

TCG

TCG Storage Architecture
Core Specification

Specification Version 2.00 Final
Revision 1.00

20 April, 2009

Contact: admin@trustedcomputinggroup.org

Copyright © TCG 2009

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page ii of 314

Copyright © 2009 Trusted Computing Group, Incorporated.

Disclaimers, Notices, and License Terms

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in this specification and to the implementation of this specification, and TCG
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss
of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort,
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or
implied, is granted herein other than as follows: You may not copy or reproduce the document
or distribute it to others without written permission from TCG, except that you may freely do so
for the purposes of (a) examining or implementing TCG specifications or (b) developing, testing,
or promoting information technology standards and best practices, so long as you distribute
the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

http://www.trustedcomputinggroup.org/

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page iii of 314

TABLE OF CONTENTS

1 INTRODUCTION... 19
1.1 Scope and Audience..19
1.2 Key Words...19
1.3 References ..19
1.4 Terminology..20

1.4.1 Global Terminology...20

2 TRUSTED STORAGE DEVICE ARCHITECTURE ... 23
2.1 Architecture Overview ...23
2.2 Architecture Components ...23

2.2.1 Multicomponent Trusted Platform (MCTP) ...23
2.2.2 Host...24

2.2.2.1 Host Applications ...24
2.2.3 Trusted Peripheral (TPer) ...24
2.2.4 Security Providers (SPs)...25

2.3 Core Architecture Operations...25
2.3.1 Host <–> TPer Communication Infrastructure ..25
2.3.2 SP Issuance & Personalization Overview...26
2.3.3 Security Subsystem Classes Overview ..27
2.3.4 Preliminary Architectural Components ...27

3 ARCHITECTURE ELEMENTS.. 29
3.1 Architecture Elements Overview ..29
3.2 Data Structure Descriptions..29

3.2.1 Document Data Formats...29
3.2.1.1 Table Definition Format ...29
3.2.1.2 Method Signature Pseudo-code ..30
3.2.1.3 Messaging Data Types ..31
3.2.1.4 Type Checking...32

3.2.2 Data Stream Encoding..32
3.2.2.1 Data Types...33
3.2.2.2 Endianness ..33
3.2.2.3 Tokens ...33

3.2.3 ComPackets, Packets & Subpackets..39
3.2.3.1 Format..39
3.2.3.2 ComPacket Format..39
3.2.3.3 Packet Format ...41
3.2.3.4 Subpacket Formats..43
3.2.3.5 Secure Messaging Packet Format ..45

3.2.4 Methods ..47
3.2.4.1 Method Syntax...47
3.2.4.2 Method Encoding...48
3.2.4.3 Method Result Retrieval Protocol ..49

3.2.5 Tables ...50
3.2.5.1 Kinds of Tables ..50
3.2.5.2 Objects...51
3.2.5.3 Unique Identifiers (UIDs) ...51
3.2.5.4 Unique Column Value Combinations...52

3.2.6 Templates ...52

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page iv of 314

3.3 Interface Communications ..52
3.3.1 Communicating With the TPer Through the Interface Protocol ..53
3.3.2 The ComID..54
3.3.3 ComID Management...55

3.3.3.1 Extended ComID ...57
3.3.3.2 IF-SEND to Inactive or Unsupported Reserved ComID ..58
3.3.3.3 IF-RECV to Inactive or Unsupported Reserved ComID ..58

3.3.4 Protocol Layers ...59
3.3.4.1 Transport Layer ...60
3.3.4.2 Interface Layer...60
3.3.4.3 TPer Layer ...60
3.3.4.4 Communication Layer..61
3.3.4.5 Management Layer..61
3.3.4.6 Session Layer ..62
3.3.4.7 Communication Layer Commands ..62

3.3.5 Capability Discovery ...67
3.3.6 Level 0 Discovery..67

3.3.6.1 IF-SEND Command...67
3.3.6.2 IF-RECV Command...67
3.3.6.3 Features - Overview ..69
3.3.6.4 TPer Feature..69
3.3.6.5 Locking Feature ...70
3.3.6.6 Common SSC feature information...71

3.3.7 Sessions, Methods, and Transactions..72
3.3.7.1 Sessions ..72
3.3.7.2 Methods ...76
3.3.7.3 Transactions ..77

3.3.8 Stream Flow Control ...78
3.3.8.1 Introduction ..78
3.3.8.2 Buffer Management ...79

3.3.9 Session Reliability ...79
3.3.9.1 Introduction ..79
3.3.9.2 Transmission Acknowledgement...80
3.3.9.3 Transmission Negative Acknowledgement..80
3.3.9.4 Transmission Timeouts..80
3.3.9.5 Closing a Session ..81

3.3.10 Synchronous Interface Communications ..82
3.3.10.1 Introduction ..82
3.3.10.2 Interface Commands ...82
3.3.10.3 Synchronous Communications Restrictions ..84
3.3.10.4 State Transition Diagram...84
3.3.10.5 State Descriptions..84
3.3.10.6 State Transitions..85
3.3.10.7 Error Handling..86

3.4 SP Operation Descriptions..87
3.4.1 General SP Guidelines ...87

3.4.1.1 Admin SP...87
3.4.1.2 SPs ..87

3.4.2 Access Control ..88
3.4.2.1 Overview..88
3.4.2.2 Authorities ..89
3.4.2.3 ACEs and ACLs...89

3.4.3 SP Issuance, Personalization, and Operational State ..90
3.4.3.1 Issuing an SP...90

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page v of 314

4 LIFE CYCLE OF SPS ... 92
4.1 Life Cycle of SPs Overview ...92
4.2 Life Cycle States...92
4.3 Life Cycle State Transitions ..93
4.4 Default Authorities ...94
4.5 State Behaviors ..94

4.5.1 Issued..94
4.5.2 Issued-Disabled ..94
4.5.3 Issued-Frozen ...95
4.5.4 Issued-Disabled-Frozen..95
4.5.5 Failed ..95

5 SP REFERENCE .. 96
5.1 Globally Applicable SP Values ...96

5.1.1 Column Types Overview...96
5.1.2 Types Encoding ..100
5.1.3 Column Types ...101

5.1.3.1 AC_element ...101
5.1.3.2 ACE_columns ..101
5.1.3.3 ACE_expression ..102
5.1.3.4 ACE_object_ref..103
5.1.3.5 ACL..103
5.1.3.6 adv_key_mode ..103
5.1.3.7 attr_flags ..104
5.1.3.8 auth_method..104
5.1.3.9 Authority_object_ref...105
5.1.3.10 boolean ..105
5.1.3.11 boolean_ACE...105
5.1.3.12 byte_row_ref ..106
5.1.3.13 byte_table_ref ..106
5.1.3.14 bytes ..106
5.1.3.15 bytes_12 ..106
5.1.3.16 bytes_16 ..107
5.1.3.17 bytes_20 ..107
5.1.3.18 bytes_32 ..107
5.1.3.19 bytes_48 ..107
5.1.3.20 bytes_64 ..107
5.1.3.21 Certificates_object_ref ...108
5.1.3.22 clock_kind ..108
5.1.3.23 clock_time..108
5.1.3.24 Column_object _ref..109
5.1.3.25 cred_object_uidref ...109
5.1.3.26 date ..109
5.1.3.27 Day...110
5.1.3.28 day_enum ..110
5.1.3.29 enc_supported ...110
5.1.3.30 feedback_size..110
5.1.3.31 Fraction ..111
5.1.3.32 fraction_enum ..111
5.1.3.33 gen_status ...111
5.1.3.34 hash_protocol ..112
5.1.3.35 Hour ...113
5.1.3.36 hour_enum...113
5.1.3.37 integer ..113
5.1.3.38 integer_1..113

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page vi of 314

5.1.3.39 integer_2..113
5.1.3.40 key_128 ...114
5.1.3.41 key_256 ...114
5.1.3.42 keys_avail_conds ..114
5.1.3.43 lag ..115
5.1.3.44 last_reenc_stat ..115
5.1.3.45 life_cycle_state ..115
5.1.3.46 LogList_object_ref ...116
5.1.3.47 log_row_ref ..116
5.1.3.48 log_select...116
5.1.3.49 max_bytes..117
5.1.3.50 max_bytes_32 ...117
5.1.3.51 max_bytes_64 ...117
5.1.3.52 mediakey_obj_uidref..117
5.1.3.53 MethodID_object _ref ..118
5.1.3.54 messaging_type...118
5.1.3.55 Minute ..118
5.1.3.56 minute_enum ...118
5.1.3.57 Month ...119
5.1.3.58 month_enum..119
5.1.3.59 name..119
5.1.3.60 object_ref ...119
5.1.3.61 padding_type ...119
5.1.3.62 password..120
5.1.3.63 protect_types ...120
5.1.3.64 reencrypt_request..120
5.1.3.65 reencrypt_state ..121
5.1.3.66 reset_types ..121
5.1.3.67 Seconds...122
5.1.3.68 seconds_enum ..122
5.1.3.69 SPTemplates_object _ref ..122
5.1.3.70 SSC..122
5.1.3.71 symmetric_mode ...123
5.1.3.72 symmetric_mode_media..123
5.1.3.73 table_kind...124
5.1.3.74 table_or_object_ref ..124
5.1.3.75 Table_object _ref ...125
5.1.3.76 table_ref ...125
5.1.3.77 Template_object _ref ...125
5.1.3.78 type_def ...125
5.1.3.79 Type_object _ref ..126
5.1.3.80 uid ..126
5.1.3.81 uinteger ..126
5.1.3.82 uinteger_1..126
5.1.3.83 uinteger_128..126
5.1.3.84 uinteger_2..126
5.1.3.85 uinteger_20..127
5.1.3.86 uinteger_21..127
5.1.3.87 uinteger_24..127
5.1.3.88 uinteger_256..127
5.1.3.89 uinteger_28..127
5.1.3.90 uinteger_30..128
5.1.3.91 uinteger_36..128
5.1.3.92 uinteger_4..128
5.1.3.93 uinteger_48..128
5.1.3.94 uinteger_64..128

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page vii of 314

5.1.3.95 uinteger_66..129
5.1.3.96 uinteger_8..129
5.1.3.97 verify_mode ...129
5.1.3.98 Year ...129
5.1.3.99 year_enum...130

5.1.4 Abstract Types ..131
5.1.4.1 Name Representations in Abstract Type Named Value Components131
5.1.4.2 Abstract Type Definitions...131

