to
the host.

2. If the unexpected token appears outside of a method invocation, at any position in the
subpacket other than after a Call token and before the next End of Data token after that Call
token, abort the session for a regular session or, for a control session, ignore the remainder of
the packet. Results for methods that were completed before the violating token was
encountered SHALL be sent to the host.

3. If the unexpected token appears within a method invocation after the Call token but before a
the first StartList token after that Call token (ie in the method header) for a method invoked
within a regular session, the method fails and the TPer responds with an empty method result
list and a method status of NOT_AUTHORIZED. If the unexpected token appears within a
method invocation after the Call token but before the first StartList token after that Call token for
a method invoked within a control session, the method SHALL be ignored.

4. If the unexpected token appears within a method invocation after parameter StartList and
before the End of Data token (ie in the method parameter list), the method fails and the TPer
responds with a method result list that MAY be empty, and a method status of
INVALID_PARAMETER. This includes type mismatches for parameter values.

5. If the unexpected token appears between the StartList token that marks the beginning of the
Status List, and the EndList token that marks the end of the Status List, abort the session for a

Revision 2.00 Page 42 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

regular session or, for a control session, ignore the remainder of the packet. Results for
methods that were completed before the violating token was encountered SHALL be sent to the
host. Note that the status list is a list of unsigned integers, so the appearance of a signed
integer, or any other non-uinteger token, is unexpected.

If empty atoms are supported, then they SHALL NOT be unexpected tokens.

3.2.3 ComPackets, Packets & Subpackets

Begin Informative Content
The low-level interface transport layer handles the retransmission of damaged or incomplete
commands. Secure messaging, detailed in later sections of this specification, permits the host

application to secure its data from malicious attack, not to address hardware and low-level transport
issues. (Similarly with the session start up protocol, hashing is intended to detect tampering.)

The payloads of ComPackets convey tokenized byte streams (method calls, parameters, results, and
status codes) and other control information, such as ACKs and NAKs.

End Informative Content

3.2.3.1 Format

A ComPacket is the primary unit of communication transmitted as the payload of an interface
command. An interface command payload SHALL hold only one ComPacket. A ComPacket SHALL
NOT span multiple interface commands. A ComPacket MAY contain zero or more packets in its
payload.

A Packet is associated with a particular session and MAY hold zero or more subpackets.

A Subpacket MAY hold zero or more tokens. Tokens MAY span multiple subpackets and multiple
packets. However, subpackets SHALL NOT span multiple packets, and packets SHALL NOT span
multiple ComPackets.

3.2.3.2 ComPacket Format

Table 17 ComPacket Format

Bit
Byte 7 6 S 4 3 2 1 2
0 (MSB)
1 Reserved
5]
: (LSB)
4 (MSB) ComID T ery |
- (LSB)
6 (MSB) ComlID Extension e |
= (LSB)
8 (MSB)
9 OutstandingData
10
o (LSB)
1; (MSB) MinTransfer

Revision 2.00 Page 43 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

14

15 (LSB)

16 (MSB)

17

18

19 (LSB)
If Length >

0,20ton + Payload
19

Length (n)

3.2.3.2.1 ComPacket Header Fields

3.2.3.2.1.1 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.23.212 ComiD
The value in this field is the ComID of this ComPacket (see 3.3.2).

3.2.3.2.1.3 ComlD Extension
The value in this field is the ComID Extension of this ComPacket (see 3.3.3.1)

3.2.3.2.1.4 OutstandingData

For ComPackets sent by the TPer to the Host, this field contains the total number of bytes that the TPer
has available for the host on this ComID. This value is based on the data available in the TPer at the
point in time when the ComPacket is transmitted to the host by the TPer.

This total SHALL NOT include the data being transferred in the current ComPacket. This total SHALL
include Compacket/Packet/Subpacket overhead. If the TPer has no additional data for this ComID, this
value SHALL be 0x0000_0000. If the TPer has more than OxFFFF_FFFF bytes for this ComID, this
value SHALL be OxFFFF_FFFF. If the TPer is still processing a response but no additional data is ready
yet, this value SHALL be 0x0000_0001.

For ComPackets sent by the Host to the TPer, this field is reserved and SHOULD contain
0x0000_0000, and SHALL be ignored by the TPer.

3.2.3.2.15 MinTransfer

For ComPackets sent by the TPer to the Host, this field contains the minimum number of bytes that the
host SHALL request on this ComID in order to transfer a packet for any session associated with this
ComlID. This value is based on the data available in the TPer at the point in time when the ComPacket
is sent by the TPer.

This value SHALL include Compacket/Packet/Subpacket overhead. If the TPer has no additional data
for this ComID, or if the TPer has no minimum requirement, this value SHALL be 0x0000_0000. The
host application that manages this ComID SHOULD request at least MinTransfer bytes on the next IF-
RECV command that it sends for this ComID.

For ComPackets sent by the Host to the TPer, this field is reserved and SHOULD contain
0x0000_0000, and SHALL be ignored by the TPer.

3.23.2.1.6 Length
This field value is the number of bytes in the ComPacket payload.

3.2.3.2.2 ComPacket Payload Fields

Revision 2.00 Page 44 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.23.221 Data
This field contains a sequence of one or more packets.

3.2.3.3 Packet Format

Each packet is made up of the fixed fields noted in this section to allow acknowledgements, negative
acknowledgements, and/or data to be included in a single packet.

Table 18 Packet Format

Bit
Byte 7 6 5 4 3 2 1 0

0 (MSB)
1
2
3 Session
4 (0-3 =TSN, 4-7 = HSN)
5
6
7 (LSB)
8 (MSB)
9 SegNumber —
10
11 (LSB)
12 (MSB) Reserved
13 (LSB)
14 (MSB) AckType
15 (LSB)
16 (MSB)
17

Acknowledgement —
18
19 (LSB)
20 (MSB)
21

Length (n —
22 gth (n)
23 (LSB)
If Length >0, Payload
24ton+ 23

3.2.3.3.1 Packet Header Fields

3.2.3.3.1.1 Session

This field identifies the session number associated with this packet. The session number is composed
of two uinteger_4 values — the TPer session number and the Host session number (Session = TPerSN
concatenated with the HostSN). The TPer Session Number is sent first; the Host Session Number is
second. Consequently, the same session number is used for communications between both parties.

3.2.3.3.1.2 SegNumber

This is an incrementing counter that starts at 1 and increments until 2%%-1, which identifies the number
of the packet within the session and defines the ordering of transmitted packets.

Revision 2.00 Page 45 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

If packet numbering is supported, the message recipient SHALL ignore a packet with an equal or lower
SegNumber value than any previously acted-upon packet. In addition, wrapping of the SeqNumber
SHALL result in the session being automatically aborted.

Each communicator SHALL maintain multiple SeqNumber counts, including that of the last packet
acknowledged, the next packet expected, and the last packet transmitted.

3.2.3.3.1.3 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.3.3.1.4 AckType
This field identifies the usage of the Acknowledgement field.

a. This SHALL be 0x0001 if the Acknowledgement field contains a packet acknowledgement
(ACK).

b. This SHALL be 0x0002 if the Acknowledgement field contains a packet negative
acknowledgement (NAK).

c. This SHALL be 0x0000 if no packets are being acknowledged or negative acknowledged, and
the value of the Acknowledgement field SHALL be zeroes.

3.2.3.3.15 Acknowledgement
The meaning of this field is determined by the value of the AckType field.

a. If the value of the AckType field is 0x0001, then this number SHALL be the SeqNumber of the
last packet successfully received by the receiver.

b. If the value of the AckType field is 0x0002, then this SHALL be the SeqNumber of the packet at
which the receiver wishes the sender to begin retransmission. Generally, the receiver puts a
value of the last known good packet received plus one.

i. For AckType field value of 0x0002, the communicator SHALL NOT NAK a SeqgNumber
less than or equal to the last ACKed SeqNumber.

c. Ifthe AckType field is 0x0000, then the value of this field SHALL be zeroes.

3.2.3.3.1.6 Length
This field identifies the number of bytes in the Payload field.

3.2.3.3.2 Packet Payload Fields

3.233.2.1 Data
This field contains a sequence of one or more subpackets.

3.2.3.4 Subpacket Formats
Begin Informative Content

Subpackets are used to package data for transmission between the host and the TPer, as well as to
exchange credits between communicators. The different types of Subpackets are enumerated in Table
19

End Informative Content

Revision 2.00 Page 46 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

Table 19 Subpacket Types

Subpacket Type

Kind Field Value

Data

0x0000

Credit Control

0x8001

3.2.3.4.1 Data Subpacket Format

Table 20 Data SubPacket Format

TCG Copyright 2011

Bit
Byte 7 6 5

o

(MSB)

Reserved

(LSB)

(MSB)

Kind

(LSB)

(MSB)

O (0[N0~ |W(N |-

=
o

11

Length (n)

(LSB)

If Length > 0,

12 to (n+(-n

modulo 4)) +
11

Payload

3.23.4.1.1 Data Subpacket Header Fields

3.2.3.4.1.1.1 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.34.1.1.2 Kind

This field identifies the type of the subpacket. For data subpackets, this field is set to zeroes.

3.2.3.4.1.1.3 Length

The field identifies the number of bytes in the Data portion of the subpacket Payload. This value does
not include the length of the Pad portion of the Payload.

3.2.34.1.2 Data Subpacket Payload Fields

3.2.3.4.1.2.1 Data
This field contains the stream tokenization.

3.2.3.4.1.2.2 Pad

Revision 2.00

Page 47 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The pad field ensures that the boundaries between subpackets (and therefore packets) are aligned to
4-byte boundaries. The number of pad bytes SHALL be (-Subpacket.Length modulo 4). This field
SHALL be zeroes.

Begin Informative Content

The receiver of a Subpacket is able to unambiguously determine how many bytes of real data there are
by examining the Length field in the Subpacket header.

Note that the standard C library does not handle the modulo operation with negative numbers properly.

End Informative Content

3.2.3.4.2 Credit Control Subpacket Format
For information on the use of Credit Control Subpackets, see Flow Control in Section 3.3.8.

Table 21 Credit Control Subpacket

Bit
Byte 7 6 5 4 3 2 1 0

0 (MSB)
1 —_—
2 Reserved —]
3 —_—
4
5 (LSB)
6 (MSB) Kind
7 (LSB)
8 (MSB)
9

Length —]
10 g
11 (LSB)
12 (MSB)
13 Credit —
14
15 (LSB)

3.2.3.4.2.1 Credit Control Subpacket Header Fields

3.2.3.4.2.1.1 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.3.4.2.1.2 Kind
This field identifies the type of the subpacket. For Credit Control Subpackets, this field is set to 0x8001.

3.2.3.4.2.1.3 Length

The field identifies the number of bytes in the in the Credit Control Subpacket payload. This is always
0x00000004 for a subpacket of this type.

3.2.3.4.2.2 Credit Control Subpacket Payload Fields

Revision 2.00 Page 48 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.2.3.4.2.2.1 Credit

This field identifies the number of bytes to credit. This is an additional number of bytes that the receiver
of the Credit Control Subpacket MAY be send to the stream (see 3.3.8.2).

3.2.3.5 Secure Messaging Packet Format
Begin Informative Content

Secure messaging enables confidentiality of the packet payload and integrity/authenticity of the entire
packet (including header). Secure messaging comes in three types:

a. Confidential Messaging — this provides encryption on the message being transmitted.
Confidential Messaging prevents the packet contents from being read by an intruder between
the packet source and destination.

b. Integrity/Authenticity Checking — this provides the ability to detect corruption and/or tampering
with packets in a session.

c. Confidential Messaging with Integrity/Authenticity Checking — this provides encryption on the
message being transmitted and the added ability to detect corruption and/or tampering with
packets in a session.

End Informative Content

A secure messaging packet SHALL be used when encryption or integrity/authenticity checking (or both)
is enabled for a session. The format of the Secure Messaging Packet follows that defined in Table 18.
The contents of the Secure Messaging Packet payload field are displayed in Table 22 and Table 23.

Table 22 Secure Messaging Packet — Payload Field

Field Type
1\ bytes
SecureData bytes
MAC bytes

Table 23 Secure Messaging Packet Payload— SecureData Field

Field Type
DatalLength uinteger
Data bytes
Pad bytes

3.2.35.1 Secure Messaging Packet Header Fields

3.2.35.1.1 Session
See Section 3.2.3.3.1.1.

3.235.1.2 SegNumber
See Section 3.2.3.3.1.2.

3.2.35.1.3 Reserved
See Section 3.2.3.3.1.3.

Revision 2.00 Page 49 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.235.14 AckType
See Section 3.2.3.3.1.4.

3.2.35.1.5 Acknowledgement
See Section 3.2.3.3.1.5.

3.235.1.6 Length
See Section 3.2.3.3.1.6.

3.2.35.2 Secure Messaging Packet Payload Fields
This section describes the fields presented in Table 22.

3.2.35.2.1 Initialization Vector (V)

This field contains the Initialization Vector (IV) input for the selected encryption or integrity checking
mode. For GCM, GMAC, and CCM, the IV is 8 bytes long and SHALL contain a unique value with each
encryption invocation. A simple algorithm is for the sender to use the sequence number as the IV.

For AES-CBC encryption, the IV SHALL contain a random 16-byte value.
For all other modes, the IV SHALL have zero length.

3.2.3.5.2.2 SecureData
This field contains the encrypted and/or integrity-protected data being transmitted in the packet.

3.2.3.5.2.2.1 Datalength
This field is the length of the SecureData's Data field, in bytes.

3.2.3.5.2.2.2 Data
This field contains the encrypted or integrity-checked subpackets

3.2.35.2.2.3 Pad

This field contains any necessary padding required to fulfill the alignment constraints for the encryption
mode in use. For AES-CBC encryption, the length of the Pad field SHALL include a number of padding
bytes such that the total length of the Data field plus the Pad field is congruent to zero mod 16. For
GCM and CCM, there is no required padding.

The value for pad bytes SHALL be 0x00.

3.2.35.2.3 Message Authentication Code (MAC)

This field contains a message authentication code that protects the integrity of the packet. The MAC
SHALL encompass the entire Packet header, including the Reserved field, 1V, and, for encrypted data,
the ciphertext (the value of the SecureData field, which is made up of the Data Length, Data, and Pad
fields), or, for unencrypted data, the unencrypted SecureData field.

3.2.4 Methods

Begin Informative Content
This section describes the syntax and encoding of method calls.
End Informative Content

3.2.4.1 Method Syntax
A method invocation is made up of the following parts:

Revision 2.00 Page 50 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

1. Method Header — The method header is made up of the InvokinglD and the MethodID, and
identifies what method is being called and on what the method is operating.

1.

InvokinglID — This is the 8-byte UID of the table, object, or SP upon which the method is
being invoked.

a. For SP methods invoked within a session, the InvokinglD SHALL be 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x01, which is used to signify “this SP”.

b. For methods invoked at the Session Manager Layer, the InvokingID SHALL be 0x00
0x00 0x00 0x00 0x00 0x00 0x00 OxFF, known as the "SMUID".

c. For other methods, this is the 8-byte UID of the table or object upon which the method
is being invoked.

MethodID — This is the 8-byte UID of the method being invoked.

a. For methods invoked within a session, this SHALL be the UID column value of the
object that represents the methed as assigned in the MethodID table.

b. For Session Manager Layer methods, this SHALL be the UID as assigned in Table
241. There SHALL NOT be rows in the Method 1D table that represent these methods.

2. Method Parameters — This is a list of the parameters submitted to the method. These
parameters MAY be one of two types.

1.

Required parameters — These parameters are required to be submitted to the method
invocation. These parameters SHALL appear first in the method invocation, ahead of any
optional parameters, and SHALL be submitted in the order in which they are listed in a
method's signature as defined in this specification.

Optional parameters — These parameters SHALL NOT be required to be submitted to the
method invocation. Optional parameters that are submitted to a method invocation SHALL
be submitted after all required parameters, and SHALL appear in the order defined in this
specification.

a. Optional parameters are submitted to the method invocation as Named value pairs.
The Name portion of the Named value pair SHALL be a uinteger. Starting at zero,
these uinteger values are assigned based on the ordering of the optional parameters
as defined in this document.

b. The first optional parameter in a method signature SHALL be represented by the
"name" zero (0x00) in the Named value pair when that method is invoked, and SHALL
thus have the format "0x00 = value" when that method is invoked.

c. [Each optional parameter in a method signature after the first SHALL be represented by
the uinteger of the previous optional parameter indicated in the method's signature
incremented by one. Thus, the second optional parameter in an invocation of a
particular method SHALL have the format "0x01 = value".

3.2.4.2 Method Encoding

A method invocation is made up of a sequence of tokens that are sent from the application to the TPer,
and from the TPer to the host for Session Manager method responses, as follows:

1. Call token — A Call token is transmitted to indicate that a method invocation is to follow.

2. Method Header — This is the encoding of the InvokingID and the MethodID. This value is:

1. InvokinglID — The InvokingID is a bytes token representing the 8-byte value that is the
first part of the Method Header being transmitted.

Revision 2.00 Page 51 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

2. MethodID — The MethodID is a bytes token representing the 8-byte value that is the
second part of the Method Header being transmitted.

3. Parameters — The parameters are submitted to a method invocation as a list. The parameter
list follows this format:

1. Start List token — This identifies the beginning of the list of parameters.

2. Required parameters — This is the set of parameters that are required to be sent to a
method. The encoding of required parameters is dependent on the type associated
with that parameter, as defined by the method signature and the context in which the
method is being invoked.

3. Optional parameters — this is the set of zero or more Named value pairs that MAY be
sent to the method to represent the method's optional parameters. Each optional
parameter SHALL be made up of the following parts:

1. The Start Name token, which indicates the start of this optional parameter.
2. The encoded name, which in the case of optional parameters is a uinteger.

3. The encoded value. The encoding of the parameter value is dependent on the
type associated with that parameter, as defined by the method signature and the
context in which the method is being invoked.

4. The End Name token, which indicates the end of this optional parameter
4. End List token — this identifies the end of the list of parameters.

4. End Of Data token — The End of Data token is transmitted to indicate that the method
invocation is ended.

5. Status Code List — This is the status list, a list of values of type uinteger, which contains the
status codes expected from the host's invocation of the method. These status values are
encoded using List tokens.

1. The first value in the list SHALL be 0x00 for a method that the host expects to
complete properly. For a method that the host wishes to abort, the host SHALL NOT
include a value that is 0x00 as the first value in the status list, which SHALL cause the
TPer to abort processing on that method and return that non-0x00 value as the first
value in the status list.

2. The second and third values in the status list are reserved, and are defined in this
specification to be 0x00 and 0x00 and SHOULD be ignored by the TPer.

Except for the Session Manager methods, each method call SHALL have a response that is a
sequence of tokens that are sent from the TPer to the host as follows.

1. Start List token — This identifies the beginning of the list of results.

2. Output Results — This is zero or more token sequences that represent the response to the
method, as defined in the method signature.

End List token — This identifies the end of the list of results.
4. End Of Data — The End of Data token is transmitted to indicate that the result list has ended.

Status List — This is the status list, a list of values of type uinteger, which contains the status
codes expected from the host's invocation of the method. These status values are encoded
using List tokens.

i. If the host invoked the method with a status list whose first uinteger was 0x00, then the
first value in the status list SHALL always be the status of the method, as described in
5.1.5. If the host invoked the method with a status list whose first byte was not 0x00,

Revision 2.00 Page 52 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

then the first value in the status list SHALL contain the same value that was sent by the
host in the first uinteger of the host's status list.

ii. The second and third values in the list are uintegers reserved for use by the TCG, and
are defined in this specification to be 0x00 and 0x00 and SHOULD be ignored by the
host.

iii. Additional values MAY be returned in the status list, as long as the first three values in
the status list are returned as required by this specification.

Method responses SHALL be returned for all method invocations or method invocation attempts within
a session. Responses for method invocation attempts of methods not recognized by the TPer or that
result in some other failure condition MAY return an empty method result (the output result is an empty
list) and an error code. Unrecognized method invocation attempts outside of Regular sessions SHALL
be ignored by the TPer — in these cases, no response is sent.

Session Manager protocol layer method invocations that are recognized but fail SHALL result in the
normal response format for that method, accompanied by an error status code. Session startup
methods that fail in this way SHALL have returned the expected method response, but that method
SHALL have only the identifying parameters (Host, SP) and an error status code. |If the identifying
parameters (particularly the Host parameter) are invalid (i.e. of the incorrect type), the TPer MAY ignore
the method.

The TPer MAY begin sending the response as soon as enough parameters have been received to
prepare a response.

3.2.4.3 Method Result Retrieval Protocol

A method is invoked by tokenizing the method call and its parameters as described in previous
sections, using the token encoding format and Subpacket-Packet-ComPacket format. The host sends
the ComPacket to the TPer in an IF-SEND command. Multiple IF-SEND commands MAY be required
to encompass the entirety of a method invocation or series of method invocations and their related
data.

The host then polls the TPer by transmitting IF-RECV commands. When the TPer has packaged its
response, it transmits the tokenized results to the host in the payload of an IF-RECV command.
Multiple IF-RECV commands MAY be required to retrieve all of the results of a particular method
invocation or series of method invocations.

For additional information on the operation of the IF-SEND and IF-RECV commands, see the
descriptions for those commands as detailed in the appropriate interface specifications.

3.2.5 Tables

Tables SHALL be stored in SP-specific parts of the secure storage area of the TPer. The SP-related
secure storage area(s) of a TPer SHALL only be accessible via the host interface-specific IF-SEND and
IF-RECV commands. Table content SHALL NOT, unless otherwise stated, be part of the User
Addressable Logical Block Address space on the Storage Device and therefore is not affected by the
partitioning or formatting of the Storage Device by the host operating system.

Begin Informative Content

All persistent data for SPs are stored in tables — the only data for an SP that persists past the end of a
session is the data that is stored in tables. Tables survive operations on user-areas, such as
reformatting.

A table is defined as a grid with columns and addressable rows. At each column and row intersection
there is a cell. All the cells in a column have the same type. The column types for a host-created table
are specified at table creation.

For some SSCs, the number of rows in a table whose size is not specified is completely determined
when it is created (additional rows are not able to be allocated), but other SSCs define tables whose
size is not specified with a dynamically allocable number of rows. If an SSC permits additional rows to

Revision 2.00 Page 53 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

be added to a table, then the number of rows specified at table creation is the initial number of rows
allocated for that table.

End Informative Content

A table name or table column name MAY be up to 32 bytes in length. By convention, the names
assigned in this document consist of ASCII characters, the first of which is a letter and others are
letters, digits or underscores. Adjacent underscores do not occur. All names are case sensitive.

Within an SP, tables MAY be created and deleted. For each table, rows MAY be created and deleted
(except within a Byte table — see 3.2.5.1), but columns are created only when the table is created.
Tables MAY contain zero or more rows. A specific Security Subsystem Class MAY disallow the
creation of any of these.

Each SP has a set of metadata tables (such as the Table table, Column table, etc.) that describes all
the tables of the SP including the metadata tables themselves.

Access control provides a means to limit the methods that MAY be successfully invoked on tables, or
particular rows or cells of tables.

Some table columns represent control points for functionality provided by an SP, either based on the
templates incorporated into the SP, or on the underlying TPer implementation. If the functionality
represented by a particular column or set of columns as defined in this Specification is not provided by
an SP, then access to the table columns that represent that functionality MAY be restricted.

3.2.5.1 Kinds of Tables
There are two kinds of tables:
a. Byte table. Byte tables provide raw data storage. A byte table has one unnamed column
of type bytes_1. The address of the first row in a byte table is 0. Upon creation, the value
of all cells in a byte table SHALL be 0x00. The rows of a byte table SHALL NOT be

allocated or freed (i.e. via CreateRow or DeleteRow). Byte table rows are addressed by
row number.

b. Object table. Object tables provide storage for data that binds a set of methods and
access controls to that data. When a table is created it SHALL be allocated a fixed number
of fixed-size columns. Zero or more columns are designated as the unique set of values
(see 3.2.5.4).

For Object tables:

a. A newly created table is initially empty and rows SHALL be created using the CreateRow
method, before they are usable.

b. There is always a UID column of type UID. In object tables, rows are addressed by UID.

3.25.2 Objects
Begin Informative Content

An object is any row of an object table. The particular object type is defined by the object table in which
the object occurs. The columns of the object table define the contents of each object in it.

For a specific SP, there are methods on the SP itself, methods that act on the tables and have the
whole table as their possible scope, and methods for each of the objects within the SP. Object-specific
ACLs are applied to the methods capable of manipulating that object’s data (see 3.4.2).

End Informative Content

Revision 2.00 Page 54 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.2.5.3 Unique Identifiers (UIDs)

Each object table has a column named UID. This column contains an 8-byte unique identifier for that
row. Each row has an SP-wide unique value in this column. This value is never shared with another
row, and is never reused by that SP. The TPer SHALL guarantee that UIDs are unique across the
entire SP anytime that a UID is generated, and that UIDs SHALL NOT be re-used even if an object is
deleted and the UID is no longer in use.

The UID column is present to provide anti-spoofing capability, and to provide a means to address these
rows. New UIDs are assigned when rows are created and old values are discarded when rows are
deleted. If all UIDs have been used, no more rows are able to be created.

Each table is also represented by a UID. A table’s UID is derived from the UID of that table in the
Table table. The Table table is an object table in which each row is a table descriptor object that
stores metadata about the associated table.

The bytes in a UID SHALL be utilized as follows:

a. The first four bytes of a table row’s UID SHALL be the “containing table” portion of the UID
and the last four bytes SHALL be assigned in a TPer-specific manner.

b. UIDs of tables SHALL be assigned as follows:

i. The UIDs of table descriptor objects (the table’s row in the Table table) SHALL be
0x00 0x00 0Ox00 0x01 XX XX XX XX, where XX XX XX XX represents the values
assigned by the TPer to that object’'s UID, or assigned by this specification or an

SSC for pre-defined tables. For example, The Table table’s UID SHALL be 0x00
0x00 Ox00 0x01 0x00 Ox00 0x00 Ox01

ii. The UID used to reference the actual table (rather than that table’s row in the
Table table) SHALL be XX XX XX XX 0x00 0x00 0x00 0x00, where XX XX XX XX
are the last four bytes of the UID from that table's row in the Table table. Four
0x00's as the last four bytes of a UID that does not have four 0x00's at the
beginning are references to a table.

iii. All object UIDs SHALL have their high four bytes be the high four bytes of the
containing table’s UID. So, references to rows in a table are assigned UIDs based
on the UID of the containing table. For instance, references to the rows in table XX
XX XX XX 0x00 0x00 0x00 0x00 are assigned UIDs XX XX XX XX yy yy yy yy
where the first four bytes of the containing table UID and of the row are the same.

All UIDs with their first four bytes equal to 0x00 0x00 0x00 0x00 are reserved for use by the TCG and
SHALL NOT be assigned by the TPer.

When necessary to refer to the SP with a UID, as when an SP method is invoked, a UID of 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0xO1 is reserved to signify “this SP”.

For each table defined in this specification, UIDs with last four bytes between 0x00 0x00 0x00 0x01
and 0x00 0x01 0x00 0x00 SHALL be reserved for use by the TCG.

A NULL UID reference is all zeroes (0x00 0x00 0x00 0x00 0x00 0x00 0Ox00 0x00). This is used to
indicate that no object is being referenced.

3.2.5.4 Unique Column Value Combinations

In addition to the UID column, an object table MAY also have one or more columns designated by the
host (for host-created tables) or by the specification (for tables specified in this document) as required
to be unique.

If a table has a column or set of columns defined as unique, then each row of the table SHALL have a
value or combination of values in the indicated column(s) that is unique within the table for those
column values. When more than one column is marked as participating in this uniqueness requirement,
each of these columns participate in the unique value ("multi-column unique value™).

Revision 2.00 Page 55 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The TPer is not required to keep rows of the table sorted by these unique values.

3.2.6 Templates

Begin Informative Content
This document covers the following Templates:
a. Base Template: Provides the tables and methods common for all SPs.

b. Admin Template: Provides administrative control over other SPs and the TPer settings as
a whole, and control over Issuance of new SPs.

c. Clock Template: Contains tables and methods specialized for forensic and cryptographic
clocks.

d. Crypto Template: Contains functional extensions to the Base SP cryptographic and
procedural capabilities.

e. Locking Template: Provides tables and methods for storage encryption/decryption and
read/write lock state control.

f Log Template: Contains tables and methods specialized to forensic logging.

End Informative Content

3.3 Interface Communications
Begin Informative Content
The TCG Storage Architecture Core Specification describes the architecture and main command set in

an interface protocol-independent way. The implementation of this specification on various interfaces
does have some differences (see [2]).

This section abstracts out the common features of these commands that serve as a requirement for an
interface protocol to implement the present specification. These sections address communications on
protocols 0x01 and 0x02 only (see Table 25).

The following assumptions are made regarding the interface commands:

a. The interface commands have two parts: (1) a command block and (2) a data payload.
Each host interface protocol has its own minimum payload size. The payload size is not
related to the 'logical block size' of the user data on the medium of the Storage Device. See
the definitions of IF-SEND and IF-RECYV for details.

b. There is at least one command in the interface protocol that transfers data from the host to
the Storage Device. These commands are called IF-SEND.

c. There is at least one command in the interface protocol that transfers data from the Storage
Device to the host. These commands are called IF-RECV.

The abstracted command block of the interface commands are described in the format defined in Table
24.

The mapping of the IF-SEND and IF-RECV commands to specific interface protocol commands are
described in [2].

End Informative Content

Table 24 Interface Command — Command Block
Command Either IF-SEND or IF-RECV.

Revision 2.00 Page 56 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Between 0x01 and 0x06 (see

Protocol ID Table 25)

Transfer Length: at least 2
bytes (the length of this field
varies by host interface)

The amount of data to be
transferred.

The ComlD to be used, for
ComlID Protocol IDs 0x01, 0x02, 0x06
(see 3.3.2 and 3.3.3).

Table 25 Protocol IDs

ID Description

0x00 See [6]

0x01 Defined in this document
0x02 Defined in this document
0x03 Reserved for TCG

0x04 Reserved for TCG

0x05 Reserved for TCG

0x06 Reserved for TCG

All others | See [6]

IF-SEND and IF-RECV commands to a Protocol ID between 0x00 and 0x06 that the TPer does not
support SHALL result in the IF command failing with a status of Invalid Security Protocol ID Parameter
(see [2]).

3.3.1 Communicating With the TPer Through the Interface Protocol
Begin Informative Content

The communication between the Host and the TPer takes place through the use of IF-SEND and IF-
RECYV as illustrated in Figure 3 . Most of the useful communication between a Host and a TPer is
encapsulated in the payload of these commands.

End Informative Content

Revision 2.00 Page 57 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Figure 3 TPer-Host Communication

IF-SEND
IF-SEND
Data Block
CommaId Block (Payload)
IF-SEND i ;
PrtocollD 11 ToG SWG Protocol |
Transfer Length i
ComlD | i
-
HOST M TPER
-t
IF-RECY |
Prtocall® 1 ToG SWG Protocol |
Transfer Length i
ComlD ’
T IF-RECVY
c 'F'REngl) Data Block
omman oc (Payload)

3.3.2 The ComID

Begin Informative Content

The ComiID is used to select the correct response data for the host. The ComID allows the TPer to
identify the caller of the IF-RECV command and appropriately populate the payload for the command.

For dynamic assignment of ComIDs, in order to open a session with a particular SP on a TPer, the host
application starts by requesting a ComID from the TPer if it doesn't already have one that's active.

The TPer then issues a ComID to the host application. Once the host application has a unique ComID,
the host is able to initiate the process of starting a session.

Once the session is started, the TPer associates the session number with the ComID. In this way,
when an IF-RECV is sent to the TPer using Protocol ID of 0x01, the TPer is able to respond with a
payload containing only the packets for the session numbers associated with the ComID. This allows
for multiple applications to be simultaneously communicating with the TPer without interfering with one
another.

In some situations it is useful to allow for a single entity, called the Host Session Manager, to manage
the TPer communications for a set of different applications running on the host.

To the TPer, communication with a single host application is no different than communication with a
Session Manager that acts as an intermediary for multiple host applications with which the TPer is
communicating.

End Informative Content

Revision 2.00 Page 58 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

To enable a single host application to manage communications for multiple other applications, multiple
sessions MAY be opened with a single ComID. All the sessions opened with a given ComID SHALL
be associated with it.

An application MAY open a single session to the TPer for itself, multiple sessions for itself, multiple
sessions for one or more other applications, multiple sessions for itself and one or more other
applications, or any other combination.

When an IF-RECYV is sent to the TPer using a particular ComID, the TPer SHALL respond by putting
packets from the sessions associated with the ComID into the response. If there are more pending
responses from the various sessions associated with the ComID than fits the IF-RECV, it is up to the
TPer to determine which packets to include.

Begin Informative Content

The number of packets/subpackets that are included in the response is a function of the amount of
available responses, the transfer length of the command, and the flow control mechanism. The amount
of data still remaining to be retrieved and the minimum transfer length required to retrieve at least one
packet, at the time the ComPacket was generated, is reported in the ComPacket header.

End Informative Content

3.3.3 ComID Management

Begin Informative Content

A mechanism is required to enable dynamic management of ComIDs so as to minimize the chances of
two host applications using the same ComiID in the rare occasions in which there are ComlID conflicts.
Support for dynamic ComID management is SSC-specific.

End Informative Content

ComIDs SHALL be assigned based on the allocation presented in Table 26.

Table 26 ComID Assignments

ComlID Description
0x0000 Reserved
0x0001 Level 0 Device Discovery
0x0002-0x07FF Reserved for TCG
0x0800-0x0FFF Vendor Unique
ComID management (Protocol ID=0x01, and 0x02) -
0x1000-0xFFFF these are “non-reserved” ComIDs.

The lower 4096 out of the possible ComIDs SHALL be reserved — 0-2047 are reserved for TCG
use/assignment, and 2048-4095 are reserved as vendor-unique. The other, non-reserved ComIDs
SHALL be used for multiplexing the TPer responses to IF-RECVs.

A ComID SHALL be in one of the following three states:

1. Inactive: The ComID has not been assigned to anyone since the last hardware reset or power
cycle, or because the ComlID was retired due to all sessions on the ComID being closed.

2. Issued: The ComlID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using this ComID.

3. Associated: One or more open sessions are associated with the ComID.

Revision 2.00 Page 59 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ComlIDs that are either in the Issued state or the Associated state are considered Active. The state
diagram in Figure 4 shows these states and the possible transitions among them.

Figure 4 ComlID State Transition Diagram

Inactive ; Issued Associated

Active

The possible state transitions are:

a.

b.

Inactive to Issued: A ComID SHALL transition from the Inactive state to the Issued state
when it is returned to the host during a successful execution of the GET_COMID command.
Issued to Associated: A ComID SHALL transition from the Issued state to the Associated
state once a session is open using that ComID. This occurs at the point when session
startup has successfully completed.
Issued to Inactive: A ComID SHALL transition from Issued to Inactive when any one of the
following conditions hold:
i. There is a hardware reset or power cycle.
ii. The host does not start a session using the ComID within MaxComIDTime from the
ComID being issued. MaxComlIDTime defines a limit on the amount of time a
ComID is able to exist in the Issued state without an active session. A TPer's
MaxComIDTime value is retrieved using the Properties method. Support for
MaxComIDTime is SSC-dependent.
Associated to Inactive: A ComID SHALL transition from Associated to Inactive when any
of the following conditions are met:
i. There is a hardware reset or power cycle.
ii. After all sessions associated with the ComlID are closed, and no session startup
activities are in progress.

In order to minimize the possibility of conflict, the ComID issuance mechanism SHALL have the
following two characteristics:

a.

A ComiD that is in an active state SHALL NOT be issued again. That is, only ComIDs that
are in the inactive state SHALL be returned to the host as a response to the GET_COMID
command.

The TPer SHALL issue ComlIDs in a sequential manner (wrapping around cyclically as
needed).

In addition to the above transitions, the TPer MAY transition a ComID to the Inactive state at any time
for any reason.

Revision 2.00 Page 60 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.3.3.1 Extended ComID
Begin Informative Content

Despite all the mechanisms in place, there is always the possibility that some application holds on to its
ComlD for an extended period of time and not recognize that the ComID has become inactive and
(possibly) subsequently issued to another application. Since there are only 61440 normal non-reserved
ComiDs, the probability of this occurring is not small enough to be neglected. To help deal with this
issue the TPer makes use of Extended ComIDs.

End Informative Content

Extended ComIDs SHALL be 4 bytes long and have the first 2 bytes equal to the ComID. The second 2
bytes make up the ComID Extension.

The MSB of the ComID is the first byte (MSB) of the Extended ComID, and the LSB of the ComID is the
second byte of the Extended ComID. The TPer arbitrarily generates the remaining 2 bytes (the ComID
Extension) every time a ComID is issued. The GET_COMID command returns the 4-byte Extended
ComiD to the host. There MAY be many Extended ComIDs associated with the same ComID over the
life of the TPer. The ComID Extension associated with reserved ComIDs (0-4095) SHALL always be
0x0000.

The ComlID Extension value of OxFFFF is reserved to indicate that the host has attempted to
communicate using an inactive ComlID.The ComlID Extension for ComlIDs that are not dynamically
assigned by the TPer SHALL be set to 0x0000.

The Extended ComID SHALL be in one of the following states
1. Inactive: The associated ComID is in the inactive state.

2. Issued: The Extended ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using the
associated ComID.

3. Associated: One or more open sessions were open with the ComID. These sessions are said
to be associated with the Extended ComiID.