5.1.5 Method Status Codes ...140
5.1.5.1 SUCCESS..141
5.1.5.2 NOT_AUTHORIZED..141
5.1.5.3 SP_BUSY ..141
5.1.5.4 SP_FAILED..141
5.1.5.5 SP_DISABLED ..141
5.1.5.6 SP_FROZEN ...141
5.1.5.7 NO_SESSIONS_AVAILABLE..141
5.1.5.8 UNIQUENESS_CONFLICT...141
5.1.5.9 INSUFFICIENT_SPACE..142
5.1.5.10 INSUFFICIENT_ROWS...142
5.1.5.11 INVALID_METHOD ...142
5.1.5.12 INVALID_PARAMETER ..142
5.1.5.13 TPER_MALFUNCTION ...142
5.1.5.14 TRANSACTION_FAILURE..142
5.1.5.15 RESPONSE_OVERFLOW ..142
5.1.5.16 AUTHORITY_LOCKED_OUT..143
5.1.5.17 FAIL ...143

5.2 Session Manager Methods..144
5.2.1 Overview ...144
5.2.2 TPer Properties Method..144

5.2.2.1 Properties (Method) ...144
5.2.2.2 Retrieving Properties ...145
5.2.2.3 Setting HostProperties...147
5.2.2.4 Communications Minimums...148

5.2.3 Session Startup Methods..153
5.2.3.1 StartSession Method ...153
5.2.3.2 SyncSession Method ...155
5.2.3.3 StartTrustedSession Method ...156
5.2.3.4 SyncTrustedSession Method...157
5.2.3.5 CloseSession Method..158

5.3 Base Template ..158
5.3.1 Overview ...158

5.3.1.1 Base Template Tables and Methods Overview...158
5.3.2 Data Structures ...159

5.3.2.1 General Metadata Group - SPInfo (Object Table) ...159
5.3.2.2 General Metadata Group - SPTemplates (Object Table) ..160
5.3.2.3 Table and Method Metadata Group - Table (Object Table) ..161
5.3.2.4 Table and Method Metadata Group - Column (Object Table) ...163
5.3.2.5 Table and Method Metadata Group - Type (Object Table) ...164
5.3.2.6 Table and Method Metadata Group - MethodID (Object Table)......................................165
5.3.2.7 Table and Method Metadata Group - AccessControl (Object Table)166
5.3.2.8 Table and Method Metadata Group - SecretProtect (Object Table)................................168
5.3.2.9 Access Control Metadata Group - ACE (Object Table) ...169
5.3.2.10 Access Control Metadata Group - Authority (Object Table) ..170
5.3.2.11 Access Control Metadata Group - Certificates (Object Table) ..175
5.3.2.12 Credential Table Group - C_PIN (Object Table)..175
5.3.2.13 Credential Table Group - C_RSA_1024 (Object Table) ..176

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page viii of 314

5.3.2.14 Credential Table Group - C_RSA_2048 (Object Table) ..178
5.3.2.15 Credential Table Group - C_AES_128 (Object Table) ..180
5.3.2.16 Credential Table Group - C_AES_256 (Object Table) ..181
5.3.2.17 Credential Table Group - C_EC_160 (Object Table)...182
5.3.2.18 Credential Table Group - C_EC_192 (Object Table)...184
5.3.2.19 Credential Table Group - C_EC_224 (Object Table)...186
5.3.2.20 Credential Table Group - C_EC_256 (Object Table)...188
5.3.2.21 Credential Table Group - C_EC_384 (Object Table)...190
5.3.2.22 Credential Table Group - C_EC_521 (Object Table)...192
5.3.2.23 Credential Table Group - C_EC_163 (Object Table)...194
5.3.2.24 Credential Table Group - C_EC_233 (Object Table)...196
5.3.2.25 Credential Table Group - C_EC_283 (Object Table)...198
5.3.2.26 Credential Table Group – C_HMAC_160 (Object Table) ..200
5.3.2.27 Credential Table Group – C_HMAC_256 (Object Table) ..201
5.3.2.28 Credential Table Group – C_HMAC_384 (Object Table) ..202
5.3.2.29 Credential Table Group – C_HMAC_512 (Object Table) ..202

5.3.3 Methods ..203
5.3.3.1 SP Method Group - DeleteSP (SP Method) ..203
5.3.3.2 Basic Table Method Group - CreateTable (SP Method) ...203
5.3.3.3 Basic Table Method Group - Delete (Object Method) ...205
5.3.3.4 Basic Table Method Group - CreateRow (Table Method) ...205
5.3.3.5 Basic Table Method Group - DeleteRow (Table Method) ...206
5.3.3.6 Basic Table Method Group - Get (Table and Object Method)...206
5.3.3.7 Basic Table Method Group - Set (Table and Object Method) ...207
5.3.3.8 Basic Table Method Group - Next (Table Method)..208
5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)..209
5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method) ...209
5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)..210
5.3.3.12 Access Control Method Group - Authenticate (SP Method)..210
5.3.3.13 Access Control Method Group - GetACL (Meta-Method)..211
5.3.3.14 Access Control Method Group - AddACE (Meta-Method)...211
5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)..212
5.3.3.16 Key Related Method Group - GenKey (Object Method)..213
5.3.3.17 Key Related Method Group - GetPackage Method (Object Method)..............................214
5.3.3.18 Key Related Method Group - SetPackage Method (Object Method)214

5.3.4 Description ..215
5.3.4.1 Authentication ..215
5.3.4.2 Signed Hashing During Session Startup ...221
5.3.4.3 Table Management..227
5.3.4.4 Access Control...231
5.3.4.5 Deleting the SP..232
5.3.4.6 SetPackage Method Operation..232
5.3.4.7 Default Logging Settings..232

5.3.5 Life Cycle ..233
5.3.5.1 Base Template-Specific Life Cycle State Descriptions/Exceptions.................................233

5.4 Admin Template ...233
5.4.1 Overview ...233
5.4.2 Data Structures ...233

5.4.2.1 TPer Metadata Group - TPerInfo (Object Table) ...233
5.4.2.2 TPer Metadata Group - Serial Number Contents ..235
5.4.2.3 TPer Metadata Group - CryptoSuite (Object Table) ..235
5.4.2.4 SPs on the TPer Group - Template (Object Table) ...236
5.4.2.5 SPs on the TPer Group - SP (Object Table) ...237

5.4.3 Methods ..238
5.4.3.1 IssueSP (SP Method) ..238

5.4.4 Descriptions ..239

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page ix of 314

5.4.4.1 Templates and the Admin SP..239
5.4.4.2 Deleting SPs via the Admin SP ...240
5.4.4.3 Admin SP Sessions ...240
5.4.4.4 Authorities ..240
5.4.4.5 Default Logging Settings..241

5.4.5 Life Cycle ..241
5.4.5.1 Admin Template-Specific Life Cycle State Descriptions/Exceptions...............................241

5.5 Clock Template...242
5.5.1 Overview ...242
5.5.2 Terminology ..242
5.5.3 Data Structures ...242

5.5.3.1 ClockTime (Object Table) ..242
5.5.4 Methods ..244

5.5.4.1 GetClock (Table Method)...245
5.5.4.2 ResetClock (Table Method) ...245
5.5.4.3 SetClockHigh (Table Method)..245
5.5.4.4 SetLagHigh (Table Method)...246
5.5.4.5 SetClockLow (Table Method) ..246
5.5.4.6 SetLagLow (Table Method) ...247
5.5.4.7 IncrementCounter (Table Method) ..247

5.5.5 Descriptions ..248
5.5.5.1 Setting the Time...248
5.5.5.2 Monotonic Counter ..250
5.5.5.3 Incremental Clock ..250
5.5.5.4 Timer Mode..251
5.5.5.5 Storing Time...251
5.5.5.6 Storing LagTime ..251
5.5.5.7 Reading the Time ..251
5.5.5.8 Resetting the Clock..252
5.5.5.9 Default Logging Settings..252

5.5.6 Life Cycle ..252
5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions252

5.6 Crypto Template ...253
5.6.1 Overview ...253
5.6.2 Terminology ..253
5.6.3 Data Structures ...253

5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table) ..253
5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table) ..254
5.6.3.3 Cryptographic Support Group - H_SHA_384 (Object Table) ..255
5.6.3.4 Cryptographic Support Group - H_SHA_512 (Object Table) ..256

5.6.4 Methods ..257
5.6.4.1 Random Number Related Method Group - Random (SP Method)..................................257
5.6.4.2 Random Number Related Method Group – Stir (SP Method) ...257
5.6.4.3 Decryption Method Group – DecryptInit (Object Method) ...258
5.6.4.4 Decryption Method Group - Decrypt (Object Method)...259
5.6.4.5 Decryption Method Group – DecryptFinalize (Object Method)..260
5.6.4.6 Encryption Method Group – EncryptInit (Object Method)..260
5.6.4.7 Encrytion Method Group - Encrypt (Object Method) ...261
5.6.4.8 Encryption Method Group – EncryptFinalize (Object Method) ..262
5.6.4.9 Sign (Object Method)...262
5.6.4.10 Verify (Object Method)...263
5.6.4.11 Hash Method Group – HashInit (Object Method) ..264
5.6.4.12 Hash Method Group – Hash (Object Method) ...265
5.6.4.13 Hash Method Group – HashFinalize (Object Method) ..266
5.6.4.14 HMAC Method Group – HMACInit (Object Method)..266
5.6.4.15 HMAC Method Group – HMAC (Object Method)...267

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page x of 314

5.6.4.16 HMAC Method Group – HMACFinalize (Object Method) ..268
5.6.4.17 XOR (SP Method)..268

5.6.5 Descriptions ..270
5.6.5.1 Cellblocks...270
5.6.5.2 Hashing..270
5.6.5.3 HMAC ..271
5.6.5.4 XOR ...272
5.6.5.5 Signing ...272
5.6.5.6 Verifying ...273
5.6.5.7 Encrypting..274
5.6.5.8 Decrypting..275
5.6.5.9 Default Logging Settings..276

5.6.6 Life Cycle ..276
5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptions276

5.7 Locking Template...277
5.7.1 Overview ...277

5.7.1.1 Terminology ...277
5.7.2 Data Structures ...278

5.7.2.1 LockingInfo (Object Table)...278
5.7.2.2 Locking (Object Table)...279
5.7.2.3 Media Encryption Key Table Group - K_AES_128 (Object Table)..................................283
5.7.2.4 Media Encryption Key Table Group - K_AES_256 (Object Table)..................................283
5.7.2.5 MBRControl (Object Table) ...284
5.7.2.6 MBR (Byte Table) ..285

5.7.3 Description ..285
5.7.3.1 Locking State Descriptions ..285
5.7.3.2 Reading/Writing User Data ..291
5.7.3.3 Creating Locking Ranges ..293
5.7.3.4 Zero Length Locking Ranges...293
5.7.3.5 MBR Table...294
5.7.3.6 Re-encryption ..294
5.7.3.7 Default Logging Settings..297

5.7.4 Life Cycle ..297
5.7.4.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions.............................297

5.8 Log Template ..298
5.8.1 Overview ...298

5.8.1.1 Terminology ...298
5.8.2 Data Structures ...298

5.8.2.1 Log (Object Table) ...298
5.8.2.2 LogList (Object Table) ...300

5.8.3 Methods ..301
5.8.3.1 AddLog (Table Method) ...301
5.8.3.2 CreateLog (Table Method)...302
5.8.3.3 ClearLog (Table Method)...303
5.8.3.4 FlushLog (Table Method)...303

5.8.4 Descriptions ..304
5.8.4.1 Types of Logging ...304
5.8.4.2 Log Entries...304
5.8.4.3 Log Table Operation ..305
5.8.4.4 Deleting a Log Table..306
5.8.4.5 Specifying a Log Table ..306
5.8.4.6 Default Logging Settings..306

5.8.5 Life Cycle ..306
5.8.5.1 Log Template-Specific Life Cycle State Descriptions/Exceptions306

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xi of 314

6 APPENDIX 1 – REQUIRED UID ASSIGNMENTS.. 308
6.1 Required UID Assignments Overview..308
6.2 Reserved UIDs ..308
6.3 Assigned UIDs ..309

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xii of 314

Figures

Figure 1 Diagram of the Core Architecture.. 23
Figure 2 Communications Infrastructure.. 26
Figure 3 TPer-Host Communication .. 54
Figure 4 ComID State Transition Diagram... 56
Figure 5 TPer-Host Communication Protocol Layers .. 59
Figure 6 Closing a Session.. 81
Figure 7 Synchronous Communications State Transition Diagram... 84
Figure 8 Access Control .. 89
Figure 9 Issuance .. 91
Figure 10 Life Cycle State Transitions... 92
Figure 11 Locking State Diagram .. 286
Figure 12 LBA Range Re-encryption State Diagram... 295

Tables

Table 01 Global Terminology ... 20
Table 02 Foo Table Description ... 30
Table 03 Token Types.. 33
Table 04 Tiny Atom Description ... 34
Table 05 Tiny Atom Encoding .. 34
Table 06 Short Atom Description.. 34
Table 07 Short Atom Encoding... 35
Table 08 0-Length Byte Encoding .. 35
Table 09 Medium Atom Description ... 35
Table 10 Medium Atom Encoding .. 36
Table 11 Long Atom Description .. 36
Table 12 Long Atom Encoding ... 36
Table 13 Empty Atom Description .. 37
Table 14 Start Transaction Status Codes... 38
Table 15 End Transaction Status Codes.. 39
Table 16 ComPacket Format.. 39
Table 17 Packet Format ... 41
Table 18 Subpacket Types... 43
Table 19 Data SubPacket Format .. 43
Table 20 Credit Control Subpacket .. 44
Table 21 Secure Messaging Packet – Payload Field... 45
Table 22 Secure Messaging Packet Payload– SecureData Field.. 46
Table 23 Interface Command – Command Block .. 53
Table 24 Protocol IDs ... 53
Table 25 ComID Assignments.. 55
Table 26 GET_COMID Command Block.. 60
Table 27 GET_COMID Payload ... 61
Table 28 HANDLE_COMID_REQUEST Command Block ... 62
Table 29 GET_COMID_RESPONSE Command Block.. 63
Table 30 No Response Available ... 63
Table 31 VERIFY_COMID_VALID Request... 63
Table 32 VERIFY_COMID_VALID Command Response .. 64

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xiii of 314

Table 33 Date Values ... 64
Table 34 STACK_RESET Command Request .. 65
Table 35 STACK_RESET Command Response.. 66
Table 36 STACK_RESET Pending .. 66
Table 37 Level 0 Discovery Response Data Format.. 68
Table 38 Level 0 Discovery Header Format... 68
Table 39 Feature Codes... 69
Table 40 Feature Descriptor Template Format .. 69
Table 41 TPer Feature Descriptor .. 70
Table 42 Locking Feature Descriptor ... 71
Table 43 Common SSC Information... 71
Table 44 IF-RECV ComPacket Field Values Summary ... 83
Table 45 AC_element... 101
Table 46 ACE_columns.. 102
Table 47 ACE_expression Encoding Example... 102
Table 48 ACE_expression.. 103
Table 49 ACE_object_ref ... 103
Table 50 ACL.. 103
Table 51 adv_key_mode .. 103
Table 52 adv_key_mode Enumeration Values... 104
Table 53 attr_flags .. 104
Table 54 attr_flags Set Values ... 104
Table 55 auth_method.. 104
Table 56 auth_method Enumeration Values .. 104
Table 57 Authority_object_ref... 105
Table 58 boolean.. 105
Table 59 boolean Enumeration Values .. 105
Table 60 boolean_ACE... 106
Table 61 boolean_ACE Enumeration Values... 106
Table 62 byte_row_ref .. 106
Table 63 byte_table_ref .. 106
Table 64 bytes .. 106
Table 65 bytes_12 .. 107
Table 66 bytes_16 .. 107
Table 67 bytes_20 .. 107
Table 68 bytes_32 .. 107
Table 69 bytes_48 .. 107
Table 70 bytes_64 .. 107
Table 71 Certificates_object _ref.. 108
Table 72 clock_kind.. 108
Table 73 clock_kind Enumeration Values .. 108
Table 74 clock_time.. 109
Table 75 Column_object _ref ... 109
Table 76 cred_object_uidref ... 109
Table 77 date.. 109
Table 78 Day .. 110
Table 79 day_enum.. 110
Table 80 enc_supported... 110
Table 81 enc_supported Enumeration Values ... 110
Table 82 feedback_size.. 110
Table 83 Fraction.. 111

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xiv of 314

Table 84 fraction_enum.. 111
Table 85 gen_status ... 111
Table 86 gen_status Enumeration Values.. 111
Table 87 hash_protocol .. 112
Table 88 hash_protocol Enumeration Values .. 112
Table 89 Hour ... 113
Table 90 hour_enum... 113
Table 91 integer.. 113
Table 92 integer_1.. 113
Table 93 integer_2.. 114
Table 94 key_128 ... 114
Table 95 key_256 ... 114
Table 96 keys_avail_conds .. 114
Table 97 keys_avail_conds Enumeration Values... 114
Table 98 lag .. 115
Table 99 last_reenc_stat .. 115
Table 100 last_reenc_stat Enumeration Values... 115
Table 101 life_cycle_state .. 115
Table 102 life_cycle_state Enumeration Values .. 116
Table 103 LogList_object_ref ... 116
Table 104 log_row_ref .. 116
Table 105 log_select... 116
Table 106 log_select Enumeration Values... 117
Table 107 max_bytes ... 117
Table 108 max_bytes_32 ... 117
Table 109 max_bytes_64 ... 117
Table 110 mediakey_obj_uidref ... 118
Table 111 MethodID_object _ref .. 118
Table 112 messaging_type .. 118
Table 113 Minute .. 118
Table 114 minute_enum... 118
Table 115 Month... 119
Table 116 month_enum.. 119
Table 117 name.. 119
Table 118 object_ref ... 119
Table 119 padding_type ... 120
Table 120 padding_type Enumeration Values ... 120
Table 121 password ... 120
Table 122 protect_types ... 120
Table 123 reencrypt_request.. 121
Table 124 reencrypt_state.. 121
Table 125 reencrypt_state Enumeration Values .. 121
Table 126 reset_types .. 121
Table 127 reset_types Set Values.. 121
Table 128 Seconds... 122
Table 129 seconds_enum .. 122
Table 130 SPTemplates_object _ref .. 122
Table 131 SSC ... 122
Table 132 symmetric_mode ... 123
Table 133 symmetric_mode Enumeration Values.. 123
Table 134 symmetric_mode_media ... 123

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xv of 314

Table 135 symmetric_mode_media Enumeration Values.. 124
Table 136 table_kind .. 124
Table 137 table_kind Enumeration Values... 124
Table 138 table_or_object_ref.. 124
Table 139 Table_object _ref... 125
Table 140 table_ref... 125
Table 141 Template_object _ref... 125
Table 142 type_def ... 125
Table 143 Type_object _ref.. 126
Table 144 uid .. 126
Table 145 uinteger.. 126
Table 146 uinteger_1.. 126
Table 147 uinteger_128.. 126
Table 148 uinteger_2.. 127
Table 149 uinteger_20.. 127
Table 150 uinteger_21.. 127
Table 151 uinteger_24.. 127
Table 152 uinteger_256.. 127
Table 153 uinteger_28.. 128
Table 154 uinteger_30.. 128
Table 155 uinteger_36.. 128
Table 156 uinteger_4.. 128
Table 157 uinteger_48.. 128
Table 158 uinteger_64.. 129
Table 159 uinteger_66.. 129
Table 160 uinteger_8.. 129
Table 161 verify_mode ... 129
Table 162 verify_mode Enumeration Values ... 129
Table 163 Year ... 130
Table 164 year_enum... 130
Table 165 Status Codes ... 140
Table 166 Properties Method Response.. 145
Table 167 Communications Initial Assumptions... 148
Table 168 SPInfo Table Description... 159
Table 169 SPTemplates Table Description.. 160
Table 170 Table Table Description... 161
Table 171 Column Table Description ... 163
Table 172 Type Table Description.. 165
Table 173 MethodID Table Description .. 166
Table 174 AccessControl Table Description .. 167
Table 175 SecretProtect Table Description.. 168
Table 176 ACE Table Description .. 169
Table 177 Authority Table Description ... 170
Table 178 Secure Column Values.. 172
Table 179 Certificates Table Description.. 175
Table 180 C_PIN Table Description ... 175
Table 181 C_RSA_1024 Table Description.. 176
Table 182 C_RSA_2048 Table Description.. 178
Table 183 C_AES_128 Table Description.. 180
Table 184 C_AES_128/C_AES_256 ResidualData Column Values After

Encrypt/Decrypt/EncryptFinalize/DecryptFinalize.. 181
Table 185 C_AES_256 Table Description.. 181