4. Invalid: The Extended ComID has not been issued since the last power cycle/reset, or has
become inactive and there exists another Extended ComlID with the same associated ComID in
one of the active states (Issued or Associated).

The Extended ComlD is used to determine if an application is using a conflicting ComiD, i.e., if the
ComiD the application is using has become inactive and subsequently assigned to another application.
When this happens, the application’s Extended ComID SHALL be invalid. When the application makes
an inquiry to the TPer using the Extended ComID, the TPer SHALL respond with an indication that the
Extended ComlID is invalid.

When the TPer receives a ComPacket (via IF-SEND) that contains a ComPacket with an invalid
Extended ComID, the TPer SHALL ignore and discard the payload of the ComPacket.

When the host receives a ComPacket (via IF-RECV) that contains an unexpected Extended ComiD,
this is an indication to the host that it is using an invalid Extended ComID and that the ComID is being
used by another host or application. The host SHOULD assume that any sessions it had open on that
ComlID have been aborted. To resume communications with the TPer, the host SHALL acquire a new
ComlD.

3.3.3.2 IF-SEND to Inactive or Unsupported Reserved ComID

If the host sends an IF-SEND command to the TPer with a ComID value in the non-reserved range (see
Table 26), and the ComID is in the Inactive state:

a. If the TPer supports dynamic ComID allocation, the TPer SHALL:

Revision 2.00 Page 61 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

i. Accept all data in the payload of the IF-SEND command and complete the
command normally with good status (provided there are no other errors which
would cause the command to abort at the interface level)

ii. Ignore and discard the entire payload of the IF-SEND command.
b. If the TPer does not support dynamic ComID allocation, the TPer SHALL:
i. Report “Other Invalid Command Parameter’[2] OR

ii. Perform the action described above for TPers that support dynamic ComlID
allocation.

If the host sends an IF-SEND command to the TPer with a ComID value in the reserved range(see
Table 26), and the ComID is not supported by the TPer, the TPer SHALL:

a. Report “Other Invalid Command Parameter” [2].

3.3.3.3 IF-RECV to Inactive or Unsupported Reserved ComID

If the host sends an IF-RECV command to the TPer with a ComID value in the non-reserved range (see
Table 26), and the ComID is in the Inactive state:

a. If the TPer supports dynamic ComID allocation, the TPer SHALL:

i. Respond to the IF-RECV with a zero-length ComPacket (a ComPacket header
only) in the IF-RECV payload. The fields in the ComPacket header SHALL contain:

1. ExtendedComiD = {<ComlID from SP_Specific field of CDB>, OXFFFF}

a. Note: The value of OxFFFF in bits 15 through 0 of the
ExtendedComID field is an indication to the host that the
ComiD it is attempting to use is inactive, and that it should not
expect to receive any data on that ComID.

2. OutstandingData = 0x00000000
3. MinTransfer = 0x00000000
4. Length = 0x00000000

ii. Complete the command normally with good status (provided there are no other
errors which would cause the command to abort at the interface level)

b. Ifthe TPer does not support dynamic ComID allocation, the TPer SHALL.:
i. Report “Other Invalid Command Parameter’[2] OR

ii. Perform the action described above for TPers that support dynamic ComlID
allocation.

If the host sends an IF-RECV command to the TPer with a ComID value in the reserved range (see
Table 26), and the ComID is not supported by the TPer, the TPer SHALL:

a. Report “Other Invalid Command Parameter”[2].

3.3.4 Protocol Layers
Begin Informative Content

In order to describe the overall process for establishing communication with the TPer and initiating a
session to an SP, it is necessary to partition the protocol stack into layers. The commands in each

Revision 2.00 Page 62 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

layer differ in the amount of functionality available. The lower level allows only one-way communication
(TPer to host) and uses only simplistic byte field responses. The higher layers have two-way
communication and use packets and methods.

Figure 5 depicts the protocol layers.

Figure 5 TPer-Host Communication Protocol Layers

TPer Host

Session
SP Application
B Management [
Session
Manager
| communicaton [
TPer
_____________ ™Per
TPer
Interface Interface Device
Controller Driver
Storage Transport Host Bus
Device Adapter

a. Session layer: This layer is entered when a session is successfully established between
the host application and an SP in the TPer. Most of the commands and functionality
specified in the TCG Storage Architecture Core Specification operate in this layer.
Payloads in this layer are packetized and tokenized.

b. Management layer: This layer deals with establishing a session between an SP and a
host application. Payloads in this layer are packetized and tokenized.

c. Communication (Com) layer: In this layer the host application already has an assigned
ComlID that is used for establishing two-way communication. It is a bidirectional
communication/control layer. This layer is used for management of ComIDs and dealing
with error conditions and other Storage Device management issues.

d. TPer layer: This is the first entry point to the TPer. This is a “one-way” communication
layer. That is, only IF-RECV commands are dealt with in this layer. The host application
does not have a ComID yet. There is a set of reserved ComIDs that is used to invoke
special commands at this layer.

e. Interface layer: This portion of the stack contains the protocol for allowing the host to
control a specific Storage Device. The interface protocol must support IF-SEND and IF-

Revision 2.00 Page 63 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

RECV, i.e., have commands with the properties that are required for these TCG
commands.

f. Transport layer: This portion of the stack is responsible for transporting the data from one
particular host to one particular Storage Device and vice-versa. An example is Fibre
Channel.

End Informative Content

3.3.4.1 Transport Layer
Begin Informative Content
This layer of the protocol stack is responsible for transmitting the data from one particular host to one
particular Storage Device and vice-versa. There are no specific interactions with this layer described in
the TCG Core Specification. The only requirement is that this layer interact with the Interface layer in

such a way as to guarantee that the order of commands sent from a single host to a single Storage
Device are preserved.

End Informative Content

3.3.4.2 Interface Layer

The commands at this layer are the IF-SEND and the IF-RECV commands. The interface controller on
the Storage Device SHALL identify these commands and send them to the TPer level.

All commands that map to IF-SEND and all the commands that map to IF-RECV that have the protocol
ID field in the set {0x01, 0x02, 0x03, 0x04, 0x05, 0x06} SHALL be sent to the TPer.

3.3.4.3 TPer Layer
Begin Informative Content

This is the entry point into the TPer. This layer has very limited functionality. Commands at this layer
are designed to be used without ComIDs. In particular, the command used to request a ComID,
GET_COMID, is dealt with in this layer.

The only commands dealt with in this layer are IF-RECV commands with some specific reserved
ComlIDs and protocol ID settings. All other commands are passed up to the Communication Layer.

End Informative Content
The commands specified in the TPer layer and in the communication layer SHALL utlilize Protocol ID =
0x02.

3.3431 GET_COMID

The command block for the GET_COMID command is defined in Table 27. The payload of the
GET_COMID command is defined in Table 28.

Table 27 GET _COMID Command Block

FIELD VALUE
Command IF-RECV
Protocol ID 02
Transfer Length 0001
ComlID 00 00

Revision 2.00 Page 64 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 28 GET COMID Payload

BYTE FIELD VALUE

Oto 3 Extended ComlID Allocated ComID

a. The first 4 bytes of the payload SHALL be the Extended ComID. The first two bytes of the
Extended ComlID are the ComID. If the TPer is not able to assign a new ComlID for any
reason it SHALL return all zeroes in the Extended ComiD field.

b. The TPer SHALL NOT assign the value of OxFFFF as the ComID Extension.

c. See [2] for padding requirements.

3.3.4.4 Communication Layer
Begin Informative Content
The Communcation Layer provides a mechanism for two-way communication between the host

application and the TPer. The primary purpose of the communication at this layer is to manage the
allocated ComID and to verify the validity of the allocated ComID.

Communication at this layer occurs using IF-SEND and IF-RECV commands using Protocol ID 0x02.
The host must have a ComID that has been assigned by the TPer using the GET_COMID command
available at the TPer Layer.

If the host application uses a ComID that is not valid or has become invalid since its last usage (see
3.3.3.1), the host application may query the TPer at this layer to retrieve ComID state without raising
exceptions on lower layers such as the Interface or TPer layers. This allows host applications to verify
validity of ComIDs without disturbing the operation of the TPer.

End Informative Content

3.3.4.4.1 Communication Layer Protocol
Begin Informative Content

The commands for communication with the TPer at this layer are as follows:

a. HANDLE_COMID REQUEST: IF-SEND to ComlIDs with the caller's Extended ComlID
passed as the first 4 bytes of the payload.

b. GET_COMID_RESPONSE: IF-RECVs on ComIDs previously allocated by the TPer.
See 3.3.4.7 for information about the usage of these commands.

End Informative Content

3.3.45 Management Layer
Begin Informative Content

Commands dealt with in this layer are IF-SEND and IF-RECV with Protocol ID = 0x01 and with a valid
active ComID.

This is the first layer that makes use of tokenized and packetized payloads. Communications in this
layer occur between the TPer Session Manager (TSM) and the Host Session Manager (HSM). All
communications happen within Control Sessions.

The Control Session associated with a particular ComID starts as soon as the ComID is issued. When
the ComID becomes inactive, the Control Session is terminated. The flow control for the Control
Session is performed in the same manner as the flow control for Regular Sessions, with the difference
that the communication is between the TSM and the HSM and these entities are responsible for the
flow control.

Revision 2.00 Page 65 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

TCG Copyright 2011

One of the main tasks of this layer is to manage the startup of Regular Sessions. During this process,
the TSM and the HSM assign the TSN and the HSN that compose the SN for the Session to be
created.

When the process is initiated the HSM assigns an HSN (i.e. newHSN). The HSM has the opportunity to
make sure newHSN is different from any other HSNs in use by other sessions managed by it, though
this is not required.

End Informative Content

Once the TSM processes the StartSession method and returns the SyncSession response, the
Regular Session SHALL be considered open for the case of sessions that do not require challenge-
response and/or key exchange. For sessions that require challenge-response and/or key exchange,
the Regular Session SHALL be considered open when the TSM finishes processing the
StartTrustedSession and has prepared the SyncTrustedSession response.

3.3.4.6 Session Layer
In this layer all communications SHALL occur within Regular Sessions.

3.3.4.7 Communication Layer Commands

For any given ComlID, the host is expected to issue HANDLE _COMID_REQUEST and
GET_COMID_RESPONSE commands in pairs. Consecutive GET_COMID_RESPONSE commands
SHALL return data corresponding to the last HANDLE_COMID_REQEUST received by the TPer. The
response MAY be regenerated by the TPer at the time of receipt of the command.

3.3.47.1 HANDLE_COMID_REQUEST

This command is used to inquire about or manage the state of the ComlID previously allocated by the
TPer. The command block for the HANDLE_COMID_ REQUEST command is defined in Table 29.

Table 29 HANDLE COMID REQUEST Command Block

FIELD VALUE
Command IF-SEND
Protocol ID 02

Transfer Length 0001

ComiD Allocated ComID

The payload sent by the host to the TPer, at the minimum, consists of the 4-byte Extended ComID and
a Request code. Additional fields MAY be required for some request codes. Currently two request
codes are defined: VERIFY_COMID_VALID and STACK_RESET.

3.3.4.7.2 GET_COMID_RESPONSE

This command is used to retrieve the response of the TPer to a previous HANDLE_COMID_REQUEST
command. The command is sent to the ComID for which the status is requested. The command block
for the GET_COMID_RESPONSE command is defined in Table 30

Table 30 GET COMID RESPONSE Command Block
FIELD VALUE

Revision 2.00 Page 66 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

TCG Copyright 2011

Command IF-RECV
Protocol ID 02
Transfer Length 0001

ComlID

Request_ComID

The Transfer Length is the amount of data that the TPer SHALL send in response to the command. If
the actual length of the response data is smaller, then the TPer SHALL pad the data with zeros. If the
actual length of the response data is larger, then the TPer SHALL only send the requested amount of
data.

Bytes 10-11 of the payload contain the length of the response data. The host MAY use this information
to repeat the response command with a transfer length that fits the available data.

3.3.4.7.3 No Response Available

If no response is currently available to the GET_COMID_RESPONSE command, "No Response
Available" is returned. "No Response Available" is defined in Table 31.

Table 31 No Response Available

BYTES FIELD VALUE
Oto3 Extended ComID Allocated ComID
4t07 Request Code 00 00 00 00
8to9 Reserved 00 00
10to 11 Available Data Length in bytes 00 00
12 to TRNSFLEN - Reserved 00

3.3.4.74 VERIFY_COMID_VALID

On receiving this request, the TPer checks if the ComID sent in the payload matches any of the
ComiDs currently active in the TPer.

The command is delivered in the payload of the HANDLE _COMID_REQUEST command. The
response is reported in the payload of the next GET_COMID_RESPONSE command sent to the
requested ComiD.

The VERIFY_COMID_VALID command is defined in Table 32. TRNSFLEN is defined as number of
bytes transferred via the interface.

Table 32 VERIFY_COMID_VALID Request

BYTES FIELD VALUE
Oto3 Extended ComID Allocated ComID
4t07 Request Code 00 0000 01
? 0 TRNSFLEN - | peserved zero
Revision 2.00 Page 67 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The payload built by the TPer in response to the VERIFY_COMID_VALID command is defined in Table
33.

Table 33 VERIFY_COMID_VALID Command Response

BYTE FIELD VALUE
Oto3 Extended ComID Requested ComID
4t07 Request Code 00 00 00 01
8t09 Reserved 0000
10to 11 Available Data Length in bytes | 00 22
00 00 00 00 = Invalid,

1210 15 Current state of Extended 00 00 00 01 = Inactive,

ComiD 00 00 00 02 = Issued,

00 00 00 03 = Associated

16to 25 Absc_>|ute time of allocation 10 byte format — see Table 34.
relative to last reset of TPer

Absolute time of expiry relative

26 to 35 10 last reset of TPer 10 byte format — see Table 34.
36 to 45 Time since last reset of TPer 10 byte format — see Table 34.
46 to

TRNSFLEN - 1 Reserved 00

The Extended ComlD field value is the ComID being verified.

If the TPer does not support a real-time clock, the Time values in the VERIFY_COMID_VALID
response (bytes 16 to 45) SHALL be all zeroes. If the TPer supports a real-time clock, the fields that
report the time SHALL use the following format described in Table 34.

Table 34 Date Values

Value Type Range
Year uinteger_2 | 1970 to 9999
Month uinteger 1 | 1to 12
Day uinteger 1 | 1to 31
Hour uinteger 1 | 0to 23

Minute uinteger_1 | 0to 59

Second uinteger_1 | 0to 59

Fraction | uinteger 2 | 0 to 999

Reserved | uinteger 1 | 0

If the current state of the ComlID is reported as Invalid or Inactive, only the time since last reset of the
TPer is valid in the data payload. If the ComID state is reported as Issued, or Associated, the time of
expiry SHALL be greater than the time since last reset of the TPer.

Revision 2.00 Page 68 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.34.7.5 STACK_RESET
This command is used to reset that state of the synchronous protocol stack (see 3.3.10).

The command is delivered in the payload of the HANDLE_COMID_REQUEST command. The ComID
field identifies the ComID being reset. The response to the STACK RESET is retrieved using the
GET_COMID_RESPONSE command.

The STACK_RESET command is defined in Table 35.

TRNSFLEN is defined as number of bytes transferred via the interface. Reserved bytes SHOULD be
set to zero and SHALL be ignored by both host and device.

The device SHALL return an “Invalid Transfer Length parameter on IF-SEND” TPer Error[2] if less than
8 bytes are sent to the device.

Depending on the SSC, if the ComID value in the IF-SEND for the HANDLE_COMID_REQUEST
command represents a non Active ComlD, the device SHALL respond as described in 3.3.3.2.

Table 35 STACK_RESET Command Request

BYTES FIELD VALUE

Oto3 Extended ComID Allocated ComID
4t07 Request Code 00 00 00 02

iito TRNSFLEN - Reserved 00

Once received, the TPer SHALL reset the protocol stack for the ComID value defined in bytes 0-3 of the
command block payload. While resetting the stack, the Tper SHALL NOT process any command for
that ComID received via an IF-SEND on Protocol ID 0x01. A Security Protocol stack reset results in:

1. All open sessions for that ComID SHALL be aborted. CloseSession methods SHALL NOT be
prepared by the TPer;

2. All uncommitted transactions SHALL be aborted,;

3. All pending session startup activities occurring on that ComID SHALL be aborted;
4. All TCG command and response buffers SHALL be invalidated for that ComID;

5. All related method processing occurring on that ComID SHALL be aborted;

6. The protocol stack SHALL reset to its initial state for that ComID only;

7. All communications properties (set via Properties method) and ComlID associated properties
for that ComID SHALL be reset to their default values;

8. No notification of these events SHALL be sent to the host.
The response SHALL be returned via the GET_COMID_RESPONSE (IF-RECV) command. The
STACK_RESET command response payload is defined in Table 36.

If the STACK_RESET s still processing and another HANDLE_COMID_REQUEST is received, the
STACK_RESET SHALL complete but a response for that STACK_RESET command SHALL NOT be
available.

Table 36 STACK RESET Command Response
BYTES FIELD VALUE

Oto 3 Extended ComlID Allocated ComlID

Revision 2.00 Page 69 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

BYTES FIELD VALUE
4t07 Request Code 00 00 00 02
8to9 Reserved 00 00

10to 11 Available Data Length in bytes 00 04

12 to 15 Success/Failure 88 88 88 82/
16 to TRNSFLEN - Reserved 00

Success (0x00000000) indicates that the protocol stack has been reset for the specified ComiD.
Failure (0x00000001) indicates tha the protocol stack has not been reset for the specified ComiD.

The response SHALL be cleared from the response buffer if one of the following conditions is true:
a. The host retrieves the entire response via the GET_COMID_RESPONSE command;
b. The device is hard-reset or power-cycled.
c. Another HANDLE_COMID_REQUEST is made for that ComID.

The device SHALL return “No Response Available” if:
a. No HANDLE COMID_REQUEST command preceded the GET_COMID RESPONSE
command,;
b. An error is detected in the HANDLE_COMID_REQUEST command payload.
If no Handle_ComID_Request was sent, the Extended ComID field SHALL contain zeroes.

The "No Response Available" payload is defined in Table 31.

The device SHALL return “Pending” if:
a. The host retrieves the command result via the GET_COMID_RESPONSE command while
the stack reset is in progress for that specific ComID.
The "Pending" payload is defined in Table 37.

Table 37 STACK_RESET Pending

BYTES FIELD VALUE

Oto3 Extended ComID Allocated ComID
4t07 Request Code 00 00 00 02
8to9 Reserved 00 00

10to 11 Available Data Length in bytes 00 00

12 to TRNSFLEN - Reserved 00

3.3.5 Capability Discovery

Discovery is a process that provides a way for the Host to examine the SD's configurations and
capabilities.

There are three levels of discovery:

Revision 2.00 Page 70 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

a. Level 0: This discovery level discloses basic SD status and configuration. This discovery
request is sent as an IF-RECV command (see 3.3.6).

b. Level 1: This discovery level discloses basic TPer capabilities via the Properties method
(see 5.2.2.1)

c. Level 2: This discovery level uses the Get method (see 5.3.3.6) to retrieve table cell
values under access control as defined by the ACLs in each SP's AccessControl table
(see 5.3.2.7), and the associated ACEs in each SP's ACE table (see 5.3.2.8).

3.3.6 Level 0 Discovery

The Level 0 Discovery command provides a host with some basic information about TPer capabilities,
both current and potential. More detailed information is obtainable through SP operations (see 3.3.7).

3.3.6.1 IF-SEND Command

IF-SEND command, with

Protocol ID = 0x01

ComID = 0x0001

Transfer Length= (any length)
There is no IF-SEND command defined for Level 0 Discovery, so the TPer SHALL transfer all of the
data from the host, SHALL discard it, and return 'good’ status to the host.

3.3.6.2 IF-RECV Command

IF-RECV command, with

Protocol ID = 0x01

ComiID = 0x0001

Transfer Length = maximum length of the Level O Discovery response data that the host elects
to receive.
This IF-RECV command MAY be processed at any time, without regard to sessions or prior
authentication.

If the Transfer Length is less than the size of the Level 0 Discovery response data that is available, the
TPer SHALL return the requested amount of data, even if it is truncated.

If the Transfer Length is greater than the size of the Level O Discovery response data, the device shall
pad according to the rules specified in [6] and [5].

The Level 0 Discovery response data (see Table 38) consists of a header field and zero or more
variable length feature descriptors. A TPer SHALL NOT include feature descriptors for features that it
does not implement. The data is not packetized.

Table 38 Level 0 Discovery Response Data Format

Bit
Byte 7 6 5 4 3 2 1 0
0-47 Level 0 Discovery header (see Table 39)
48 —n Feature Descriptor(s) (see 3.3.6.3)

Revision 2.00 Page 71 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 39 Level 0 Discovery Header Format

Bit 7 6 5 4 3 2 1 0
Byte
0 (MSB)
1
> Length of Parameter Data
3 (LSB)
4 (MSB) . .
5 Data Structure Major Version (LSB)
6 (MSB) . .
Data Structure Minor Version
7 (LSB)
8 (MSB)
. Reserved
15 (LSB)
16 (MSB)
Vendor Unique
47 (LSB)

3.3.6.2.1 Length of parameter data

Indicates the total number of bytes that are valid in the Level O Discovery header and all of the feature
descriptors returned, not including this field.

3.3.6.2.2 Data Structure Major Version
This is the Major Version number of the Data Structure format of the Level O Discovery header
returned. The value of this field SHALL be 0x0000.

This value SHALL be incremented when non-backwards compatible changes are made to the header
or to the format of the feature descriptors.

3.3.6.2.3 Data Structure Minor Version
This is the Minor Version number of the Data Structure format of the Level 0 Discovery header
returned. The value of this field SHALL be 0x0001.

This value SHALL be incremented when backwards compatible changes are made to Header or to the
format of the feature descriptors.

3.3.6.2.4 Vendor Unique
These bytes are vendor specific.

3.3.6.3 Features - Overview

A feature is a set of capabilities that MAY be implemented in a TPer. A Host MAY discover the
capabilities and properties of a TPer by examining its feature descriptors. Features that are
implemented by a TPer SHALL be indicated by the presence of a feature descriptor.

Revision 2.00 Page 72 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The feature descriptors SHALL be returned in the Level O Discovery response data in order of
increasing feature code values. Features that are not implemented SHALL NOT be returned.

Table 40 contains the list of defined feature codes.

Table 40 Feature Codes

Feature Code Feature Name Description
0000h Reserved

0001h TPer feature See 3.3.6.4
0002h Locking feature See 3.3.6.5

0003h — O0OFFh Reserved
0100h —03FFh |SSCs

0400h - BFFFh Reserved
CO000h - FFFFh | Vendor Unique Vendor specific features

All feature descriptors SHALL conform to the general format defined in Table 41.

Table 41 Feature Descriptor Template Format

Bit 7 6 5 4 3 2 1 0

Byte

0 (MSB)

Feature Code

1 (LSB)

2 Version | Reserved

3 Length
4—n Feature Dependent Data

3.3.6.3.1.1 Feature Code
The Feature Code field SHALL identify a feature (see Table 42) implemented by the TPer.

3.3.6.3.1.2 Version

The Version field describes the format of the data returned. Future versions of a feature SHOULD be
backward compatible; incompatible changes SHOULD be included in a different feature.

3.3.6.3.1.3 Length

The Length field indicates the length of the Feature Dependent Data (in bytes) that follow this header.
This field SHALL be an integral multiple of 4.

3.3.6.4 TPer Feature

This information reports support for various TPer parameters. This mandatory feature SHALL always be
returned in the Level O Discovery response.

These parameters indicate whether the TPer supports a variety of features. Having a given “support’
flag true does not imply that the feature is required or enabled. Actually enabling a feature MAY require
setting of host properties by invoking the Properties method.

The Feature Code value for the TPer feature is 0x0001.

Revision 2.00 Page 73 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

TCG Copyright 2011

Table 42 TPer Feature Descriptor

Bit 7 6 5 4 3 2 1 0

Byte

0 (MSB)

Feature Code

1 (LSB)

2 Version | Reserved

3 Length

4 Reserved | ComID Reserved | Streaming Buffer ACK/NAK Async Sync

Mgmt Supported Mgmt Supported | Supported | Supported
Supported Supported

5-15 Reserved

The Feature Code field SHALL be set to 0x0001.
The Version field SHALL be set to 0x01.
The Length field SHALL be set to 0x0C.

3.3.6.4.1 Sync Supported

SyncSupported SHALL be set to one if the TPer supports the Synchronous Protocol (see 3.3.10),
otherwise SyncSupported SHALL be cleared to zero.

3.3.6.4.2 Async Supported

AsyncSupported SHALL be set to one if the TPer supports the Asynchronous Protocol, otherwise
AsyncSupported SHALL be cleared to zero.

3.3.6.4.3 ACK/NAK Supported

ACK/NAKSupported SHALL be set to one if the TPer supports transmission ACK/NAK flow control (see
3.3.8) or communications, otherwise ACK/NAKSupported SHALL be cleared to zero.

3.3.6.4.4 BufferMgmt Supported

BufferMgmtSupported SHALL be set to one if the TPer supports buffer management flow control
(see3.3.8.2) for communications, otherwise BufferMgmtSupported SHALL be cleared to zero.

3.3.6.45 Streaming Supported

StreamingSupported SHALL be set to one if the TPer supports data stream encoding (see 3.2.2 and
3.2.3), otherwise StreamingSupported SHALL be cleared to zero.

3.3.6.4.6

SHALL be set to one if the TPer supports ComID management using Protocol ID 0x02 (see 3.3.3),
otherwise SHALL be cleared to zero.

ComID Management Supported

3.3.6.5 Locking Feature

This information indicates support for an issued Locking template. This mandatory feature SHALL
always be returned in the Level 0 Discovery response.

The Feature Code value for the Locking feature is 0x0002.

Revision 2.00 Page 74 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

TCG Copyright 2011

Table 43 Locking Feature Descriptor

Bit 7 6 5 4 3 2 1 0

Byte

0 (MSB)

Feature Code

1 (LSB)

2 Version | Reserved

3 Length

4 Reserved MBR MBR Media Locked Locking Locking

Done Enabled | Encryption Enabled | Supported

5-15 Reserved

The Feature Code field SHALL be set to 0x0002.
The Version field SHALL be set to 0x01.
The Length field SHALL be set to 0x0C.

3.3.6.5.1 LockingSupported

LockingSupported SHALL be set to one if the TPer supports the Locking template; otherwise
LockingSupported SHALL be set to zero.

3.3.6.5.2 LockingEnabled

LockingEnabled SHALL be set to one if an SP that incorporates the Locking template is in any state
other than nonexistent; otherwise LockingEnabled SHALL be set to zero.

3.3.6.5.3 Locked

Locked SHALL be set to one if LockingEnabled is set to one, and one or more LBA ranges in the
Locking table have either (ReadLockEnabled=True and ReadLocked=True) or
(WriteLockEnabled=True and WriteLocked=True); otherwise Locked SHALL be set to zero.

3.3.6.5.4 MediaEncryption

MediaEncryption SHALL be set to one
MediaEncryption SHALL be set to zero.

if the TPer supports media encryption; otherwise

3.3.6.5,5 MBREnabled

MBREnabled SHALL be set to one if LockingEnabled is set to one, and the MBRControl and MBR
tables are implemented, and that the MBRControl table’s Enable column has a value of "True";
otherwise MBREnNabled SHALL be set to zero.

3.3.6.5.6 MBRDone

MBRDone SHALL be set to one if MBREnabled is set to one, and the MBRControl table’s Done column
has a value of "True"; otherwise MBRDone SHALL be set to zero.

3.3.6.6 Common SSC feature information
This information is supplied as part of every reported SSC feature.

Table 44 Common SSC Information

Bit 7 6 5 4 3 2 1 0

Byte

Revision 2.00 Page 75 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

0-15 Reserved for common SSC parameters

3.3.7 Sessions, Methods, and Transactions

3.3.7.1 Sessions
Begin Informative Content

There are two types of sessions:

a. Regular Sessions (or just Sessions): These are communication channels between a host
application and an SP.

b. Control Sessions: These are between the TPer Session Manager (TSM) and the Host
Session Manager (HSM).

The Host Session Manager is an abstract entity that represents the peer, on the host side, of the TPer
Session Manager. The HSM could be an application that is routing traffic to several applications on the
host or it could simply be a module in a given application that deals with establishing sessions with the

TPer.
End Informative Content

All communications with an SP occurs within sessions. A session SHALL be started by a host and
successfully ended by a host.

Normally the host application ends a session when it has finished its communication, but either the
TPer or the host MAY abort a session at any time for any reason (see 3.3.7.1.5).

For a specific SP there MAY be any number of Read-Only sessions active simultaneously, but only one
Read-Write session with a particular SP SHALL be open at a time. Read-Only and Read-Write sessions
are mutually exclusive.

The existence of Read-Only sessions, the maximum number of simultaneous Read-Only sessions that
are able to be opened to any SP, and/or the total number of open sessions available to a TPer SHALL
be defined by Security Subsystem Class.

Except as noted, explicit changes to an SP made during a Read-Only session SHALL NOT be made
permanent, even when the session closes successfully. Indirect changes, such as PIN blocking, log
updates, etc., are noted where appropriate, and SHALL remain persistent.

3.3.7.1.1 Regular Sessions

Each Regular Session is identified by a distinct Session Number (SN). The SN is an 8-byte quantity
composed of two subparts: the TPer Session Number (TSN) and the Host Session Number (HSN),
each of which has 4 bytes. This is the value used in a packet's Session field.

SN = (TSN, HSN)

The HSN is assigned by the HSM. The HSM MAY assign HSNs in such a way as to make them unique
for all of its communications with one or more TPers.

The TSN is assigned by the TSM. The TSM SHALL guarantee that all Regular Sessions associated
with a particular ComID are assigned a different TSN. In addition, the TSM SHALL NOT assign any
TSN in the range 0 to 4095 to a regular session. These TSNs are reserved by TCG for special
sessions, of which the control session (0) is the only one currently defined.

Revision 2.00 Page 76 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Additional details regarding session startup can be found in 3.3.7.1.4 and 5.3.4.1.4.

3.3.7.1.2 Control Sessions

All Session Manager Layer Methods SHALL be transmitted in packets where Packet.Session =
0x00000000_00000000.

Session Manager layer methods are:

a. Properties

b. StartSession

C. SyncSession

d. StartTrustedSession
e. SyncTrustedSession
f. CloseSession

Once a session has started (the session startup protocol has completed successfully), data is able to
be transmitted for that newly started session. The Packet.Session for that session SHALL be the
concatenation of the TSN and HSN (see 3.3.7.1.1), where HSN is initially transmitted in the
StartSession method and TSN is initially transmitted in the SyncSession method.

The life cycle of the Control Session is tied to the life cycle of the ComID, in that the Control Session
associated with a particular ComlID starts as soon as the ComID is issued. When the ComID is retired,
the Control Session is terminated. The flow control for the Control Session is performed in the same
manner as the flow control for Regular Sessions, with the difference that the communication is between
the TSM and the HSM and these entities are responsible for the flow control.

There SHALL be only one Control Session per ComiD.

3.3.7.1.3 Session Manager Protocol Layer
Begin Informative Content

The Session Manager Layer (see 3.3.4) is a special protocol layer session on any TPer with SPs. It is
the communications channel used by host applications to start and manage sessions with SPs, to
inform the TPer of the host's communications capabilities, and to inquire about TPer communication
characteristics. The Session Manager protocol layer does not provide a session “to” any SP — it
provides a communications control session. The method calls available on the Session Manager Layer
are identified in section 5.2.

End Informative Content

Although method invocations on the Session Manager layer SHALL NOT change permanent state on
the TPer, some method invocations MAY have side effects that occur outside of the normal method
invocation process, such as logging or PIN retry counts. In cases where these changes occur — for
example, logging a StartSession method call success or failure — the change SHALL occur on the SP
to which the method call was attempted.

Method calls on the Session Manager Layer are formatted/encoded the same as on any other session.
Due to the asynchronous nature of session startup and TPer communications, all of Session Manager
layer methods’ responses are formatted as method calls, so that the host is able to identify responses
to methods it has invoked.

The Session Manager Layer control session for a given ComID SHALL always be open. The TPer
SHALL ignore End of Session and Transaction Control tokens sent to the control session, and SHALL
not echo those tokens back to the host.

Revision 2.00 Page 77 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Methods invoked on the control session with an InvokinglD that is not the SMUID SHALL be
ignored/discarded by the TPer. Methods invoked on the control session with a MethodID that is not a
control session method, or a control session method that the TPer does not support, SHALL be
ignored/discarded by the TPer.

3.3.7.1.4 Starting Sessions
Successful session startup depends upon three independent requirements:

1. The TPer and the requested SP having sufficient resources.
2. Successful negotiation of exchange keys if secure messaging with key exchange is required.
3. The required authentication is successful. (one of the following):

a. Host authenticates to SP

b. SP authenticates to Host

c. Both of the above

d. None of the above (No authentication)

Sessions are started with either a two or four method exchange on the Session Manager protocol layer:

StartSession
SyncSession

StartTrustedSession (optional)
SyncTrustedSession (required if StartTrustedSession is used)

Because of the asynchronous nature of session startup and other Session Manager layer traffic, the
StartSession/StartTrustedSession responses (SyncSession/SyncTrustedSession, respectively)
are formatted as method calls back to the host.

The authorities used during session startup determine the secure messaging and authentication
requirements.

a. HostExchangeAuthority: The authority that references the Host's Exchange Key — used for
exchange of session keys, provides implicit authentication

b. HostSigningAuthority: The authority that references the Host's Signing Key for
challenge/response authentication, or the host's C_PIN credential for password
authentication — used for authenticating the host; and, for challenge/response
authentication, provides session startup method integrity.

c. SPExchangeAuthority: The authority that references the SP's Exchange Key — used for
exchange of session keys, provides implicit authentication

d. SPSigningAuthority: The authority that references the SP's Signing Key — used for
authenticating the SP to the host and session startup method integrity, provides explicit
authentication

These authorities are already known to the SP.

Host authorities and SP authorities enable mutual authentication between the host and the TPer. Host
authorities, if used, are passed in the StartSession method call. SP authorities are authorities that
MAY be referenced in the Host authorities’ Authority table rows. The ability to specify authorities in
the StartSession method call, coupled with the linking of authorities in the Authority table, provides
a large and diverse set of possible session protocols, including secure messaging. It is the initial
selection of authorities by the host that determines which protocol is to be followed.

When the host makes the StartSession method call it knows which SPExchangeAuthority and
SPSigningAuthority (if any) the SP uses. Those MAY be the root authorities in a certificate chain whose

Revision 2.00 Page 78 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ultimate effective authority, as represented by the chained-down certificate, the host does not know.
This is why the SP MAY return certificates to the host as part of SyncSession.

If a HostSigningAuthority or SPSigningAuthority requires a Challenge-Response, as is the case for all
PuK, SymK, and HMAC authorities, or if secure messaging is to be used (or both), then the
StartSession and SyncSession methods SHALL be followed by the StartTrustedSession and
SyncTrustedSession methods.

An authority (HostExchangeAuthority, SPExchangeAuthority, HostSigningAuthority, or
SPSigningAuthority) that is also a Public Key Authority (an Authority with public key credentials--PuK)
MAY have additional information supplied for it in the form of a certificate or certificate chain. In this
case the Effective Authority (the one responding to the challenge) SHALL be the tail PuK of that chain.

The effective authority is transient to the session. It is necessary to create a new authority on the SP (in
a Read-Write session) if that authority is to persist on the SP past the end of that session.

All authorities that participate in the successful startup of a session SHALL be authenticated for that
session.

3.3.7.1.5 Ending Sessions

The Host or TPer is free at any time to end a session in which it is participating, but only the host
SHALL end the session successfully.

The session SHALL NOT be considered successfully closed until the party receiving the end of session
request has responded indicating whether or not it was able to comply with the session ending request.
Thus, a session is successfully ended when the TPer receives an End of Session token (see section
3.2.2.2) from the host and prepares a response with an End of Session token, and when transmission
acknowledgement for ending the session has been performed as noted in Section 3.3.9.5 (if
transmission acknowledgement is in use).

The host SHOULD NOT encode additional tokens after the End of Session token in a subpacket.
Additional tokens encoded after an End of Session token SHALL be ignored by the TPer.

When a session closes, TPer resources that had been reserved for use with that session SHALL be
released. The release of resources is not dependent on whether the session closed successfully or
unsuccessfully — the end of the session releases the resources.

Sessions end unsuccessfully (abort) in a number of ways. These include (but are not limited to):
a. If the TPer detects any violation of flow control.

b. If the host does not (or is unable to) send any additional packets to the TPer, and sends no
other communications, the TPer would time out while waiting for the communication from
the host.

c. One of the communicators reached its implementation-specific limit on the number of times
it re-sends a packet (due to negative acknowledgements or transmission timeouts while
waiting for acknowledgement).

If a session is ended in the middle of the transmission of a method call or its parameters, then the
method call SHALL be aborted in addition to the session being aborted. This is considered a fatal
session error indicating a communication synchronization error (or worse).

An aborted session causes the following to occur:
1. Alluncommitted transactions SHALL be aborted.
2. All method processing for that session SHALL be aborted:;

3. The TPer MAY transmit a CloseSession method on the Session Manager layer.

Revision 2.00 Page 79 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

When a session is aborted, open transactions within that session SHALL be aborted, and any method
currently executing SHALL fail in its entirety.

The CloseSession method allows the TPer to notify the host that it has aborted a session. The TPer
MAY send a CloseSession method on the Session Manager layer when it aborts a session. This is
done by the TPer to notify the host that the TPer is ending the session.