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xvi of 314

Table 186 C_EC_160 Table Description.. 182
Table 187 AACS Values for C_EC_160... 184
Table 188 C_EC_192 Table Description.. 184
Table 189 FIPS P-192 Values for C_EC_192 .. 186
Table 190 C_EC_224 Table Description.. 186
Table 191 FIPS P-224 Values for C_EC_224 .. 188
Table 192 C_EC_256 Table Description.. 188
Table 193 FIPS P-256 Values for C_EC_256 .. 189
Table 194 C_EC_384 Table Description.. 190
Table 195 FIPS P-384 Values for C_EC_384 .. 191
Table 196 C_EC_521 Table Description.. 192
Table 197 FIPS P-521 Values for C_EC_521 .. 193
Table 198 C_EC_163 Table Description.. 194
Table 199 FIPS K-163 Values for C_EC_163 .. 196
Table 200 C_EC_233 Table Description.. 196
Table 201 FIPS K-233 Values for C_EC_233 .. 198
Table 202 C_EC_283 Table Description.. 198
Table 203 FIPS K-283 Values for C_EC_283 .. 200
Table 204 C_HMAC_160 Table Description .. 200
Table 205 C_HMAC_256 Table Description .. 201
Table 206 C_HMAC_384 Table Description .. 202
Table 207 C_HMAC_512 Table Description .. 202
Table 208 Default Base Template Authorities.. 216
Table 209 TPerInfo Table Description.. 234
Table 210 GUDID Column Contents Description ... 235
Table 211 CryptoSuite Table Description... 235
Table 212 Template Table Description... 236
Table 213 SP Table Description... 237
Table 214 Default Admin Template Authorities.. 240
Table 215 Clock Template Terminology... 242
Table 216 ClockTime Table Description... 243
Table 217 Crypto Template Terminology ... 253
Table 218 H_SHA_1 Table Description.. 253
Table 219 H_SHA_256 Table Description.. 254
Table 220 H_SHA_384 Table Description.. 255
Table 221 H_SHA_512 Table Description.. 256
Table 222 Locking Template Terminology ... 277
Table 223 LockingInfo Table Description ... 278
Table 224 Locking Table Description ... 279
Table 225 K_AES_128 Table Description.. 283
Table 226 K_AES_256 Table Description.. 283
Table 227 MBRControl Table Description.. 284
Table 228 Interface Read Command Access... 291
Table 229 Interface Write Command Access... 292
Table 230 Log Template Terminology.. 298
Table 231 Log Table Description.. 298
Table 232 LogList Table Description .. 300
Table 233 LogKind Column Values .. 304
Table 234 System Log Entry Structure... 305
Table 235 MethodID Table and Table Table LSB Value Ranges Assignment 308
Table 236 Type Table Reserved LSB Value Ranges... 308

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page xvii of 314

Table 237 Special Purpose UIDs ... 309
Table 238 Table UIDs... 310
Table 239 Session Manager Method UIDs... 311
Table 240 MethodID UIDs .. 311
Table 241 Authority UIDs.. 312
Table 242 Single Row Table Row UIDs ... 313
Table 243 Table Default Rows ... 313
Table 244 Template Table UIDs... 313
Table 245 SPTemplates Table UIDs .. 313

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 18 of 314

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 19 of 314

1 Introduction

1.1 Scope and Audience
Begin Informative Content

The TCG Storage specifications are intended to provide a comprehensive architecture for putting
selected features of Storage Devices under policy-driven access control. The capabilities of the
Storage Device are able to be configured to conform to the policies of the trusted platform. The
controlled features include access to secure storage areas and the life cycle state of the Storage
Device as a Trusted Peripheral (TPer). This document also serves as a specification for TPers where
that is deemed appropriate.

The intended audience for this document is Storage Device manufacturers and developers that wish to
tie trusted Storage Devices into trusted platforms.

End Informative Content

1.2 Key Words
Key words are used to signify the requirements in the specification. The key words “SHALL,” "SHALL
NOT," “SHOULD,” "SHOULD NOT," “MAY,” and “OPTIONAL” are used in this document. These key
words are to be interpreted as described in [8]

The key word "OBSOLETE" is used to indicate that the designated methods, tables, or values that may
have been defined in previous standards are not defined in this standard and SHALL NOT be reclaimed
for other uses in future standards. However, some degree of functionality may be required for items
designated as OBSOLETE to provide for backward compatibility.

Invocation of methods defined as OBSOLETE may result in an error status method response returned
by devices conforming to this specification.

Tables and values defined as OBSOLETE may result in an error status method response returned by
devices conforming to this specification when attempts to reference those tables or values are made.

1.3 References
[1] Trusted Computing Group (TCG), “Storage Work Group Use Case White Paper – v 1.0”

[2] Trusted Computing Group (TCG), “TCG Storage Interface Interactions Specification“,
Version 1.0

[3] Trusted Computing Group (TCG), “TCG Storage Protection Mechanisms for Secrets”,
Version 1.0

[4] Advanced Access Content System (AACS), "Introduction and Common Cryptographic
Elements", Revision 0.91

[5] [ANSI INCITS 452-2008], “Information technology - AT Attachment 8 - ATA/ATAPI
Command Set (ATA8-ACS)“

[6] [INCITS T10/1731-D], “Information technology - SCSI Primary Commands - 4 (SPC-4)“

[7] Internet Engineering Task Force (IETF), "Character Mnemonics & Character Sets" (RFC
1345)

[8] Internet Engineering Task Force (IETF), "Key words for use in RFCs to Indicate Requirement
Levels" (RFC 2119)

[9] Internet Engineering Task Force (IETF), " Augmented BNF for Syntax Specifications: ABNF"
(RFC 5234)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 20 of 314

[10] National Institute of Standards and Technology (NIST), "Secure Hash Standard", FIPS
Publication 180-2

[11] National Institute of Standards and Technology (NIST), "Digital Signature Standard (DSS)",
FIPS Publication 186-2

[12] National Institute of Standards and Technology (NIST), "Advanced Encryption Standard
(AES)", FIPS Publication 197

[13] National Institute of Standards and Technology (NIST), "The Keyed-Hash Message
Authentication Code (HMAC)", FIPS Publication 198

[14] National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation - Methods and Techniques", NIST Special Publication 800-38A

[15] National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation –The CMAC Mode for Authentication", NIST Special Publication 800-
38B

[16] National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation – The CCM Mode for Authentication and Confidentiality", NIST Special
Publication 800-38C

[17] National Institute of Standards and Technology (NIST), "Recommendation for Block Cipher
Modes of Operation: Galois/Counter Mode (GCM) and GMAC", NIST Special Publication
800-38D

[18] RSA Laboratories, "PKCS #1: RSA Cryptography Standard (v 2.1)"

[19] Standards for Efficient Cryptography, "SEC2: Recommended Elliptic Curve Domain
Parameters", Version 1.0

1.4 Terminology
1.4.1 Global Terminology

Table 01 Global Terminology
Term Definition

Access Control Element
(ACE)

A Boolean expression of authorities.

Access Control List (ACL) List of ACEs.

Admin SP
The SP that is used in the issuance of other SPs, and provides
information about the state of SPs on the TPer as well as the TPer
itself.

Authority An Authority associates a credential with an authentication
operation.

Data Types
Encoding format of data. Data is encoded in different ways
depending on the context in which the data is being used (stream
encoding, table encoding, etc.)

Host Application Software that communicates with the TPer.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 21 of 314

Term Definition

IF-SEND
An interface command, such as the ATA (T13) TRUSTED SEND or
SCSI (T10) SECURITY PROTOCOL OUT command used to
transmit data from the host to the TPer.

IF-RECV
An interface command, such as the ATA (T13) TRUSTED RECEIVE
or SCSI (T10) SECURITY PROTOCOL IN command used by the
host to retrieve data from TPer.

Issuance The act of creating an SP on a TPer from one or more templates.

MAC Message Authentication Code

Messaging
Session communications are by messages defined by a messaging
protocol. Messages from a Host convey remote method calls on an
SP and other messages return the results.

Method A Method is a remote procedure call to an SP that initiates an action
on the SP.

Object Any row of an Object Table.

Persistent State
This is the content of tables, and exists through power cycles,
resets, and spin up/spin down cycles.

Personalization The act of configuring an issued SP.

Platform Host
A collection of one or more Host Application resources that utilizes
or provides a specific service or set of services.

Secure Messaging
Session communications that support message confidentiality,
message integrity/authenticity, or both.

Security Subsystem Class
(SSC)

Identifies the components from the Core Specification that are
Mandatory, Optional, Excluded, or Not Required for a particular
class of security subsystem.

Security Provider (SP) A collection of Tables and Methods with access control.

Security Identifier (SID) The authority that represents the TPer owner.

Session

A temporary information exchange that occurs between a host
application and an SP, and that is established at a certain point in
time and closed at a later point in time. All communications with
SPs occur within sessions.

Storage Device (SD)
A Storage Device is any device that provides digital storage
services.

Storage Media
Storage Media refers to the non-volatile or persistent storage in a
Storage Device.

Storage Work Group (SWG)
One of the TCG working groups whose purpose is to define security
building blocks for the Storage Device.

Stream Encoding The encoding mechanism as defined in section 3.2.2.

SymK Convenient notation for symmetric key (shared secret) cryptography.

Table
The basic data structures within an SP. Tables store persistent SP
state defined in this specification.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 22 of 314

Term Definition

Template
Templates are sets of tables and methods, grouped by feature, from
which SPs are created.

TPer A Trusted Peripheral.

Transaction
A series of one or more method invocations grouped to enable
atomicity and state rollback by the host application to a pre-defined
point. Methods are invoked either within or outside of transactions.

Transient State

State of an SP that does not persist past the end of a session. This
includes authentication state of authorities, changes made in a
Read-Only session, or changes made within an uncommitted
transaction.

Trusted Commands Interface protocol commands (IF-SEND or IF-RECV) used to
communicate with an SP.

Unique Identifier (UID)
Unique 8-byte identifier that identifies objects within tables, tables,
methods, and the SP itself. UIDs are unique within an SP, but not
across SPs.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 23 of 314

2 Trusted Storage Device Architecture

2.1 Architecture Overview
Begin Informative Content

The TCG Storage Architecture supports use cases and threat models developed for the TCG Storage
use cases (see [1]). Peripherals based on this architecture are called Trusted Peripherals or TPers.

End Informative Content

2.2 Architecture Components
Begin Informative Content

The architecture is illustrated in Figure 1 , which shows a single Multicomponent Trusted Platform
(MCTP) with one Trusted Peripheral (TPer). An MCTP supports 1 or more TPers. Figure 1 shows just
one example. Other possibilities include multiple hosts communicating with a single Storage
Device/TPer, a single host communicating with multiple Storage Devices/TPers, etc.

End Informative Content

Figure 1 Diagram of the Core Architecture

2.2.1 Multicomponent Trusted Platform (MCTP)
Begin Informative Content

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 24 of 314

A Multicomponent Trusted Platform (MCTP) describes a platform in which one or more hosts,
applications, peripherals, or devices participate in the trust state. In an MCTP, various host applications
communicate with the TPer through a peripheral interface such as ATA or SCSI.

End Informative Content

2.2.2 Host
Begin Informative Content

For the purposes of this specification, a Host is the entity that initiates ATA (T13) TRUSTED
SEND/RECEIVE commands or SCSI (T10) SECURITY PROTOCOL IN/OUT commands under Security
Protocol 0x01-0x06.

End Informative Content

2.2.2.1 Host Applications
Begin Informative Content

Host applications initiate sessions to communicate with a TPer in order to create, query or change the
persistent state of the TPer data structures.

End Informative Content

2.2.3 Trusted Peripheral (TPer)
Begin Informative Content

The Trusted Peripheral (TPer) resides in the Storage Device. The TPer manages trusted storage-
related functions and data structures. Two main aspects to the TPer use cases as they pertain to the
TCG Storage Architecture are:

a. Data confidentiality and access control over TPer features and capabilities: TPer
functions and capabilities are built upon policy driven setup and the use of cryptographic
access control over TPer content. Such features and capabilities include access controlled
readable and writeable data areas, and access control to built-in firmware functions or
hardware functions in the TPer. It is possible for a single trusted host application to gain
exclusive access to subsets of these features and capabilities. The protection provided by this
exclusive access extends to confidentiality of instructions and data in transit between the
trusted host application (or a TPM it uses) and the TPer.

b. TPers and Hosts bilateral enrollment and connection: Enrollment establishes the conditions
under which data/instruction connections are established between TPers and hosts. The
access control conditions for enrollment could be different than those for connection. The
data/instruction consequences of a failure to be enrolled or connected MAY be different for
different TPers and hosts. The permissions/authorizations required for enrollment and
connection of a TPer with a host could be different than the permissions/authorizations required
for enrollment and connection of a Host with a TPer.

The TCG Storage Architecture provides for a system of tables where the content and meaning of the
table entries are potentially different for different types of Storage Devices with different features and
capabilities.

This TCG Storage Architecture’s access control system scales with the available Storage Device
resources. Storage Device resources include processor performance, memory space, and media
capacity. TPer data tables, methods, and capabilities are able to be fixed (and limited) or host
application-definable up to the limit of the Storage Device’s available resources.

End Informative Content

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 25 of 314

2.2.4 Security Providers (SPs)
The TPer MAY contain one or more Security Providers (SPs). A Security Provider is a set of tables and
methods that control the persistent trust state of the SP and MAY participate in control of the persistent
trust state of the TPer. Each SP SHALL have its own storage, functional scope, and security domain.

Begin Informative Content

A Security Provider supports specific TPer functionality. SPs support functions such as authentication,
secured attribute-value storage, disk encryption/decryption, backup, time stamping, and event logging.
SPs are created by the manufacturer during Storage Device creation, or through the Issuance process
(see SP Issuance section 2.3.2).

A Security Provider provides a way for the host and manufacturer to define which TCG functions are
performed; who has access to these functions; how the TPer and SPs communicate with the Host;
when these events are permitted; and when the events are logged.

A Security Provider is made up of the following components:

a. Tables . The two types of tables are described in Section 3.2.5. Tables consist of rows and
columns.

b. Table content is the persistent state information of the SP.

c. Methods. Method operations include functions such as: table additions, table deletion, table
read access, and table backup.

d. Authorities specify passwords or cryptographic proofs required to become authenticated within
a session to the SP.

e. Access Control Lists (ACLs) and Access Control Elements (ACEs) bind methods to the
authorities that are permitted to invoke them.

End Informative Content

2.3 Core Architecture Operations
2.3.1 Host <–> TPer Communication Infrastructure
Begin Informative Content

The Host communicates with SPs using interface commands generically known as "Trusted
Commands." Trusted Commands are interface-specific protocols (i.e. T10 SECURITY PROTOCOL
IN/OUT Protocol 0x01-0x06, or T13 TRUSTED SEND/RECEIVE Protocol 0x01-0x06). This
specification defines the payload content of those commands.

The SP communication protocol that defines the contents of Trusted Commands uses a layered
communication system consisting of the following elements:

a. Methods.

b. Transactions.

c. Sessions.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 26 of 314

Figure 2 Communications Infrastructure

The only way to communicate with an SP is via a session. Only the host is able to open a session.
Methods are invoked within sessions.

Normally, when the methods and associated responses are completed, the host closes the session.
Other interface-specific commands (i.e. ATA/SCSI) are able to be interleaved among IF-SEND/IF-
RECV commands at any time.

Secure Messaging enables the host and TPer to pass encrypted or integrity protected messages
(methods and their associated responses) during sessions. Message encryption is recommended but
not required. When secure messaging is in use, it is done regardless of and in addition to any
encryption done on the communications channel.

In the simplest communications case the host is just the platform host to which the TPer is directly
attached or attached over a network. The host application could also be some other platform host that
communicates with the immediate platform host, which then relays the session stream to the TPer over
a network. In another case, the TPer could be wirelessly connected to a host application, or part of a
SAN and connected to multiple hosts. The TPer could be directly attached to the platform host, and
connected to multiple Host Applications either also directly attached to that platform, attached remotely,
or both.

End Informative Content

If the device is capable, one or more Read-Only sessions MAY be established simultaneously to a
single SP. Typically, changes made to an SP during a Read-Only session SHALL NOT persist past the
end of that session. Non-transient changes that persist past the end of a session are noted, where
applicable. A case of a non-transient change permitted in a Read-Only session is automatic forensic
logging, if enabled.

Read-Write Sessions MAY or MAY NOT alter persistent state information (table content). A Read-Write
session (one which has the capability of making non-transient changes to an SP) SHALL be unable to
run simultaneously with any other sessions to the same SP.

2.3.2 SP Issuance & Personalization Overview
Begin Informative Content

When TPers are capable of SP issuance, special resources called templates are required. Templates
define the initial tables and methods upon which new SPs are based when issued.

The Base Template provides to SPs the tables and methods required for authentication and access
control management. SPs are built from a combination of templates, and always include at least a
subset of the Base Template. Some templates that extend the capabilities provided by the Base
Template are: Admin Template, Clock Template, Crypto Template, Locking Template, and Log
Template.

All SPs incorporate at least a subset of the Base Template’s tables and methods.

Personalization is the customization of a newly created SP. The primary purposes of personalization
are modification of the SP’s initial table data and/or the administrative authority on that specific SP, as

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 27 of 314

well as creating additional authorities and customization of the default access control settings.
Personalization typically refers to the initial customization of an SP, but the personalization process
continues throughout the life of an SP.

End Informative Content

2.3.3 Security Subsystem Classes Overview
Begin Informative Content

The Core Specification defines the set of TCG-related functions supportable by a TPer. However, every
TPer is not required to support all functionality defined in this specification. There are multiple “classes”
of Core Specification compliance, called Security Subsystem Classes (SSCs). Each Security
Subsystem Class specification is a companion document to the Core Specification.

Security Subsystem Classes explicitly define the minimum acceptable Core Specification capabilities of
a TPer in a specific “class”.

Security Subsystem Classes define only TCG-related functionality. TPer attributes such as host
interface type, storage capacity, data rates, and seek times are not key Security Subsystem Class
attributes, though TPer resources such as available memory, storage capacity, and processing power
influence which Security Subsystem Class(es) a TPer supports.

End Informative Content

A TPer MAY have only some of the capabilities (tables, methods, access controls, etc.) defined in this
Core Specification and MAY include additional capabilities through table definitions and/or methods. A
Security Subsystem Class SHALL NOT replace a capability called out in the Core Specification with the
same capability implemented in different tables, methods, and access controls.

2.3.4 Preliminary Architectural Components
This section identifies a series of architectural components in this specification that are to be
considered as preliminary. Implementations of any these elements as defined in this specification MAY
NOT be compliant with either SSCs or future versions of this specification.

a. Secure session start up. This applies to challenge response authentication and key
exchange that occurs during session startup. In addition, if two SP Authorities refer to the
same ResponseExch authority, and therefore use the same public-private keypair for
encrypting the HostSessionKey to be sent to the TPer,, then there is an escalation replay
attack possible where one authority can successfully replay the commands of another.

b. Session Timeouts, Flow Control, and Session Reliability in regards to control
sessions. This includes, but is not limited to, session timeouts, acknowledgements,
negative acknowledgements, transmission timeouts, packet sequence numbers, and credit
exchange.

c. The Log Template and related logging functionality. In addition to the Log Template,
this applies to components in other templates that relate to logging, such as those in the
Base Template's Authority and AccessControl tables. Methods to manage the logging
functionality presented in the AccessControl table are also TBD.

d. The Clock Template and functionality related to timekeeping. In addition to the Clock
Template, this applies to components in other templates that relate to timekeeping, such as
those in the Base Template's Authority table.

e. Admin SP discovery mechanisms related to TemplateID columns. This also applies to
the TemplateID column in tables in Templates other than the Admin Template.

f. Default ACL values for access control associations when a new table or object is
created. This affects the values are placed in the ACL columns of the AccessControl

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 28 of 314

table when a new table or object is created and associated rows are created in the Table,
Column, ACE, and AccessControl tables.

g. Mechanisms for retrieval of meta-ACL column values from the AccessControl table.

h. The Crypto Template and functionality related to host-requested on-device
cryptographic operations. This includes on-device encryption, decryption, etc. This does
not include the Random method.

i. Certificate related components, including the Certificates table and the
PresentCertificate column of the Authority table.

j. Issuance related components, including the IssueSP method.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 29 of 314

3 Architecture Elements

3.1 Architecture Elements Overview
Begin Informative Content

This section introduces global TCG storage-related document format, data structures, and functional
behavior.

End Informative Content

3.2 Data Structure Descriptions
3.2.1 Document Data Formats
Begin Informative Content

This specification defines three distinct but closely related data models:

a. Tables: Data stored in tables is of a maximum fixed size.

b. Messaging: Data moving across the interface is encoded into byte streams. These streams
carry encodings for method calls, parameters, and results, as well as other control information.

c. Exposition Pseudo-code: This provides a C-like representation of methods and table structure
and contents. The definition of the exposition pseudo-code is in section 3.2.1.2.

Data is encoded in different ways depending on the context in which the data is being used. One data
context is data stored in tables. Another data context is data crossing the interface in messaging – this
is called “Stream Encoding”.

This section introduces the different basic data types, provides a brief introduction on how these types
are used, and shows how they are displayed in this document. See Section 3.2.2 for additional details
regarding data types and data type Stream Encoding.