Hardware resets and power cycles SHALL cause all open sessions to abort.

The host is able to abort a session by sending an End of Session token to the TPer.

3.3.7.1.6 Session Timeouts

The session timeout is used to limit the lifetime of a session. A session timeout is associated with every
session and is specified in milliseconds.

The session timeout is a property of the session and is derived from three sources.
a. DefaultSessionTimeout : A value in the Properties method response.
b. SPSessionTimeout : A column in the SPInfo table.

c. SessionTimeout : An optional parameter in the StartSession method call used to open the
session to the SP.

The TPer and the Host both maintain a timer associated with every active session. The timer starts
when a session is successfully opened to an SP. Depending on the type of session started, this occurs
when the tokens for the SyncSession or the SyncTrustedSession method call are built by the TPer
and made available to the host.

The TPer MAY impose conditions on maximum and minimum timeouts supported by the device
depending on hardware and other design considerations. These are indicated in the Properties
method response values MaxSessionTimeout and MinSessionTimeout. These limits apply to all of the
three timeouts listed above.

A column in the SPInfo table contains the SP default timeout. Modification of this value SHALL take
effect on all future sessions opened on the SP.

If no value is specified for the SessionTimeout parameter of the StartSession method, then the SP's
default value, stored in the SPInfo table's SPSessionTimeout column, SHALL be used. If no value
exists as an SP default (i.e. the SPSessionTimeout column value is zero), then the TPer default (as
reported in the Properties method response, DefSessionTimeout) SHALL be used.

A value of zero is permitted for the SessionTimeout parameter. The value is only permitted if the
TPer’'s property response for MaxSessionTimeout is zero and the SP’s SPSessionTimeout value is
zero. Otherwise, the method SHALL fail with a SyncSession status of INVALID_PARAMETER.

The TPer MAY abort the session any time after the session's lifetime exceeds the session timeout
value. The session is considered to have been closed / terminated when the last status token sent by
the TPer is picked out of the output buffer by the host, or when the TPer releases all the resources
(including the output buffer) for the session.

Session timeout SHALL NOT apply to the Session Manager Layer control session since it is always
open. The time taken to complete the Session Manager Layer exchange to successfully start a session
is not in the scope of this feature.

3.3.7.2 Methods
Begin Informative Content

Revision 2.00 Page 80 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Methods are remote procedure calls that operate on tables or SPs, and are called within a regular
session to an SP, or within a control session in the case of Session Manager Layer methods. The
caller passes a list of parameter values to the method and the method returns a list of result values
followed by a status list, the first value of which is the status code response to the method invocation.
Method calls, their parameters, and their results are all sent and received over session streams. Each
session to an SP has at least two streams of bytes onto which data is encoded. One stream goes from
the host to the SP, and the other comes from the SP to the host. Each stream operates asynchronously
from all other streams, unless the Synchronous Interface Communications Protocol is in use (see
section 3.3.10).

Typical host method calls send all their parameters/data to the SP before trying to read any of the
results, but the SP is free to generate results incrementally as it consumes its parameters. The host is
similarly free to try to read SP results while sending parameters. The TPer implementation determines
how synchronous or asynchronous to be, so long as the semantics of the method call(s) are not
compromised.

End Informative Content
A well-formed method call SHALL consist of the following steps:

1 The host tells the SP the method it wants to call.
2 The host sends a list of parameters to the SP.
3 The method is processed in the SP.
4 The method results are returned from the SP to the host.
Steps 2-4 MAY be repeated when input and output are incrementally streamed.

Within a given session at most one method SHALL be active at a time. If a method is unable to be
processed completely, it SHALL fail and none of the direct changes made by the method take effect.

For information on method syntax, see 3.2.4.1. For information on method encoding, see 3.2.4.2.

3.3.7.3 Transactions
Begin Informative Content

Transactions are used to provide a clean model for how changes to an SP are to take effect. They also
provide an easy way for host applications to handle error recovery.

End Informative Content
If a session is aborted, any open transactions SHALL be aborted.

Changes are successfully committed and made persistent (to the media, made visible to subsequent
sessions on the same SP, etc.) in 2 ways:

a. When a method is invoked outside of a transaction, and resolves successfully, changes
made by that method SHALL be committed and made persistent immediately.

b. When a method is invoked inside of a transaction or set of nested transactions, changes
made by that method SHALL be committed and made persistent when the top-level
transaction is committed.

Changes made within a transaction SHALL be visible within that transaction. For instance, modification
of a table value within a transaction would result in the new value being returned by a Get method
invoked within that transaction. Those changes SHALL be made persistent when the top-level
transaction is committed. If the transaction is aborted, those changes SHALL be rolled back.

Changes that affect other aspects of the TPer (i.e. hardware settings) SHALL occur when associated
changes are successfully committed. This means that changes made during transactions that affect
the state of the device, such as changing media encryption keys or read/write lock state, SHALL NOT
occur until the changes are successfully committed.

Revision 2.00 Page 81 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Some changes MAY occur as exceptions to transactional rollback (i.e. logging), and SHALL commit
immediately even if they occur inside of a transaction or as a side effect of a method invocation that has
failed.

An aborted transaction SHALL only occur for one of two reasons:

a. At the request of the host, by host-transmission of the End Transaction token with a status
other than 0x00.

b. If an error occurs while committing the transaction (i.e. the host sends End Transaction with
a status of 0x00, but the TPer encounters some kind of error while committing the
transaction to media).

Specific transaction-related control tokens in the session stream, defined in the 3.2.2, serve to indicate
transaction start and end points. If a transaction control token is received at a point in the session
stream that occurs within a method invocation, the TPer SHALL abort the session.

All transactions consist of the following steps:
1. The transaction is opened.
2. Zero or more method calls are made.
3. The transaction is either aborted or committed.

If a transaction is aborted all SP state SHALL be reset ("rolled-back”) to its value at the time the
transaction was opened, unless otherwise noted in this specification (i.e. authentication state, logging,
etc.). A transaction SHALL only be committed at the request of the host application. The TPer SHALL
only commit or abort a transaction upon receipt of an End Transaction token from the host except in the
case when a session is aborted.

The failure or success of the methods encapsulated in the transaction SHALL NOT directly affect
whether or not the host is able to commit the transaction, but committing a transaction in which method
invocations have not succeeded MAY leave the SP in an intermediate (and potentially unrecoverable)
state. A failed method within a transaction SHALL NOT affect the state of the transaction or the state of
the SP within the transaction, unless otherwise noted (i.e. logging, PIN tries count, etc.).

The TPer SHALL guarantee that a transaction completely commits to media (persists) or completely
aborts. This means that the TPer SHALL arrange that if a power cycle, reset, or other event occurs in
the middle of a commit, when the TPer recovers the commit is either finished or all the changes are
aborted. This guarantees SP consistency and prevents power-off or reset attacks.

3.3.7.3.1 Nested Transactions

A session MAY include nested transactions. The maximum number of transactions that MAY be nested
is Security Subsystem Class-specific, and SHALL be specified in response to the Properties method
invocation in the MaxTransactionLimit property if transactions are supported. If the TPer does not
support transactions, the Properties method response SHALL NOT contain the MaxTransactionLimit
property.

Nested transactions SHALL abort or commit relative to their parent transaction. In the case of an
aborted transaction, the SP state SHALL be rolled back to the point where the transaction was started,
unless otherwise noted in this specification (i.e. authentication state, logging, etc.). This is true whether
or not the transaction is nested. In the case of a commit, the nested transaction’s changes SHALL
become part of its parent transaction, as if the nested transaction boundaries had never been
established.

A commit of a nested transaction does not make a commit that necessarily persists since the parent
transaction is not yet ended. All transactions SHALL be committed before data is written to the SP.

3.3.7.3.2 Authentication Within Transactions

Revision 2.00 Page 82 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Successful explicit authentications (via invocation of the Authenticate method (see 5.3.3.12) within a
session) SHALL be exempt from transactional rollback, such that even in the event that a transaction in
which a successful authentication occurs is aborted, the authenticated authority SHALL continue to be
authenticated. Successful invocation of the Authenticate method is based on the current state of the
SP including changes made within the current transaction.

3.3.8 Stream Flow Control

3.3.8.1 Introduction
Begin Informative Content

Flow control ensures that when data is sent from a source to a destination that the destination has
enough buffer space to receive it. There are two kinds of flow control: Interface and Stream data.

Interface flow control is involved in moving IF-SEND or IF-RECV commands across an interface
between a host and TPer (see [2]).

Stream data flow control is used to keep a Host or TPer from overwhelming the other party with data
during a session.

End Informative Content

3.3.8.2 Buffer Management
Begin Informative Content

Flow control is used to keep a Host or TPer from overwhelming the other party with data during a
session. The exchange of credits permits data to be moved from one communicator to the other.

Before session data is able to be sent, the receiver needs to notify the sender that it is ready to receive
data and how much data it is able to receive. This is done by sending a Credit Control Subpacket in the
direction opposite that of the data.

End Informative Content

As data in the receive buffers of the communicators is consumed and space released, additional Credit
Control Subpackets MAY be sent.

The InitialCredit parameters of the StartSession and SyncSession methods provide each
communicator in a session the opportunity to provide an initial amount of credits for use when the
session successfully starts. If either of these values is omitted, then once a session has been
successfully started, the communicator that omitted the value from the InitialCredit parameter of its
session startup method SHALL send to the other communicator a credit subpacket announcing its
available session buffer space.

Credit values are byte counts for the payload of data subpackets and do not include packet or
subpacket headers/overheads. Packets containing only ACK/NAK information, or only Credit Control
Subpackets, MAY be sent at any time regardless of how much credit the sender has.

The sender SHALL NOT send more data than it has credits from the receiver. As the sender transmits
data, the amount of transmitted data is subtracted from the total credits that had been provided to the
sender. This identifies the amount of data that MAY still be sent without receiving additional buffer
credits.

As the receiver consumes data, the receiver MAY notify the sender that it is able to receive additional
data. This is done by transmitting a Credit Control Subpacket identifying how much additional buffer
space the sender is able to utilize. The number of bytes of data that are able to be sent to that session
SHALL be increased by the value of each credit received. When a communicator transmits data, the
amount of data sent SHALL be subtracted from the credit total.

Revision 2.00 Page 83 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

If buffer management is supported, credit subpackets SHALL be exchanged after ComID acquisition, so
that the host and TPer are able to exchange methods/responses on the control session. This credit
only applies to the control session for that ComID. Credit subpackets SHALL also be exchanged
immediately after session startup within the new session, unless values are posted in the InitialCredit
parameters, in which case additional credit subpackets are optional at that time.

Otherwise, Credit Control Subpackets SHOULD be sent infrequently and be bundled with other traffic,
in order to minimize interface overhead. Either communicator in a session MAY send Credit Control
Subpackets as frequently as in every packet, or when a threshold is reached (e.g. the unreported credit
is more than some percentage of the buffer size).

Violating flow control is one reason either side MAY abort a session.

3.3.9 Session Reliability

3.3.9.1 Introduction
Begin Informative Content

Session Reliability provides resilience against lost, duplicated, or deleted packets.
End Informative Content

3.3.9.2 Transmission Acknowledgement

If the TPer supports transmission acknowledgement and the host has informed the TPer (via invocation
of the Properties method) that it also supports transmission acknowledgement, each packet sent from
the TPer to the Host (or vice-versa) for a given session SHALL have a sequence number (SegNumber)
that corresponds to the number of packets that have been sent by that communicator since the start of
the session. The first packet in a session SHALL have a SeqNumber value of 1.

If transmission acknowledgement is supported, each packet with SegNumber N SHALL be
acknowledged by the receiver. Once the sender receives an acknowledgement for data contained in
packets up to packet N, the sender is able to safely discard the data for packets with SeqNumber N and
lower.

Packets that contain only ACK or NAK information SHALL NOT require an ACK/NAK response from the
receiver. These packets SHALL still have an appropriate SegNumber field value. Packets for sessions
that are not protected by secure messaging that do not require ACK/NAK SHALL be those packets with
a Length field value of zero and a corresponding empty Data field value. Packets that are protected by
secure messaging that do not require ACK/NAK SHALL be those packets with a DatalLength field value
of zero and an empty Data field (The IV and MAC fields MAY still contain values).

When a communicator sends a packet that contains only ACK/NAK information, it SHALL still keep that
packet (for possible re-transmission) until either it or a later packet is ACKed. This is because the
receiver MAY NAK that packet in the case of loss/corruption, and in this case the packet SHALL be
retransmitted.

After receiving a packet, the receiver SHOULD send an ACK within the TransTimeout period so that the
sender does not re-send un-ACK'ed packets.

3.3.9.3 Transmission Negative Acknowledgement

If the receiver detects data gap in the SeqNumbers of received packets, the receiver SHALL send a
negative-acknowledgement packet (NAK) with the SegNumber of the packet at which the receiver
wishes the sender to begin retransmission. The receiver puts a value of the SegNumber of the last
known good packet (N) received plus one. This automatically acknowledges all previous packets with
SegNumbers less than or equal to N. The receiver SHALL NOT NAK a SeqNumber less than or equal
to the last ACKed SegNumber. If the TPer receives a NAK for a SegNumber less than or equal to the

Revision 2.00 Page 84 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

last ACKed SeqNumber, it SHALL abort the session. Negative acknowledgement serves to notify the
sender that a retransmission of packet N+1, etc. is needed.

Upon dispatch of the NAK, the sender of the NAK SHALL discard all packets with SeqNumbers N+ 2
and higher, since the sender is expected to retransmit these. The NAK SHALL NOT be re-transmitted
due to receiving packets with SeqNumber containing a value other than N+1, because packets with
values greater than N+1 could have already been 'in flight' when that NAK was sent. Retransmission of
the NAK is dependent on the transmission timeout value for the session, not on subsequent receipt of
additional data.

Retransmitted packets SHALL be sent with no modifications or additions, including packet headers.

3.3.9.4 Transmission Timeouts

The transmission timeout is set during the exchange of session startup methods StartSession and
SyncSession. The transmission timeout for a session SHALL take effect after session startup has
successfully completed. Both communicators share the same transmission timeout value.

The transmission timeout in effect for control sessions is the transmission timeout reported in the
Properties method.

The sender MAY provide, in the StartSession method, a value for the TransTimeout parameter. The
communicator that transmits the SyncSession method MAY include a value for the TransTimeout
parameter. If so, that communicator's timeout value SHALL be larger than the StartSession
TransTimeout value, and SHALL be the transmission timeout value in use for the session being started.
In either case, the TransTimeout value SHALL be greater than or equal to the MinTransTimeout value
and smaller than or equal to the MaxTransTimeout parameter reported in the Properties method
response. If neither communicator includes a value for the TransTimeout parameter, the
DefTransTimeout value, as reported in the Properties method response, SHALL be used.

If the sender detects a missing acknowledgment by means of a timeout, the sender SHALL retransmit
the data from the last valid acknowledgment. If the sender still receives no acknowledgement after a
timeout period, the sender SHALL retransmit the same packet with no modifications or additions,
including packet headers. This retransmission repeats up to an implementation-specific humber of
times. Thereafter, the sender SHALL terminate the session, i.e. no more data is able to be be
transmitted for this session (the session times out at some point and is closed by the receiver).

SSCs that require support for transmission timeouts SHALL define a minimum required value for
retransmission repeats.

3.3.9.5 Closing a Session

If transmission acknowledgement is supported, when the host transmits a data subpacket that contains
the End of Session token, the host SHOULD NOT immediately assume the session has successfully
closed.

The host SHOULD wait for the TPer to both transmit the TPer's own data subpacket that contains the
End of Session token and to ACK the host's packet that contained the End of Session token. The host
SHOULD then ACK the TPer's data subpacket that contains the End of Session token.

The host SHOULD follow the normal rules of the ACK mechanism. If the transmission timeout period
expires and the host has not received the TPer's ACK of its packet containing the End of Session token,
the host SHOULD retransmit that packet and continue doing so until it receives an ACK or it reaches its
timeout retransmission limit.

If the TPer has not received, by the end of the transmission timeout period, the host's ACK of the TPer's
packet containing the End of Session token, the TPer SHALL retransmit that packet, and continue
retransmitting it until it receives an ACK from the host or until it reaches its implementation-defined
timeout retransmission limit.

Revision 2.00 Page 85 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Once the TPer has received the packet containing the host's ACK of the packet the TPer transmitted
containing the data subpacket with the End of Session token, the TPer SHALL consider the session to
be closed.

Figure 6 Closing a Session

Received

Host
. Host
Host timeout Haost |(Recewed J Host fimeodt x2 I
EoS it Eos I‘ ACK ACK mendx
% efrar
/ error
. TPer timeaut TPer timeout TPer
Received EoS +ACK 3 E0S + ACK EaS + ACK 4 Received

TRer K
Received

3.3.10 Synchronous Interface Communications

3.3.10.1 Introduction
Begin Informative Text
The communications protocol stack as described in this specification enables a fully asynchronous

exchange of data between host and TPer. Using the communications stack in this manner is a matter
of arbitrarily interleaving IF-SEND commands with I[F-RECV commands.

Asynchronous communications allows the host to transmit methods and data to the TPer without having
to retrieve the results of those methods before sending additional methods, and enables the TPer to
return method results upon request at arbitrary boundaries. Flow control provides a mechanism for
buffer management to occur as data is successfully transmitted and received.

However, for some hosts and devices, these mechanisms are too complex and require more
processing capability and code space than is available. For these situations, the synchronous
communications protocol stack is tailored to better meet the capabilities of host and TPer.

For instance, fixed buffer sizes coupled with restrictions on the relationship between the exchange of
IF-SEND and IF-RECV commands negates the need for flow control for buffer management.

End Informative Text

3.3.10.2 Interface Commands
This section defines the requirements imposed on the exchange of IF-SEND and IF-RECV commands.

3.3.10.2.1 Restrictions
The restrictions imposed on the exchange of IF-SEND and IF-RECV commands are as follows:

1. Any number of non IF-SEND/IF-RECV commands MAY be interleaved with IF-SEND/IF-RECV
commands.

2. The normal communications state of an Associated ComID SHALL be to await receipt of an IF-
SEND command for that ComID.

Revision 2.00 Page 86 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

a.

While awaiting receipt of an IF-SEND interface command, any received IF-SEND
command for that ComID SHALL be accepted (provided it meets the other
requirements such as not exceeding the maximum supported length).

Once the entire command payload has been received, the TPer SHALL return an
interface status to the host.

Any IF-RECV command received for the Associated ComID awaiting receipt of an IF-
SEND command SHALL return to the host a ComPacket with a Length field value of
zero, an OutstandingData field value of zero, and a MinTransfer field value of zero.
This signals to the host that there is no pending response data to retrieve.

3. After an IF-SEND command has been received, a command completion without error has been
returned, and the payload has been decoded without an error, the TPer SHALL NOT accept
another IF-SEND command for that ComID until the host has retrieved the entire response via
IF-RECV(S).

a.

Any subsequently received IF-SEND commands for the specified ComID SHALL be
aborted at the interface level. The interface status for this action SHALL be
"Synchronous Protocol Violation" (see [2]).

If the TPer has not sufficiently processed the command payload and prepared a
response, any IF-RECV command for that ComID SHALL receive a ComPacket with a
Length field value of zero (no payload), an OutstandingData field value of 0x01, and a
MinTransfer field value of zero.

If the TPer has sufficiently processed the command payload and prepared a response,
an IF-RECV command that requests a transfer length less than the amount of response
data the TPer has prepared SHALL reply with a ComPacket with a Length field value of
zero (no payload) and OutstandingData value of total bytes currently available, and
MinTransfer field value of the minimum request required to transfer a packet.

The SSC MAY additionally require that each method response be retrieved separately
(along with Control Tokens as determined by the TPer), via multiple IF-RECV
commands. For these SSCs, if all responses have not been retrieved:

i. If additional responses are available, and the host has requested a transfer
length less than the minimum transfer required, the TPer SHALL respond to an
IF-RECV command with OutstandingData value of total bytes currently
available; and MinTransfer field value of the minimum request required to
transfer a packet.

ii. If additional responses are available and the host has requested a sufficient
transfer length, the TPer SHALL respond to an IF-RECV with OutstandingData
= 0x00, 0x01, or the amount of total bytes currently available; and MinTransfer
field value of zero or the minimum request required to transfer a packet.

iii. If no additional responses are prepared but more are to come, the TPer SHALL
respond to an IF-RECV command with OutstandingData field value of 0x01
and MinTransfer field value of Zero. Table 45 summarizes the values of the
Length, OutstandingData, and MinTransfer fields of the packets returned to the
host by the TPer in response to an IF-RECV command.

A summary of the values for ComPacket fields is displayed in Table 45.

Table 45 IF-RECV ComPacket Field Values Summary

IF-RECV

Length Field OutstandingData Field MinTransfer Field
Value Value Value

Revision 2.00

Page 87 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

insufficient transfer
length request

IF-RECV Length Field OutstandingData Field MinTransfer Field
Value Value Value

Response(s) to 0x00 0x01 0x00

come, no

Response(s)

available

Response ready, 0x00 Total bytes currently The minimum request

available

required to transfer a
packet

Response, additional

Data Length

Additional bytes

The minimum request

returned — no further
data

Response(s) available, not including required to transfer the

available the data transferred in next packet
the current ComPacket.

Response, additional | Data Length 0x01 0x00

Response(s) to

come, no

Response(s)

available

Response, all Data Length 0x00 0x00

Response(s)

returned — no further

data

All Response(s) 0x00 0x00 0x00

3.3.10.3 Synchronous Communications Restrictions
This section defines additional restrictions specific to the Synchronous Communications protocol.

a. Methods SHALL NOT span ComPackets.

In the case where an incomplete method is

submitted, if the TPer is able to identify the associated session, then that session SHALL
be aborted and a CloseSession MAY be prepared for delivery on that ComlID's control

session.

b. The synchronous exchange of interface commands SHALL only apply to IF-SEND/IF-
RECV commands exchanged on Protocol ID 0x01, but SHALL NOT apply to Level 0

Discovery.

3.3.10.4 State Transition Diagram

The state transitions for the exchange of IF-SEND and IF-RECV commands are delineated in Figure
Figure 7 . The states used are defined in 3.3.10.5, and the state transitions are defined in 3.3.10.6.

Revision 2.00

Page 88 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Figure 7 Synchronous Communications State Transition Diagram

P o Of (200 P rocessing (2]
- 5280
Aengiting IF-SERD (S1] Lunaiting IF-RECY (S3)
5152
™ $2. 53 ~
5281 -
"" - 5352
S0 51 -l
- 5150
15 5252 2353
o a———— ot————
|t 5351
- 2320
3.3.10.5 State Descriptions
This section defines the states used in Figure 7
State “Power-Off (S0)" — In this state, power is removed from the TPer and it is completely

unresponsive.

State “Awaiting IF-SEND (S1)” — In this state, the TPer command interface is ready and there are no
outstanding IF-SEND/IF-RECV commands for the specified ComID. A command is “outstanding” if it
has entered the “Processing” or “Awaiting IF-RECV” state. A command is not considered “outstanding”
if it is in the TPer command queue awaiting initial processing by the device.

a. While in this state, if IF-SEND is received or dequeued with the ComlID for this state
machine, the TPer MAY request command payload transfer and SHALL return interface
status to the host.

b. While in this state, if IF-RECV is received or dequeued with the ComID for this state
machine, the TPer SHALL return a response ComPacket the specified ExtendedComID
with the Length, OutstandingData, and MinTransfer fields set per “All Response(s) returned
— no further data” defined in Table 45.

State “Processing (S2)” — In this state, the TPer has begun processing the payload of an IF-SEND
command.

a. While in this state, the TPer SHALL terminate any received or dequeued IF-SEND
commands. The interface status for this action SHALL be "Synchronous Protocol Violation"
(see [2]).

b. While in this state, the TPer SHALL return a response ComPacket for any received or
dequeued IF-RECV commands for the specified ExtendedComID with the Length,
OutstandingData, and MinTransfer fields set per “Response(s) to come, no Response(s)
available” defined in Table 45.

State “Awaiting IF-RECV (S3)” — The TPer has completely processed the TCG data payload and has
the associated TCG response ready for retrieval by the host.

a. While in this state, if IF-RECV is received or dequeued with the ComlID for this state
machine and a transfer length less than the amount of response data staged for the

Revision 2.00 Page 89 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ComiD, the TPer SHALL return a response ComPacket for the specified ExtendedComID
with the Length, OutstandingData, and MinTransfer fields set per “Response ready,
insufficient transfer length request” defined in Table 45.

b. While in this state, the TPer SHALL terminate any received or dequeued IF-SEND
command. The interface status for this action SHALL be "Synchronous Protocol Violation"
(see [2]).

3.3.10.6 State Transitions
This section defines the state transitions for each valid ComID as presented in Figure 7

S0:S1 - This transition occurs automatically when the TPer is powered on.
S1:S0 — This transition occurs when the TPer is powered off.
S1:S1 — This transition occurs when:

The TPer receives an interface initiated TCG reset (see [2]), or

The TPer receives a Protocol Stack Reset Command for the ComID of this state machine
(see 3.3.4.7.5), or

c. The TPer detects an error in a received IF-SEND payload that prevents the TPer from
resolving an intended session for the IF-SEND command payload, or other error that
prevents the TPer from processing the command (see 3.3.10.7), or

d. The TPer receives an IF-RECV command for this ComID (see the "Awaiting IF-SEND"
state description in 3.3.10.5).

S1:S2 — This transition occurs when an IF-SEND command with the ComID associated with this state
machine is received or dequeued and successfully completes data transfer of the command payload.

S2:S0 — This transition occurs when the TPer is powered off.
S2:S1 - This transition occurs when:
a. The TPer receives an interface initiated TCG reset (see [2]), or

The TPer receives a Protocol Stack Reset Command for the ComID of this state machine
(see 3.3.4.7.5), or

c. The TPer detects an error in the IF-SEND payload that prevents the TPer from resolving an
intended session for the IF-SEND command payload (see 3.3.10.7), or

d. If there is no action to be taken as a result of the received command, such as when the IF-
SEND command payload is a ComPacket with

a. no payload, or
b. one or more Packets all of which have no payload, or

c. The IF-SEND command payload is a ComPacket with one or more Packets all of which
have SubPackets that either have no payload or have a payload that consists entirely
of Empty Atoms.

S2:S2 — This transition occurs when:

a. The TPer receives an IF-SEND for this ComID (see the "Processing" state description in
3.3.10.5), or

b. The TPer receives an IF-RECV for this ComID and processing has not completed to the
point where data is available for retrieval by the host (see the "Processing" state description
in 3.3.10.5).

Revision 2.00 Page 90 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

S2:S3 - This transition occurs when the TPer has completely processed the contents of the IF-SEND
command and has a complete response available for retrieval by the host. A separate response MAY
be generated for each method in the IF-SEND.

S3:S0 — This transition occurs when the TPer is powered off.

S3:S1 — This transition occurs when the TPer receives:

a. An interface initiated TCG reset (see [2]), or
b. A Protocol Stack Reset Command for the ComID of this state machine (see 3.3.4.7.5), or
c. AnIF-RECV able to retrieve the entire response resulting from the IF-SEND, or

d. AnIF-RECV for the last of multiple responses resulting from the IF-SEND.

S3:S2 — This transition occurs when the TPer receives an IF-RECV able to retrieve a response
resulting from an IF-SEND but still has additional responses to process from that IF-SEND.

S3:S3 — This transition occurs when:

a. The TPer receives an IF-SEND for this ComID (see the "Awaiting IF-RECV" state
description in 3.3.10.5), or

b. An IF-RECV is received or dequeued with the ComID for this state machine and a transfer
length less than the amount of response data staged for the ComID (see the "Awaiting IF-
RECV" state description in 3.3.10.5), or

c. The TPer receives an IF-RECV able to retrieve a response resulting from an IF-SEND, and
additional responses are still available. The TPer SHALL a response ComPacket for the
specified ExtendedComID with the Length, OutstandingData, and MinTransfer fields set per
“Response, additional Response(s) available” defined in Table 45.

3.3.10.7 Error Handling

This section defines the manner in which violations of the restrictions on Interface Command payloads
SHALL be handled by the TPer.

a.

If a violation of packet structure occurs such that the TPer is unable to resolve a valid Session
ID in an IF-SEND command, or if the restriction violation occurs due to violations of packet
requirements, the TPer SHALL ignore the entire packet and SHALL immediately transition to
the state of awaiting an IF-SEND command.

If a violation of packet structure occurs such that the TPer is able to resolve the Session ID, the
TPer SHALL close that session and MAY prepare for transmission the CloseSession method
for retrieval by the host.

The device SHALL abort at the interface level any IF-SEND command whose transfer length (in
bytes) is greater than the reported MaxComPacketSize for the corresponding ComID. The
interface status for this action SHALL be "Invalid Transfer Length parameter on IF-SEND" (see

[2]).

For SSCs that require that entire method responses be retrieved, if data generated in response
to any single method in an IF-SEND command (together with required communications
overhead) does not fit entirely within the TPer's response buffer, the device SHALL NOT return
any part of that method response and SHALL instead return an empty results list with a status
code of RESPONSE_OVERFLOW in the status list. Additionally, the TPer SHALL continue
processing methods and control tokens that had been sent in that command payload (if any).

Revision 2.00 Page 91 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

3.4 SP Operation Descriptions

This section defines the operational and access control model for SPs.

3.4.1 General SP Guidelines

3.41.1 Admin SP
Begin Informative Content

The Admin SP maintains information about other SPs and the TPer as a whole and enables creation of
other SPs under issuance control.

End Informative Content

There SHALL be exactly one Admin SP on every TPer that has SPs or that is able to have SPs issued.
If present, the Admin SP SHALL NOT be able to be deleted, disabled, or frozen. The Admin SP SHALL
have the name "Admin."

3412 SPs

SPs are created by integrating portions of one or more of the templates supported by a TPer (as
identified in the Admin SP).

A template includes the following:
a. Eachtemplate SHALL have a different name.

b. Templates define a set of table and method definitions. These definitions are used to
define the initial tables and methods that MAY be included in an instance of that template.

c. A maximum instance count. A maximum instance count of zero means no limit. At any
time there SHALL be no more than this number of SPs based on this template instantiated
within the TPer.

An SP includes the following:
a. A name - Each SP SHALL have a different name.

b. A set of tables — Tables SHOULD be stored in a non-user addressable storage area on the
TPer.

c. A set of methods — The supported methods define the operations that MAY be performed
on the SP and the SP's tables.

All SPs SHALL be created from at least the Base Template. The Base Template is combined with zero
or more other template(s) to create an SP, though the number of SPs that instantiate a particular
template MAY be limited by the template's maximum instance count. The number of Base Template
instantiations permitted in a particular TPer by definition limits the number of SPs that MAY be issued
for that TPer.

An SP MAY incorporate only a subset of the entire set of tables and methods provided by each
template that makes up the SP.

3.4.2 Access Control
Begin Informative Content

This section introduces the concepts utilized to permit and restrict operations within an SP.
End Informative Content

3.4.2.1 Overview
Begin Informative Text

Access control limits the methods that are able to be processed on an SP, a table, or on specific rows
and columns of a table.

Revision 2.00 Page 92 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Permission to process a method is governed by which secrets the method'’s invoker has proven that it
knows. The secrets and their public parts are called Credentials. The operation for proving knowledge
of a secret is called an Authentication Operation. The actual proving of knowledge of a secret is called
Authentication.

End Informative Text

Authentication in this document describes either Explicit Authentication, which typically occurs as a
result of password validation or challenge/response; or Implicit Authentication, which occurs as a result
of implicitly proving knowledge of a secret, such as during session key exchange.

An authority SHALL be considered authenticated in either type of authentication scenario - the terms
explicit and implicit are descriptive and SHALL NOT limit the authentication or capabilities of an
authority.

Begin Informative Text

An authority is used by the host application to represent a person, a role, a program agent, etc. These
are distinctions of meaning to the application, not to the SP.

Access Control is specified in layers. The top layer of the mechanism is Access Control Lists (ACLS).
ACLs are lists of Access Control Elements (ACEs). This layering gives the host a way to delegate
control of an ACL, via control of its ACES, to various independent entities.

ACEs are Boolean combinations of authorities. This permits the ACE to express cross-certification or
other forms of restriction.

End Informative Text

When an authority is authenticated, its value in an ACE Boolean expression SHALL be True. If the
authority has not been authenticated, its value in an ACE Boolean expression SHALL be False.

Figure 8 Access Control
=P, Table, or Object

/\

fathod 1 Method 2
(or) {or)
H§E1 ﬁ\CEQ AEES ACE:l
AJTHT and ALUTHA or AUTHS AUTHT and AUTH?3 AUTHZ and AUTH4
(AUTHZ or AUTH3)

3.4.2.2 Authorities

An authority is an object in the Authority table. An authority is one of two kinds: Individual or Class.
Each individual authority MAY be a member of one class authority. A class authority MAY be a
member of one class authority. A class authority SHALL NOT refer directly to a credential. An
individual authority specifies one credential and one operation that uses that credential.

Begin Informative Content

Class authorities are a convenient way to allow an ACE to be set on a method without enumerating all
the individual authorities that authorize that method. This means that the individual authorities that

Revision 2.00 Page 93 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

belong to that class authority are able to be changed without having to change any of the ACEs that
refer to the class authority.

End Informative Content

A class authority SHALL be authenticated when any member of the class is authenticated. Class
authorities SHALL NOT be directly authenticated.

e A credential is an object in a Credential table. All credential tables have a name that starts with
"C_". A credential table SHALL have at least one column that stores a secret. It MAY also
have “public” parts, which contain information such as public keys and certificates. A particular
credential MAY have only some of its columns filled in. For example, if only a public key and
certificates validating that public key are known, then the private key columns are unused
(zeroes in these columns indicate that this information is not present).

Authentication to an authority SHALL occur within a session or during session startup, and SHALL
apply only to that session. All authorities that participate in successful session startup are authenticated
for that session. During a session the host MAY make any number of Authenticate method
invocations. There MAY be Security Subsystem Class-defined TPer and per session limits on the
maximum number of authorities that MAY be authenticated at any one time.

A set of authorities is defined by this specification. The AdminExch authority, of the class Admins, is
one such pre-defined authority. Every SP has an AdminExch authority at time of issuance. SSCs MAY
specify authorities in addition to these, or MAY restrict the use of the authorities specified in this
document.

For details regarding the Admins authority and other pre-defined authorities, refer to 5.3.4.1.2.
3.4.2.3 ACEs and ACLs
Begin Informative Content

ACEs apply to methods on an SP, on a particular table in an SP, or on arbitrary parts of a particular
table in an SP, down to the granularity of a single table cell.

With ACEs as the building blocks of ACLs, each ACE is able to have separate managerial control. For
example, a host authenticated with one authority creates a table and gives another authority control of
some of the ACEs on that table. This allows flexible, fine-grained management of access.

End informative Content

The minimum and maximum number of ACEs in an ACL and the minimum and maximum number of
authorities in an ACE are SSC-specific. Every SSC SHALL at least stipulate the minimum.

3.4.3 SP Issuance, Personalization, and Operational State
Begin Informative Content

Issuance is the cryptographically controlled creation of SPs from templates. Issuance occurs within a
session to a TPer's Admin SP, and is achieved by demonstrating knowledge of the secrets required to
authorize the creation of new SPs and then, for each new SP, creating a unique credential for the
Admin authority on that SP.

End Informative Content

Issuance of a new SP SHALL be complete when the top-level transaction that contains the method
invocation is successfully committed or, if the method was invoked outside of a transaction, once the
TPer has processed the method and prepared a response. SPs SHALL be created using the templates
specified during issuance. Once an SP is issued, it is not possible to add functionality to the SP from
additional templates.

Begin Informative Content

Revision 2.00 Page 94 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Personalization follows Issuance. The AdminExch authority on the new SP accomplishes
personalization by opening a session to the issued SP, creating new tables (in addition to the tables
that were provided by the templates), provisioning those tables, creating and configuring new
authorities, and setting the access controls on the SP’s methods. Personalization is an ongoing
process that occurs during the entire life of an SP.

End Informative Content

3.4.3.1 Issuing an SP
Begin Informative Content

Issuing an SP is similar to building a train (see Figure 9 below). Every train (SP) must have an engine
(Base Template). Additional cars (other Templates) providing additional capabilities are able to be
added at the time of issuance. In the simplest case, an SP is issued from just the Base Template (see
part ‘a’). In more complex cases several templates are used.

End Informative Content

Figure 9 Issuance

TEMPLATES

olollllele

ISSUED SPs

a) Simple

b) Complex

Locking Crypto Clock Log .
=—]Base
0 0 OO0 OO0 OO0 OO0 OO O Q0

Revision 2.00 Page 95 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

4 Life Cycle of SPs
4.1 Life Cycle of SPs Overview

Begin Informative Content

Each SP in a TPer has its own life cycle state. This section defines the various life cycle states and the
transitions that an SP makes between them.

Life cycle applies to each individual SP. The life cycle state of the TPer as a whole emerges from life
cycle states of individual SPs.

End Informative Content

Life cycle states are recorded in the LifeCycleState column of the Admin SP’s SP table. This column
identifies the SP's current state. The value of this column SHALL be changed by the TPer whenever an
SP's life cycle state changes. The value of the Admin SP object's LifeCycleState column SHALL
only be Issued.

Access control on reading the SPs available in a TPer, and the life cycle states of those SPs, SHALL be
readable by the Anybody authority on the Admin SP.