End Informative Content

3.2.1.1 Table Definition Format
Begin Informative Content

Each table in this specification is defined in a manner that follows the format described in this section.

A table's structure follows the format that appears in Table 02.

End Informative Content

The description table column "Column Number" identifies the number assigned to that column, which is
unique within that table and is used to address the column in methods and other tables.

The description table column "Column Name" identifies the name of the column. This is the name
assigned to that column in the Column table, a Base Template table that stores metadata about each
column in each table in an SP.

The description table column "IsUnique" identifies whether that column is required to be part of the
unique set of column values for that table (See 3.2.5.4).

The description table column "Type" identifies the format of the data stored in that column. The
definition of the type itself is found in the Type table, a Base Template table that stores metadata about
each type used in an SP. Each type used in this specification is defined in 5.1.3.

Each column being described is defined in its own subsection that follows the description table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 30 of 314

Table 02 Foo Table Description
Column Number Column Name IsUnique Column Type
0x00 ID uid
0x01 Username name
0x02 SerialNumber uinteger_4

3.2.1.2 Method Signature Pseudo-code
Begin Informative Content

Method signatures are pseudo-code representations of TCG methods, which are used to describe
method parameters, types and snippets of code without having to use the byte encodings directly.

End Informative Content

In this document, MethodName is the UID of the method being invoked and:

a. Session Manager method calls are written as follows, where “SMUID” is 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0xFF: SMUID.MethodName[<Parameters>]

b. SP method calls are written as follows, where "ThisSP" is 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x01: ThisSP.MethodName[<Parameters>]

c. Table method calls are written as follows, where TableUID is the UID of the table (see 3.2.5.3)
upon which the method is being invoked: TableUID.MethodName[<Parameters>]

d. Object methods are written as follows, where ObjectUID is the UID of the object (see 3.2.5.3)
upon which the method is being invoked: ObjectUID.MethodName[<Parameters>]

For example:

a. Invoking the Properties method: SMUID.Properties[<Parameters>]

b. Invoking an SP method: ThisSP.Random[<Parameters>]

c. Adding an entry to a log table: SomeLogTableUID.AddLog[<Parameters>]

d. Encrypting host data: C_AES_128ObjectUID.Encrypt[<Parameters>]

A method signature example is displayed in this document as:

<InvokingID>.<MethodName>[

Required Parameter(s),

Optional Parameter(s)

]

=>

[Result]

The InvokingID (the table or object UID to which the method applies) and MethodName (the method's
UID column value as it is defined in an SP's MethodID table) appear first in the signature. The
parameters follow, enclosed in "list" delimiters ("[" and "]"). The "=>" is a separator between the method
parameters and the method results. The method results are displayed within the "list" delimiters ("["
and "]").

Methods are made up of two kinds of parameters: required and optional.

a. In the pseudo-code signature, required parameters are given names for ease of reference. The
right-hand portion of the parameter is the type, interface (see 3.2.2) or abstract (see 5.1.4), to

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 31 of 314

be supplied for that parameter.

Required parameters are formatted as follows:

a. Parameter-Name : Parameter-type

b. In the pseudo-code method signature, optional parameters are given in the form of Named
values (see 3.2.1.3), and are submitted to the method invocation as Named values. The right-
hand portion of the parameter is the type, interface (see 3.2.2) or abstract (see 5.1.4), that is
supplied for that parameter. The name supplied to the parameter is expositional, provided for
ease of reference.

Optional parameters are formatted as follows:

b. Parameter-Name = Parameter-type

The result portion of a method's signature is formatted similarly to the above required and optional
parameters, using the same conventions for results required to be returned for successful method
invocations ("required results") and results returned only in certain situations ("optional results").

The pseudo-code method signatures utilize the following key symbols:

a. Equals sign ("=") – Any appearance of "=" in a method's parameter list or result list (including
in abstract type definitions) indicates the required use of an interface Named value, where the
type of the required value is to the right of the "=". The "=" is not represented in the streamed
method data, but indicates that the name and the value are encompassed by the Named value
indicator tokens (see 3.2.2.3.2.1).

b. Colon (":") – When represented in abstract types or method signatures, a colon indicates that
the string to the left of the colon is only a pseudo-code identifier associated with the type to the
right of the colon. The type to the right of the colon is the type of the value to be transmitted on
the interface.

c. Separating brackets ("[", "]") – Square brackets in method signatures are used to mark
places in the stream where List tokens (see 3.2.2.2) are used to encapsulate values. Brackets
are required to be present in the streamed method invocation, and are represented in the
stream by list encoding tokens.

d. "list" – The word "list" is used to indicate that the bracketed grouping immediately following is a
list (see 3.2.2.3.2.2). Ellipses ("…") in pseudo-code method signatures are used to indicate that
multiples of the immediately preceding type appears within the list (e.g. list [type ...]). Note
that in some contexts, a list MAY be required to be empty or to contain only a single element.
Neither the word "list" nor the ellipses affect the streamed method data.

e. Commas (",") – Commas in the pseudo-code method signatures are used to separate items in
a list, options in a typeOr value, or to separate parameters, and do not affect the streamed
method data.

f. Curly braces ("{", "}") – Curly braces are used to provide additional information regarding the
type that precedes them (e.g. specifying a specific type of UID reference for a uidref type) or to
encapsulate the options for a typeOr value, and do not affect the streamed method data.

3.2.1.3 Messaging Data Types
For stream encoding, because of the manner in which data is encoded and transferred across the
interface, the types used in method parameter and result values are described using two basic types:

a. Byte-string values are a sequence of n bytes that are used to represent strings, blobs, bit
vectors, etc.

b. N length integer values are whole numbers that are either signed or unsigned.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 32 of 314

Due to the nature of method parameters and results, there are two additional constructs defined for
messaging that serve as grouping mechanisms for the basic types: Named values and List values.

a. Named values. The name (a byte-string/integer/uinteger value) followed by its value (any
messaging type, i.e. byte-string values, N length signed or unsigned integer values, list values,
or Named values).

b. List values. Zero or more values of some type, grouped into an ordered list. List tokens are
used to encapsulate method parameters and method results.

Named values and List values serve multiple uses. One use of Named values is to identify optional
method parameters in stream encoding. List tokens are used to encapsulate method parameters or to
separate the InvokingID/MethodID from the method parameters in the stream encoding. For more
information on stream encoding, see 3.2.2.

3.2.1.4 Type Checking
Begin Informative Content:

It is reasonable to consider the parameter list of each method call as a struct with both required and
optional member types. Since this is the case, whenever a particular method is received, the TPer is
able to check the types of the received parameters to ensure they match the expected types for that
method's signature.

For methods that have dynamic parameter requirements (such as the Get and Set methods), it is
necessary to consider the composition of the table upon which the method is operating. Using the Set
method as an example, the method parameters include identifiers for columns and the values to be
assigned to each of those columns. Because the definition of a table is known and fixed, the TPer is
able to treat each table as a struct (for the purposes of type checking), with components equivalent to
the columns of that table.

With the knowledge of the columns that make up the table/object upon which the method is operating,
as well as the type of each of those columns, the TPer is able to initially determine if the value sent is of
the correct type for each column. The TPer is able to accomplish this without having to perform strong
type checking on whether or not the value is valid for actual assignation to that column (i.e. the TPer is
able to initially verify that a particular parameter is a uinteger without having to determine if its size is
within bounds for the column).

End Informative Content

3.2.2 Data Stream Encoding
Begin Informative Content

The messaging model provides for stream encoding of multiple remote procedure calls and multiple
responses, with the purpose of permitting large data blocks to be broken up and submitted in parts, for
the parts to be acted on, and for the results to be returned in parts. This streaming model permits
results to be asynchronously returned before all the parts are received.

This section details how values and control markers are encoded into byte sequences for transport over
session streams (byte streams).

End Informative Content

There are no predefined limits on the size or length of these data streams. An SSC or TPer
implementation MAY limit the maximum size of encoded values.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 33 of 314

3.2.2.1 Data Types
As introduced in 3.2.1.3, messaging data is encoded using two basic types of values combined with two
grouping mechanisms that are applied to those two basic types. Combined, these four types are able
to represent all of the basic and derived data types.

a. Integers: Integer values are used to represent numbers, Booleans, and enumerations. The
implementation is free to use other representations in other circumstances, converting as
necessary. Sign representation for signed integers is two's complement.

b. Bytes: These are sequences of bytes and are used to represent strings, cryptographic keys,
bit-vector encoded sets, blobs, etc.

c. List: Zero or more values of any type, grouped into an ordered list. All items in the list must be
of the same type.

d. Named: The name (a byte-string/integer/uinteger value) followed by its value (any messaging
type). A Named value attaches an identifier to some other value (ex. size=32).

3.2.2.2 Endianness
The endianness of integers transmitted across the interface is big endian.

3.2.2.3 Tokens
Values of the four basic types are packaged into tokens, each of which is a TLV (tag, length, value)
sequence of bits that specifies a single data value.

Table 03 Token Types
Byte

0 1 2 3
Hex Acronym Meaning

0 S d<5..0> 00..7F Tiny atom
1 0 B S n<3..0> 80..BF Short atom
1 1 0 B S n<10..0> C0..DF Medium atom
1 1 1 0 0 0 B S n<23..16> n<15..8> n<7..0> E0..E3 Long atom
 E4..EF TCG Reserved
1 1 1 1 0 0 0 0 F0 SL Start List
1 1 1 1 0 0 0 1 F1 EL End List
1 1 1 1 0 0 1 0 F2 SN Start Name
1 1 1 1 0 0 1 1 F3 EN End Name
 F4..F7 TCG Reserved
1 1 1 1 1 0 0 0 F8 CALL Call
1 1 1 1 1 0 0 1 F9 EOD End of Data
1 1 1 1 1 0 1 0 FA EOS End of session
1 1 1 1 1 0 1 1 FB ST Start transaction
1 1 1 1 1 1 0 0 FC ET End transaction
 FD..FE TCG Reserved
1 1 1 1 1 1 1 1 FF MT Empty atom

The Token Types identified in Table 03 are divided into 3 subgroups:

a. Simple Tokens - Atoms: tiny, short, medium, long, and empty atoms

b. Sequence Tokens: Start List, End List, Start Name, and End Name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 34 of 314

c. Control Tokens: Call, End of Data, End of Session, Start Transaction, End Transaction

Tokens 0xE4-0xEF, 0xF4-0xF7 and 0xFD-0xFE are reserved for use by TCG.

An SSC MAY define support for only a subset of the available tokens, as well as the behavior of the
TPer when unsupported tokens are transmitted by the host.