4.2 Life Cycle States

Figure 10 Life Cycle State Transitions

|ssued
Disabled

lssued

lssued
Disabled
Frozen

Y
lssued
Failed

&

Nonexistent

lssued
Frozen

The following list details the states depicted in Figure 10 .

a. Nonexistent: The Nonexistent state is a theoretical state that describes the condition of an SP
before it has been instantiated, or after it has been deleted.

b. Issued: The Issued state is the standard operational state of an SP, and defines the initial
required access control settings of an SP based on the templates incorporated into the SP and
as defined by this specification and/or a supported SSC, prior to personalization. .

Revision 2.00 Page 96 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

C.

Issued-Disabled: This state occurs after an SP has been issued, when the value of the
Enabled column of the SP’s SPInfo table is False.

Issued-Frozen: This state occurs after an SP has been issued, when the value of the Frozen
column of the Admin SP’s SP table is True.

Issued-Disabled-Frozen: This state occurs after an SP has been issued, when both the value
of the Frozen column of the Admin SP’s SP table is True and the value of the Enabled column
of the SP’s SPInfo table is False.

Failed: The Failed state describes the condition where the SP has experienced an
unrecoverable write failure; physical read error for the hidden (SP) space; or other
unrecoverable failure that prevents access to TCG related functionality and data structures (i.e.
the SP is unable to accept method invocations).

4.3 Life Cycle State Transitions

This section identifies and describes the possible transitions between life cycle states as depicted in
Figure 10 .

a.

Nonexistent/Issued

i. An SP transitions from Nonexistent to Issued when successful invocation of the
IssueSP method causes the SP to be created. The SP SHALL be created in this state
if the SP is operational and if the value of the IssueSP method's parameter Enabled
was True.

ii. An SP transitions from Issued to Nonexistent when that SP is deleted.
Any State/lssued-Failed

i. An SP MAY transition into the Issued-Failed state if an unrecoverable write error or
other failure occurs. The TPer SHALL control entry to this state.

ii. The Failed state is a terminal state. The only exit available from the Failed state is to
the theoretical Nonexistent state, by invoking Delete on the SP's object in the Admin
SP's SP table.

Issued/Issued-Disabled

i. An SP is transitioned from the Issued state into the Issued-Disabled state by setting the
value of the Enabled column of the SP’s SPInfo table to False.

ii. An SP is transitioned from the Issued-Disabled state to the Issued state by setting the
value of the Enabled column of the SP's SPInfo table to True.

Issued/Issued-Frozen

i. An SP transitions from the Issued state into the Issued-Frozen state by setting the
value of the Frozen column of the SP's object in the Admin SP’s SP table to True.

ii. An SP transitions from the Issued-Frozen state into the Issued state by setting the
value of the Frozen column of the SP's object in the Admin SP’s SP table to False.

Issued-Disabled/Issued-Disabled-Frozen

i. An SP is transitioned from the Issued-Disabled state to the Issued-Disabled-Frozen
state by setting the value of the Frozen column of the SP's object in the Admin SP’s SP
table to True.

Revision 2.00 Page 97 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ii. An SP is transitioned from the Issued-Disabled-Frozen state to the Issued-Disabled
state by setting the value of the Frozen column of the SP's object in the Admin SP’s SP
table to False.

f. Issued-Disabled/Nonexistent

i. The SP MAY be deleted, and thus enter the Nonexistent state, by successful invocation
of the DeleteSP method from within a session to the SP, or by successful invocation of
the Delete method on the SP's object in the Admin SP's SP table.

g. Issued-Frozen/Nonexistent

i. The SP MAY be deleted, and thus enter the Nonexistent state, by successful invocation
of the Delete method on the SP's object in the Admin SP's SP table.

h. Issued-Disabled-Frozen/Nonexistent

i. The SP MAY be deleted, and thus enter the Nonexistent state, by successful invocation
of the Delete method on the SP's object in the Admin SP's SP table.

4.4 Default Authorities
The initial authorities defined in this specification that MAY affect the life cycle states are defined for:
a. Base Template (Table 209) — the Admins Authority (SP owner) and Makers Authority.

b. Admin Template (Table 216) — In addition to the Base Template Authorities, the Issuing
(and related) authorities, and the SID (TPer Owner) authority.

These are the only authorities that are within the scope of the specification. Additional authorities MAY
be defined in a Security Subsystem Class; during SP personalization and operational use, as required
and permitted by the access control settings defined here; or both.

45 State Behaviors
45.1 Issued

Behavior of an SP in the Issued state is described in the Template Reference sections, and specifically
in the sections of the templates of which the SP has been constructed. Access control settings in those
sections apply at the point when an SP has been Issued and before personalization occurs.

45.2 Issued-Disabled

If the Log template has been issued into the SP, logging in the SP’s default log table MAY reflect at
least the successful or unsuccessful use of the disabling and enabling functions, any failed session
attempts, and failed attempts to invoke the DeleteSP method, dependant on personalization.

Template-specific information related to disabling of an SP that includes that template is found in the
template’s reference section in this document.

In the Issued-Disabled state, only a host application that is able to authenticate to the necessary access
controls SHALL have the ability to re-enable the SP. Only method invocations related directly to re-
enabling the SP are successful (access control requirements SHALL still be fulfilled).

Only the following method invocations to the disabled SP SHALL function (fulfilling appropriate access
control requirements SHALL be required):

a. Authenticate

Revision 2.00 Page 98 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

b. Set on the Enabled column of the SPInfo table. Access control requirements SHALL be
met as normal.
c. DeleteSP — Access control requirements SHALL be met as normal.

In addition, the disabled state SHALL NOT affect control session methods, and session startup
methods SHALL operate as normal.

The TPer owner or an authorized authority SHALL still have the ability to invoke the Delete method
within a session to the Admin SP in order to delete the disabled SP.

All method invocations, other than those specifically identified in this section, invoked within a session
to an SP in the Issued-Disabled state, SHALL fail with the SP_DISABLED status code.

45.3 Issued-Frozen

If the Log template has been issued into the SP, logging in the SP’s default log table MAY reflect failed
session startup attempts, dependent on personalization.

Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail with status SP_FROZEN.

45.4 |ssued-Disabled-Frozen

If the Log template has been issued into the SP, logging in the SP’s default log table MAY reflect failed
session startup attempts, dependent on personalization.

Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail with status SP_FROZEN.

455 Failed

When an SP is in the Failed state, session startup methods to the SP SHALL respond with an error
status SP_FAIL and session startup SHALL NOT be able to complete.

The TPer owner or an authorized authority MAY invoke the Delete method within a session to the
Admin SP in order to delete the failed SP.

Revision 2.00 Page 99 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5 SP Reference
5.1 Globally Applicable SP Values

Begin Informative Content

The following sections define variables, functions, constants, or any system attribute that applies to any
SP.

End Informative Content

5.1.1 Column Types Overview

The following are the primitive data types used for column types as defined by the specification. How
these primitive values are stored in a table cell is implementation dependent.
a. integer. Signed integer. To differentiate among the type sizes, a size identifier is specified
with the type, i.e., a one-byte integer is denoted as integer_1, etc.

b. uinteger. Unsigned integer. To differentiate among the type sizes, a size identifier is
specified with the type, i.e. a one-byte integer is denoted as uinteger_1, etc.

c. bytes. A fixed size sequence of bytes that is used to represent any type of data such as
strings, blobs, bit vectors, time/dates, etc. To differentiate among the type sizes, a size
identifier is specified with the type, i.e. a one-byte bytes type is denoted as bytes_1, etc.

d. bytes{max=n}. A variable size sequence of bytes. To differentiate among the type sizes, a
size identifier is specified with the type, i.e. a one-byte max bytes type is denoted as
max_bytes 1, etc. Invocation of the Get method on a table cell with this type of value
SHALL return the exact sequence of bytes, with the same token length, as was originally
set.

The value of a Type object's Format column SHALL indicate the structure and required values of that
type. The parsing of the value of this column is defined in a general manner using the following rules in
ABNF (see [9]). Additional specific information is provided after the notation. In the Format column, the
Format code and the table_kind value SHALL be encoded as a uinteger_2. All other values are
encoded as indicated.

Type = Base_Type / Simple_Type / Enumeration_Type / Alternative_Type / List Type /
Restricted_Reference_Type / General_Reference_Type / Named_Value_Type / Struct_Type
/ Set_Type

172

table_kind

0]

1 bytes_8 uinteger_2

2 1*(uinteger_2 uinteger_2)
3 2*bytes_8

4 uinteger_2 bytes 8

5/6 1*bytes 8

7/8/9

10 table_kind

11 1*32bytes bytes_8

12 integer_2 bytes_8

13 uinteger_2 bytes_8

14 1*bytes_8

15 1*(uinteger_2 uinteger_2)

Base_Type

Simple_Type
Enumeration_Type
Alternative_Type
List_Type
Restricted_Reference_Type
General_Reference_Type
General_Reference_Table_Type
Named_Value_Name_Type
Name_Value_lInteger_Type
Name_Value_Uinteger_Type
Struct_Type

Set_Type

a. Base_Type. The Base Type format describes the most basic types. Other types are
created using the Base Types as building blocks. The Base Types SHALL NOT be used
directly. Base Types SHALL always have a Size column value of 0 in the Type table.

Revision 2.00 Page 100 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00
a. 0 -—thisis the Format code indicating that this is a Base_Type.

b. Simple_Type. The Simple_Type format defines an instance of one of the Base_Type
types. The Simple_Type always includes a uinteger in the format column, which defines
the size for that instance of that Simple_Type.

a. 1 -—thisis the Format code indicating that this is a Simple_Type.
b. bytes 8 —this SHALL be a uidref to a Type object that is a Base_Type.
c. uinteger_2 —this is the size of this instantiation of the Base_Type.
c. Enumeration_Type. This is a n unsigned integer in a specific range.
a. 2 —thisis the Format code indicating this is an Enumeration_Type.

b. 1*(uinteger_2 uinteger_2) — this is a number of pairs of values of uinteger_2 that
represent the supported ranges of values in the enumeration.

If a non-contiguous range of values is supported, the Format column SHALL contain a
number of uinteger_2 pairs to identify all of the supported values.

a. Aninvocation of the CreateRow method SHALL contain only a single pair of uinteger_2
values.

b. Pseudo-code example: enum {0..2} represents a range of 0 to 2 inclusive.

d. Alternative_Type. This is a value that SHALL be an element of one of the specified types.
The Alternative_Type format defines a union with the uinteger specifying the number of
member types and followed by that many uidref{TypeObjectUID} references to the member
types.

a. 3 -—thisis the Format code indicating that this is an Alternative_Type

b. 2*bytes 8 — this is a number of 2 or more uidrefs to different Type objects, other than
Base_Types, that identify the options available for this type.

Pseudo-code example: typeOr{boolean,uinteger_4,bytes_7}

e. List_Type. This is a sequence of values of the same type. The maximum number of
elements is specified. The elements of the list are not required to be provided in any
specified order. The elements of the list SHALL be returned to the host (with the Get
method, for example) in the order in which they were received by the TPer.

a. 4 -—thisis the format code indicating that this is a List_Type.
b. uinteger_2 — this is the maximum number of elements that make up the list.

c. bytes_8 — this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the elements of the list.

Pseudo-code example: list[10]{boolean} is a list of boolean values, with a maximum of 10
elements.

f. Restricted_Reference_Type. A reference to a row SHALL be contained in a specific table
or group of tables. The reference is to a physical row number (5) or a UID (6) within the
table. The value of a ref is the uinteger row number for a byte table. The value of a uidref is
a UID from the UID column of an object table. A uidref value of 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00, called the NULL UID, serves as a “null pointer”.

a. b5/6 —these are the format codes indicating that this is a Restricted_Reference_Type

i. 5 — this format code indicates that this type SHALL be the row number
contained in one of the indicated byte tables.

Revision 2.00 Page 101 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ii. 6 — this format code indicates that this type SHALL be the UID of an object
contained in one of the indicated object tables.

b. 1*bytes 8 — this is 1 or more UIDs that SHALL be to different Table UIDs that identify
the tables within which the row number or uidref SHALL exist.

In this example, TableName is the name of the referenced table:
a. Pseudo-code example: uidref{ <TableName>ObjectUID }
b. Pseudo-code example: ref{ <TableName>ObjectUID }

g. General_Reference_Type. This is a reference to a row of some byte table, to the UID of
some object, or to the UID of some table. The General_Reference_Type format defines a
physical row number of a byte table (7), a uid of some object (8), or a uid of some table (9).
The UID reserved to represent “this SP” is encompassed by a General_Reference_Type
of 8. The value of a ref is the uinteger row number for a byte table. The value of a uidref is
a UID from the UID column of an object table. A uidref value of 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00, called the NULL UID, serves as a “null pointer”.

a. 7/8/9 —these are the format codes indicating that this is a General_Reference_Type.

i. 7 —this format code indicates that this type SHALL be the physical row number
of a byte table.

ii. 8 —this format code indicates that this type SHALL be the UID of some object.
iii. 9 - this format code indicates that this type SHALL be the UID of some table.
Pseudo-code example: uidref{*}
Pseudo-code example: ref{*}

h. General_Reference Table_Type. This is a reference to a a specific kind of table, either
byte or object.

a. 10 - this format code indicates that this is a General_Reference_Table_Type.

b. table_kind (1/2) — this identifies whether the type value is the UID of an object table or
the UID of a byte table.

i. 1 — this table_kind value indicates that the type value SHALL be the UID of an
object table.

ii. 2 — this table_kind value indicates that type the SHALL be the UID of a byte
table.

i. Named_Value Name_Type. This is a Named value pair where the Name in the pair is a
max_bytes 32, and the value is a uidref to the required type of the value.

a. 11 —this format code indicates that this is a Named_Value_Name_Type.

b. max_bytes 32 — this is a string with a maximum length of 32 characters that SHALL be
the name submitted with the value.

c. bytes 8 — this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the value to be submitted.

j- Named_Value_Integer_Type. This is a Named value pair where the Name in the pair is
an integer_2, and the value is a uidref to the required type of the value.

a. 12— this format code indicates that this is a Named_Value_Name_Type.
b. integer_2 —this is a signed integer that SHALL be the name submitted with the value.

c. bytes_8 — this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the value to be submitted.

Revision 2.00 Page 102 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

k.

Named_Value_Uinteger_Type. This is a Named value pair where the Name in the pair is
a uinteger_2, and the value is a uidref to the required type of the value.

a. 13 - this format code indicates that this is a Named_Value_Name_Type.

b. uinteger_2 — this is an unsigned integer that SHALL be the name submitted with the
value.

c. bytes_8 — this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the value to be submitted.

Struct_Type. This is a combination of different Named value types. The Struct_Type
format indicator is followed by the number of elements and then uidrefs to the rows in the
Type table that represent each of those elements. Name-value pairs in structs represent
optional components. These MAY be excluded when passing that struct as a method
parameter. When used as a column type, the size SHALL account for inclusion of all of a
struct's components.

a. 14 - this format code indicates that this is a Struct_Type

b. 1*bytes 8 — this is a number of uidrefs to different Type objects, other than
Base_Types, that identify the components of this type.

Named value types in a struct SHALL all be different uidrefs and SHALL all be defined to
utilize different names.

If an element of a Struct is supplied when the Struct is referenced (for instance, in a method
parameter), then that element SHALL appear in the order identified for that Struct in the
Type table.

For a Struct made up of Named value parameters A, B, C, and D, if the Struct is
referenced, as in a method parameter, if element A is supplied then it SHALL be supplied
first within the Struct. Other correct element orderings include:

a. ExampleStruct[A, C,D]

b. ExampleStruct[B, D]

c. ExampleStruct[A, D]

Invalid element orderings include:
a. ExampleStruct[D, C]

b. ExampleStruct[B, C, A]

c. ExampleStruct[B, A, D, C]

Set_Type. A set of unsigned integers in a specific range. The Set_Type format defines the
range of the valid elements of the set, where the first integer is the start value of the valid
elements of the set and the second integer is the end value. The type itself is not limited to
only a single selection from among the choices defined, as in the Enumeration_Type. The
Set_Type provides the host the ability to select more than one of the options. Each SHALL
appear only once in the Set. The Set MAY hold any amount of selections, from zero to the
number of selections.

a. 15 - this format code indicates that this is a Set_Type

b. 1*(uinteger_2 uinteger_2) — this is a number of pairs of values of uinteger_2 that
represent the supported ranges of values in the set.

i. If a non-contiguous range of values is supported, the Format column SHALL
contain a number of uinteger_2 pairs to identify all of the supported values.

Revision 2.00 Page 103 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ii. An invocation of the CreateRow method SHALL contain only a single pair of
uinteger_2 values.

Pseudo-code example: Set{0..2} — Valid values for this set are made up of the following =

{1, {0}, {1}, {2}, {0,1}, {0.2}, {1,2}, {0,1,2}.

5.1.2 Types Encoding

Certain column types used in messaging as method parameters (particularly in the Set method) utilize
the interface grouping mechanisms (Named and List values) to provide clarity regarding the scope of
the transmitted values.

a. Simple types — values of this type require no special handling in the messaging stream.

b. Enumeration types — values of this type require no special handling in the messaging
stream.

c. Alternative types — values of this type are encoded in Get and Set methods as follows:

a. The Alternative column type is handled similarly to a Named value in a parameter list.
The Named value grouping tokens are used (SN and EN tokens, which represent
"StartName" and "EndName" respectively). The Name for the pair is the last four bytes
of the UID ("half_uid") of the value's Type object. The value in the Named value is the
value of the option being set to or retrieved from the column.

Example: When setting a 16-byte key value to the Key column of the K_AES_128 table, the
value would be encoded as:

F2 A400000202 D010000102030405060708090A0BOCODOEOF F3
d. Listtype — values of this type are encoded as follows:

a. The List column type is handled in the same way a parameter list is handled, by using
the interface List value grouping tokens (FO and F1 tokens, which represent "[* and "]"
respectively) to enclose the values in the list.

Example: FO tokenized_value tokenized _value tokenized _value F1

e. Restricted Reference types — values of this type require no special handling in the
messaging stream.

f. General Reference types — values of this type require no special handling in the messaging
stream.

g. Named value types — values of this type are encoded as follows:

a. Values of this type are handled in the same way a Named value in a parameter list is
handled, by using the Named value grouping tokens (SN and EN tokens, which
represent "StartName" and "EndName" respectively) to enclose the name-value pair.

Example: F2 tokenized_name tokenized_value F3

h. Struct value types — Structs allow the creation of composite types by combining Named
value types and other types. Values of the struct type are made up of either optional
Named value types, or other types that are required to be supplied. The optional types
MAY NOT be included when sending values for a struct. Values of this type are encoded
as follows:

a. The struct itself is delimited using the List value grouping tokens (FO and F1 tokens,
which represent "[" and "]" respectively) to enclose the values in the struct. The Named
values that make up the values stored in the struct are each grouped using the
interface Named value-grouping tokens (SN and EN tokens, which represent
"StartName" and "EndName" respectively) to enclose each name-value pair.

Revision 2.00 Page 104 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Example: FO F2 tokenized_name tokenized value F3 F2 tokenized_name tokenized_value
F3F1

i. Setvalue types — values of this type are encoded as follows:

a. The Set column type is handled in the same way that the List type is handled, by using
the interface List value grouping tokens (FO and F1 tokens, which represent "[* and "]"
respectively) to enclose the values in the Set.

Example: FO tokenized_value tokenized_value F1

5.1.3 Column Types

This section describes each of the column types in the Template Reference sections of the Core
Specification. The UID, Name, and Format columns identify the column values of the Type table. These
values SHALL comprise the Type table for every SP, prior to any personalization. These types SHALL
NOT be able to be changed or deleted by the host.

Included in this section are descriptions of the column types for each column of each table defined in
this specification, as well as descriptions of each of the component types of the column types.
Component types are types that have entries in the Type table, but are not referenced directly as
column types. They are used to make up other types that do represent column types.

The UID column in the description table in each section SHALL be the UID for that type.
The Name column specifies the name for that type.

The Format column identifies the structure of the associated type. The first value in the Format column
is the name of that type's Format code. Additional values listed in the column are determined by the
type's format code. For readability, the names of Type objects are used in place of their UID, and
commas are used to separate values.

An asterisk (*) in any of the descriptive tables indicates SSC-specific or implementation-specific values.

5.1.3.1 AC_element

An AC_element is a list type made up of ACE_expressions. The size of the AC_element list is
implementation-dependant. A minimum size restriction MAY be defined by an SSC.

Table 46 AC _element
ulD Name Format

0000000500000801 | AC _element | List Type,

ACE_expression

5.1.3.2 ACE_columns

This Set type identifies the columns to which an ACE applies. The values are: 0=ColumnO,
1=Columnl, 2=Column2, etc. Each value in the set maps to a "Column Number". The size of the setis
SSCl/implementation dependant based on the maximum number of columns allowed in a table. For
tables created from templates, the table descriptions in this specification indicate the ordering of the
columns, such that the first column listed in a table description is "ColumnQ", the second is "Columnl",
etc. For object tables created using the CreateTable method, the UID column SHALL be Column
Number 0, the first column defined in the Columns parameter of CreateTable SHALL be Column
Number 1, etc.

Revision 2.00 Page 105 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

Table 47 ACE columns

TCG Copyright 2011

uUIiD Name Format
00 00 00 0500 00 1A 03 | ACE_columns | Set_Type,
01
*

5.1.3.3 ACE_expression

This is an alternative type where the options are either a uidref to an Authority object or one of the
boolean_ ACE (AND = 0 and OR = 1) options. This type is used within the AC_element list to form a
postfix Boolean expression of Authorities.

Table 48 ACE_expression

uiD

Name

Format

00 00 00 05 00 00 06 01

ACE_expression

boolean_ACE

Alternative_Type,
Authority _object_ref,

5.1.3.4 ACE_object_ref
This type describes a uidref to an object contained in the ACE table.

Table 49 ACE obj

ect _ref

uib

Name

Format

00 00 00 05 00 00 OC 04

ACE_object_ref

Restricted_Reference_Type{6},

uidref{ACETableUID}

5.1.35 ACL

The ACL type is a list of uidrefs to ACE objects. The length of the list, and therefore the number of
ACEs that MAY be included in a single Access Control List, is SSC/implementation dependant.

5.1.3.6

Table 50 ACL
ulD Name Format
0000000500000802 | ACL List Type,
*
ACE_object_ref

adv_key mode

This enumeration type defines the behavior of the NextKey column.

Table 51 adv_key mode

uibD

Name

Format

00 00 00 05 00 00 04 OF

adv_key _mode

Oa
7

Enumeration_Type,

The enumeration values are associated with key behaviors as defined in Table 52.

Revision 2.00

Page 106 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 52 adv_key mode Enumeration Values
Enumeration Value | Behavior

0 Wait for AdvKey_Req
1 Auto-advance keys
2-7 Reserved

5.1.3.7 attr_flags

This set type describes the types of attributes available for the AttributeFlags column of the Column
table.

Table 53 attr flags

uiD Name Format
00 0000050000 1A 04 | attr_flags Set_Type,
Oa
31

The set values are associated with column behaviors as defined in Table 54.

Table 54 attr flags Set Values

Set Value | Behavior
0 Get Not Permitted
1 Set Not Permitted
2-31 Reserved

5.1.3.8 auth_method

This enumeration type is used to represent the authentication methods that MAY be used to
authenticate authorities (see 5.3.4.1.3).

Table 55 auth method

uib Name Format

00 00 00 05 00 00 04 08 | auth_method Enumeration_Type,
05
23

The enumeration values are associated with authentication methods as defined in Table 56.

Table 56 auth method Enumeration Values

Enumeration Value | Authentication Method
0 None

1 Password

2 Exchange

Revision 2.00 Page 107 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

TCG Copyright 2011

Enumeration Value | Authentication Method

Sign
SymK
HMAC
TPerSign

TPerExchange

| N| O g M| W

Reserved

5.1.3.9 Authority_object_ref
The Authority_object_ref type describes a uidref to an object in the Authority table.

Table 57 Authority object ref
Name Format

ulD
00 00 00 05 00 00 OC 05

Authority_object_ref | Restricted Reference_Type{6},

uidref {AuthorityTableUID}

5.1.3.10 boolean
The boolean column type is an enumeration used to represent True or False.

Table 58 boolean

uiD Name Format

00 00 00 05 00 00 04 01 | boolean Enumeration_Type,
Oa
1

The enumeration values are associated as defined in Table 59.

Table 59 boolean Enumeration Values

5.1.3.11 boolean_ACE
This enumeration is used to identify the Boolean operators "And", "Or", and "Not".

Enumeration Value

Associated Value

0

False

1

True

Table 60 boolean ACE

uibD

Name

Format

Revision 2.00

Page 108 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

uiD Name Format

00 00 00 05 00 00 04 OE | boolean_ACE Enumeration_Type,
O!
2

The enumeration values are associated with Boolean operators as defined in Table 61.

Table 61 boolean ACE Enumeration Values

Enumeration Value | Operator
0 And

1 Or

2 Not

5.1.3.12 byte_row_ref
Type used for referencing a row in a byte table.

Table 62 byte row ref
ulD Name Format

00 00 00 05 00 00 OF 01 | byte_row_ref General_Reference_Type {7}

5.1.3.13 byte _table_ref

This is a reference type that SHALL be used specifically for uidrefs to byte tables. When performing
type checking, as part of that type checking the TPer SHALL validate that this uidref is to a table that is
a byte table.

Table 63 byte table ref

uilD Name Format
00 0000050000 1001 | byte_table ref General_Reference_Table_Type,
2

5.1.3.14 bytes

This type represents the bytes base type, and is used to represent a value made up of a fixed-size
sequence of bytes.

Table 64 bytes
ulD Name Format

00 00 00 05 00 00 00 02 | bytes Base_Type

5.1.3.15 bytes 4
This is a bytes type with a size requirement of 4.

Table 65 bytes 4
ulD Name Format

Revision 2.00 Page 109 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

5.1.3.16 bytes 12

5.1.3.17 bytes_16

5.1.3.18 bytes_20

5.1.3.19 bytes 32

5.1.3.20 bytes_48

uiD Name Format
00 000005000002 38 | bytes_4 Simple_Type,
bytes,
4
This is a bytes type with a size requirement of 12.
Table 66 bytes 12
uiD Name Format
00 00 000500000201 | bytes_12 Simple_Type,
bytes,
12
This is a bytes type with a size requirement of 16.
Table 67 bytes 16
uiD Name Format
00 00 000500000202 | bytes_16 Simple_Type,
bytes,
16
This is a bytes type with a size requirement of 20.
Table 68 bytes 20
uiD Name Format
00 000005000002 36 | bytes 20 Simple_Type,
bytes,
20
This is a bytes type with a size requirement of 32.
Table 69 bytes 32
uiD Name Format
00 00 00 050000 02 05 | bytes_32 Simple_Type,
bytes,
32
This is a bytes type with a size requirement of 48.
Table 70 bytes 48
uiD Name Format

Revision 2.00

Page 110 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

uiD Name Format

00 00 00 05 000002 37 | bytes_48 Simple_Type,
bytes,
48

5.1.3.21 bytes_64
This is a bytes type with a size requirement of 64.

Table 71 bytes 64

ulD Name Format

00 00 000500000206 | bytes 64 Simple_Type,
bytes,
64

5.1.3.22 Certificates_object_ref
The Certificates_object_ref type describes a uidref to an object in the Certificates table.

Table 72 Certificates_object ref
uiD Name Format

00 00 00 05 00 00 OC 06 | Certificates_object_ref | Restricted_Reference_Type{6},
uidref {CertificatesTableUID}

5.1.3.23 clock_kind
This enumeration type is used to define the type of clock currently active.

Table 73 clock kind

uibD Name Format

00 00 00 05 00 00 04 0B | clock_kind Enumeration_Type,
05
3

The enumeration values are associated as defined in Table 74.

Table 74 clock kind Enumeration Values

Enumeration Value | Associated Value
0 Timer

1 Low

2 High

3 LowAndHigh

5.1.3.24 clock_time

This is a struct type made up of name-value pairs, and is used to represent time. Any value not
supplied is treated as 0.

Revision 2.00 Page 111 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

If the host has supplied a trusted time since powerup, that time is used; otherwise a monotonic counter
is used.

The clock_time type represents times in either Generalized Time or UTC Time. Using this type to
represent UTC Time requires 0's (zeroes) in fields where Generalized time requires a value but UTC
Time does not (i.e. 2006 in UTC Time would be represented as 0006). Per the definition for the
component types, the names for these name-value types are 0x00 (for the Year), 0x01 (for the Month),
0x02 (for the Day), 0x03 (for the Hour), 0x04 (for the Minute), 0x05 (for the Seconds), and 0x06 (for the
Fraction).

Table 75 clock time
uiD Name Format

00 00 00 05 00 00 18 05 | clock_time Struct_Type,
Year,
Month,

Day,

Hour,
Minute,
Seconds,
Fractoin

5.1.3.25 Column_object ref
The Column_object _ref type describes a uidref to an object in the Column table.

Table 76 Column_object ref
uiD Name Format

00 00 00 05 00 00 OC 07 | Column_object_ref | Restricted Reference_Type{6},
uidref {ColumnTable_UID}

5.1.3.26 cred_object_uidref

The cred_object_uidref type is a restricted reference type that SHALL be used specifically for uidrefs to
credential objects. When performing type checking, as part of that type checking the TPer SHALL
validate that this uidref is to an object in a credential (C_*) table.

In the Format column of Table 77, the * is used to indicate the entire range of that particular type of
credential table.

Table 77 cred_object _uidref
uiD Name Format

00 00 00 05 00 00 OC 0B | cred_object_uidref | Restricted_Reference_Type{6},
uidref {C_PINTableUID},

uidref {C_AES_*TableUID},
uidref {C_RSA_*TableUID},
uidref{C_EC_*TableUID},
uidref{C_HMAC_*TableUID}

Revision 2.00 Page 112 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.3.27 date

The date type represents the date portion of the time from the system clock. This is a set of name-
value pairs, with the names 0x00 (for the Year), 0x01 (for the Month), and 0x02 (for the Day).

Table 78 date

uiD Name Format
00 00 00 05 00 00 18 04 | date Struct_Type, Year,
Month,
Day
5.1.3.28 Day
Name-value pair that has a Name of "2" and takes day_enum as the value.
Table 79 Day
uiD Name Format
00 00 00 05 00 00 14 03 | Day Name_Value_Uinteger_Type,
21
day_enum

5.1.3.29 day_enum
Used in association with the Day name-value pair.

Table 80 day enum

uibD Name Format

00 00 00 05 00 00 04 18 | day_enum Enumeration_Type,
1!
31

5.1.3.30 enc_supported
This enumeration type is used to define the types of user data encryption supported by the TPer.

Table 81 enc supported

uiD Name Format

00 00 00 05 00 00 04 1D | enc_supported Enumeration_Type,
O!
15

The enumeration values are associated as defined in Table 82.

Table 82 enc supported Enumeration Values
Enumeration Value | Associated Value

0 None

Revision 2.00 Page 113 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Enumeration Value | Associated Value

1 Media Encryption

2-15 Reserved

5.1.3.31 feedback_size

This uinteger type represents the feedback sizes for AES used in CFB mode. If AES Mode is CFB, this
SHALL be between 1 and the block length.

Table 83 feedback size

ulD Name Format

00 00 00 05 00 00 02 14 | feedback_size Simple_Type,
uinteger,
2

5.1.3.32 Fraction
Name-value pair that has a Name of "6" and takes fraction enum as the value.

Table 84 Fraction

uIlD Name Format

00 00 00 05 00 00 14 07 | Fraction Name_Value_Uinteger_Type,
6!
fraction_enum

5.1.3.33 fraction_enum
Used in association with the Fraction name-value pair.

Table 85 fraction enum

uiD Name Format

00 00 00 05 00 00 04 1C | fraction_enum Enumeration_Type,
Oa
999

5.1.3.34 gen_status
This set type is used to identify the general status of the re-encryption process.

Table 86 gen status

ulD Name Format
00 00 00 0500 00 1A 02 | gen_status Set_Type,
O!
63

Revision 2.00 Page 114 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

The enumeration values are associated as defined in table Table 87. Values 0-31 are valid for the
PAUSED state, value 32-63 are valid for the PENDING state (see 5.7.3.3).

Table 87 gen status Enumeration Values

Column Associated Value Meaning

Value

0 None

1 pending_tper_error Last ReEncryptState value was PENDING AND a
TPer_Error_Detect condition was detected

2 active_tper_error Last ReEncryptState value was ACTIVE AND a
TPer_Error_Detect condition was detected

3 active_pause_requested Last ReEncryptState value was ACTIVE AND PAUSE_req
was detected

4 pend_pause_requested Last ReEncryptState value was PENDING AND a
PAUSE_req value was detected

5 pend_reset_stop_detect A reset condition AND its associated ContOnReset
configuration does not allow re-encryption to continue AND
last state was PENDING

6 key_error ReEncryptState value was PENDING AND valid keys were
not found in any C_* table OR insufficient access control
granted for reading C_* table.

71031 reserved

32 wait_AvailableKeys keys are not available

33 wait_for_TPer_resources | Tper_ Ready condition is not True

34 active_reset_stop_detect | A reset condition AND its associated ContOnReset
configuration does not allow re-encryption to continue AND
last ReEncryptState value was ACTIVE

34-63 reserved

5.1.3.35 hash_protocol
This enumeration type determines the hash algorithm to be used when creating a digital signature.

Table 88 hash_protocol

uibD

00 00 00 05 00 00 04 0D

Name Format
hash_protocol Enumeration_Type,
O!
15

The enumeration values are associated as defined in Table 89.

Table 89 hash protocol Enumeration Values

Enumeration Value

Associated Value

Revision 2.00

Page 115 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Enumeration Value | Associated Value

None
SHA 1
SHA 256
SHA 384
SHA 512

gl | W[Nl | O

-15 Reserved

5.1.3.36 Hour
Name-value pair that has a Name of "3" and takes hour_enum as the value.

Table 90 Hour

uilD Name Format

00 00 00 05 00 00 14 04 | Hour Name_Value_Uinteger_Type,
31
hour_enum

5.1.3.37 hour_enum
Used in association with the Hour name-value pair.

Table 91 hour_enum

uibD Name Format

00 00 00 05 00 00 04 19 | hour_enum Enumeration_Type,
O!
23

5.1.3.38 integer
This is the base type used to represent a signed integer.

Table 92 integer
ulD Name Format

00 00 00 05 00 00 00 04 | integer Base_Type

5.1.3.39 integer_1
This is an integer type with a size limit of 1 byte.

Table 93 integer 1
uiD Name Format

Revision 2.00 Page 116 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

5.1.3.40 integer_2

5.1.3.41 key 128

5.1.3.42 key 256

uiD Name Format
00 000005000002 10 | integer_1 Simple_Type,
integer,
1
This is an integer type with a size limit of 2 bytes.
Table 94 integer 2
uiD Name Format
00 00 00 050000 02 15 | integer_2 Simple_Type,
integer,
2
This is an alternative type, with options for various key sizes.
Table 95 key 128
uiD Name Format
00 000005000006 02 | key 128 Alternative_Type,
bytes 16,
bytes 32
This is an alternative type, with options for various key sizes.
Table 96 key 256
uiD Name Format
00 00 00 05 00 00 06 03 | key 256 Alternative_Type,
bytes 32,
bytes 64

5.1.3.43 keys_avail_conds
This enumeration describes the conditions required to assert KeysAvai lable in the Locking table.

Table 97 keys avail conds

uibD

Name

Format

00 00 00 05 00 00 04 10 | keys_avail_conds

Enumeration_Type,
Oa
7

The enumeration values are associated as defined in Table 98.

Revision 2.00

Page 117 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

Table 98 keys avail conds Enumeration Values

Enumeration
Value

Associated Value

0 None

1 Authentication of an authority with Set access to any of the ReadlLocked,
WriteLocked, ReadLockEnabled or WriteLockEnabled columns for that LBA range

2-7 Reserved

5.1.3.44 lag

A struct made up of 2 uinteger_2 name-value types, used to define the lag when setting time. The two
types represent seconds and fraction of seconds. The names required, as defined by the component
types, are 0x05 ("Seconds") for the first value and 0x06 ("Fraction") for the second. The "Fraction" value
is a number of milliseconds.

Table 99 lag
ulD Name Format
0000000500001802 | lag Struct_Type,
Seconds,
Fraction

5.1.3.45 last_reenc_stat
This enumeration identifies the last attempted re-encryption step.

Table 100 last reenc_stat

uibD

Name

Format

00 000005000004 11

last_reenc_stat

Enumeration_Type,
Oa
7

The enumeration values are associated as defined in Table 101.

Table 101 last reenc stat Enumeration Values
Enumeration Value | Associated Value
0 Success
1 Read Error
2 Write Error
3 Verify Eror
4-7 Reserved

5.1.3.46 life_cycle_state
This enumeration is used to represent the current life cycle state of the SP.

Revision 2.00

Page 118 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

Table 102 life cycle state
uibD Name Format
00 00 00 05 00 00 04 05 | life_cycle_state Enumeration_Type,
05
15

The enumeration values are associated as defined in Table 103.

Table 103 life cycle state Enumeration Values

Enumeration Value | Associated Value

0 Issued

1 Issued-Disabled

2 Issued-Frozen

3 Issued-Disabled-Frozen
4 Issued-Failed

5-7 Unassigned

8-13 Reserved for SSC Usage
14-15 Unassigned

TCG Copyright 2011

5.1.3.47 LogList_object_ref
The LogList_object_ref type describes a uidref to an object in the LogList table.

Table 104 LogList _object ref
Name Format

uiD
00 00 00 05 00 00 OC 0D

LogList_object ref | Restricted_Reference_Type{6},

uidref {LogListTableUID}

5.1.3.48 log_row_ref
This type SHALL be used specifically for rows in Log tables. When performing type checking, as part of
that type checking the TPer SHALL validate that this is the uid of a row in a Log table.

The * in the Format column of Table 105 indicates that other Log tables besides the default log MAY
exist in a particular SP, and that the Format column value for this type also includes those.

Table 105 log row ref
uilD Name Format
00 00 00 05 00 00 OC OA | log_row._ref Restricted_Reference_Type {6},

uidref{LogTableUID},
*

Revision 2.00 Page 119 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.3.49 log_select

This enumeration is used to identify the scope of the logging for an access control association or
authority authentication.

Table 106 log select

uiD Name Format

00 00 00 05 00 00 04 OC | log_select Enumeration_Type,
Oa
3

The enumeration values are associated as defined in Table 107.

Table 107 log select Enumeration Values

Enumeration Value | Associated Value
0 None

1 LogSuccess

2 LogFail

3 LogAlways

5.1.3.50 max_bytes

This is the base type that is used to represent a bytes value that is equal to or less than the size
specified for the type instance.

Table 108 max_bytes
uiD Name Format

00 00 00 05 00 00 00 03 | max_bytes Base_Type

5.1.3.51 max_bytes_32
This is a max bytes type that provides a maximum size of 32.

Table 109 max bytes 32

uiD Name Format

00 00 00 05 00 00 02 OD | max_hytes 32 Simple_Type,
max_bytes,
32

5.1.3.52 max_bytes 64
This is a max bytes type that provides a maximum size of 64.

Table 110 max_ bytes 64
ulD Name Format

Revision 2.00 Page 120 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

uiD Name Format

00 00 00 05 00 00 02 OE | max_bytes 64 Simple_Type,
max_bytes,
64

5.1.3.53 mediakey_obj uidref

This is a restricted reference type that SHALL be used specifically for uidrefs to media encryption key
objects (in the K_* tables). When performing type checking, as part of that type checking the TPer

SHALL validate that this uidref is to an object in a media encryption key table.

Table 111 mediakey obj uidref

uiD

Name

Format

00 00 00 05 00 00 OC OC

mediakey_object_uidref

Restricted Reference_Type{6},
uidref {K_AES 128TableUID},
uidref {K_AES_256TableUID}

5.1.3.54 MethodID_object _ref
The MethodID_object _ref type describes a uidref to an object in the MethodID table.

Table 112 MethodID object ref

uibD

Name

Format

00 00 00 05 00 00 OC 03

MethodID_object_ref

Restricted_Reference_Type{6},
uidref {MethodIDTableUID}

5.1.3.55 messaging_type

This enumeration is used to describe the options for selecting secure messaging.

Table 113 messaging type

uibD

Name

Format

00 00 00 05 00 00 04 04

messaging_type

Enumeration_Type,
Oa
255

The enumeration values and their associations defined in Table 179.

5.1.3.56 Minute

Name-value pair that has a Name of "™ and takes minute_enum as the value.

Table 114 Minute

ulD

Name

Format

00 00 00 05 00 00 14 05

Minute

Name_Value_Uinteger_Type,
4!
minute_enum

Revision 2.00

Page 121 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.3.57 minute_enum
Used in association with the Minute name-value pair.

Table 115 minute enum

uiD Name Format

00 00 00 05 00 00 04 1A | minute_enum Enumeration_Type,
Oa
59

5.1.3.58 Month
Name-value pair that has a Name of "1" and takes month_enum as the value.

Table 116 Month

uIlD Name Format

00 00 00 05 00 00 14 02 | Month Name_Value_Uinteger_Type,
1!
month_enum

5.1.3.59 month_enum
Used in association with the Month name-value pair.

Table 117 month _enum

ulD Name Format

00 000005000004 17 | month_enum Enumeration_Type,
1!
12

5.1.3.60 name
This max bytes type, with a size limitation of 32, is used to represent names.

Table 118 name

uiD Name Format

00 00 00 05 00 00 02 OB | name Simple_Type,
max_bytes,
32

5.1.3.61 object_ref
Type used for referencing an object in an object table.

Revision 2.00 Page 122 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 119 object ref
uiD Name Format

00 00 00 05 00 00 OF 02 | object_ref General_Reference_Type {8}

5.1.3.62 padding_type

This enumeration is used to identify the type of padding used with RSA encryption. RSAES-PKCS1-
vl 5 or RSAES-OAEP (see [18]) SHALL be used for RSA encryption. RSASSA-PKCS1-vl 5 or
RSASSA-PSS (see [18]) SHALL be used for RSA signing.

Table 120 padding type

uiD Name Format

00 00 00 05 00 00 04 06 | padding_type Enumeration_Type,
O!
15

The enumeration values are associated as defined in Table 121.

Table 121 padding type Enumeration Values
Enumeration Value | Associated Value

None

None
RSAES-PKCS1-vl_5
RSAES-OAEP
RSASSA-PKCS1-vl_5

gl | Wl N | O

-15 Reserved

5.1.3.63 password
This max bytes type, with a size limitation of 32, is used in the C_PIN table.

Table 122 password

uiD Name Format

00 00 00 05 00 00 02 OC | password Simple_Type,
max_bytes,
32

5.1.3.64 protect_types

This set is used to identify the protection mechanisms in operation when a column is identified as
hidden.

Table 123 protect types
uibD Name Format

Revision 2.00 Page 123 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

uiD Name Format
00 00 00 05 00 00 1A 05 | protect_types Set_Type,
O!
255

The empty set indicates that keys are not hidden. The values of the set are all applied to the protected
value. The set values are assigned in [3].

5.1.3.65 reencrypt_request
This enumeration is used to identify the host re-encryption request value.

Table 124 reencrypt request

uiD Name Format

00 00 00 05 00 00 04 13 | reencrypt_request | Enumeration_Type,
1!
16

The enumeration values are associated as defined in 5.7.2.2.14.

5.1.3.66 reencrypt_state
This enumeration type identifies the present re-encryption state for an LBA range.

Table 125 reencrypt state

ulD Name Format

00 00 00 05 00 00 04 14 | reencrypt_state Enumeration_Type,
1!
16

The enumeration values are associated as defined in Table 126.

Table 126 reencrypt_state Enumeration Values
Enumeration Value | Associated Value

1 Idle

Pending

Active

Completed

Paused

o O b~ W N

-16 Reserved

5.1.3.67 reset_types
This Set type identifies the various TCG reset options available.

Revision 2.00 Page 124 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 127 reset types

ulD Name Format
00 00 00 050000 1A 01 | reset_types Set_Type,
05
31

The Set values are associated as defined in Table 128.

Table 128 reset types Set Values

Set Value | Associated Value
0 Power Cycle

1 Hardware

2 HotPlug

3-15 Reserved

16-31 Vendor Unique

5.1.3.68 Seconds
Name-value pair that has a Name of "5" and takes seconds_enum as the value.

Table 129 Seconds

uib Name Format

00 00 00 05 00 00 14 06 | Seconds Name_Value_Uinteger_Type,
51
seconds_enum

5.1.3.69 seconds_enum
Used in association with the Seconds name-value pair.

Table 130 seconds_enum

uiD Name Format

00 00 00 05 00 00 04 1B | seconds_enum Enumeration_Type,
O!
59

5.1.3.70 SPTemplates_object ref
The SPTemplates_object _ref type describes a uidref to an object in the SPTemplates table.

Table 131 SPTemplates_object ref
uiD Name Format

Revision 2.00 Page 125 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ulD Name Format

00 00 00 05 00 00 OC 01 | SPTemplates_object_ref | Restricted_Reference_Type{6},
uidref{SPTemplatesTableUID}

5.1.3.71 SSC
This is a list of names used to represent the SSCs that a TPer supports.

Table 132 SSC

ulD Name Format
0000000500000803 | ssC List Type,
*
name

5.1.3.72 symmetric_mode
Defines the mode to be used with an AES credential.

Table 133 symmetric_mode

uiD Name Format

00 00 00 05 00 00 04 OA | symmetric_mode | Enumeration_Type,
O!
23

The enumeration values are associated as defined in Table 134.

Table 134 symmetric_mode Enumeration Values
Enumeration Value | Associated Value

0 ECB
CBC
CFB
OFB
GCM
CTR
CCM
XTS
LRW
EME
10 CMC
11 XEX
12-23 Reserved

©| 0| N O O | W N| B

Revision 2.00 Page 126 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

5.1.3.73 symmetric_mode_media
Defines the modes availableto be used with AES for user data encryption.

Table 135 symmetric mode media

TCG Copyright 2011

uib

Name

Format

00 00 00 05 00 00 04 03

symmetric_mode_media

01
23

Enumeration_Type,

The enumeration values are associated as defined in Table 134.

Table 136 symmetric_mode

5.1.3.74 table kind

Defines the kinds of tables.

media Enumeration Values

Enumeration Value | Associated Value
0 ECB

1 CBC

2 CFB

3 OFB

4 GCM

5 CTR

6 CCM

7 XTS

8 LRW

9 EME

10 CMC

11 XEX

12-22 Reserved

23 Media Encryption

Table 137 table kind

uiD Name Format

00 00 00 05 00 00 04 15 | table_kind Enumeration_Type,
15
8

The enumeration values are associated as defined in Table 138.

Revision 2.00

Page 127 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 138 table kind Enumeration Values
Enumeration Value | Table Type

1 Object
2 Byte
3-8 Reserved

5.1.3.75 table_or_object_ref

This alternative type defines a reference to either the uid of a table or the uid of some object, or the UID
of "ThisSP".

Table 139 table or object ref

uiD Name Format

00 00 00 05 00 00 06 06 | table_or_object _ref | Alternative_Type,
object_ref,
table_ref

5.1.3.76 Table _object ref
The Table_object _ref type describes a uidref to an object in the Table table.

Table 140 Table object ref
uilD Name Format

00 00 00 05 00 00 OC 09 | Table_object ref | Restricted Reference Type{6},
uidref {TableTableUID}

5.1.3.77 table_ref
Type used for referencing a table.

Table 141 table ref
ulD Name Format

00 00 00 05 00 00 OF 03 | table_ref General_Reference_Type {9}

5.1.3.78 Template_object _ref
The Template_object _ref type describes a uidref to an object in the Admin SP's Template table.

Table 142 Template object ref
uliD Name Format

00 00 00 05 00 00 OC 08 | Template_object_ref | Restricted_Reference_Type{6},
uidref {TemplateTableUID}

Revision 2.00 Page 128 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.3.79 type def

The type_def type describes the format of the Type table's Format column. The value in the Format
column of this type SHALL be encoded and parseable based on the notation description of the type
formats (see 5.1.1).

Table 143 type def

uiD Name Format
00 00 00 05 00 00 02 03 | type_def Simple_Type,
max_bytes,

5.1.3.80 Type_object ref
The Type_object _ref type describes a uidref to an object in the Type table.

Table 144 Type object ref
ulD Name Format

00 00 00 05 00 00 OC 02 | Type_object_ref | Restricted Reference_Type{6},
uidref {TypeTableUID}

5.1.3.81 uid
This is the type used for the UID column of object tables.

Table 145 uid
uIlD Name Format
00 00 00 0500 000209 | uid Simple_Type,
bytes,
8

5.1.3.82 uinteger
This is the base type that is used to represent an unsigned integer.

Table 146 uinteger
uilD Name Format

00 00 00 05 00 00 00 05 | uinteger Base_Type

5.1.3.83 uinteger_1
This is a uinteger type with a size restriction of 1 byte.

Table 147 uinteger 1

uIlD Name Format

00 000005000002 11 | uinteger_1 Simple_Type,
uinteger,
1

Revision 2.00 Page 129 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

5.1.3.84 uinteger_128

This is a uinteger type with a size restriction of 128 bytes.

Table 148 uinteger 128

TCG Copyright 2011

ulD Name Format

00 00 00 05000002 12 | uinteger_128 Simple_Type,
uinteger,
128

5.1.3.85 uinteger_2

This is a uinteger type with a size restriction of 2 bytes.

Table 149 uinteger 2

uIlD Name Format

00 00 00 0500 00 02 15 | uinteger_2 Simple_Type,
uinteger,
2

5.1.3.86 uinteger_20

This is a uinteger type with a size restriction of 20 bytes.

Table 150 uinteger 20

uiD Name Format

00 00 00 0500 00 02 16 | uinteger_20 Simple_Type,
uinteger,
20

5.1.3.87 uinteger_21

This is a uinteger type with a size restriction of 21 bytes.

Table 151 uinteger 21

uIlD Name Format

00 000005000002 17 | uinteger_21 Simple_Type,
uinteger,
21

5.1.3.88 uinteger_24

This is a uinteger type with a size restriction of 24 bytes.

Table 152 uinteger_ 24

uIlD Name Format

00 00 00 05 00 00 02 18 | uinteger_24 Simple_Type,
uinteger,
24

Revision 2.00

Page 130 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

5.1.3.89 uinteger_256

This is a uinteger type with a size restriction of 256 bytes.

Table 153 uinteger 256

TCG Copyright 2011

ulD Name Format

00 00 00 05 00 00 02 19 | uinteger_256 Simple_Type,
uinteger,
256

5.1.3.90 uinteger_28

This is a uinteger type with a size restriction of 28 bytes.

Table 154 uinteger 28

uIlD Name Format

00 00 00 05 00 00 02 1A | uinteger_28 Simple_Type,
uinteger,
28

5.1.3.91 uinteger_30

This is a uinteger type with a size restriction of 30 bytes.

Table 155 uinteger 30

uiD Name Format

00 00 00 05 00 00 02 1B | uinteger_30 Simple_Type,
uinteger,
30

5.1.3.92 uinteger_36

This is a uinteger type with a size restriction of 36 bytes.

Table 156 uinteger 36

uIlD Name Format

00 00 00 05 00 00 02 1F | uinteger_36 Simple_Type,
uinteger,
36

5.1.3.93 uinteger_4

This is a uinteger type with a size restriction of 4 bytes.

Table 157 uinteger_4

uIlD Name Format

00 00 00 05 00 00 02 20 | uinteger_4 Simple_Type,
uinteger,
4

Revision 2.00

Page 131 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.3.94 uinteger_48
This is a uinteger type with a size restriction of 48 bytes.

Table 158 uinteger 48

ulD Name Format

00 00 00 05 00 00 02 23 | uinteger_48 Simple_Type,
uinteger,
48

5.1.3.95 uinteger_64
This is a uinteger type with a size restriction of 64 bytes.

Table 159 uinteger 64

uIlD Name Format

00 00 00 05 00 00 02 24 | uinteger_64 Simple_Type,
uinteger,
64

5.1.3.96 uinteger_66
This is a uinteger type with a size restriction of 66 bytes.

Table 160 uinteger 66

uiD Name Format

00 00 00 05 00 00 02 27 | uinteger_66 Simple_Type,
uinteger,
66

5.1.3.97 uinteger_8
This is a uinteger type with a size restriction of 8 bytes.

Table 161 uinteger 8

uIlD Name Format

00 00 00 05 00 00 02 25 | uinteger_8 Simple_Type,
uinteger,
8

5.1.3.98 verify_mode

This enumeration type defines the verification operation the TPer SHALL perform during the re-
encryption process after a sector has been written with the new encryption key.

Table 162 verify_mode
uiD Name Format

Revision 2.00 Page 132 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

uiD Name Format

00 00 00 05000004 12 | verify_mode Enumeration_Type,
O!
7

The enumeration values are associated as defined in Table 163.

5.1.3.99 Year

Name-value pair that has a Name of "0" and takes year_enum as the value.

Table 163 verify mode Enumeration Values

Enumeration Value

Associated Value

0 No verify
1 Verify enabled
2-7 Reserved

Table 164 Year

uibD

Name

Format

00 00 00 050000 14 01 | Year

01
year_enum

Name_Value_Uinteger_Type,

5.1.3.100year_enum

Used in association with the Year name-value pair.

Table 165 year enum

uiD Name Format

00 000005000004 16 | year_enum Enumeration_Type,
1970,
9999

Revision 2.00

Page 133 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.4 Abstract Types
Begin Informative Content

Abstract types are representations of grouped interface types, or interface types that have limits on their
legal values, that are used specifically for encoding method parameters. These representations are
used primarily for documentation purposes, as part of the pseudo-code method signatures, to simplify
the description of those methods.

Abstract types do not affect the operation or regular encoding of a method, nor are they used as column
types or represented in the Type table (though they resemble some of these types in structure, name,
or both). The primary goals of the abstract type constructs are to simplify the pseudo-code description
of the methods themselves, and to provide insight into grouping using the List and Named value tokens
introduced previously.

End Informative Content

5.1.4.1 Name Representations in Abstract Type Named Value Components
Named values used in abstract types SHALL be encoded in the messaging stream using the rules
described in this section.

a. The name in the Named values that represent Named value components of method
parameters in a method invocation SHALL be a uinteger. Starting at zero, these uinteger
values are assigned based on the ordering of the components of these abstract types.

a. The first component of one of these grouped types SHALL be represented by the
"name"” zero (0x00) in the Named value pair when that method is invoked, and thus has
the format "0x00 = value" when that method is invoked.

b. Each subsequent component in the grouped type after the first SHALL be represented
by the uinteger of the previous component, as indicated in the method's signature or
the abstract type definition, incremented by one. Thus, the second component of such
a type in an invocation of a particular method has the format "Ox01 = value".
Components of such types are not required to be sent in a method invocation, but if
sent must appear in the order specified.

c. For each subsequent relevant type grouping in the method invocation, if such exists,
the components SHALL be numbered restarting at 0x00.

5.1.4.2 Abstract Type Definitions
Begin Informative Content

The following sections describe the pseudo-code parameters that each of these abstract types
represent when they appear in a pseudo-code method signature.

End Informative Content

5.1.4.2.1 access_control_list

An access_control_list is a list of uidrefs to objects in the ACE table. The length of the list is
implementation/SSC-specific.

Format:
[uidref ...]

5.1.4.2.2 boolean

This abstract type is similar to an enumeration column type, and has a valid range of the integer O to
the integer 1, where 0 is used to represent "False" and 1 is used to represent "True".

Revision 2.00 Page 134 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Format:

uinteger

In the messaging stream, "False" is represented as 0x00 and "True" is represented as 0x01.

5.1.4.2.3 cell_block

This type represents a grouping of Named values that are used to identify a portion of a table. In
messaging, this grouping is enclosed by List value delimiters, and each component is enclosed by
Named value delimiters.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

Because this is a group of Named values, its separate components are optional. However, there are
default requirements if components are omitted, and certain requirements for the values assigned to
these components depending on the context in which the method is invoked. These requirements are
as follows:

a. Table — this Named value has the Name "0x00' and a value that is a uid to a table.

a. If the value with Name "0x00" is omitted, then the operation defaults to the table upon
which the method was invoked.

b. Table SHALL be omitted if the method was invoked on an object. If the method is
invoked on an object and the value with the name "0x00" is included in the method
parameterization, then the method SHALL fail.

c. Table SHALL be omitted for an invocation of the Get method on a table. If the method
is invoked on a byte or object table and the value with the name “0x00” is included in
the method parameterization, then the method SHALL fail.

b. startRow — this Named value has the Name "0x01". This Named value type is assigned
one of two values — either a uid of an object or a RowNumber that corresponds to the
RowNumber value of a bytes table row. Only one of these two values SHALL appear in the
messaging stream. The "typeOr" identifier and accompanying curly brackets ("{", "}") in the
format description below have no effect on the values as represented in the message.

a. If the value with Name "0x01" is omitted and the method is invoked on a byte table,
then the operation defaults to the first row of that byte table.

b. If the method is invoked on an object table, the value "0x01" SHALL be the uid of the
object upon which the method is intended to operate. If the value with Name "0x01" is
omitted in this case, then the method invocation SHALL fail.

i. If the uid of the object does not belong to the table upon which the method was
invoked, the method invocation SHALL fail.

c. If the method is invoked on an object and the value with the name "0x01" is included in
the method parameterization, then the method SHALL fail.

c. endRow - this Named value has the Name "0x02". This Named value type is a uinteger
that corresponds to the RowNumber value of a byte table row.

a. If the value with Name "0x02" is omitted and the method is invoked on a byte table,
then the operation defaults to the last row of the table.

b. If the method is invoked on an object or object table and the value with the name
"0x02" is included in the method parameterization, then the method SHALL fail.

Revision 2.00 Page 135 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

d. startColumn — this Named value has the Name "0x03". This Named value type has a
uinteger value that indicates the column number of the cellblock's start column.

a. If the value with Name "0x03" is omitted, then the operation defaults to the first column
of the table or object.

b. If the value with Name "0x03" is included in the method parameterization, and the
method is invoked on a byte table, then the method SHALL fail.

e. endColumn - this Named value has the Name "0x04". This Named value type has a
uinteger value that indicates the column number of the cellblock's end column.

a. Iif the value with Name "0x04" is omitted, then the operation defaults to the last column
of the table or object.

b. If the value with Name "0x04" is included in the method parameterization, and the
method is invoked on a byte table, then the method SHALL fail.

Format:

[Table = uidref, startRow = typeOr { UID : uidref, Row : uinteger }, endRow =
uinteger, startColumn = uinteger, endColumn = uinteger]

5.1.4.2.4 clock_kind

This type is similar to the column type of the same name, and represents the type of clock time that has
been set, and is a return value of the GetClock method.

The possible values returned are as follows:

a. If the currently active clock kind is "Timer", the returned value is 0x00.

b. If the currently active clock kind is "Low", the returned value is 0x01.

c. If the currently active clock kind is "High", the returned value is 0x02.

d. If the currently active clock kind is "LowAndHigh", the returned value is 0x03.
Format:

uinteger

5.1.4.25 clock_time

This type represents a grouping of Named values that are used to identify time values, and is similar to
the column type of the same name. In messaging, this grouping is enclosed by List value delimiters,
and each component is enclosed by Named value delimiters.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

Because this is a group of Named values, its separate components are optional. Components that are
omitted are considered to have a value of 0.

The components are as follows:

a. Year — this Named value has the Name "0x00" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the year in a
timestamp. Valid values are unsigned integers ranging from 1970 to 9999

b. Month — this Named value has the Name "0x01" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 12, which correspond to
the months of the year as follows:

Revision 2.00 Page 136 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

January = 1 (0x01)
February = 2 (0x02)
March = 3 (0x03)

April = 4 (0x04)

MAY = 5 (0x05)

June = 6 (0x06)

July = 7 (0x06)

August = 8 (0x08)
September = 9 (0x09)
j- October =10 (0x0A)
k. November =11 (OxOB)
. December =12 (0x0C)

c. Day - this Named value has the Name "0x02" and a value that is implicitly defined as being
of uinteger of size 1. This Named value abstract type represents the day of the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 31.

-~ ® a0 T @

2 Q@

d. Hour — this Named value has the Name "0x03" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the hour of the day in
a timestamp. Valid values are unsigned integers ranging from 0 to 23.

e. Minute — this Named value has the Name "0x04" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the minute of the hour
in a timestamp. Valid values are unsigned integers ranging from 0 to 59.

f. Seconds — this Named value has the Name "0x05" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the second of the
minute in a timestamp. Valid values are unsigned integers ranging from 0 to 59.

g. Fraction — this Named value has the Name "0x06" and a value that is implicitly defined as
being of uinteger size 2. This Named value abstract type represents fractions of a second
in a timestamp, measured in milliseconds. Valid values are unsigned integers ranging from
0 to 999.

Format:

[Year = uinteger, Month = uinteger, Day = uinteger, Hour = uinteger, Minute =
uinteger, Second = uinteger, Fraction = uinteger]

5.1.4.2.6 columns

This is a list of two lists of Named values, where the List value delimiters enclose the entire list and both
subordinate lists, and the Named value delimiters enclose each component of each subordinate list.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

The Named values in both subordinate lists represent column names and their associated types. Each
Name portion of the Named value SHALL be the host-supplied name of a column to be created in the
new table, and the associated value is the uidref to the type to be assigned for that column.

The ordering of and within the subordinate lists determines the ordering of the columns and the unique
column combination in the newly created table. The first subordinate list contains the columns whose

Revision 2.00 Page 137 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

combination of values is required to be unique within the table. The columns described within that list
are ordered first. The name associated with this Named value type is "0x00".

The second subordinate list contains the rest of the columns of the table. The columns described within
the second subordinate list are ordered according to their order in the list, all of which come after the
columns defined in the first subordinate list. The name associated with this Named value type is
"0Ox01".

For Byte tables, the external grouping SHALL be empty. For tables with no host-assigned unique
column combination, the first subordinate list SHALL be empty. For tables with no host assigned non-
unigue columns, the second list SHALL be empty. For tables with no host assigned columns, both lists
SHALL be empty.

Format:

[IsUnique = [ColumnName = uidref { TypeUID } ...], IsColumn = [ColumnName
= uidref { TypeUID } ... 11

Byte table format pseudo-code example:

L]
Object table with no unique column combination pseudo-code example:

[IsUnique = [] IsColumn = [ColumnNamel = uidrefl ColumnName2 = uidref2
ColumnName3 = uidref3]]

5.1.4.2.7 date

This type represents a grouping of Named values that are used to identify time values, and is similar to
the column type of the same name. In messaging, this grouping is enclosed by List value delimiters,
and each component is enclosed by Named value delimiters.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

Because this is a group of Named values, its separate components are optional. Components that are
omitted are considered to have a value of 0.

The components are as follows:

a. Year — this Named value has the Name "0x00" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the year in a
timestamp. Valid values are unsigned integers ranging from 1970 to 9999

b. Month — this Named value has the Name "0x01" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 12, which correspond to
the months of the year as follows:

a. January =1 (0x01)
b. February = 2 (0x02)
c. March = 3 (0x03)

d. April = 4 (0x04)

e. MAY =5 (0x05)

f. June = 6 (0x06)

g. July =7 (0x06)

Revision 2.00 Page 138 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

h. August = 8 (0x08)

i. September =9 (0x09)

j- October =10 (0x0A)

k. November =11 (0Ox0B)

. December =12 (0x0C)

c. Day — this Named value has the Name "0x02" and a value that is implicitly defined as being
of uinteger of size 1. This Named value abstract type represents the day of the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 31.

Format:

[Year = uinteger, Month = uinteger, Day = uinteger]

5.1.4.2.8 hash_protocol

This abstract type is similar to an enumeration column type, and is used to identify a selected hash
algorithm. This type has valid values in the range of integers from 0-15. These integers have the
following values:

a. 0=none

b. 1=SHA1

c. 2=SHA 256

d. 3=SHA384

e. 4=SHA512

f. 5-15=reserved
Format:

uinteger

In the messaging stream, these values SHALL be represented as follows:
a. 0x00 represents none
b. 0x01 represents SHA 1
c. 0x02 represents SHA 256
d. 0xO03 represents SHA 384
e. 0x04 represents SHA 512
f

0x05 — OxOF are reserved.

5.1.429 key_size

This abstract type is used for the AdminExch parameter of the I1ssueSP method, and enables the host
to select from supplying either a bytes 16 or a bytes_32 value to represent the size of the exchange
key being submitted to the newly created SP.

Only one of these two values appears in the messaging stream. The "typeOr" identifier and
accompanying curly brackets ("{", "}") have no effect on the values as represented in the message.

Format

Revision 2.00 Page 139 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

typeOr { AES_128 : bytes 16, AES 256 : bytes_32 }

In the message stream itself, the value is one of the following:

a. bytes 16
b. bytes 32
5.1.4.2.10 lag

This type represents a grouping of two Named value pairs, used to describe seconds and milliseconds,
and is similar to the column type of the same name. The components are encapsulated with the
interface type List value delimiters ("[", "]"). Each of the components is encapsulated with the Named
value delimiters. The components are optional.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

The components are as follows:

a. Seconds - this component is a Named value pair with a Name of "0x00" and a value of
uinteger. This value has an implicit size requirement of 2.

b. Milliseconds — this component is a Named value pair with a Name of "0x01" and a value of
uinteger. This value has an implicit size requirement of 2.

Format:

[Seconds = uinteger, Milliseconds = uinteger]

5.1.4.2.11 name

This type is a representation of the max bytes type, and in most methods in which it is used it is
assigned to parameters that are associated with a table's Name column or CommonName column. As
such, it has an implicit size restriction of 32 bytes.

Format:
bytes

5.1.4.2.12 package

This abstract type is a grouping of Named value pairs that are used to describe the contents of a
package retrieved from a TPer using the GetPackage method, or sent to the TPer with the SetPackage
method. The components are encapsulated with interface type List value delimiters ("[", "1").

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined in this specification. The associated number also appears in the appropriate
component description.

The components are defined as follows:

a. Key - this component is a Named value pair with a Name of "0x00" and a value of bytes. It
represents the key material from the invoking credential. If a WrappingKey was supplied to
the GetPackage method, then this key material is encrypted using the WrappingKey
credential. The WrappingKey credential MAY be a symmetric key or the public key of a
public/private key pair. When retrieving the key material from credentials that store key
information in multiple columns, any of those columns that are empty or uninitialized
SHALL return as 0x00 for uinteger type columns and 0x00 for bytes type columns.

Revision 2.00 Page 140 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

b. Purpose — this component is a Named value pair with a Name of "0x01" and a value of
package purpose. This is the value of the Purpose parameter of the GetPackage method
invocation.

c. Date — this component is a Named value pair with a Name of ""0x02" and a value of date.
This is the value of the Date parameter of the GetPackage method invocation. This
component is omitted if the Date parameter was not supplied to the GetPackage method
invocation.

d. Log — this component is a Named value pair with a Name of "0x03" and a value of bytes.
This is the value of the Log parameter of the GetPackage method invocation. This
component is omitted if the Log parameter was not supplied to the GetPackage method
invocation.

e. MAC - this component is a Named value pair with a Name of "0x04" and a value of bytes.
This is the hash of the package contents (except this component) and is signed by the
SigningKey credential identified in the GetPackage method invocation. The hash protocol
used to create the hash is identified in the Hash column of the SigningKey credential. The
value of this component is the signature of a private key if a public key credential is
specified, or an HMAC if a symmetric key credential is specified.

Format:

[Key = bytes, Purpose = package purpose, Date = date, Log = bytes, MAC =
bytes]

5.1.4.2.13 package_purpose

This abstract type is similar to an enumeration column type, and is used to identify a selected purpose
for the package in which it is being included. This type has valid values in the range of integers from 1-
32. These integers have the following values:

a. 1 =lIssuance

b. 2 =Key Wrapping
c. 3 =Backup
d

4-32 = reserved

Format:
uinteger
In the messaging stream, these values SHALL be represented as follows:
a. 0x00 is reserved
b. OxO01 represents Issuance
c. 0x02 represents Key Wrapping
d. 0x03 represents Backup
e

0x04 — 0x20 are reserved

5.1.4.2.14 row_address

Revision 2.00 Page 141 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

This abstract type is used to describe a parameter that is either a uinteger that indicates the address
within a bytes table, or a uidref of an object within an object table.

Only one of these two values appears in the messaging stream. The "typeOr" identifier and
accompanying curly brackets ("{", "}") have no effect on the values as represented in the message.

Format

typeOr { RowAddress : uinteger, UIDAddress : uidref }
In the message stream itself, the value is one of the following:

a. uinteger

b. uidref

5.1.4.2.15 row_data

This type represents a list of lists of Named values. Each interior list represents a row, so there are
multiple interior lists (a list of lists). The Named values represent column numbers and the values to be
associated with them as defined by this specification or the column ordering requirements of the table
when it was created. The value SHALL be of the type defined, as represented by the notation "<type of
column>".

The number of interior lists (i.e. the number of rows that MAY be represented by this type "at one time")
MAY be limited by SSC or implementation.

Format:

[[ColumnNumber = <type of column> ... 7 ...]

5.1.4.2.16 table_kind

This abstract type is similar to an enumeration column type, and is used to represent table types in the
Table table. This type has valid values in the range of integers from 1-2. These integers have the
following values:

a. 1=O0bject

b. 2=Byte
Format:

uinteger

In the messaging stream, these values are represented as follows:
a. 0x01 represents Object

b. 0x02 represents Byte

5.1.4.2.17 table sizes

This abstract type defines a grouping of pairs of values that are table object uidrefs and the size
associated with that particular table. The grouping is a list of uidrefs and uintegers. The set of values
are encapsulated by List value delimiters ("[", "]"). Inside the delimiters is a series of one or more pairs
of values. The first value in each pair is a uidref to a table descriptor object and the second value in
each pair is a uinteger that describes the number of rows that MAY be additionally created for that
table.

Format:

Revision 2.00 Page 142 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00
[[uidref {TableObjectUID}, uinteger] ...]

Pseudo-code example:
[[uidrefl uintegerl] [uidref2 uinteger2] [uidref3 uinteger3]]

5.1.4.2.18 uidref

The uidref abstract type represents a uid of an object, table, or ThisSP that is expressed using a bytes
type with a size of 8, and corresponds to an object or table's UID column value.

In the pseudo-code method signatures, the uidref abstract type is often followed by curly brackets ("{",
"}") that are used to define the limitation of a valid value for that uidref. These valid values are typically
represented as requiring an object of a specific type. Limitations expressed with curly brackets have no
effect on the appearance of the associated uid value as it appears in the message stream.

Because this abstract type describes the inclusion of a uid, it represents a bytes value that has an
implicit size restriction, and that value SHALL always be 8 bytes long.

Format:
bytes

5.1.5 Method Status Codes

Begin Informative Content

SP method calls invoke specific operations and receive associated status. The following sections
identify and define the status codes that are returned by the TPer in response to method invocations
and other operations. Table 166 identifies the value associated with each of these status codes.

End Informative Content

Table 166 Status Codes

Name Value
SUCCESS 0x00
NOT_AUTHORIZED 0x01
OBSOLETE 0x02
SP_BUSY 0x03
SP_FAILED 0x04
SP_DISABLED 0x05
SP_FROZEN 0x06

NO_SESSIONS_AVAILABLE | 0x07
UNIQUENESS_CONFLICT 0x08

INSUFFICIENT_SPACE 0x09
INSUFFICIENT_ROWS Ox0A
INVALID_PARAMETER 0x0C
OBSOLETE 0x0D
OBSOLETE OxOE
TPER_MALFUNCTION OxOF

TRANSACTION_FAILURE 0x10
RESPONSE_OVERFLOW 0x11
AUTHORITY_LOCKED_OUT | 0x12

Revision 2.00 Page 143 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Name Value
FAIL Ox3F

5.1.5.1 SUCCESS
This status SHALL be returned when a method is processed completely and without error by the TPer.

5.1.5.2 NOT_AUTHORIZED

This response is returned whenever an attempt is made to invoke a method for which the host does not
have authorization.

Unless otherwise noted in a method's description, this status code SHALL be returned whenever there
is no row in the AccessControl table to represent the InvokinglD/MethodID combination, or when there
is a row but the ACL for the InvokingID/MethodID combination has not been satisfied.

This status code SHALL be returned in response to the GetACL method if there is no AccessControl
row that represents the InvokinglD/MethodID combination as parameterized in the GetACL method, or
when the combination is present in the AccessControl table but the GetACLACL has not been satisfied.
This status code SHALL be returned if the GetACL method invocation is performed with an InvokinglD
other than that of the AccessControl table.

This status code SHALL be returned in response to the AddACE method if there is no AccessControl
row that represents the InvokinglD/MethodID combination as parameterized in the AddACE method, or
when the combination is present in the AccessControl table but the AccACEACL has not been satisfied.

This status code SHALL be returned in response to the RemoveACE method if there is no
AccessControl row that represents the InvokinglD/MethodID combination as parameterized in the
RemoveACE method, or when the combination is present in the AccessControl table but the
RemoveACEACL has not been satisfied.

This status code SHALL be returned in response to the DeleteMethod method if there is no
AccessControl row that represents the InvokinglD/MethodID combination as parameterized in the
DeleteMethod method, or when the combination is present in the AccessControl table but the
DeleteMethodACL has not been satisfied.

This status code SHALL be returned as the status code of the SyncSession method if the authority
referenced in the preceding StartSession method’'s HostSigningAuthority parameter has an
Operation column value of Password, and the StartSession method's HostChallenge parameter
value does not match the value required by the HostSigningAuthority parameter.

5.1.5.3 SP_BUSY

This status is returned as the status code of the SyncSession method if an attempt is made to open a
Read-Write session to an SP when any other session to that SP is already open, or when an attempt is
made to open a Read-Only session to an SP with which a Read-Write session is already open.

5.1.54 SP_FAILED

This status MAY be returned if an attempt is made to open a session to an SP that is in the Failed life
cycle state (see 4.2).

5.1.5.5 SP_DISABLED

This status MAY be returned if a method is invoked from within a session to an SP that is in the Issued-
Disabled state (see 4.2), and the method is not permitted because of the limitations placed on SP
operation by the state behavior.

Revision 2.00 Page 144 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.1.5.6 SP_FROZEN

This status SHALL be returned as the status of the SyncSession response when the host attempts to
start a session to an SP that is in the Issued-Frozen or Issued-Disabled-Frozen state (see 4.2).

5.1.5.7 NO_SESSIONS_AVAILABLE

This status is returned if an attempt is made to open a session on a TPer on which the maximum
number of concurrent sessions available for use are already being used.

5.1.5.8 UNIQUENESS_CONFLICT

This occurs when a conflict between objects is created due to the attempt to create a second object
with a unique column combination that is already in use by another object. For instance, this status
MAY be received when attempting to create a table, when a table already exists with the Name-
CommonName-TemplatelD combination submitted in the CreateTable invocation.