3.2.2.3.1 Simple Tokens – Atoms Overview
Atoms are used to encode data of various sizes and types. Atoms MAY be tiny atoms, which are one
byte in length; short atoms which have a 1-byte header and contain up to 15 bytes of data; medium
atoms which have a 2-byte header and contain up to 2047 bytes of data; or long atoms which have a 4-
byte header and which contain up to 16,777,215 bytes of data.

Tiny atoms only represent integers, whereas short, medium, and long atoms are used to represent
integers or bytes (with the “B” bit set).

A continued value is used to represent a long byte sequence when the total length is not known in
advance. A continued value is represented by a sequence of two or more atoms.

Each atom in a continued value MAY be a short atom, medium atom, or long atom. The BS bits are set
to 11b for all atoms except the last atom, for which the BS bits are set to 10b. All representations of
continued values are considered equivalent encodings of the same value.

Integer and uinteger values SHOULD be encoded using the shortest possible atom.

3.2.2.3.1.1 Tiny atoms
Tiny atom header and data are all contained in eight bits.

Table 04 Tiny Atom Description
Header+Data

Tiny atom sign data
0 S d d d d d d

The encoding is as follows:

Table 05 Tiny Atom Encoding
Tiny Atom
indicator This bit is set to 0b to indicate the atom is a tiny atom

Sign
indicator

Value Interpretation
0b The data is treated as unsigned integer data.
1b The data is treated as a signed integer.

Data bits These represent the data value, an unsigned value in the range of 0...63 or a signed
value in the range of –32...31. The interpretation is based on the setting of the sign bit.

3.2.2.3.1.2 Short atoms
Short atoms consist of a one-byte header and between 0 and 15 bytes of data.

Table 06 Short Atom Description
Header (1 byte) Data

Short Atom byte/
integer

sign/
continued length (0...15 bytes)

1 0 B S n n n n d ... d

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 35 of 314

The encoding is as follows:

Table 07 Short Atom Encoding
Short Atom
indicator These two bits are set to 10b to indicate the atom is a short atom.

Byte/integer
indicator

Value Interpretation
0b The data bytes represent an integer value and the S bit indicates if that

value is signed.
1b The data bytes represent a byte sequence and the S bit indicates

whether or not this value is continued into another atom.
Sign/continued
indicator

Value Interpretation
0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final

segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The permitted
range is from 0 to 15, inclusive.

A length of 0 SHALL only be permitted for non-continued bytes tokens The encoding of a 0-length byte
value is displayed in Table 08.

Table 08 0-Length Byte Encoding
Header (1 byte)

Short Atom byte/
integer

sign/
continued length

1 0 1 0 0 0 0 0
A 0-length byte value is encoded using only 1 byte: 1 0 1 0 0 0 0 0. This value would be encoded in
the token stream as 0xA0.

3.2.2.3.1.3 Medium atoms
Medium atoms consist of a two-byte header, and between 1 and 2047 bytes of data.

Table 09 Medium Atom Description
Header (2 bytes) Data

0 1 ...
Medium

Atom
byte/

integer
sign/

continued length (1..2047 bytes)

1 1 0 B S n n n n n n n n n n n d ... d

The encoding is as follows:

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 36 of 314

Table 10 Medium Atom Encoding
Medium Atom
indicator These three bits are set to 110b to indicate the atom is a medium atom.

Byte/integer
indicator

Value Interpretation
0b The data bytes represent an integer value and the S bit indicates if that

value is signed.
1b The data bytes represent a byte sequence and the S bit indicates

whether or not this value is continued into another atom.
Sign/continued
indicator

Value Interpretation
0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final

segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 2047.

3.2.2.3.1.4 Long atoms
Long atoms consist of a four-byte header, and between 1 and 16M-1 bytes of data.

Table 11 Long Atom Description
Header (4 bytes) Data

0 1 2 3 ...
Long
Atom reserved byte/

integer
sign/

continued Length (1..16,777,215
bytes)

1 1 1 0 0 0 B S n d ... d

The encoding is as follows:

Table 12 Long Atom Encoding
Long Atom
indicator These four bits are set to 1110b to indicate the atom is a long atom.

reserved These bits are reserved and SHALL be set to 0b.
Byte/integer
indicator

Value Interpretation
0b The data bytes represent an integer value and the S bit indicates if that

value is signed.
1b The data bytes represent a byte sequence and the S bit indicates

whether or not this value is continued into another atom.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 37 of 314

Sign/continued
indicator

Value Interpretation
0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.
B==1b The data is either the complete byte sequence, or the final

segment of a continued byte sequence.
1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.
B==1b The data is a non-final segment of a multi-byte continued value.

Length These bits specify the length of the following data byte sequence. The value 0 is
not a legal value. The permitted range is up to 16,777,215.

3.2.2.3.1.5 Empty Atom
The Empty atom is one byte consisting of eight 1 bits.

Table 13 Empty Atom Description
Header (1 byte)

Empty Atom
1 1 1 1 1 1 1 1

The Empty atom MAY appear at any point in the stream encoding where any other atom is able to
appear, including between the atoms of a continued value, and it SHALL be ignored.

Begin Informative Content

The Empty atom does not encode values. The Empty atom allows other values in the data subpacket
contained in that part of the stream to be aligned with multi-byte boundaries for efficiency. It also allows
areas of a fixed buffer to be filled with a value that is able to be safely ignored.

End Informative Content

3.2.2.3.2 Sequence Tokens
Composite values, such as Named values and lists, are represented by a sequence of tokens.

3.2.2.3.2.1 Named
Named values have the expositional form name=value and are used to represent a name-value pair. A
Named value is a sequence of tokens: a Start Name token (SN), followed by a non-continued byte-
string/uinteger/integer value that specifies the name, followed by any value (including list or a Named
value), followed by an End Name token (EN).

3.2.2.3.2.2 List
Lists are ordered sequences of elements of the form [e1,e2,...,ei]. List elements MAY be tokens,
lists, or Named values. A list is encoded as a Start List token (SL) followed by a sequence of zero or
more elements followed by an End List token (EL).

3.2.2.3.3 Control Tokens
Control tokens are single byte tokens that are used to specify special actions.

3.2.2.3.3.1 Call (CALL)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 38 of 314

This token is used to indicate the start of a method invocation.

3.2.2.3.3.2 End of Data (EOD)
This token is used to signal the end of the parameters, or the result, of a method invocation. This token
is used in message streams by both the host and the SP.

3.2.2.3.3.3 End of Session (EOS)
The host application utilizes this token to signal to the SP that it is ending the session. The SP
responds to this token with an End of Session token of its own in its response stream.

3.2.2.3.3.4 Start Transaction (ST)
The host application utilizes this token to open a transaction.

When the host begins a transaction, the Start Transaction token is sent by the host to the SP along with
the status, a uinteger, required for that transaction control token. The status supplied by the host with
the Start Transaction token SHOULD be a 0x00, and SHALL be ignored by the TPer.

When the SP delivers its response to the host application's message, the SP's message SHALL mirror
that of the host by including Start Transaction tokens in the corresponding places in the message
stream. The TPer SHALL supply the status of the Start Transaction request. If the host sends a non-
zero status code with the Start Transaction token, the device SHALL respond with a status code of
0x00, unless the transaction was unable to start.

If the host transmits a Start Transaction token that causes the transaction nesting limit to be exceeded,
the TPer SHALL abort the session (see Properties Section for details on the transaction nesting limit).
If for any reason the TPer is unable to start a transaction as requested by the host, the TPer SHALL
abort the session.

Table 14 Start Transaction Status Codes
Start Transaction Status Code (uinteger) Meaning

0x00 Success

>0x00 Reserved

3.2.2.3.3.5 End Transaction (ET)
The host application utilizes this token to commit or abort the associated open transaction level.

When the host ends the transaction, the End Transaction token is sent by the host to the SP along with
the uinteger status required by the host for that transaction control token.

When the SP delivers its response to the host application's message, the SP's message SHALL mirror
that of the host by including End Transaction tokens in the equivalent places in the message stream
along with the actual status of the End Transaction request.

The host SHOULD send a status code of 0x00 or 0x01 with an End Transaction token. A status code of
0x00 signals to the device that the host is committing that transaction level. A status code of 0x01
signals to the device that the host is aborting that transaction level and the TPer SHALL abort that
transaction level.

If the host sends a status code of 0x00, the device SHALL attempt to commit that transaction level, and
SHALL return either 0x00 in the case of a successfully committed transaction or 0x01 in the case of an
unsuccessfully committed transaction.

If the host sends a status code with an End Transaction token that the device does not support, the
device SHALL abort the transaction and return a status code of 0x01.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 39 of 314

Host delivery of the End Transaction token with a status code other than 0x00 signals that the host is
aborting the transaction. The TPer SHALL abort that transaction level.

SP delivery of the End Transaction token with a status code other than 0x00 signals that the SP
aborted the transaction.

Table 15 End Transaction Status Codes
End Transaction Status Code (uinteger) Meaning

0x00 Commit

0x01 Abort

>0x01 Reserved

3.2.2.3.4 Unexpected/Out of Order Control Tokens
In cases where the host transmits unexpected or out of order control tokens the TPer SHOULD abort
the session. These cases include (but are not limited to):

a. Multiple consecutive control tokens of the same type where this repetition is not permitted. This
includes the Call, End of Data, and End of Session tokens.

b. Out of order control tokens

3.2.3 ComPackets, Packets & Subpackets
Begin Informative Content

The low-level interface transport layer handles the retransmission of damaged or incomplete
commands. Secure messaging, detailed in later sections of this specification, permits the host
application to secure its data from malicious attack, not to address hardware and low-level transport
issues. (Similarly with the session start up protocol, hashing is intended to detect tampering.)

The payloads of ComPackets convey tokenized byte streams (method calls, parameters, results, and
status codes) and other control information, such as ACKs and NAKs.

End Informative Content

3.2.3.1 Format
A ComPacket is the primary unit of communication transmitted as the payload of an interface
command. An interface command payload SHALL hold only one ComPacket. A ComPacket SHALL
NOT span multiple interface commands. A ComPacket MAY contain zero or more packets in its
payload.

A Packet is associated with a particular session and MAY hold zero or more subpackets.

A Subpacket MAY hold zero or more tokens. Tokens MAY span multiple subpackets and multiple
packets. However, subpackets SHALL NOT span multiple packets, and packets SHALL NOT span
multiple ComPackets.