5.1.5.9 INSUFFICIENT_SPACE
This status is returned if an attempt is made to:

a. Create an SP and there is insufficient space on the TPer to create the new SP

b. Create atable and there is insufficient space in the SP to create the new table

c. Create more rows in a table than is permitted by the TPer or by the table’s size settings.
Note that it is possible that re-invoking the method and requesting a smaller size for the SP or table
MAY enable the method to then complete properly.

5.1.5.10 INSUFFICIENT_ROWS

This status MAY be returned if an attempt is made to create a table or object, but the associated
metadata or support table rows (i.e., the Table, Column, AccessControl, or ACE tables) are not able to
be created to support the new object or table.

5.1.5.11 INVALID_PARAMETER

This status is returned if a method invocation has any invalid parameters or parameter values, and is
applicable to any parameter inside the invoked method's parameter list, unless otherwise indicated or
another status code is directly applicable to the method failure.

There are many situations in which this error could be returned. Some of the specific situations where
this could occur are:

a. Columns specified in the CreateRow method invocation are not part of the table definition.

b. If an attempt is made to set a cell to a value larger (or smaller) than that cell’s type allows,

or attempts to set a value of a type different than that of the column.

If an incorrect credential type is parameterized.

A parameterized value is of the incorrect type for that method.

One of the context-related restrictions defined for an abstract type is violated (see 5.1.4.2).

A parameterized value is larger or smaller than the value required by that method

invocation

a. An example of this MAY occur if the TransTimeout parameter value submitted in a
StartSession method invocation is larger than the TPer's MaxTransTimeout property.

This status code SHALL be sent as the SyncSession method status code if the preceding

StartSession method’s HostSigningAuthority parameter is a class authority.

5.1.5.12 TPER_MALFUNCTION

This status is returned when some operational failure has occurred within the TPer that has caused the
method invocation to fail.

5.1.5.13 TRANSACTION_FAILURE

This status is returned when a method fails due to an error in the transactional context in which it was
invoked. An example of this is if a TPer is unable to process within the transaction the amount of data
supplied as a parameter of the method, which under other circumstances the TPer would be able to

=0 o0

Revision 2.00 Page 145 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

process. The TPer in this case would return this status code to indicate that the method failed due to
the transactional context, not due to a problem with the method invocation itself.

Multiple consecutive method invocations that result in this status code indicate a failure in the
transactional context that MAY result in the entire transaction being uncommittable.

5.1.5.14 RESPONSE_OVERFLOW

This status is returned when a method fails if the method response and associated protocol overhead
do not fit entirely within the response buffer.

5.1.5.15 AUTHORITY_LOCKED_OUT

This status MAY be returned as the status code of the SyncSession method or in response to the
Authenticate method under one of the following conditions:

1) If an authority with the Operation column value of Password is being authenticated and its
associated C_PIN object has a Tries column value equal to its TryLimit column value, and
the TryLimit column is not set to O; or

2) If the Uses column of the authority being authenticated has reached the value of its Limit
column, and the Uses column is not set to 0.

5.1.5.16 FAIL

This status is returned when a method fails in a manner for which none of the other failure statuses
apply.

Revision 2.00 Page 146 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.2 Session Manager Methods

5.2.1 Overview
Begin Informative Content

Session Manager protocol layer methods permit a host to retrieve information about a TPer without
having to start a session and provide the methods required to enable session startup.

Due to the nature of the Session Manager protocol layer methods, the responses to methods at this
protocol layer are formatted as methods from the TPer to the host. In the case of multiple method
invocations by a host to a TPer on the Session Manager layer, this mechanism allows the host to
identify the method to which a response is directed.

End Informative Content

Session Manager methods SHALL be invoked using an InvokingID of SMUID, which is the reserved
UID 0x00 0x00 0x00 Ox00 0x00 0x00 Ox00 OxFF.

The UIDs used to invoke Session Manager Methods are defined in Table 241.

5.2.2 TPer Properties Method

5.2.2.1 Properties (Method)

The Properties method is a control session method used by the host to provide its communication
properties to the TPer, and to retrieve the communication properties of the TPer. The purpose of the
Properties method is to permit the host and the TPer to exchange the information about their
respective communications capabilities required for session startup and maintenance, without the need
to first start a session.

Properties are maintained on a per-ComID basis in both the host and the TPer. The HostProperties
parameter is used to describe the communications capabilities that the host possesses, and apply to
any sessions started using the ComID associated with this Properties method invocation once the
TPer has processed the method and prepared a response.

SMUID.Properties[HostProperties = list [name = value ...]]

=>

SMUID.Properties[Properties : list [name = value ...], HostProperties = list [
name = value ...] 1

5.2.2.1.1 HostProperties

This parameter is a list of name/value pairs that MAY be submitted when invoking the Properties
method. This is a list of the communications capabilities that the host is able to support on
communications it receives.

5.2.2.1.2 Properties Response

Because of the session-less nature of the Session Manager protocol layer, and the possible different
ordering of responses to Session Manager layer methods, the response to a Properties method
invocation is itself formatted as a Properties method invocation so as to be identifiable as the
response to the Properties method.

5.2.2.1.2.1 Properties
This is a list of property names and values that represent the communications capabilities of the TPer.

Revision 2.00 Page 147 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.2.2.1.2.2 HostProperties

If the host includes the HostProperties parameter to the Properties method invocation, then this
portion of the method result SHALL include the communications limitations and capabilities that the
TPer SHALL use for messages sent from the TPer to the Host.

5.2.2.2 Retrieving Properties

The TPer SHALL return all property name/value pairs for capabilities that it supports. For capabilities
not supported by the TPer (for instance, Read-Only sessions), the associated property name/value pair
(in this case, MaxReadSessions) SHALL be omitted from the TPer's response.

The TPer MAY also respond with additional name/value pairs other than those specified in this
document.

The order of the name/value pairs returned by the TPer is not specified.

For the name/value pairs returned by the TPer, the TPer SHALL return values for the associated names
as described in Table 167 or in the associated SSC (the values in the SSC have precedence) for all
capabilities supported. The values returned SHALL apply to all sessions started with the currently
associated ComID.

Table 167 Properties Method Response

Property Type Description Applicable To

MaxMethods uinteger |The maximum number of method Host Property
invocations per Subpacket that the and TPer
communicator can accept. If the TPer Property

supports the Asynchronous
Communication Protocol (the TPer’s
Asynchronous property is TRUE), then the
TPer's MaxMethods SHALL be 0 (nho
limit). If the Host supports the
Asynchronous Communication Protocol
(the Host sets its Asynchronous property
to TRUE), then the host SHOULD also set
its MaxMethods property to O (no limit).
The TPer SHALL ignore the Host's
MaxMethods property if both the Host and
the TPer have the Asynchronous property
setto TRUE.

MaxSubpackets uinteger |ldentifies the maximum number of Host Property
subpackets that the communicator SHALL |and TPer
accept in a single Packet. A value of 0 Property
indicates no limit.

MaxPacketSize uinteger |The maximum size of a packet (including |Host Property
both data and header), in bytes, that the |and TPer
communicator is able to receive. This Property

value SHALL be at least 1004 (1024 -
(ComPacket Header Size)). A value of 0
indicates no limit.

MaxPackets uinteger |ldentifies the maximum number of packets Host Property
that the communicator is able to accept in |and TPer
a single ComPacket. A value of O Property
indicates no limit.

Revision 2.00 Page 148 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011

Specification Version 2.00

Property
MaxComPacketSize

MaxResponseComPacketSize

MaxSessions

MaxReadSessions

MaxIndTokenSize

MaxAggTokenSize

MaxAuthentications

MaxTransactionLimit

DefSessionTimeout

MaxSessionTimeout

MinSessionTimeout

Revision 2.00

Type

uinteger

uinteger

uinteger

uinteger

uinteger

uinteger

uinteger

uinteger

uinteger

uinteger

uinteger

Description Applicable To
The maximum size of an IF Command Host Property
payload in bytes (includes both the and TPer

ComPacket header and payload) that the |Property
communicator is able to receive. This

value SHALL be at least 1024. A value of

0 indicates no limit.

The maximum length of an IF Command |Host Property
payload, in bytes, that the communicator |and TPer

is able to generate. A value of 0 indicates |Property

no limit.

The maximum number of simultaneous TPer Property
sessions supported by the TPer across all
ComiDs. A value of 0 indicates no limit.

The maximum number of simultaneous TPer Property
Read-Only sessions to any one SP

supported by the TPer. A value of 0

indicates no limit.

The maximum size of a token (in bytes) in |Host Property
a single subpacket that the communicator |and TPer

is able to accept. Token size refers to both |Property

the token header and data. This value

SHALL be at least 968. A value of 0

indicates no limit.

The maximum aggregate size of a Host Property
continued token, after all individual parts |and TPer
of that token are combined, that the Property

communicator is able to accept. Token
size refers to both the token header and
data. This value SHALL be at least 968.
A value of 0 indicates no limit.

The maximum number of simultaneously | TPer Property
authenticated individual authorities per

session that the TPer is able to support. A

value of 0 indicates no limit.

The maximum number of concurrently TPer Property
open transactions that the TPer is able to

support in a single session. A value of 0

indicates no limit.

The session timeout length (in TPer Property
milliseconds) used by the TPer by default.
A value of 0 indicates no limit.

The longest supported session timeout TPer Property
length (in milliseconds) supported by the
TPer. A value of 0 indicates no limit.

The shortest supported session timeout | TPer Property
length (in milliseconds) supported by the

TPer. A value of 0 indicates session

timeouts are not supported.

Page 149 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Property Type Description Applicable To

DefTransTimeout uinteger |The transmission timeout length (in TPer Property
milliseconds) used by the TPer by default.
A value of 0 indicates no limit.

MaxTransTimeout uinteger |The longest transmission timeout length | TPer Property
(in milliseconds) permitted by the TPer. A
value of O indicates no limit.

MinTransTimeout uinteger |The shortest transmission timeout length | TPer Property
(in milliseconds) permitted by the TPer. A
value of 0 indicates transmission timeouts
are not supported.

MaxComIDTime uinteger |The timeout length (in milliseconds) used |TPer Property
by the TPer after it has assigned a
ComID. The ComID SHALL transition to
Inactive after this much time has elapsed.
A value of 0 indicates no limit.

ContinuedTokens boolean [TRUE: The communicator supports Host Property
continuted tokens. and TPer
FALSE: The communicator does not Property
support continued tokens.

SequenceNumbers boolean |TRUE: The communicator supports Host Property
Packet sequence numbers. and TPer
FALSE: The communicator does not Property
support Packet sequence numbers.

AckNak boolean |TRUE: The communicator supports the Host Property
Packet ACK/NAK protocol. and TPer
FALSE: The communicator does not Property
support the Packet ACK/NAK protocol.

Asynchronous boolean |TRUE: The communicator supports the Host Property
Asynchronous Communication Protocol. |and TPer
FALSE: The communicator does not Property
support theAsynchronous Communication
Protocol.

5.2.2.3 Setting HostProperties

If the method is invoked with the optional HostProperties parameter, the list of name/value pairs that the
TPer MAY support is the list of properties inTable 168.

These values MAY be submitted in any order by the host. Not all values are required to be submitted.
Subsequent submission of these values (in a subsequent invocation of the Properties method)
SHALL supersede values submitted to previous invocations of the Properties method for that ComID.
Submitted values, if applicable, SHALL only apply to sessions started after the submission of those
values, and not to sessions that are already open on that ComID.

The TPer uses these host properties when it is constructing responses to be transmitted to the host.
The host MAY omit properties as necessary, depending on the host’'s communications capabilities. If
the host omits a property, the value of that property SHALL NOT change from its current value. If the
host specifies a value for a property that does not meet the minimum requirement as defined in Table
168, then the TPer SHALL use the minimum value defined in Table 168 in place of the value supplied
by the host.

These values reflect the cumulative modifications of all processed Properties methods for the
associated ComiD.

Revision 2.00 Page 150 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

TCG Copyright 2011

If the host sends the HostProperties parameter in its Properties invocation, the TPer SHALL respond
with ALL host properties it supports, with their current values, in the HostProperties parameter of its
method response.

If a host includes property parameters to the Properties method invocation that the TPer does not
support, the TPer SHALL ignore those parameters, and SHALL NOT return them in its response.

It is the host's responsibility to insure that Properties method invocations have processed prior to
invocation of any session startup methods that rely on those invocations. Values for HostProperties at
session startup rely on the Properties method invocations that have been processed by the TPer.

5.2.2.4 Communications Minimums

When a ComiD is first allocated, the TPer assumes some minimum communications capabilities of the
host until it receives a successful Properties method from the host. Similarly, the host assumes some
minimum communications capability of the TPer until the host successfully receives the results of the
Properties method from the TPer.

Invocation of the Properties method is optional. Communications MAY occur using just the minimum
communications capability.

Table 168 shows all the properties that affect the behavior of hosts and TPers when sending
ComPackets/Subpackets/Packets to the other. These are the properties that need to be considered for
minimum communications capability between the two. The host’s initial assumption about the TPer and
the TPer’s initial assumption about the host are listed for each of the properties.

Table 168 Communications Initial Assumptions
Property Name Initial Host Assumption About TPer |Initial TPer Assumption About Host
MaxSubpackets 1 1

MaxPacketSize

1024 — (ComPacket Header
size) = 1004

1024 — (ComPacket Header
size) = 1004

MaxPackets

1

1

MaxComPacketSize

1024

1024

MaxIndTokenSize

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =
1024 -20-24-12 = 968

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =
1024 -20-24-12 = 968

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =

MaxAggTokenSize (1024 -20-24-12 =968 1024 - 20 - 24 - 12 = 968
MaxMethods 1 1

ContinuedTokens False False
SequenceNumbers |False False

AckNAK False False

Asynchronous False False

The values listed in Table 168 are the minimum values that TPers and hosts SHALL support. SSCs
MAY impose minimums that are greater than the values listed above.

SSCs MAY redefine the initial assumptions that the host and TPer make about each other. In such
cases, the initial assumptions the host makes about the TPer are based on the supported SSC the host
discovers during Level O Discovery.

Revision 2.00 Page 151 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The host invokes Properties with the optional HostProperties parameter to inform the TPer of its
capabilities. The result from the TPer tells the host the TPer’s capabilities. All communication from that
point can use the mutually discovered capabilities. However, the initial invocation of Properties
SHALL be encoded using the minimum assumptions outlined above in Table 168, or the minimum
assumptions defined by the TPer's SSC. The TPer MAY format its response to the Properties
invocation using the host’s capabilities it received in the HostProperties parameter.

If the host attempts to set a property in the HostProperties parameter that is less than the initial
assumed value, the TPer SHALL ignore the property value and the initial assumed value SHALL be
used. In the Properties method response, the TPer SHALL report the initial assumed value.

If a particular property is not returned by the TPer, then the host SHALL NOT change its assumption
about the TPer’'s capabilities related to that property. Likewise, if the host does not send a particular
property in the HostProperties parameter, the TPer SHALL NOT change its assumption about the
host's capabilities related to that property.

5.2.2.41 Communication Rules Based on TPer Properties and Host Properties

This section defines the rules for communication based on the TPer Properties and the Host Properties.
These rules SHALL be enforced on a per-ComlID basis, as hosts on different ComIDs may set different
host properties.

Begin Informative Content

When communicating on statically allocated ComlDs, it is possible for the TPer's knowledge of the
HostProperties to be reset without the host’s knowledge (e.g. due to a TCG Hardware reset or a TCG
Power Cycle reset). In this case, the TPer's knowledge of the host's communication properties will be
reset to the initial assumed values shown in Table 168. This could adversely affect the performance of
sessions that the host opens on the statically allocated ComlID after the reset occurs. To prevent such
performance degredation, it is the host's responsibility to invoke Properties with the HostProperties
parameter prior to each invocation of StartSession on statically allocated ComIDs.

This problem does not occur when using dynamically allocated ComIDs, because dynamically allocated
ComIDs become inactive when the TPer is reset. The host receives an indication that the ComiD is
inactive if it attempts further communication on that ComID. Therefore, the host needs to invoke
Properties with the HostProperties parameter only once per dynamically allocated ComID.

End Informative Content

5.2.2.4.1.1 MaxSubpackets

The host SHOULD NOT send a Packet that contains more Subpackets than the value of the TPer’s
MaxSubpackets property. If the host sends a Packet that contains too many Subpackets, the TPer
SHALL abort the session associated with the Packet. In the case of too many Subpackets in a Control
Session Packet, the TPer SHALL discard and ignore the Packet.

The TPer SHALL NOT send a Packet that contains more Subpackets than the value of the host’s
MaxSubpackets property.

5.2.2.4.1.2 MaxPacketSize

The host SHOULD NOT send a Packet whose size (including Packet header) exceeds the value of the
TPer's MaxPacketSize property. If the host sends a Packet that is too large, the TPer SHALL abort the
session associated with the Packet. In the case of a Packet that is too large on the Control Session, the
TPer SHALL discard and ignore the Packet.

Revision 2.00 Page 152 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The TPer SHALL NOT send a Packet whose size (including Packet header) exceeds the value of the
host's MaxPacketSize property.

5.2.2.4.1.3 MaxPackets

The host SHOULD NOT send a ComPacket that contains more Packets than the value of the TPer’s
MaxPackets property. If the host sends a ComPacket that contains too many Packets, the TPer MAY
ignore the extra Packets.

The TPer SHALL NOT send a ComPacket that contains more Packets than the value of the host's
MaxPackets property.

5.2.2.4.1.4 MaxComPacketSize

The host SHOULD NOT send a ComPacket whose size (including ComPacket header) exceeds the
value of the TPer's MaxComPacketSize property. If the host attempts to send a ComPacket that is too
large, the TPer SHALL abort the IF-SEND command as described in the “Invalid Transfer Length
parameter on IF-SEND” section of the appropriate interface section of [2].

The TPer SHALL NOT send a ComPacket whose size (including ComPacket header) exceeds the
value of the host's MaxComPacketSize property.

5.2.2.415 MaxIindTokenSize

The host SHOULD NOT send an individual token whose size (including token header) is greater than
the TPer's MaxIndTokenSize property. If the TPer encounters a token that is too long, the TPer’s
response is defined in section 5.2.2.4.3.

The TPer SHALL NOT send an individual token whose size (including token header) is greater than the
host's MaxIndTokenSize property.

5.2.2.4.1.6 MaxAggTokenSize

The host SHOULD NOT send an aggregate token whose size (including token header) is greater than
the TPer's MaxAggTokenSize property. If the TPer encounters a token that is too long, the TPer's
response is defined in section 5.2.2.4.3.

The TPer SHALL NOT send an aggregate token whose size (including token header) is greater than
the host's MaxAggTokenSize property.

5.2.2.41.7 MaxMethods

The host SHOULD NOT send a Data Subpacket that contains more method invocations that the value
of the TPer's MaxMethods property. If the host sends a Data Subpacket that contains too many method
invocations, the TPer MAY abort the session associated with the Packet. Results for methods that were
completed before the violating method invocation was encountered SHALL be sent to the host. In the
case of too many method invocations in a Data Subpacket of a Control Session Packet, the TPer MAY
ignore the extra method invocations.

The TPer SHALL NOT send a Data Subpacket that contains more method responses than the value of
the Host's MaxMethods property, unless both the Host and the TPer have the Asynchronous property
set to TRUE. If both the Host and the TPer have the Asynchronous property set to TRUE, the TPer
SHALL ignore the Host's MaxMethods property. Note that the TPer only sends method invocations on
the Control Session.

Revision 2.00 Page 153 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.2.2.4.1.8 ContinuedTokens

If the TPer's ContinuedTokens property is TRUE, the host MAY send continued tokens to the TPer.
Otherwise, the host SHOULD NOT send continued tokens to the TPer. If the TPer encounters a
continued token when its ContinuedTokens property is FALSE, the TPer's response is defined in
section3.2.2.4.

If the host's ContinuedTokens property is TRUE, the TPer MAY send continued tokens to the host.
Otherwise, the TPer SHALL NOT send continued tokens to the host.

If a communicator's ContinuedTokens property is FALSE, then that communicator's MaxAggTokenSize
property value SHALL be ignored by the other communicator.

5.2.2.4.1.9 SequenceNumbers
If both the host's SequenceNumbers property and the TPer's SequenceNumbers property are TRUE:

a. The TPer SHALL generate sequence numbers for Packets sent to the host.

b. The TPer SHALL check the sequence numbers of Packets received from the host.
c. The host SHOULD generate sequence numbers for Packets sent to the TPer.
d

The host SHOULD check the sequence numbers of Packets received from the TPer.

If either the host's SequenceNumbers property or the TPer's SequenceNumbers property are FALSE:

a. The TPer SHALL put a value of 0x00000000 in the SegNumber field for Packets sent to the
host.

b. The TPer SHALL ignore the sequence numbers of Packets received from the host.

c. The host SHOULD put a value of 0x00000000 in the SeqNumber field for Packets sent to
the TPer.

d. The host SHOULD ignore the sequence numbers of Packets received from the TPer.
Sequence Numbers SHALL be supported for transmission acknowledgement, MAY be supported for
secure messaging, and MAY be supported otherwise

5.2.2.4.1.10 AckNak
If both the host's AckNak property and the TPer’'s AckNak property are TRUE:

a. The TPer SHALL use the Transmission Acknowledgement protocol.

b. The host SHOULD use the Transmission Acknowledgement protocol. If it does not, the
TPer will not be able to discard the packets it has sent to the host, causing a transmit buffer
overflow and a session abort.

If either the host’'s AckNak property or the TPer's AckNak property are FALSE:

a. The TPer SHALL NOT use the Transmission Acknowledgement protocol, and SHALL
ignore the AckType and Acknowledgement fields on all packets received from the host.
The TPer SHALL put a value of 0x0000 in the AckType field and a value of 0x00000000 in
the Acknowledgement field for Packets sent to the host.

b. The host SHOULD NOT use the Transmission Acknowledgement protocol, and SHOULD
ignore the AckType and Acknowledgement fields on all packets received from the TPer.

Revision 2.00 Page 154 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The host SHOULD put a value of 0x0000 in the AckType field and a value of 0x00000000 in
the Acknowledgement field for Packets sent to the TPer.

5.2.2.4.1.11 Asynchronous
If both the host’'s Asynchronous property and the TPer’'s Asynchronous property are TRUE:
a. The TPer SHALL use the Asynchronous Communication protocol.

b. The TPer SHALL generate Credit Control Subpackets for informing the host how much
data can be sent to the TPer.

c. The TPer SHALL accept Credit Control Subpackets from the host, and SHALL only send as
much data as it has credit to send.

d. The host SHOULD use the Asynchrounous Communication protocol.

e. The host SHOULD generate Credit Control Subpackets for informing the TPer how much
data can be sent to the host. If it does not, the TPer will eventually stop sending data to the
host after it uses all of the initial credit it was granted during session start up.

f. The host SHOULD accept Credit Control Subpackets from the TPer, and SHOULD only
send as much data as it has credit to send. If it sends more data than it has credit to send,
the TPer MAY abort the session.

If either the host’s Asynchronous property or the TPer’'s Asynchronous property are FALSE:
a. The TPer SHALL use the Synchronous Communication protocol.
b. The TPer SHALL NOT generate Credit Control Subpackets.
c. The TPer SHALL ignore Credit Control Subpackets from the host.

d. The host SHOULD use the Synchronous Communication protocol. If it does not, it will likely
cause Synchronous Protocol Violations on the TPer, and possible session aborts.

e. The host SHOULD NOT generate Credit Control Subpackets.
f. The host SHOULD ignore Credit Control Subpackets from the TPer.

5.2.2.4.2 AckNak and SequenceNumbers Dependency
If the TPer's AckNak property is TRUE, then its SequenceNumbers property SHALL also be true.

If the host invokes Properties with the HostProperties parameter, and sets its AckNak property to
TRUE but its SequenceNumbers property to FALSE, and if the TPer supports those host properties,
then the TPer SHALL treat both the host’'s AckNak and SequenceNumbers properties as FALSE, and
shall return FALSE for both properties in the HostProperties parameter of the Properties method
response. If the TPer does not support those host properties, it SHALL ignore them, and SHALL NOT
list them in the HostProperties parameter of the Properties method response.

5.2.2.43 TPer Response for Invalid or Unexpected Token

See 3.2.2.4 for the TPer's response if an invalid or unexpected token is received in the message
stream.

Revision 2.00 Page 155 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.2.2.4.4 Interaction with TCG Reset Events

TCG Hardware Resets and TCG Power Cycle Resets SHALL cause the TPer’s knowledge of the host’s
communications capabilities, on all ComIDs, to be reset to the initial minimum assumptions defined in
this document or in the TPer's SSC definition. Other TCG reset events SHALL NOT cause the TPer’s
knowledge of the host’'s communications capabilities to be reset.

5.2.2.45 Interaction with TCG Protocol Stack Reset

Receiving a TCG Protocol Stack Reset SHALL cause the TPer's knowledge of the host's
communications capabilities, on the ComID receiving the reset command, to be reset to the initial
minimum assumptions defined in this document or in the TPer's SSC definition.

5.2.3 Session Startup Methods

Begin Informative Content

This section describes the methods used to start a session. For information on session startup, and
how authorities interact during session startup, see section 5.3.4.1.4.

For details on using the session startup methods with Elliptic Curve parameters and EC-MQV or EC-
DH, see section 5.3.4.1.11 and 5.3.4.1.12 respectively.

End Informative Content

5.2.3.1 StartSession Method

SMUID.StartSession [

HostSessionlD : uinteger,

SPID : uidref {SPObjectUID},

Write : boolean,

HostChallenge = bytes,

HostExchangeAuthority = uidref {AuthorityObjectUID},
HostExchangeCert = bytes,

HostSigningAuthority = uidref {AuthorityObjectUID},
HostSigningCert = bytes,

SessionTimeout = uinteger,

TransTimeout = uinteger,

InitialCredit = uinteger,

SignedHash = bytes]

=>

SMUID.SyncSession [see SyncSession definition in 5.2.3.2]

5.2.3.1.1 HostSessionID

The HostSessionID parameter in the StartSession invocation is the host-side session number
assigned and used by the host to identify this session. All further invocations in this series of method
invocations and responses use this host-assigned session number in the HostSessionID parameter.
This is the number that becomes the HSN portion of the packet header Session field (see 3.2.3.3 and
3.3.7.1).

52312 SPID

The SPID parameter in the StartSession invocation is the uid of the SP with which the host is
attempting to start a session. This is the uid of the SP's object in the Admin SP’s SP table.

5.2.3.1.3 Write

Revision 2.00 Page 156 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The Write parameter determines the type of session that is being started. This value SHALL be True
when a Read-Write session is requested and False when a Read-Only session is requested.

5.2.3.1.4 HostChallenge

If the Signing Authority (identified in the HostSigningAuthority parameter) has an Operation column
value of Password in the Authority table and references a C_PIN credential, then the HostChallenge
parameter is used by the host to submit a password for authentication. Otherwise, this parameter is
used to submit a nonce to the SP that, during secure session startup, returns a response based on the
HostChallenge value and the authentication requirements of the Signing Authority.

5.2.3.1.5 HostExchangeAuthority

The HostExchangeAuthority identifies the authority whose credential is used to exchange keys with
the SP.

5.2.3.1.6 HostExchangeCert

The HostExchangeCert parameter provides the certificate associated with the credential to be used
with the HostExchangeAuthority.

5.2.3.1.7 HostSigningAuthority

For challenge/response authentication, the HostSigningAuthority's credential is used to formulate the
response to the SP's challenge. The HostSigningAuthority parameter identifies the authority whose
credential is used to sign the method hash (sent in the SignedHash parameter), and to sign the
SPChallenge value sent in the SyncSession method invocation.. For password authentication, the
HostSigningAuthority's credential is used to verify the password sent in the HostChallenge parameter.

5.2.3.1.8 HostSigningCert
The optional HostSigningCert parameter provides attestation to the HostSigningAuthority's credential.

5.2.3.1.9 SessionTimeout

The SessionTimeout parameter is used to allow the host to provide a requested timeout value for the
session.

The value, in milliseconds, SHOULD be less than the TPer's MaxSessionTimeout property, greater
than the TPer's MinSessionTimeout property (see 5.2.2.1), and less than the value of the
SPSessionTimeout column in the SP’s SPInfo table. If the parameter value is outside of these limits,
the method invocation SHALL fail.

5.2.3.1.10 TransTimeout

The TransTimeout parameter is used to allow the host to provide a requested timeout value for
acknowledgement.

The value, in milliseconds, SHOULD be less than the TPer's MaxTransTimeout property and greater
than the TPer's MinTransTimeout property (these values are reported as the results of the Properties
method (see 5.2.2.1). If the parameter value is outside of these limits, the method invocation SHALL
fail.

If this capability is supported and no value is specified for this parameter, then the TPer's default value
(identified as the DefaultTransTimeout response to the Properties mehod), SHALL be used as the
transmission timeout value. For more information on the transmission timeout mechanism, see 3.3.9.4.

5.2.3.1.11 InitialCredit

The InitialCredit parameter enables the host to provide an amount of credits to the TPer for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.3.8.2.

Revision 2.00 Page 157 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.2.3.1.12 SignedHash

The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see 5.3.4.1.4). This is a signed hash of all the other
parameters to the method, other than the SignedHash parameter. The purpose of this is to provide
integrity during session startup, prior to the point when secure messaging takes effect.

The Host Control Authority identifies the hash type and signing type if hashing has been called out on
messages from the host to the SP (see 5.3.4.1.7).

5.2.3.2 SyncSession Method

The SyncSession is returned by the TPer in response to invocation of the StartSession method by the
host.

SMUID.StartSession [see StartSession definition in 5.2.3.1]
=>

SMUID.SyncSession [
HostSessionlD : uinteger,
SPSessionlID : uinteger,
SPChallenge = bytes,
SPExchangeCert = bytes,
SPSigningCert = bytes,
TransTimeout = uinteger,
InitialCredit = uinteger,
SignedHash = bytes]

5.2.3.2.1 HostSessionlD

The HostSessionID parameter in the SyncSession invocation SHALL be the same as that in the
StartSession invocation.

5.2.3.2.2 SPSessionlD

The SPSessionlD parameter in the SyncSession invocation is the TPer side session number, which is
assigned by the TPer. All further invocations in this series of method invocations and responses use
this TPer-assigned session number in the SPSessionID parameter.

This is the number that becomes the TSN portion of the packet header Session field (see 3.2.3.3 and
3.3.7.1).

5.2.3.2.3 SPChallenge

The SPChallenge parameter value is sent if the StartSession invocation includes a
HostSigningAuthority that directly invokes a signing credential. Otherwise, this parameter is omitted.

5.2.3.2.4 SPExchangeCert

The SPExchangeCert is the certificate for the credential referenced by the SP exchange authority that
MAY be referenced by the parameterized HostSigningAuthority specified in the StartSession
invocation.

5.2.3.2.5 SPSigningCert

The optional SPSigningCert is the certificate for the credential referenced by the SP signing authority
that MAY be referenced by the parameterized HostSigningAuthority specified in the StartSession
invocation.

5.2.3.2.6 TransTimeout

The TransTimeout parameter in the SyncSession method is used by the TPer to report the Timeout
value it SHALL use. This parameter is used to allow the TPer to provide a transmission timeout value
for acknowledgement larger than that requested by the host.

Revision 2.00 Page 158 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

This optional parameter SHALL be greater than or equal to the value of the TransTimeout parameter of
the StartSession method, unless the TransTimeout parameter of StartSession contained a value
that was greater than the TPer's MaxTransTimeout property, in which case the SyncSession method
SHALL indicate a failure result.

The TransTimeout parameter value (measured in milliseconds) SHALL be less than the TPer's
MaxTransTimeout property and greater than the TPer's MinTransTimeout property (see 5.2.2.1).

If this capability is supported and no value is specified for this parameter in either the StartSession or
SyncSession methods, then the TPer's default value (identified as the DefTransTimeout response to
the Properties mehod), SHALL be used as the transmission timeout value. For more information on
the transmission timeout mechanism, see 3.3.9.4.

5.2.3.2.7 InitialCredit

The InitialCredit parameter enables the TPer to provide an amount of credits to the host for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.3.8.2.

5.2.3.2.8 SignedHash
The SignedHash of the SyncSession method, if present, is the hash of the method’'s parameter’s
signed by the response signing credential that is the credential referred to by the SPSigningAuthority.

The SP Control Authority, if referenced by the Host Control Authority, identifies the hash type and
signing type if hashing has been called out on messages from the SP to the host (see 5.3.4.1.7).

5.2.3.3 StartTrustedSession Method

The StartTrustedSession/SyncTrustedSession method exchange, if needed, SHALL occur after the
StartSession/SyncSession method exchange. If invoked at any other time, the attempted method
invocation SHALL return an error result.

SMUID.StartTrustedSession [
HostSessionlD : uinteger,
SPSessionlID : uinteger,
HostResponse = bytes,
HostEncryptSessionKey =
HostlntegritySessionKey
SignedHash = bytes]

=>
SMUID.SyncTrustedSession [See SyncTrustedSession definition in 5.2.3.4]

bytes,
= bytes,

5.2.3.3.1 HostSessionlD

The HostSessionID parameter in the StartTrustedSession invocation SHALL be the same as that in
the StartSession invocation.

5.2.3.3.2 SPSessionID

The SPSessionID parameter in the StartTrustedSession invocation is the TPer side session humber,
which was assigned by the TPer and delivered to the host in the SyncSession method.

5.2.3.3.3 HostResponse

The HostResponse is included if the SyncSession method contained an SPChallenge parameter. The
value of the HostResponse parameter is dictated by the credential of the HostSigningAuthority.

5.2.3.3.4 HostEncryptSessionKey

Revision 2.00 Page 159 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The HostEncryptSessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the host to the SP.

5.2.3.3.5 HostIntegritySessionKey

The HostIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP. This session keyset is used to create a MAC of the data sent from the
host to the SP (if required), to aid in integrity assurance.

5.2.3.3.6 SignedHash

The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see 5.3.4.1.4). This is a signed hash of all the other
parameters to the method, other than the SignedHash parameter. The purpose of this is to provide
integrity during session startup, prior to the point when secure messaging begins.

The Host Control Authority identifies the hash type and signing type if hashing has been called out on
messages from the host to the SP (see 5.3.4.1.7).

5.2.3.4 SyncTrustedSession Method

The SyncTrustedSession method is returned by the TPer in response to invocation of the
StartTrustedSession method by the host.

SMUID.StartTrustedSession [See StartTrustedSession definition in 5.2.3.3]
=>

SMUID.SyncTrustedSession [

HostSessionlD : uinteger,

SPSessionlID : uinteger,

SPResponse = bytes,

SPEncryptSessionKey = bytes,

SPIntegritySessionKey = bytes,

SignedHash = bytes]

5.2.3.4.1 HostSessionlD

The HostSessionID parameter in the SyncTrustedSession invocation SHALL be the same as that in
the StartSession invocation.

5.2.3.4.2 SPSessionID

The SPSessionlD parameter in the SyncTrustedSession invocation is the TPer side session number,
which was assigned by the TPer and delivered to the host in the SyncSession method.

5.2.3.4.3 SPResponse

A value is submitted in the SPResponse parameter if the StartSession method contained a
HostChallenge parameter value. The response is dictated by the Operation column value and
credential of the SPSigningAuthority.

5.2.3.44 SPEncryptSessionKey

The SPEncryptSessionKey is the session keyset generated by the SP and encrypted with the key
used for exchange with the host (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the SP to the host.

5.2.3.45 SPiIntegritySessionKey

The SPIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the host. This session keyset is used to create a MAC of the data sent from the
SP to the host (if required), to aid in integrity assurance.

5.2.3.4.6 SignedHash

Revision 2.00 Page 160 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see 5.3.4.1.4). This is a signed hash of all the other
parameters to the method, other than the SignedHash parameter. The purpose of this is to provide
integrity during session startup, prior to the point when secure messaging begins.

The SP Control Authority, if referenced by the Host Control Authority, identifies the hash type and
signing type if hashing has been called out on messages from the SP to the host (see 5.3.4.1.7).

5.2.3.5 CloseSession Method

This method SHALL only be transmitted by the TPer. The TPer MAY transmit this method to notify the
host that it is aborting the session identified in the CloseSession method, as well as all open un-
committed transactions and methods undergoing processing (see 3.3.7.1.5).

SMUID.CloseSession [
RemoteSessionNumber : uinteger,
LocalSessionNumber : uinteger]

5.2.35.1 RemoteSessionNumber

This is the portion of the session number assigned by the host (i.e. the HSN portion of the packet
header Session field for the aborted session).

5.2.3.5.2 LocalSessionNumber

This is the portion of the session number assigned by the TPer (i.e. the TSN portion of the packet
header Session field for the aborted session).

5.3 Base Template

5.3.1 Overview

The Base Template defines a common set of tables and methods, a subset of which SHALL be
incorporated into all SPs.

5.3.1.1 Base Template Tables and Methods Overview
Begin Informative Content

Base Template tables are categorically divided into the following groups:

a. General metadata tables — store an SP’s self-descriptive information, such as SP
identification, size, and version numbers.

b. Table and method metadata tables — store data about the tables and methods that make
up this SP.

c. Access control tables — define authorities, the secrets and authentication methods those
authorities require, and the access control associations that permit method operation.

d. Credential tables — define available encryption/decryption algorithms and authentication
mechanisms, and also store associated secrets or keys.

Base Template methods are divided into the following groups:

a. Basic table — enable creation of tables, addition and deletion of rows to tables, and
modification of table cell values.

b. Access control — define which authorities are permitted to successfully invoke which
methods and modify ACLs.

Revision 2.00 Page 161 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

End Informative Content

5.3.2 Data Structures

5.3.2.1 General Metadata Group - SPInfo (Object Table)

The SPInfo table of each SP contains information about the SP, and a copy of some relevant
information from the Admin SP. This table SHALL have exactly one row.

The SPID of the SPInfo table and the GUDID of the TPerlInfo table in the Admin SP form an
sp_guid that uniquely identifies the SP.

Table 169 SPInfo Table Description

Column Number |Column Name IsUnique |Column Type
0x00 uiD uid

0x01 SPID uid

0x02 Name name

0x03 Size uinteger_8
0x04 SizelnUse uinteger_8
0x05 SPSessionTimeout uinteger_4
0x06 Enabled boolean

53.2.1.1 uiD
This is the unique identifier of this row of the SPInfo table.

This column SHALL NOT be modifiable by the host.

5.3.2.1.2 SPID
This is the unique identifier of this SP as assigned in the Admin SP’s SP table.

This column SHALL NOT be modifiable by the host.

5.3.21.3 Name

This is the name of the SP. This SHALL be the same as the name recorded for this SP in the Admin
SP’s SP table.

This column SHALL NOT be modifiable by the host.

53.2.14 Size

This defines the total space allocated for the SP at creation, in bytes. This value SHALL be the same
as the value of the Bytes column in the SP's object in the Admin SP’s SP table.

This column SHALL NOT be modifiable by the host.

5.3.2.1.5 SizelnUse
This value is the amount of the allocated space that is in use (for tables), in bytes.

This column SHALL NOT be modifiable by the host.

5.3.2.1.6 SPSessionTimeout
This is the length of timeout interval (in milliseconds) that this SP uses by default.

Revision 2.00 Page 162 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.1.7 Enabled

The value of this column identifies whether the SP is enabled or disabled. The column value is True if
the SP is enabled, False if the SP is disabled.

Initial access control over modification of this column SHALL permit only the SP Owner (i.e. the Admins
class authority) to disable or reenable this SP.

When the value of this column is False, the operation of the SP is modified according to 5.3.5.1.

As soon as the method invocation that changes this column value to False completes successfully,
even inside of a transaction, the SP SHALL be considered disabled.

5.3.2.2 General Metadata Group - SPTemplates (Object Table)
Begin Informative Content

The SPTemplates table is an object table that identifies the component templates used to form the
SP.

End Informative Content

There SHALL be one row in this table for each template used to create the SP, including a row for the
Base Template (for all SPs), and one for the Admin Template in the Admin SP’s SPTemplates table.

Table 170 SPTemplates Table Description
Column Number |Column Name IsUnique |Column Type

0x00 uiD uid

0x01 TemplatelD Template_object_ref
0x02 Name name

0x03 Version bytes 4

53.22.1 uiD
This is the unique identifier of this row of the SPTemplates table.

This column SHALL NOT be modifiable by the host.

5.3.2.2.2 TemplatelD
The value of the TemplatelD column is the UID assigned to this template in the Admin SP’s
Template table.

This column SHALL NOT be modifiable by the host.

5.3.2.2.3 Name

This is the name of the template used as a component in the creation of this SP. This SHALL be the
same as the value recorded in Name column of the Admin SP’s Template table for the associated
template.

This column SHALL NOT be modifiable by the host.

5.3.2.2.4 Version

The value of the Version column refers to TCG defined versions of templates. For devices compliant
with the template versions defined in this specification, the 4-byte value SHALL be 0x00 0x00 0x00
0x02.

This column SHALL NOT be modifiable by the host.

Revision 2.00 Page 163 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.3 Table and Method Metadata Group - Table (Object Table)
Begin Informative Content

The Table table contains one row for each table descriptor object, which store metadata about each of
the tables in the SP.

End Informative Content

In the Table table of every SP, there SHALL be a row for each table that exists in that SP. Each of
these rows SHALL have a CommonName column value. Each table at issuance SHALL have a
CommonName column value that is the name of the template from which that table was issued — the
template name is the name from the associated row in the Admin SP’s Template table.

The Table table in the Admin SP includes a row for each table that the TPer supports, in addition to a
row for each table that exists in the Admin SP.

Table 171 Table Table Description
Column Number |Column Name IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 TemplatelD Yes Template_object_ref
0x04 Kind table_kind

0x05 Column Column_object_ref
0x06 NumColumns uinteger_4

0x07 Rows uinteger_4

0x08 RowsFree uinteger_4

0x09 RowBytes uinteger_4

Ox0A LastIiD uid

0x0B MinSize uinteger_4

0x0C MaxSize uinteger_4

5.3.23.1 uiD
This is the unique identifier of this row of the Table table.

This column SHALL NOT be modifiable by the host.

5.3.2.3.2 Name
This is the name of the table.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.3.3 CommonName
This is a name that MAY be shared among multiple table descriptor objects.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.3.4 TemplatelD

Revision 2.00 Page 164 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

In the Admin SP, this column is used to identify the template to which this table belongs and indicates a
table that is not present in the Admin SP. In SPs other than the Admin SP, the value of this column
SHALL be zeroes. See 5.4.4.1 for details.

This column SHALL NOT be modifiable by the host.

5.3.2.35 Kind
This value indicates the type of table — either object or byte.

This column SHALL NOT be modifiable by the host.

5.3.2.3.6 Column
This is a reference to the Column table row of this table’s first column. For byte tables this value SHALL
be the null uid.

This column SHALL NOT be modifiable by the host.

5.3.2.3.7 NumColumns
This value indicates the number of columns in the table. For byte tables this SHALL be 0x01.

This column SHALL NOT be modifiable by the host.

5.3.2.3.8 Rows
This value indicates the actual number of rows that have been created for the table.

This column SHALL NOT be modifiable by the host.

5.3.2.3.9 RowsFree
This value indicates the number of unused rows in the table out of those allocated for use.

This column SHALL NOT be modifiable by the host.

5.3.2.3.10 RowBytes

This value is the number of bytes in each row of the table. This is the total number of bytes utilized by
each table row, and SHALL include bytes devoted to overhead for system columns, type identification,
etc.

This column SHALL NOT be modifiable by the host.

5.3.23.11 LastID
For object tables, this value is the most recent uid assigned to an object in that table. For byte tables,
this value SHALL be the null uid.

This column SHALL NOT be modifiable by the host.

5.3.2.3.12 MinSize

This is the number of rows initially requested for this table. The table is able to contain at least this
many rows. This column is user-settable (access control permitting). For more information see
5.3.4.2.1.

5.3.2.3.13 MaxSize

This is a host-defined maximum number of rows that MAY exist in this table. The table SHALL never
have more than this many rows, although the TPer is not required to guarantee that the table can grow
to MaxSize rows.

This column is user-settable (access control permitting), but the TPer MAY prevent the value in this
column from being changed. A value of 0 indicates no host-defined limit of rows that MAY be created
in this table.

Revision 2.00 Page 165 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.4 Table and Method Metadata Group - Column (Object Table)

The Column table SHALL have one row for every column of every object table. Byte tables SHALL
NOT have representative columns in the Column table.

The SP implementation is free to have hidden system columns in any table, as long as those columns
do not interfere with host operations, including the operation of any methods invoked on that table.
These columns SHALL NOT be recorded in the Column table.

The Column table in the Admin SP includes a row for each column that the TPer supports, in addition to
a row for each column that exists in the Admin SP.

Table 172 Column Table Description
Column Number |Column Name |IsUnique Column Type

0x00 uiD uid

0x01 Name name

0x02 CommonName name

0x03 Type Type_object_ref
0x04 IsUnique boolean

0x05 ColumnNumber uinteger_4

0x06 Transactional boolean_def_true
0x07 Next Column_object_ref
0x08 AttributeFlags attr_flags

5.3.24.1 uiD
This is the unique identifier of this row of the Column table.

This column SHALL NOT be modifiable by the host.

5.3.2.4.2 Name
This is the name of the column.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.4.3 CommonName

This is a name that MAY be shared among multiple table descriptor objects. The value of the
CommonName column for rows that exist upon issuance is the name of the template (from the
SPTemplates table) to which that column belongs.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

53244 Type
The value of this column identifies the type formatting the column’s data.

This column SHALL NOT be modifiable by the host.

5.3.2.45 IsUnique

The value of this column indicates whether the column participates in the unique column combination
for the table. The value of this column is True if this column is, or is part of, the unique columns for the
table. If the value of this column is False, this column is not a part of the table’s unique columns.

This column SHALL NOT be modifiable by the host.

Revision 2.00 Page 166 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.4.6 ColumnNumber

The value of this column identifies the number of the column, and by extension, the ordering of columns
in the containing table.

This column SHALL NOT be modifiable by the host.

5.3.2.4.7 Transactional
This value indicates whether the column is subject to transactional rollback.

If the value of the Transactional column is False, then modifications to this column take effect
immediately, even if the method invocation that modifies the column is included in a transaction that
has not yet resolved. Changes to the column are not rolled back if the transaction containing the
modification is aborted. The value of this column for user-created table columns SHALL be True.

This column SHALL NOT be modifiable by the host.

53.24.8 Next

This is a reference to the row of the Column table that represents the next column in this column’s table.
If this is the last column in the containing table, then the value of this column is the NULL UID.

This column SHALL NOT be modifiable by the host.

5.3.2.4.9 AttributeFlags

Identifies globally assigned attributes for this table column, such as whether or not the Get and Set
methods are globally permitted for this column regardless of access controls.

In the case of tables created by the host post-issuance, the value of this column for resulting additional
rows in the Column table SHALL be the empty set. System-managed columns (such as the UID
column) of those tables SHALL have a value of {1} for that column in the corresponding Column table
row.

This column SHALL NOT be modifiable by the host.

5.3.2.5 Table and Method Metadata Group - Type (Object Table)
Begin Informative Content

The Type table stores the format and metadata for all of the column types used in the SP. The host
adds host-defined types by invoking the CreateRow method on the Type table.

The Type table values that represent the built-in types, as well as all those types pre-defined in this
specification, are found in 5.1.1.

End Informative Content

Any of the types predefined in the Core Specification MAY be included by default in the table for an SP.
The default contents of the table are SSC-specific.

No user-defined types SHALL be removed by the Delete or DeleteRow methods unless the TPer is
able to verify that no column of that type is currently in use.

Types are often constructed of other types. The TPer SHALL prevent modification or removal of a type
object upon which another type is dependent.

The TPer SHALL prevent type recursion.

Table 173 Type Table Description
Column Number |Column Name IsUnique Column Type
0x00 uiD uid

Revision 2.00 Page 167 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name IsUnique |Column Type

0x01 Name Yes name
0x02 CommonName |Yes name
0x03 Format type_def
0x04 Size uinteger_2

5.3.25.1 uiD
This is the unique identifier of this row in the Type table.

This column SHALL NOT be modifiable by the host.

5.3.25.2 Name
This is the name of the type.

This column SHALL NOT be modifiable by the host.

5.3.253 CommonName
This is a name that MAY be shared by multiple types.

This column SHALL NOT be modifiable by the host.

5.3.25.4 Format
The value of this column describes the format of the data type. For details, see the format specification,
section 5.1.1.

This column SHALL NOT be modifiable by the host.

53.255 Size

This is the size (in bytes) needed to store a value of this type. The value of the Size column includes
any necessary overhead (such as for bytes{max=<n>}, for tagging a value of an Alternative_Type,
etc. The TPer calculates the value of this column. It is an error for the host to specify a value for this
column in the CreateRow method invocation. This value SHALL be 0 for a base type (integer, uinteger,
bytes, max bytes).

This column SHALL NOT be modifiable by the host.

5.3.2.6 Table and Method Metadata Group - MethodID (Object Table)

This table associates method names and uids. Access control SHALL permit this table to be read with
the use of the Anybody authority, and SHALL prevent this table from being modified. In the MethodID
table of every SP, there SHALL be a row for each method that MAY be invoked within a session to that
SP.

The Name-CommonName-TemplatelD column value combination SHALL be unique for each row in the
table.

Table 174 MethodID Table Description
Column Number |Column Name IsUnique | Column Type

0x00 uiD uid
0x01 Name Yes name
0x02 CommonName |Yes name

Revision 2.00 Page 168 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name IsUnique |Column Type
0x03 TemplatelD Yes Template_object ref

5.3.26.1 UID

This is the unique identifier of this row in the MethodID table. This is also the uid value used to invoke
the method.

This column SHALL NOT be modifiable by the host.

5.3.2.6.2 Name
This is the name of the method.

For Method 1D objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.6.3 CommonName
This is a name that MAY be shared by multiple methods.

Each row that exists at issuance SHALL have a CommonName column value that is the name of the
template from which it was issued. This is the name of the template from the Admin SP’s Template
table.

For MethodID objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.6.4 TemplatelD

In the Admin SP, this column is used to identify the template to which this method belongs and
indicates a method that is not present in the Admin SP. In SPs other than the Admin SP, the value of
this column SHALL be zeroes. See 5.4.4.1 for details.

This column SHALL NOT be modifiable by the host.

5.3.2.7 Table and Method Metadata Group - AccessControl (Object Table)
Begin Informative Content

The AccessControl table contains SP/method, table/method, and object/method access control
associations and logging settings, and each access control association’s related meta-ACL access
requirements and meta-ACL logging settings.

End Informative Content

New rows SHALL NOT be created in or deleted from the AccessControl table directly (i.e. via
CreateRow, Delete, or DeleteRow).

New rows are created in the AccessControl table as a side effect whenever a table is created or when
a row in an object table is created. New rows added to the AccessControl table in this way SHALL
NOT cause additional new rows to be added to the AccessControl table.

AccessControl table rows MAY be deleted through the use of the DeleteMethod method.
AccessControl table rows associated with a particular object or table SHALL be removed whenever
that table or object is deleted.

Table 175 AccessControl Table Description
Column Number |Column Name IsUnique |Column Type
0x00 uiD uid

Revision 2.00 Page 169 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name IsUnique |Column Type

0x01 InvokinglID Yes table_or_object_ref
0x02 MethodID Yes MethodID_object_ref
0x03 CommonName name

0x04 ACL ACL

0x05 Log log_select

0x06 AddACEACL ACL

0x07 RemoveACEACL ACL

0x08 GetACLACL ACL

0x09 DeleteMethodACL ACL

0x0A AddACELog log_select

0x0B RemoveACELog log_select

0x0C GetACLLog log_select

0x0D DeleteMethodLog log_select

Ox0E LogTo LogList_object_ref

53.27.1 uiD
This is the unique identifier of this row in the AccessControl table.

This column SHALL NOT be modifiable by the host.

5.3.2.7.2 InvokingID
This is the uidref to the SP/Table/Object portion of this access control association.

This column SHALL NOT be modifiable by the host.

5.3.2.7.3 MethodID
This is the unique identifier of the method portion of this access control situation, and is the same as the
method's UID column value in the Method 1D table.

This column SHALL NOT be modifiable by the host.

5.3.2.7.4 CommonName
This is a name that MAY be shared among multiple access control associations. The value for this
column when a row is created is the empty string.

This column SHALL NOT be modifiable by the host.

53.2.75 ACL

This is the access control list for this SP/method, table/method, or object/method combination. This
column is modified/accessed via the methods GetACL, RemoveACE, and AddACE. This column SHALL
NOT be modifiable directly via the Set method.

5.3.27.6 Log

This column identifies the logging conditions when this method is invoked on this SP/table/object. The
conditions indicate whether logging is performed when the method succeeds, fails, both, or neither.
This column SHALL be disregarded if the Log Template has not been issued into the SP, and SHOULD
be set to 0.

Revision 2.00 Page 170 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.7.7 AddACEACL

This column holds the access control list that controls invocation of the AddACE method on the ACL
column of this row in the AccessControl table.

5.3.2.7.8 RemoveACEACL

This column holds the access control list that controls invocation of the RemoveACE method on the ACL
column of this row in the AccessControl table.

5.3.27.9 GetACLACL

This column holds the access control list that controls invocation of the GetACL method on the ACL
column this row in the AccessControl table.

5.3.2.7.10 DeleteMethodACL

This column holds the access control list that controls invocation of the DeleteMethod method on the
access control association represented by this row in the AccessControl table.

5.3.2.7.11 AddACELog

This column identifies the conditions under which logging of the AddACE method invocation on this
access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.12 RemoveACELog

This column identifies the conditions under which logging of the RemoveACE method invocation on this
access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.13 GetACLLog

This column identifies the conditions under which logging of the GetACL method invocation on this
access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.14 DeleteMethodLog

This column identifies the conditions under which logging of the DeleteMethod method invocation on
this access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.15 LogTo

This column value is a uidref to a LogList object. Log entries for this access control association are
added to the Log table associated with that LogList object. This column SHALL be disregarded if the
Log Template has not been issued into the SP, and SHOULD be set to the NULL UID.

5.3.2.8 Table and Method Metadata Group - SecretProtect (Object Table)

This table column is used by the host to identify the key protection mechanism(s), if any, in use by the
storage device to "hide" the device's media encryption key material/secrets.

Table 176 SecretProtect Table Description

Column Number |Column Name IsUnique |Column Type
0x00 uiD uid

0x01 Table Table_object_ref
0x02 ColumnNumber uinteger_4

Revision 2.00 Page 171 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name IsUnique |Column Type
0x03 ProtectMechanisms protect_types

5.3.28.1 uiD
This is the unique identifier of this row of the SecretProtect table.

This column SHALL NOT be modifiable by the host.

5.3.2.8.2 Table

This is a uid ref to an object in the Table table. This represents the table that, in conjunction with the
column value identified in the ColumnNumber column, is protected using the mechanism(s) specified in
the ProtectMechanisms column.

This column SHALL NOT be modifiable by the host.

5.3.2.8.3 ColumnNumber

This is a column number. This number represents a column in table (as identified in the Table column),
which is protected using the mechanism(s) specified in the ProtectMechanisms column.

This column SHALL NOT be modifiable by the host.

5.3.2.84 ProtectMechanisms

This column identifies the type of key protection used by the storage device to hide key
material/secrets. The protection mechanisms identified in this column SHALL all be applied to
protection of the associated table column value.

This column SHALL NOT be modifiable by the host.

5.3.2.9 Access Control Metadata Group - ACE (Object Table)

The ACE table SHALL have one row for each access control element that MAY be referenced in the
AccessControl table's ACL column.

Table 177 ACE Table Description
Column Number |Column Name IsUnique |[Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 BooleanExpr AC_element
0x04 Columns ACE_columns

5.3.29.1 uiD
This is the unique identifier of this row in the ACE table.

Revision 2.00 Page 172 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

This column SHALL NOT be modifiable by the host.

5.3.2.9.2 Name
This is the name of the ACE.

For ACE objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.29.3 CommonName
This is a name that MAY be shared by multiple ACE objects.

For ACE objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.9.4 BooleanExpr
This column value is a Boolean expression of Authorities that authorizes the ACE if the expression

evaluates to True. If the conditions described in this access control element are True, then the ACE is
considered authenticated.

5.3.2.9.5 Columns

This column value dentifies the columns to which this ACE applies. An empty set indicates that this
ACE applies to all columns in the table (when referenced in the ACL of a method that supports column
restrictions).

The value for the Columns column SHALL be applicable to the table upon which a method requiring
authentication of this ACE is being invoked. If the method is not column-dependant (e.g. the Next
method), this column is ignored.

5.3.2.10 Access Control Metadata Group - Authority (Object Table)

Begin Informative Content

A row of the Authority Table is called an authority. An authority is a specific use of a credential and,
possibly, other authorities. A class authority is an authority object referenced by multiple individual
authorities and does not use a credential.

End Informative Content

Table 178 Authority Table Description
Column Number |Column Name |IsUnique |[Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 IsClass boolean

0x04 Class Authority_object_ref
0x05 Enabled boolean

0x06 Secure messaging_type
0x07 HashAndSign hash_protocol

0x08 PresentCertificate boolean

0x09 Operation auth_method

Ox0A Credential cred_object_uidref
0x0B ResponseSign Authority_object_ref
0x0C ResponseExch Authority_object_ref
0x0D ClockStart date

Revision 2.00 Page 173 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name |IsUnique |[Column Type

OxO0E ClockEnd date

OxOF Limit uinteger_4

0x10 Uses uinteger_4

0x11 Log log_select

0x12 LogTo LogList object ref

5.3.2.10.1 UID
This is the unique identifier of this row in the Authority table.

This column SHALL NOT be modifiable by the host.

5.3.2.10.2 Name
This is the name of the authority.

For Authority objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.10.3 CommonName
This is a name that MAY be shared by multiple authorities.

For Authority objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.10.4 IsClass
This column identifies whether or not this is an individual authority or a class authority.

If True, this row is a class authority. If False, this row is an individual authority.
This column SHALL NOT be modifiable by the host.

5.3.2.10.5 Class

The Class column identifies the authority class of which an authority object is a member. Class
authorities MAY be members of another class authority. However, this SHALL only be valid if it extends
to one level. Class authorities are not permitted to be members of a class authority that is already a
member of another class authority. The TPer SHALL enforce this requirement.

The value of this column SHALL be a NULL UID reference if the authority is not a member of a class.

5.3.2.10.6 Enabled

This column identifies whether the authority is enabled, thus identifying if the authority object is
authenticatable. When this value is True, this authority is enabled.

5.3.2.10.7 Secure

The Secure column identifies the type of secure messaging (if any) that is required by this authority,
and identifies the size of the key(s) that SHALL be generated during secure session startup if secure
messaging is required. A value of “None” indicates secure messaging is not required. The value of this
column SHALL be enforced when any attempt is made to authenticate this authority, including the use
of the Authenticate method. If the conditions are not met when authentication is attempted, that
authentication SHALL fail.

The options for the Secure column, which are the options defined for the messaging_type type, are
identified in Table 179.

Revision 2.00 Page 174 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Table 179 Secure Column Values

Column value Algorithm Secure Messaging Type
0 None None

1 HMAC_SHA_256 Integrity only

2 HMAC_SHA 384 Integrity only

3 HMAC_SHA_512 Integrity only

4 RSASSA-PKCS1-vl 5 1024 Integrity only

5 RSASSA-PKCS1-vl 5 2048 Integrity only

6 RSASSA-PKCS1-vl_5 _3072 Integrity only

7 RSASSA-PSS 1024 Integrity only

8 RSASSA-PSS 2048 Integrity only

9 RSASSA-PSS_3072 Integrity only

10 ECDSA_256_SHA 256 Integrity only

11 ECDSA 384 SHA 384 Integrity only

12 ECDSA 512_SHA_512 Integrity only

13 CMAC_128 with 128-bit MAC Integrity only

14 CMAC_256 with 128-bit MAC Integrity only

15 GMAC_128 with 128-bit MAC and 96-bit IV |Integrity only

16 GMAC_256 with 128-bit MAC and 96-bit IV |Integrity only

17-63 RESERVED Integrity only

64 AES_CBC_128 Confidentiality only

65 AES CBC 256 Confidentiality only

66-128 RESERVED Confidentiality only

129 AES_CBC_128 with HMAC_SHA 256 Integrity and Confidentiality
130 AES CBC 256 with HMAC_SHA 256 Integrity and Confidentiality
131 AES_CBC_256 with HMAC_SHA 384 Integrity and Confidentiality
132 AES_CBC_256 with HMAC_SHA_ 512 Integrity and Confidentiality
133 AES _CCM_128 with 128-bit MAC Integrity and Confidentiality
134 AES_CCM_256 with 128-bit MAC Integrity and Confidentiality
135 AES_GCM_128 with 128-bit MAC Integrity and Confidentiality
136 AES_GCM_256 with 128 bit MAC Integrity and Confidentiality
137-255 RESERVED Integrity and Confidentiality

Note that the IV size for both the CCM and GCM modes is 12-bytes. The lower 8-bytes are directly
provided within the secure message. The upper 4-bytes of the IV are taken from the last 4-bytes of the
EncryptSessionKey parameters of the StartTrustedSession/SyncTrustedSession method pair (see
[16] for CCM and [17] for GCM). The EncryptSessionKey parameters of the
StartTrustedSession/SyncTrustedSession method pair SHALL be 4-bytes longer for the CCM and
GCM modes to accommodate the 4-bytes used as 'salt' within the IV. For CMAC see [15]. For GMAC
see [17]. For RSASSA-PKCS1-vl_5 and RSASSA-PSS see [18].

Revision 2.00 Page 175 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.10.8 HashAndSign

The value of the HashAndSign column determines if hashing and signing of session startup method
parameters are required. If the value of this column is other than “None”, a signed hash of the session
startup method parameters SHALL be used during session startup.

The value of the Operation column and the type of the credential referenced in the Credential
column (and the hash protocol identified in that credential) determine the type of the hashing and
signing.

HashAndSign is only enforced for a particular authority during session startup. Otherwise, this attribute
SHALL be ignored (for instance, during an Authenticate method invocation). For additional
information see 5.3.4.1.4.

5.3.2.10.9 PresentCertificate

The value of this column indicates if a certificate needs to be supplied with an authority at session
startup. If the value of the PresentCertificate column is True, the authority is a public key authority,
and the credential contains a certificate or certificate chain, then a certificate or certificate chain
associated with this authority SHALL be sent as a parameter of the session startup protocol. If any of
those conditions is False, no certificate is required to be sent.

5.3.2.10.10 Operation

The value of this column identifies the operation (see 5.3.4.1.3) to perform with the associated
credential (e.g., Exchange, Sign, SymK, HMAC, Password, None).

5.3.2.10.11 Credential

The value of the Credential column identifies the specific credential object to be used with this
authority. For a class authority, the value of this column SHALL be zeroes a NULL UID reference.

5.3.2.10.12 ResponseSign

This column identifies the signing authority with which the SP SHALL respond during session startup.
This column value MAY be self-referential. The value of the ResponseSign column identifies the
authority with which the TPer SHALL respond in the SyncSession method of the session startup
method exchange, as the SP Signing Authority. If the value of this column is the NULL UID, then no SP
Signing Authority is used for initiating that session.

5.3.2.10.13 ResponseExch

This column identifies the exchange authority with which the SP SHALL respond during session startup.
This MAY be self-referential. The value of the ResponseExch column identifies the authority with which
the TPer SHALL respond in the SyncSession method of the session startup method exchange, as the
SP Exchange Authority. If the value of this column is the NULL UID, then no SP Exchange Authority is
used for initiating that session.

5.3.2.10.14 ClockStart
This value identifies the date on which this authority becomes valid.

An authority is automatically valid starting on the date defined in the ClockStart column if the TPer
supports this capability. A value of either all zeroes or an empty struct indicates no start date, and the
authority SHALL be authenticatable until the date in the ClockEnd column is reached. Attempts to
authenticate an authority before the ClockStart column value date has been reached SHALL fail.

The values in the ClockStart column's date struct SHALL be complete and valid or the authority
SHALL NOT be authenticatable.

If the Clock Template has not been issued with this SP, then the value of this column SHOULD be
disregarded, and SHALL be set to an empty struct. Any authority with a non-zero ClockStart date
SHALL NOT be authenticatable if the ClockTime table’s TrustMode column is “Timer”.

Revision 2.00 Page 176 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

See 5.5 for additional details on the Clock Template.

5.3.2.10.15 ClockEnd

This value identifies the date on which this authority expires/becomes invalid.

An authority is automatically invalid starting on the date defined in the ClockEnd column if the TPer
supports this capability. A value of either all zeroes or an empty struct indicates no end date, and the

authority’s ability to be authenticated SHALL NOT expire. Attempts to authenticate an authority after
the ClockEnd column value date has been passed SHALL fail.

The values in the ClockStart column's date struct SHALL be complete and valid or the authority
SHALL NOT be authenticatable.

If the Clock Template has not been issued with this SP, then the value of this column SHOULD be
disregarded, and SHALL be set to an empty struct. Any authority with a non-zero ClockeEnd date
SHALL NOT be authenticatable if the ClockTime table’s TrustMode column is “Timer”.

See 5.5 for additional details on the Clock Template.

5.3.2.10.16 Limit

The Limit column defines a limit on the number of times that an authority MAY be authenticated, either
explicitly or implicitly. This value represents the maximum number of total successful authentications
with this authority, including session start-up invocations and Authenticate method invocations. A
value of 0 SHALL mean no limit.

5.3.2.10.17 Uses

This column defines the total number of successful authentications made with this authority, including
both successful session start-up invocations and Authenticate method invocations. The value of the
Uses column identifies the number of times an authority has been successfully authenticated.

If the value of Uses is equal to or greater than the value of Limit for this authority and the value of the
Limit column is not 0, then this authority SHALL NOT be authenticatable.

This value SHALL NOT be subject to transactional rollbacks.

5.3.2.10.18 Log

The value of the Log column identifies when uses of this authority (i.e., authentications and
authentication attempts) are logged.

If the Log Template has not been issued into the SP, then this column SHALL be disregarded and
SHOULD be set to zero.

5.3.2.10.19 LogTo

This column value is a uidref to a LogList object. Log entries for this access control association are
added to the Log table associated with that LogList object. This column SHALL be disregarded if the
Log Template has not been issued into the SP, and SHOULD be set to the NULL UID.

5.3.2.11 Access Control Metadata Group - Certificates (Object Table)

Table 180 Certificates Table Description
Column Number |Column Name IsUnique Column Type

Revision 2.00 Page 177 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 CertData byte table ref
0x04 CertSize uinteger_4

5.3.2.11.1 UID
This is the unique identifier of this row in the Certificates table.

This column SHALL NOT be modifiable by the host.

5.3.2.11.2 Name

This is the name of the certificate.

For Certificates objects that exist at issuance, this column SHALL NOT be modifiable by the host.
5.3.2.11.3 CommonName

This is a name that MAY be shared by multiple certificates.

For Certificates objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.11.4 CertData
This is the uidref to the byte table that holds the certificate data for this Certificates object.

5.3.2.11.5 CertSize
The value of this column is the number of bytes actually used in the certificate.

5.3.2.12 Credential Table Group - C_PIN (Object Table)

The C_PIN table contains one row for each password credential.

The C_PIN object with UID=0x00 0x00 0x00 OxOB 0x00 O0x00 0x00 0x01 and Name=“SID” is the
default SID object.

Table 181 C_PIN Table Description
Column Number |Column Name IsUnique |Column Type

0x00 uID uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 PIN password
0x04 CharSet byte table ref
0x05 TryLimit uinteger_4
0x06 Tries uinteger_4
0x07 Persistence boolean

5.3.2.12.1 UID
This is the unique identifier of this row in the C_PIN table.

Revision 2.00 Page 178 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

This column SHALL NOT be modifiable by the host.

5.3.2.12.2 Name
This is the name of the C_PIN object.

For C_PIN objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.12.3 CommonName
This is a name that MAY be shared by multiple C_PIN objects.

For C_PIN objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.12.4 PIN
This is the bytes value to which authentication attempts on this C_PIN object are matched.

5.3.2.12.5 CharSet

This is a reference to the byte table that holds the character set used for TPer-generated PIN column
values created using the GenKey method.

If the value of this column is a NULL UID reference, then the default character set is used with the
GenkKey method.

See 5.3.4.1.1.1 for a description of the use of this column.

5.3.2.12.6 TryLimit

The value of this column is the maximum number of failed authentication attempts that are able to be
made using this C_PIN object.

The default value of the TryLimit column when a new C_PIN object is created is 0. The value 0 in this
column indicates that there is no limit on the number of authentication attempts for that object.

For more information on the uses of this column see 5.3.4.1.1.2.

5.3.2.12.7 Tries
This column identifies the current number of failed authentication attempts using this C_PIN object.

For more information on the uses of this column see 5.3.4.1.1.2.

5.3.2.12.8 Persistence
The value of this column identifies if value of Tries column is persistent through power cycles.

5.3.2.13 Credential Table Group - C_RSA_1024 (Object Table)

Table 182 C_RSA 1024 Table Description

Ealmuglenr Column Name |IsUnique |Column Type
0x00 uiD uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 Format padding_type
0x04 Pu_Exp uinteger_128

Revision 2.00 Page 179 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

ﬁl:alr]l*]lgqenr Column Name |IsUnique |Column Type
0x05 Mod uinteger_128
0x06 Pr_Exp uinteger_128
0x07 P uinteger_64
0x08 Q uinteger_64
0x09 Dmpl uinteger_64
O0x0A Dmql uinteger_64
0x0B Igmp uinteger_64
0x0C Hash hash_protocol
0x0D ChainLimit int 1 def O
O0x0E Certificate Certificates_object_ref

5.3.2.13.1 UID
This is the unique identifier of this row in the C_RSA_1024 table.

This column SHALL NOT be modifiable by the host.

5.3.2.13.2 Name

This is the name of the C_RSA_1024 object.

For C_RSA 1024 objects that exist at issuance, this column SHALL NOT be modifiable by the host.
5.3.2.13.3 CommonName

This is a name that MAY be shared among C_RSA_1024 objects.

For C_RSA 1024 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.13.4 Format
This column defines the type of padding used with RSA encryption.

5.3.2.13.5 Pu_Exp
The value of this column is the RSA Public Exponent.

5.3.2.13.6 Mod
The value of this column is the RSA Public Modulus.

5.3.2.13.7 Pr_Exp

The value of this column is the RSA Private Exponent.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.138 P

The value of this column is the p prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2139 Q

The value of this column is the q prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

Revision 2.00 Page 180 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.13.10 Dmp1l
The value of this column is d mod (p-1) (often known as dmp1l).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.13.11 Dmql

The value of this column is d mod (g-1) (often known as dmq1l).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.13.12 Igmp

The value of this column is (1/g) mod p (often known as igmp).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.13.13 Hash

If an authority object that references this C_RSA_1024 object has a HashAndSign column value of True,
this column identifies the hash algorithm to create the session startup method parameter MAC to be
signed by this credential.

5.3.2.13.14 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.13.15 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.14 Credential Table Group - C_RSA_2048 (Object Table)

Table 183 C_RSA 2048 Table Description

ﬁﬁlmugnenr Column Name |IsUnique |Column Type
0x00 uID uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 Format padding_type
0x04 Pu_Exp uinteger_256
0x05 Mod uinteger_256
0x06 Pr_Exp uinteger_256
0x07 P uinteger_128
0x08 Q uinteger_128
0x09 Dmpl uinteger_128
O0x0A Dmql uinteger_128
0x0B lgmp uinteger_128
0x0C Hash hash_protocol
0x0D ChainLimit int. 1 def O
Ox0E Certificate Certificates_object_ref

Revision 2.00 Page 181 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.14.1 UID
This is the unique identifier of this row in the C_RSA 2048 table.

This column SHALL NOT be modifiable by the host.

5.3.2.14.2 Name

This is the name of the C_RSA_2048 object.

For C_RSA 2048 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.14.3 CommonName
This is a name that MAY be shared among C_RSA_ 2048 objects.

For C_RSA_2048 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.14.4 Format
This column defines the type of padding used with RSA encryption.

5.3.2.145 Pu_Exp
The value of this column is the RSA Public Exponent.

5.3.2.14.6 Mod
The value of this column is the RSA Public Modulus.

5.3.2.14.7 Pr_Exp

The value of this column is the RSA Private Exponent.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.148 P

The value of this column is the p prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.149 Q

The value of this column is the g prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.14.10 Dmp1

The value of this column is d mod (p-1) (often known as dmp1l).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.
5.3.2.14.11 Dmql

The value of this column is d mod (g-1) (often known as dmq1l).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.12 lgmp
The value of this column is (1/g) mod p (often known as igmp).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.13 Hash

Revision 2.00 Page 182 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

If an authority object that references this C_RSA_2048 object has a HashAndSign column value of True,
this column identifies the hash algorithm to create the session startup method parameter MAC to be
signed by this credential.

5.3.2.14.14 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.14.15 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.15 Credential Table Group - C_AES_128 (Object Table)

Table 184 C_AES 128 Table Description
Column Number |Column Name IsUnique |[Column Type

0x00 uID uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 Key bytes 16

0x04 Mode symmetric_mode
0x05 FeedbackSize feedback_size
0x06 ResidualData bytes 16

0x07 Hash hash_protocol

5.3.2.15.1 UID
This is the unique identifier of this row in the C_AES_128 table.

This column SHALL NOT be modifiable by the host.

5.3.2.15.2 Name
This is the name of the C_AES_128 object.

For C_AES_128 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.15.3 CommonName
This is a name that MAY be shared by multiple C_AES_128 objects.

For C_AES_128 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.15.4 Key
This column stores the key associated with this C_AES_128 object.

5.3.2.15.5 Mode
This column value defines the encryption mode with which this credential SHALL be used.

5.3.2.15.6 FeedbackSize
This column defines the feedback size for CFB mode, and SHALL be ignored for all other modes.

5.3.2.15.7 ResidualData

Revision 2.00 Page 183 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The value in this column provides the IV for use with the Encrypt/Decrypt method (unless the IV
parameter in the Encryptinit/Decryptinit method is invoked).

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the Encryptlinit/Decryptlnit method is invoked). The TPer then sets this value based
on the last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’'s mode, as defined in Table 185.

5.3.2.15.8 Hash
The value of this column defines the hash protocol to be used with this credential.

Table 185 C_AES 128/C_AES 256 ResidualData Column Values After
Encrypt/Decrypt/EncryptFinalize/DecryptFinalize

Mode Column Value
ECB |All00’s
CBC |The ciphertext of the last block encrypted/decrypted

CFB |The (128 — FeedbackSize) LSBs of the last input to the AES cipher function, concatenated with
the ciphertext of the last block encrypted/decrypted

OFB |The last output block of the AES cipher function

CTR |The last input block to the AES cipher function + 1
GCM |The last input block to the AES cipher function + 1
CCM |The last input block to the AES cipher function + 1

5.3.2.16 Credential Table Group - C_AES_256 (Object Table)

Table 186 C_AES 256 Table Description
Column Number |Column Name IsUnique |Column Type

0x00 uID uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 Key bytes 32

0x04 Mode symmetric_mode
0x05 FeedbackSize feedback_size
0x06 ResidualData bytes_16

0x07 Hash hash_protocol

5.3.2.16.1 UID
This is the unique identifier of this row in the C_AES_256 table.

This column SHALL NOT be modifiable by the host.

Revision 2.00 Page 184 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.16.2 Name
This is the name of the C_AES_256 object.

For C_AES_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.16.3 CommonName
This is a name that MAY be shared by multiple C_AES_256 objects.

For C_AES_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.16.4 Key
This column stores the key associated with this C_AES_256 object.

5.3.2.16.5 Mode
This column value defines the encryption mode with which this credential SHALL be used.

5.3.2.16.6 FeedbackSize
This column defines the feedback size for CFB mode, and SHALL be ignored for all other modes..

5.3.2.16.7 ResidualData

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the Encryptinit/Decryptinit method is invoked). The TPer then sets this value based
on the last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’'s mode, as defined in Table 185.

5.3.2.16.8 Hash
The value of this column defines the hash protocol to be used with this credential.
5.3.2.17 Credential Table Group - C_EC_160 (Object Table)

Table 187 C_EC _ 160 Table Description
Column Number |[Column Name |IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 p uinteger_20
0x04 r uinteger_20
0x05 b uinteger_20
0x06 X uinteger_20
0x07 y uinteger_20
0x08 alpha uinteger_20
0x09 u uinteger_20
0x0A % uinteger_20
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

Revision 2.00 Page 185 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.17.1 UID
This is the unique identifier of this row in the C_EC_160 table.

This column SHALL NOT be modifiable by the host.

5.3.2.17.2 Name

This is the name of the C_EC_160 object.

For C_EC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.17.3 CommonName
This is a name that MAY be shared by multiple C_EC_160 objects.

For C_EC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

532174 p
Modulus

53.2175 r
Order of the curve

532176 b
Curve coefficient (y?=x*-3x+b mod p)

53.217.7 x
Base point x-coordinate

5.3.2.178 vy
Base point y-coordinate

5.3.2.17.9 alpha
Private key

5.3.2.17.10 u
Public key x-coordinate: (u, v) = a (x,y)

5321711 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.17.12 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.17.13 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.17.14 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.17.15 Values for C_EC_160

Revision 2.00 Page 186 of 318

TCG Storage Architecture Core Specification
Specification Version 2.00

Table 188 represents the set of elliptic curve domain parameters as specified in [4]. The entries p, r, b,
x and y are represented in decimal format. These are example values for a curve that MAY be used
with the C_EC_160 table. These values are set as the default values for the associated columns when a
new row is created in the C_EC_160 table and when values for those columns are not specified at table
creation. These default values are not represented by a Type table entry; the TPer SHALL be required

TCG Copyright 2011

to keep track of these values and set them as defaults for new objects, as necessary.

p

< | X T =

Table 188 AACS Values for C_EC_160
Column |Value
900812823637587646514106462588455890498729007071
900812823637587646514106555566573588779770753047
366394034647231750324370400222002566844354703832
264865613959729647018113670854605162895977008838
51841075954883162510413392745168936296187808697

5.3.2.18 Credential Table Group - C_EC_192 (Object Table)

5.3.2.18.1 UID

This is the unique identifier of this row in the C_EC_192 table.

Column Number |[Column Name |IsUnique |Column Type

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
Ox0A
0x0B
0x0C
0x0D

Table 189 C_EC 192 Table Description

ulD
Name Yes
CommonName |Yes

< X | T =™ | T

alpha

u

%

Hash
ChainLimit
Certificate

This column SHALL NOT be modifiable by the host.

5.3.2.18.2 Name

This is the name of the C_EC_192 object.

uid

name

name
uinteger_24
uinteger_24
uinteger_24
uinteger_24
uinteger_24
uinteger_24
uinteger_24
uinteger_24
hash_protocol
integer_1

Certificates_object_ref

For C_EC_192 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

Revision 2.00

Page 187 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.18.3 CommonName
This is a name that MAY be shared by multiple C_EC_192 objects.

For C_EC_192 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.184 p
Modulus

5.3.2.185 r
Order of the curve

5.3.2.186 b
Curve coefficient (y*=x>-3x+b mod p)

5.3.2.18.7 x
Base point x-coordinate

5.3.2.188 vy
Base point y-coordinate

5.3.2.18.9 alpha
Private key

5.3.2.18.10 u
Public key x-coordinate: (u, v) = a (x,y)

5.3.2.18.11 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.18.12 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.18.13 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.18.14 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.18.15 Values for C_EC_192

Table 190 represents the set of elliptic curve domain parameters that is the fixed set known as P-192 in
[11] and secp192rl in [19]. The entries p, 1, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_192 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_192 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 190 FIPS P-192 Values for C_EC 192
Column |Value

Revision 2.00 Page 188 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

Column |Value

p

< X | T =

TCG Copyright 2011

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FRFFFFFF
- 2192 _ 264 -1

FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831
64210519 E59C80E7 OFA7E9QAB 72243049 FEBSDEEC C146B9B1
188DAB0E BO3090F6 7CBF20EB 43A18800 F4FFOAFD 82FF1012
07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

5.3.2.19 Credential Table Group - C_EC_224 (Object Table)

5.3.2.19.1 UID

This is the unique identifier of this row in the C_EC_224 table.

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D

ulD
Name Yes
CommonName |Yes

< X | T T |©T

alpha

u

%

Hash
ChainLimit
Certificate

This column SHALL NOT be modifiable by the host.

5.3.2.19.2 Name

This is the name of the C_EC_224 object.

Table 191 C_EC_ 224 Table Description
Column Number |[Column Name |IsUnique |Column Type

uid

name

name
uinteger_28
uinteger_28
uinteger_28
uinteger_28
uinteger_28
uinteger_28
uinteger_28
uinteger_28
hash_protocol
integer_1

Certificates_object_ref

For C_EC_224 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.19.3 CommonName

This is a name that MAY be shared by multiple C_EC_224 objects.

For C_EC_224 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.194 p
Modulus

Revision 2.00

Page 189 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.195 r
Order of the curve

5.3.2.196 b
Curve coefficient (y?=x*-3x+b mod p)

5.3.2.19.7 x
Base point x-coordinate

5.3.2.19.8 y
Base point y-coordinate

5.3.2.19.9 alpha
Private key

5.3.2.19.10 u
Public key x-coordinate: (u, v) = a (x,y)

5.3.2.19.11 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.19.12 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.19.13 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.19.14 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.19.15 Values for C_EC 224

Table 192 represents the set of elliptic curve domain parameters that is the fixed set known as P-224 in
[11] and secp224rl in [19]. The entries p, r, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_224 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC 224 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry — the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 192 FIPS P-224 Values for C_EC_224
Column |Value

P FFFEFFFF FFFFFFFF FFFFFFFFE FFFFFFFFE 00000000 00000000 00000001
- 2224 _ 296 + 1

r FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 EOB8FO3E 13DD2945 5C5C2A3D
b B4050A85 OCO04B3AB F5413256 5044BOB7 D7BFD8BA 270B3943 2355FFB4
X B70EOCBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 115C1D21
y BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 85007E34

Revision 2.00 Page 190 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.20 Credential Table Group - C_EC_256 (Object Table)

Table 193 C_EC_256 Table Description
Column Number |[Column Name |IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 p uinteger_36
0x04 r uinteger_36
0x05 b uinteger_36
0x06 X uinteger_36
0x07 y uinteger_36
0x08 alpha uinteger_36
0x09 u uinteger_36
0x0A % uinteger_36
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

5.3.2.20.1 UID
This is the unique identifier of this row in the C_EC_256 table.

This column SHALL NOT be modifiable by the host.

5.3.2.20.2 Name
This is the name of the C_EC_256 object.

For C_EC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.20.3 CommonName
This is a name that MAY be shared by multiple C_EC_256 objects.

For C_EC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.204 p
Modulus

5.3.2.205 r
Order of the curve

5.3.2.206 b
Curve coefficient (y*=x’-3x+b mod p)

5.3.2.20.7 X
Base point x-coordinate

5.3.2208 y

Revision 2.00 Page 191 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Base point y-coordinate

5.3.2.20.9 alpha
Private key

5.3.2.20.10 u
Public key x-coordinate: (u, v) = a (x,y)

53.220.11 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.20.12 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.20.13 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.20.14 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.20.15 Values for C_EC_256

Table 194 represents the set of elliptic curve domain parameters that is the fixed set known as P-256 in
[11] and secp256rl in [19]. The entries p, 1, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_256 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_ 256 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 194 FIPS P-256 Values for C_EC 256
Column |Value

p FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF
FFFFFFFF = 2256 _ 2224 + 2192 + 296 -1

r FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCEGFAAD A7179E84 F3B9CAC2
FC632551

b 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06BO CC53BOF6 3BCE3C3E
27D2604B

X 6B17D1F2 E12C4247 F8BCEGES 63A440F2 77037D81 2DEB33A0 F4A13945
D898C296

y 4FE342E2 FE1A7F9B 8EE7EB4A 7COF9E16 2BCE3357 6B315ECE CBB64068
37BF51F5

5.3.2.21 Credential Table Group - C_EC_384 (Object Table)

Table 195 C_EC 384 Table Description
Column Number |[Column Name IsUnique |Column Type

Revision 2.00 Page 192 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

Column Number |Column Name |IsUnique |Column Type

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
O0x0A
0x0B
0x0C
0x0D

53.2.21.1 UID

This is the unique identifier of this row in the C_EC_384 table.

ulD
Name Yes
CommonName |Yes

< | X| T - | T

alpha

u

%

Hash
ChainLimit
Certificate

This column SHALL NOT be modifiable by the host.

5.3.2.21.2 Name

This is the name of the C_EC_384 object.

uid

name

name
uinteger_48
uinteger_48
uinteger_48
uinteger_48
uinteger_48
uinteger_48
uinteger_48
uinteger_48
hash_protocol
integer_1
Certificates_object_ref

For C_EC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.21.3 CommonName

This is a name that MAY be shared by multiple C_EC_384 objects.

For C_EC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.21.4 p
Modulus

53.2.215 r
Order of the curve

532216 b

Curve coefficient (y’=x’-3x+b mod p)

5.3.2.21.7 x
Base point x-coordinate

532218 y
Base point y-coordinate

5.3.2.21.9 alpha

Revision 2.00

Page 193 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Private key

5.3.2.21.10 u
Public key x-coordinate: (u, v) = a (x,y)

5322111 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.21.12 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.21.13 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.21.14 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.21.15 Values for C_EC_384

Table 196 represents the set of elliptic curve domain parameters that is the fixed set known as P-384 in
[11] and secp384rl in [19]. The entries p, r, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_384 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_384 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 196 FIPS P-384 Values for C_EC 384
Column Value

P FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF = 2384 _ 2128 _ 2% 4 232 _
1

r FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF C7634D81
F4372DDF 581A0DB2 48BOA77A ECEC196A CCC52973

b B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 0314088F
5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

X AAB7CA22 BESB0537 8EBIC71E F320AD74 6E1D3B62 8BA79B98 59F741EOQ
82542A38 5502F25D BF55296C 3A545E38 72760AB7

y 3617DE4A 96262C6F 5SDOE9SBF 9292DC29 F8F41DBD 289A147C E9DA3113

B5FOB8CO OAG60B1CE 1D7E819D 7A431D7C 90EAOESF

5.3.2.22 Credential Table Group - C_EC_521 (Object Table)

Table 197 C_EC_521 Table Description
Column Number |Column Name |IsUnique |Column Type
0x00 uiD uid
0x01 Name Yes name

Revision 2.00 Page 194 of 318

TCG Storage Architecture Core Specification

Specification Version 2.00

TCG Copyright 2011

Column Number |Column Name |IsUnique |Column Type

0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
O0x0A
0x0B
0x0C
0x0D

53.2.22.1 UID

This is the unique identifier of this row in the C_EC_ 521 table.

CommonName |Yes

< | X | T T~ | ©

alpha

u

v

Hash
ChainLimit
Certificate

This column SHALL NOT be modifiable by the host.

5.3.2.22.2 Name

This is the name of the C_EC_521 object.

name
uinteger_66
uinteger_66
uinteger_66
uinteger_66
uinteger_66
uinteger_66
uinteger_66
uinteger_66
hash_protocol
integer_1
Certificates_object_ref

For C_EC_521 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.22.3 CommonName

This is a name that MAY be shared by multiple C_EC 521 objects.

For C_EC_521 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

532224 p
Modulus

5.3.2.225 r
Order of the curve

532226 b

Curve coefficient (y?=x>-3x+b mod p)

5.3.2.22.7 x
Base point x-coordinate

5.3.2.228 vy
Base point y-coordinate

5.3.2.22.9 alpha
Private key

5.3.2.22.10 u

Public key x-coordinate: (u, v) = a (x,y)

Revision 2.00

Page 195 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5322211 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.22.12 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.22.13 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.22.14 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.22.15 Values for C_EC 521

Table 198 represents the set of elliptic curve domain parameters is the fixed set known as P-521 in [11]
and secp521rl in [19]. The entries p, r, b, x and y represented in that table are example values for a
curve that MAY be used with the C_EC 521 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC 521 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 198 FIPS P-521 Values for C_EC 521
Column |Value

P O1FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FRFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FRFFFFFF
FFFFFFFF FFFFFFFF = 2521 - 1

r O1FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5COB8 899C47AE
BB6FB71E 91386409

b 0051 953EB961 8E1C9A1F 929A21A0 BG8540EE A2DA725B 99B315F3 B8B48991
8EF109E1 56193951 EC7E937B 1652COBD 3BB1BFO7 3573DF88 3D2C34F1
EF451FD4 6B503F00

X 00C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139 053FB521 F828AF60
6BAD3DBA A14B5E77 EFE75928 FE1DC127 A2FFA8DE 3348B3C1 856A429B
FO7E7E31 C2E5BD66

y 0118 39296A78 9A3BC0O04 5C8A5FB4 2C7D1BD9 98F54449 579B4468 17AFBD17
273E662C 97EE7299 5EF42640 C550B901 3FADO761 353C7086 A272C240
88BE9476 9FD16650

5.3.2.23 Credential Table Group - C_EC_163 (Object Table)

Table 199 C _EC 163 Table Description
Column Number |Column Name |IsUnique |Column Type
0x00 uiD uid
0x01 Name Yes name

Revision 2.00 Page 196 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column Number |Column Name |IsUnique |Column Type

0x02 CommonName Yes name

0x03 k1 uinteger_1
0x04 k2 uinteger_1
0x05 k3 uinteger_1
0x06 r uinteger_21
0x07 a uinteger_1
0x08 b uinteger_21
0x09 X uinteger_21
Ox0A y uinteger_21
0x0B alpha uinteger_21
0x0C u uinteger_21
0x0D \% uinteger_21
OxOE Hash hash_protocol
OxOF ChainLimit integer_1
0x10 Certificate Certificates_object_ref

5.3.2.23.1 UID
This is the unique identifier of this row in the C_EC_163 table.

This column SHALL NOT be modifiable by the host.

5.3.2.23.2 Name
This is the name of the C_EC_163 object.

For C_EC_163 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.23.3 CommonName
This is a name that MAY be shared by multiple C_EC_163 objects.

For C_EC_163 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.23.4 k1
High non-leading, non-constant term of irreducible pentanomial

5.3.2.235 k2
Middle non-leading, non-constant term of irreducible pentanomial

5.3.2.23.6 k3
Low non-leading, non-constant term of irreducible pentanomial

53.2.23.7 r
Order of the curve

532238 a

Revision 2.00 Page 197 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Curve coefficient (y? +xy = x> + ax’ + b), SHALL be zero or one

532239 b
Curve coefficient (y* +xy = x> + ax® + b)

5.3.2.23.10 x
Base point x-coordinate

5322311y
Base point y-coordinate

5.3.2.23.12 alpha
Private key

5.3.2.23.13 u
Public key x-coordinate: (u, v) = a (x,y)

5.3.223.14 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.23.15 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.23.16 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.23.17 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.23.18 Values for C_EC_163

Table 200 represents the set of elliptic curve domain parameters that is the fixed set known as K-163 in
[11] and sect163k1 in [19]. The entries k1, k2, k3, r, a, b, x and y represented in that table are example
values for a curve that MAY be used with the C_EC 163 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_163 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry; the TPer SHALL be required to keep track of these values and set them as defaults
for new objects, as necessary.

Table 200 FIPS K-163 Values for C_EC_163
Column |Value

k1 07

k2 06

k3 03

r 04 00000000 00000000 00020108 A2EOCCOD 99F8ASEF
01

b 00 00000000 00000000 00000000 00000000 00000001

Revision 2.00 Page 198 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column |Value
X 02 FE13C053 7BBC11AC AAO07D793 DE4EGD5E 5C94EEES
y 02 89070FBO 5D38FF58 321F2E80 0536D538 CCDAA3D9

5.3.2.24 Credential Table Group - C_EC_233 (Object Table)

Table 201 C_EC 233 Table Description
Column Number |[Column Name IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 k uinteger_2
0x04 r uinteger_30
0x05 a uinteger_1
0x06 b uinteger_30
0x07 X uinteger_30
0x08 y uinteger_30
0x09 alpha uinteger_30
Ox0A u uinteger_30
0x0B % uinteger_30
0x0C Hash hash_protocol
0x0D ChainLimit integer_1
Ox0E Certificate Certificates_object_ref

5.3.2.24.1 UID
This is the unique identifier of this row in the C_EC_233 table.

This column SHALL NOT be modifiable by the host.

5.3.2.24.2 Name
This is the name of the C_EC_233 object.

For C_EC_233 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.24.3 CommonName
This is a name that MAY be shared by multiple C_EC 233 objects.

For C_EC_233 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.24.4 Kk
Non-leading, non-constant term of irreducible trinomial

5.3.2.245 r
Order of the curve

5.3.2.246 a

Revision 2.00 Page 199 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Curve coefficient (y? +xy = x> + ax’ + b), SHALL be zero or one

5.3.2.247 b
Curve coefficient (y* +xy = x> + ax® + b)

5.3.2.248 x
Base point x-coordinate

532249 y
Base point y-coordinate

5.3.2.24.10 alpha
Private key

5.3.2.24.11 u
Public key x-coordinate: (u, v) = a (x,y)

5322412 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.24.13 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.24.14 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.24.15 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.24.16 Values for C_EC_233

Table 202 represents the set of elliptic curve domain parameters that is the fixed set known as K-233 in
[11] and sect233k1 in [19]. The entries k, r, a, b, X and y represented in that table are example values
for a curve that MAY be used with the C_EC 233 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC 233 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 202 FIPS K-233 Values for C_EC_233
Column |Value

k 4A (= 74 in decimal)

r 0080 00000000 00000000 00000000 00069D5B B915BCD4 6EFB1ADS F173ABDF
a 00

b 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001
X 0172 32BA853A 7E731AF1 29F22FF4 149563A4 19C26BF5 OA4C9D6E EFAD6126
y 01DB 537DECE8 19B7F70F 555A67C4 27A8CD9B F18AEB9B 56E0C110 56FAE6A3

Revision 2.00 Page 200 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.25 Credential Table Group - C_EC_283 (Object Table)

Table 203 C_EC 283 Table Description
Column Number |Column Name |IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 k1 uinteger_1
0x04 k2 uinteger_1
0x05 k3 uinteger_1
0x06 r uinteger_36
0x07 a uinteger_1
0x08 b uinteger_36
0x09 X uinteger_36
Ox0A y uinteger_36
0x0B alpha uinteger_36
0x0C u uinteger_36
0x0D % uinteger_36
OxOE Hash hash_protocol
OxOF ChainLimit integer_1
0x10 Certificate Certificates_object_ref

5.3.2.25.1 UID
This is the unique identifier of this row in the C_EC_283 table.

This column SHALL NOT be modifiable by the host.

5.3.2.25.2 Name

This is the name of the C_EC_283 object.

For C_EC_283 objects that exist at issuance, this column SHALL NOT be modifiable by the host.
5.3.2.25.3 CommonName

This is a name that MAY be shared by multiple C_EC_283 objects.

For C_EC_283 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.254 K1
High non-leading, non-constant term of irreducible pentanomial

5.3.2.255 k2
Middle non-leading, non-constant term of irreducible pentanomial

5.3.2.25.6 k3
Low non-leading, non-constant term of irreducible pentanomial

Revision 2.00 Page 201 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

532257 r
Order of the curve

5.3.2258 a
Curve coefficient (y? +xy = x> + ax? + b), SHALL be zero or one

532259 b
Curve coefficient (y* +xy = x> + ax® + b)

5.3.2.25.10 x
Base point x-coordinate

5322511y
Base point y-coordinate

5.3.2.25.12 alpha
Private key

5.3.2.25.13 u
Public key x-coordinate: (u, v) = a (x,y)

5.3.2.25.14 v
Public key y-coordinate: (u, v) = a (x,y)

5.3.2.25.15 Hash

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.25.16 ChainLimit

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of —1 indicates no limit. A value of 0 indicates no chain.

5.3.2.25.17 Certificate

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.25.18 Values for C_EC_283

Table 204 represents the set of elliptic curve domain parameters that is the fixed set known as K-283 in
[11] and sect283k1 in [19]. The entries k1, k2, k3, r, a, b, x and y represented in that table are example
values for a curve that MAY be used with the C_EC 283 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_ 283 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry; the TPer SHALL be required to keep track of these values and set them as defaults
for new objects, as necessary.

Table 204 FIPS K-283 Values for C_ EC_ 283
Column |Value

k1 OC (= 12 in decimal)
k2 07
k3 05

Revision 2.00 Page 202 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

Column |Value

r 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFESAE
2EDO7577 265DFF7F 94451E06 1E163C61

a 00

b 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000001

X 0503213F 78CA4488 3F1A3B81 62F188E5 53CD265F
23C1567A 16876913 BOC2AC24 58492836

y 01CCDA38 OF1C9E31 8D90F95D 07E5426F E87E45CO

E8184698 E4596236 4E341161 77DD2259

5.3.2.26 Credential Table Group — C_HMAC_160 (Object Table)

Table 205 C_HMAC_160 Table Description
Column Number |Column Name IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 Key bytes 20
0x04 Hash hash_protocol

5.3.2.26.1 UID
This is the unique identifier of this row in the C_HMAC_160 table.

This column SHALL NOT be modifiable by the host.

5.3.2.26.2 Name
This is the name of the C_HMAC_160 object.

For C_HMAC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.26.3 CommonName
This is a name that MAY be shared by multiple C_HMAC_160 objects.

For C_HMAC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.26.4 Key

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.26.5 Hash

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

Revision 2.00 Page 203 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.27 Credential Table Group — C_HMAC_256 (Object Table)

Table 206 C_HMAC_256 Table Description
Column Number |Column Name IsUnique Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 Key bytes_32
0x04 Hash hash_protocol

5.3.2.27.1 UID
This is the unique identifier of this row in the C_HMAC_256 table.

This column SHALL NOT be modifiable by the host.

5.3.2.27.2 Name

This is the name of the C_HMAC_256 object.

For C_HMAC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.
5.3.2.27.3 CommonName

This is a name that MAY be shared by multiple C_HMAC_256 objects.

For C_HMAC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.27.4 Key

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.27.5 Hash

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

5.3.2.28 Credential Table Group — C_HMAC 384 (Object Table)

Table 207 C_HMAC _384 Table Description
Column Number |Column Name IsUnique |Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName Yes name

0x03 Key bytes 48
0x04 Hash hash_protocol

Revision 2.00 Page 204 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.2.28.1 UID
This is the unique identifier of this row in the C_HMAC_384 table.

This column SHALL NOT be modifiable by the host.

5.3.2.28.2 Name

This is the name of the C_HMAC_384 object.

For C_HMAC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.28.3 CommonName
This is a name that MAY be shared by multiple C_HMAC_384 objects.

For C_HMAC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.28.4 Key

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.28.5 Hash

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

5.3.2.29 Credential Table Group — C_HMAC_512 (Object Table)

Table 208 C_HMAC 512 Table Description
Column Number |Column Name IsUnique Column Type

0x00 uiD uid

0x01 Name Yes name

0x02 CommonName |Yes name

0x03 Key bytes 64
0x04 Hash hash_protocol

5.3.2.29.1 UID
This is the unique identifier of this row in the C_HMAC_512 table.

This column SHALL NOT be modifiable by the host.

5.3.2.29.2 Name
This is the name of the C_HMAC_512 object.

For C_HMAC_512 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.29.3 CommonName
This is a name that MAY be shared by multiple C_HMAC_512 objects.

For C_HMAC_512 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.29.4 Key

Revision 2.00 Page 205 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.29.5 Hash

The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

5.3.3 Methods

This section details the methods provided to an SP by the Base Template.

5.3.3.1 SP Method Group - DeleteSP (SP Method)
This method is used to delete the SP to which the DeleteSP method has been invoked (see 5.3.4.4).

ThisSP._DeleteSP[]
=>

L 1

5.3.3.1.1 DeleteSP Result

5.3.3.1.1.1 Result

e The DeleteSP method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.3.3.2 Basic Table Method Group - CreateTable (SP Method)
This method is used to create a new table in an SP (see 5.3.4.2.1).

ThisSP.CreateTable [
NewTableName : name,
Kind : table_kind,
GetSetACL : access_control_list,
Columns : columns,
MinSize : uinteger,
MaxSize = uinteger,
HintSize = uinteger,
CommonName = name]

=>

[UID : uid, Rows : uinteger]

5.3.3.2.1 NewTableName

The NewTableName parameter is the name for this table. The NewTableName-CommonName
combination SHALL be unique within the Table table.

53.3.22 Kind
The Kind parameter identifies the table’s type (object or byte).

5.3.3.23 GetSetACL

GetSetACL is the list of ACE object uids placed in the AddACEACL, RemoveACEACL, GetACLACL, and
DeleteMethodACL columns of the AccessControl table rows that represent the methods available on
the new table (see 5.3.4.2.3).

Revision 2.00 Page 206 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.3.24 Columns

The Columns parameter defines the columns of the new table. For byte tables this parameter SHALL
be an empty list.

5.3.3.25 MinSize
The MinSize parameter is used to define the initial number of rows allocated for the new table.

5.3.3.2.6 MaxSize

The optional MaxSize parameter defines the host-requested maximum number of rows that MAY be
created for the table. If this parameter is included when creating a byte table, the method invocation
SHALL fail with INVALID_PARAMETER.

5.3.3.2.7 HintSize

The optional HintSize parameter is used to suggest a number of rows to be created for the table. If this
parameter is included when creating a byte table, the method invocation SHALL fail with
INVALID_PARAMETER.

5.3.3.2.8 CommonName

The CommonName parameter is the CommonName column value for this table's object in the Table table,
as well as for all associated objects that get created in the Column table.. The NewTableName-
CommonName parameter value combination SHALL be unique within the Table table.

5.3.3.2.9 CreateTable Result

5.3.3.29.1 uib
This is the UID column value that is assigned to the newly created table in the Table table.

5.3.3.29.2 Rows
This value is the number of rows allocated for usage for the table.

5.3.3.2.10 Fails

a. If a table with the specified Name/CommonName column values already exists.

b. Ifthere isn't space in the SP for the new table.

c. If metadata/support tables (i.e. Table, Column, AccessControl, and ACE) are not all able to
create all required rows to support this table.

5.3.3.3 Basic Table Method Group - Delete (Object Method)

Successful invocation of this method deletes the object upon which this method was invoked. See
5.3.4.2.4 for information on deleting table rows and 5.3.4.2.5 for information on deleting tables.

If invoked on an SP object (a row in the Admin SP’s SP table), the SP is deleted (see 5.4.4.2).

ObjectUID.Delete[]
=>

L 1

5.3.3.3.1 Delete Result

5.3.3.3.1.1 Result

The Delete method returns an empty list. Success or failure of the method invocation is determinable
based on the status code returned in response to the method invocation. The object and all of its
associated objects in other tables SHALL be deleted, or the method SHALL return FAIL status and
none of those items SHALL be deleted.

Revision 2.00 Page 207 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.3.3.2 Fails
a. If the object does not exist.

5.3.3.4 Basic Table Method Group - CreateRow (Table Method)

This method inserts one or multiple rows into a table. This method is not available on byte tables. The
list of uidrefs returned is the list of all UIDs of the rows created (see 5.3.4.2.3).

TableUID.CreateRow [
Row : row_data]
=>
[Result : list [uidref ...]]

5.3.34.1 Row

The Row parameter identifies the values to be stored in the columns indicated in the parameter for
each row created.

5.3.3.4.2 CreateRow Result

5.3.3.4.2.1 Result

The result of the CreateRow method is a list containing the UID column values assigned to each of the
newly created rows in the table.

5.3.3.4.3 Fails

a. When the table is full (i.e. MaxSize of the table was reached).

b. If a row where the unique column value combination already exists that is the same as that

requested in the method

Columns specified are not part of table definition.

Attempts to create more rows than are able to be allocated

e. If all required associated rows are not able to be created in all related tables (i.e. the Table,
AccessControl, Column, and ACE tables)

oo

5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)

This method is used to delete table rows. This method SHALL NOT be able to be successfully invoked
on byte tables. See 5.3.4.2.4 for information on deleting table rows and 5.3.4.2.5 for information on
deleting tables.

TableUID._DeleteRow [

Rows : list [uidref ...]]
=>
[Result : boolean]

5.3351 Rows

The Rows parameter consists of a list of uids that represent each of the rows to be deleted from the
table.

5.3.3.5.2 DeleteRow Result

5.3.35.2.1 Result

Revision 2.00 Page 208 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

The DeleteRow method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation. The object and
all of its associated objects in other tables SHALL be deleted, or the method SHALL return FAIL status
and none of those items SHALL be deleted.

5.3.35.3 Fails

a. If the addressed row does not exist.

5.3.3.6 Basic Table Method Group - Get (Table and Object Method)
This method is used to fetch the values of selected table cells (see 5.3.4.2.2).

TableUID.Get [
ObjectUID.Get [
Cellblock : cell_block]
=>
[Result : typeOr { Bytes : bytes, RowValues : list [ColumnNumber = Value ...] }]

5.3.3.6.1 Cellblock

The Cellblock parameter defines the scope of the data that the method is attempting to retrieve by
identifying the cells on which the method should operate.

5.3.3.6.2 Get Result

5.3.3.6.2.1 Bytes

This is the value returned if the method is invoked on a byte table. If multiple row values are returned
from a byte table, values SHALL be returned from the lowest numbered row to the highest numbered
row.

5.3.3.6.2.2 RowValues

This value is returned if the method is invoked on an object table. This is a list of Named value pairs
representing the columns returned for the object identified in the method invocation. Each Named
value pair consists of a name that represents the column, identified by column number. The value of
each Named value pair is the value of the indicated column.

Column name-value pairs SHALL be returned in the order in which they are listed in the Column table.

5.3.3.6.3 Fails

a. If table/object doesn't exist.

b. If the object method’s Cellblock parameter contains row values or a table value.

c. If the method is invoked on a Byte table and has column values in the Cellblock parameter.

d. If the any of the Cellblock parameter values are out of bounds for the table upon which it
was invoked.

5.3.3.7 Basic Table Method Group - Set (Table and Object Method)
This method is used to change the values of selected table cells (see 5.3.4.2.6).

TableUID.Set [
ObjectUID.Set [
Where = row_address,
Values = typeOr { Bytes : bytes, RowValues : list [ColumnNumber = <type of
column> ... 71 } 1]
=>

L1

Revision 2.00 Page 209 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.3.7.1 Where
This parameter identifies the location of the cells whose values the method is attempting to change.

If the Set method is invoked on an object, the Where parameter SHALL be omitted, or the method
SHALL fail and return an error status code.

If the Set method is invoked on an object table, the Where parameter SHALL be the UID option, or the
method SHALL fail and return an error status code.

If the Set method is invoked on a byte table and the Where parameter is included in the invocation, the
Where parameter SHALL be the Row option, or the method SHALL fail and return an error status code.

5.3.3.7.1.1 uiD
For Object.-Set, if a value for the Where parameter is included in the method invocation, the method
SHALL fail and return an error status code.

For Table.Set on an object table, "Where = { UID }" indicates the row upon which the operation is
taking place. Invocations of Table.Set on an object table without a value for the Where parameter
SHALL fail and return an error status code.

5.3.3.7.1.2 Row
For Table.Set on byte tables, "Where = { Row }" identifies the byte address (i.e. RowNumber) where
the Set method is to begin operating.

If the Where parameter is omitted, the Set method's operation begins at the first row of the byte table.

5.3.3.7.2 Values
This parameter contains the values to be set to the indicated table cells.

If the Set method is invoked on an object or an object table, the Values parameter SHALL be the
RowValues option, or the method SHALL fail and return an error status code.

If the Set method is invoked on a byte table, the Values parameter SHALL be the Bytes option, or the
method SHALL fail and return an error status code.

Since the Values parameter is an optional parameter, excluding the parameter from a Set method
invocation SHALL NOT cause the method to fail. An otherwise correct invocation of the Set method
that does not contain the Values parameter SHALL succeed but have no effect.

5.3.3.7.2.1 Bytes

When this method is invoked on a byte table, this parameter is used. It is a bytes value, used when
attempting to modify the values in a byte table, The byte table is modified beginning at the byte address
indicated in the Where parameter, or at the beginning of the table if the Where parameter is omitted.

If the Where parameter is a Row, the Values parameter SHALL be Bytes or the method invocation
SHALL fail and return an error status code.

5.3.3.7.2.2 RowValues

This value is used when attempting to modify an object in an object table. When this method is invoked
on an object table, as either an object method or a table method, this parameter is a list of column
numbers and values, where the columns are those to be changed and the associated values are the
values to be set to those columns.

If the Where parameter is a UID, the Values parameter shall be RowVals or the method invocation shall
fail and return an error status code.

5.3.3.7.3 Set Result

The Set method returns an empty list. Success or failure of the requested modifications is
determinable based on the status code returned in response to the method invocation.

Revision 2.00 Page 210 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.3.7.4 Fails

If the table/object doesn't exist.

If an attempt is made to change the value of an UID or other system cell.

If an attempt is made to set a cell to a value larger than that cell’s type allows.

If the method is invoked on a byte table and the Values parameter contains column values
Set is restricted by an access control limitation on any of the rows and columns requested.

P00 Q

5.3.3.8 Basic Table Method Group - Next (Table Method)

The Next method is used to iterate through an object table, returning that the UID column value for
zero or more rows in the table based on the current ordering of the rows in the table; the requested
starting point for the method's operation; and the number of uids requested. For information on the
operation of this method, see 5.3.4.2.7.

TableUID.Next [

Where = uidref,
Count = uinteger]
==
[Result : list [uidref ...] 1

5.3.3.8.1 Where

This parameter identifies the row from which iteration begins. If the Where parameter is specified, the
Next method returns a list of zero or more UID column values following the specified row.

If Where is not specified, the first row in the TPer's current ordering of the table SHALL be the first UID
column value returned.

5.3.3.8.2 Count

This parameter identifies the number of rows through which the method is to iterate, beginning at the
row specified in the Where parameter or, if Where is omitted, beginning at the first row of the table.

If the Count parameter is omitted, the method iterates through to the last row in the table's ordering.
5.3.3.8.3 Next Result

5.3.3.8.3.1 Result
The result of this method is a list of UID column values.

5.3.3.8.4 Fails
a. If the table/object doesn'’t exist.
5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)

The GetFreeSpace method is an SP method that enables the host to retrieve the number of rows that
MAY be additionally created in each table.

ThisSP.GetFreeSpace []
=>
[FreeSpace : uinteger, TableRows : table_sizes]

5.3.3.9.1 GetFreeSpace Result

5.3.3.9.1.1 FreeSpace
The FreeSpace result value is the approximate amount of free space (in bytes) available in the SP.

Revision 2.00 Page 211 of 318

TCG Storage Architecture Core Specification TCG Copyright 2011
Specification Version 2.00

5.3.3.9.1.2 TableRows

The second is a list containing the UID column value of each table descriptor object and the number of
rows that MAY be additionally created for each table (separately) under current conditions of the SP
and the TPer. This number MAY change in subsequent invocations of this method, based on
modifications subsequent to the method invocation.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system is able to generate per table.

5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)

The GetFreeRows method is a table method that enables the host to retrieve the number of rows that
MAY be additionally created in a table.

TableObjectUID.GetFreeRows []
==
[FreeRows : uinteger]

5.3.3.10.1 GetFreeRows Result

5.3.3.10.1.1 FreeRows
The result of this method is the number of rows that MAY be additionally created for that table.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system is able to generate per table.

5.3.3.10.2 Fails
a. When the table TableObjectUID does not exist in the SP.

5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)

Successful invocation of the DeleteMethod method removes the indicated SP/method, table/method, or
object/method access control association from the AccessControl table.

The DeleteMethod method allows the host to prevent the usage of certain methods on certain tables,
objects, or the SP by removing the access control association that permits the method to be invoked.

This does not remove the capability of invoking the indicated method from the SP entirely. It only
removes the indicated access control association that allows the method to be invoked in that particular
fashion.

The association that is deleted from the AccessControl table is the row where the InvokinglD column
value is the InvokingID parameter of the method, and the value of the MethodID column is the uid
referenced in the MethodID parameter of the DeleteMethod invocation. There is no mechanism that
enables a deleted access control association to be re-added.

AccessControlTableUID.DeleteMethod [
InvokinglD : uidref { SP/table/object },
MethodID : uidref { MethodID }]

=>

5.3.3.11.1 In