3.2.3.2 ComPacket Format

Table 16 ComPacket Format
Bit

Byte 7 6 5 4 3 2 1 0
0 (MSB) Reserved

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 40 of 314

1
2
3 (LSB)
4 (MSB)
5

ComID
(LSB)

6 (MSB)
7

ComID Extension
(LSB)

8 (MSB)
9

10
11

OutstandingData

(LSB)
12 (MSB)
13
14
15

MinTransfer

(LSB)
16 (MSB)
17
18
19

Length (n)

(LSB)
If Length >
0, 20 to n +

19
Payload

3.2.3.2.1 ComPacket Header Fields

3.2.3.2.1.1 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.3.2.1.2 ComID
The value in this field is the ComID of this ComPacket (see 3.3.2).

3.2.3.2.1.3 ComID Extension
The value in this field is the ComID Extension of this ComPacket (see 3.3.3.1)

3.2.3.2.1.4 OutstandingData
For ComPackets sent by the TPer to the Host, this field contains the total number of bytes that the TPer
has available for the host on this ComID. This value is based on the data available in the TPer at the
point in time when the ComPacket is transmitted to the host by the TPer.

This total SHALL NOT include the data being transferred in the current ComPacket. This total SHALL
include Compacket/Packet/Subpacket overhead. If the TPer has no additional data for this ComID, this
value SHALL be 0x0000_0000. If the TPer has more than 0xFFFF_FFFF bytes for this ComID, this
value SHALL be 0xFFFF_FFFF. If the TPer is still processing a response but no additional data is ready
yet, this value SHALL be 0x0000_0001.

For ComPackets sent by the Host to the TPer, this field is reserved and SHOULD contain
0x0000_0000, and SHALL be ignored by the TPer.

3.2.3.2.1.5 MinTransfer

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 41 of 314

For ComPackets sent by the TPer to the Host, this field contains the minimum number of bytes that the
host SHALL request on this ComID in order to transfer a packet for any session associated with this
ComID. This value is based on the data available in the TPer at the point in time when the ComPacket
is sent by the TPer.

This value SHALL include Compacket/Packet/Subpacket overhead. If the TPer has no additional data
for this ComID, or if the TPer has no minimum requirement, this value SHALL be 0x0000_0000. The
host application that manages this ComID SHOULD request at least MinTransfer bytes on the next IF-
RECV command that it sends for this ComID.

For ComPackets sent by the Host to the TPer, this field is reserved and SHOULD contain
0x0000_0000, and SHALL be ignored by the TPer.

3.2.3.2.1.6 Length
This field value is the number of bytes in the ComPacket payload.

3.2.3.2.2 ComPacket Payload Fields

3.2.3.2.2.1 Data
This field contains a sequence of one or more packets.

3.2.3.3 Packet Format
Each packet is made up of the fixed fields noted in this section to allow acknowledgements, negative
acknowledgements, and/or data to be included in a single packet.

Table 17 Packet Format
Bit

Byte 7 6 5 4 3 2 1 0
0 (MSB)
1
2
3
4
5
6
7

Session
(0-3 = TSN, 4-7 = HSN)

(LSB)
8 (MSB)
9

10
11

SeqNumber

(LSB)
12 (MSB)
13

Reserved
(LSB)

14 (MSB)
15

AckType
(LSB)

16 (MSB)
17
18
19

Acknowledgement

(LSB)
20 (MSB) Length (n)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 42 of 314

Bit
Byte 7 6 5 4 3 2 1 0
21
22
23 (LSB)

If Length > 0,
24 to n + 23

Payload

3.2.3.3.1 Packet Header Fields

3.2.3.3.1.1 Session
This field identifies the session number associated with this packet. The session number is composed
of two uinteger_4 values – the TPer session number and the Host session number (Session = TPerSN
concatenated with the HostSN). The TPer Session Number is sent first; the Host Session Number is
second. Consequently, the same session number is used for communications between both parties.

3.2.3.3.1.2 SeqNumber
This is an incrementing counter that starts at 1 and increments until 232-1, which identifies the number
of the packet within the session and defines the ordering of transmitted packets.

If packet numbering is supported, the message recipient SHALL ignore a packet with an equal or lower
SeqNumber value than any previously acted-upon packet. In addition, wrapping of the SeqNumber
SHALL result in the session being automatically aborted.

Each communicator SHALL maintain multiple SeqNumber counts, including that of the last packet
acknowledged, the next packet expected, and the last packet transmitted.

3.2.3.3.1.3 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.3.3.1.4 AckType
This field identifies the usage of the Acknowledgement field.

a. This SHALL be 0x0001 if the Acknowledgement field contains a packet acknowledgement
(ACK).

b. This SHALL be 0x0002 if the Acknowledgement field contains a packet negative
acknowledgement (NAK).

c. This SHALL be 0x0000 if no packets are being acknowledged or negative acknowledged, and
the value of the Acknowledgement field SHALL be zeroes.

3.2.3.3.1.5 Acknowledgement
The meaning of this field is determined by the value of the AckType field.

a. If the value of the AckType field is 0x0001, then this number SHALL be the SeqNumber of the
last packet successfully received by the receiver.

b. If the value of the AckType field is 0x0002, then this SHALL be the SeqNumber of the packet at
which the receiver wishes the sender to begin retransmission. Generally, the receiver puts a
value of the last known good packet received plus one.

i. For AckType field value of 0x0002, the communicator SHALL NOT NAK a SeqNumber
less than or equal to the last ACKed SeqNumber.

c. If the AckType field is 0x0000, then the value of this field SHALL be zeroes.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 43 of 314

3.2.3.3.1.6 Length
This field identifies the number of bytes in the Payload field.

3.2.3.3.2 Packet Payload Fields

3.2.3.3.2.1 Data
This field contains a sequence of one or more subpackets.

3.2.3.4 Subpacket Formats
Begin Informative Content

Subpackets are used to package data for transmission between the host and the TPer, as well as to
exchange credits between communicators. The different types of Subpackets are enumerated in Table
18

End Informative Content

Table 18 Subpacket Types
Subpacket Type Kind Field Value

Data 0x0000

Credit Control 0x8001

3.2.3.4.1 Data Subpacket Format

Table 19 Data SubPacket Format
Bit

Byte 7 6 5 4 3 2 1 0
0 (MSB)
1
2
3
4
5

Reserved

(LSB)
6 (MSB)
7

Kind
(LSB)

8 (MSB)
9

10
11

Length (n)

(LSB)
If Length > 0,
12 to n + 11

Payload

3.2.3.4.1.1 Data Subpacket Header Fields

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 44 of 314

3.2.3.4.1.1.1 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.3.4.1.1.2 Kind
This field identifies the type of the subpacket. For data subpackets, this field is set to zeroes.

3.2.3.4.1.1.3 Length
The field identifies the number of bytes in the Data portion of the subpacket Payload. This value does
not include the length of the Pad portion of the Payload.

3.2.3.4.1.2 Data Subpacket Payload Fields

3.2.3.4.1.2.1 Data
This contains a series of bytes representing one, more than one, or possibly part of one token.

3.2.3.4.1.2.2 Pad
The pad field ensures that the boundaries between subpackets (and therefore packets) are aligned to
4-byte boundaries. The number of pad bytes SHALL be (-Subpacket.Length modulo 4). This field
SHALL be zeroes.
Begin Informative Content

The receiver of a Subpacket is able to unambiguously determine how many bytes of real data there are
by examining the Length field in the Subpacket header.

End Informative Content

3.2.3.4.2 Credit Control Subpacket Format
For information on the use of Credit Control Subpackets, see Flow Control in Section 3.3.8.

Table 20 Credit Control Subpacket

Bit
Byte 7 6 5 4 3 2 1 0

0 (MSB)
1
2
3
4
5

Reserved

(LSB)
6 (MSB)
7

Kind
(LSB)

8 (MSB)
9

10
11

Length

(LSB)
12 (MSB)
13
14
15

Credit

(LSB)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 45 of 314

3.2.3.4.2.1 Credit Control Subpacket Header Fields

3.2.3.4.2.1.1 Reserved
The values in this field are reserved.

This field SHOULD be set to zero and SHALL be ignored by both host and TPer.

3.2.3.4.2.1.2 Kind
This field identifies the type of the subpacket. For Credit Control Subpackets, this field is set to 0x8001.

3.2.3.4.2.1.3 Length
The field identifies the number of bytes in the in the Credit Control Subpacket payload. This is always
0x00000004 for a subpacket of this type.

3.2.3.4.2.2 Credit Control Subpacket Payload Fields

3.2.3.4.2.2.1 Credit
This field identifies the number of bytes to credit. This is an additional number of bytes that the receiver
of the Credit Control Subpacket MAY be send to the stream (see 3.3.8.2).

3.2.3.5 Secure Messaging Packet Format
Begin Informative Content

Secure messaging enables confidentiality of the packet payload and integrity/authenticity of the entire
packet (including header). Secure messaging comes in three types:

a. Confidential Messaging – this provides encryption on the message being transmitted.
Confidential Messaging prevents the packet contents from being read by an intruder between
the packet source and destination.

b. Integrity/Authenticity Checking – this provides the ability to detect corruption and/or tampering
with packets in a session.

c. Confidential Messaging with Integrity/Authenticity Checking – this provides encryption on the
message being transmitted and the added ability to detect corruption and/or tampering with
packets in a session.

End Informative Content

A secure messaging packet SHALL be used when encryption or integrity/authenticity checking (or both)
is enabled for a session. The format of the Secure Messaging Packet follows that defined in Table 17.
The contents of the Secure Messaging Packet payload field are displayed in Table 21 and Table 22.

Table 21 Secure Messaging Packet – Payload Field
Field Type
IV bytes
SecureData bytes
MAC bytes

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 46 of 314

Table 22 Secure Messaging Packet Payload– SecureData Field
Field Type
DataLength uinteger
Data bytes
Pad bytes

3.2.3.5.1 Secure Messaging Packet Header Fields

3.2.3.5.1.1 Session
See Section 3.2.3.3.1.1.

3.2.3.5.1.2 SeqNumber
See Section 3.2.3.3.1.2.

3.2.3.5.1.3 Reserved
See Section 3.2.3.3.1.3.

3.2.3.5.1.4 AckType
See Section 3.2.3.3.1.4.

3.2.3.5.1.5 Acknowledgement
See Section 3.2.3.3.1.5.

3.2.3.5.1.6 Length
See Section 3.2.3.3.1.6.

3.2.3.5.2 Secure Messaging Packet Payload Fields
This section describes the fields presented in Table 21.

3.2.3.5.2.1 Initialization Vector (IV)
This field contains the Initialization Vector (IV) input for the selected encryption or integrity checking
mode. For GCM, GMAC, and CCM, the IV is 8 bytes long and SHALL contain a unique value with each
encryption invocation. A simple algorithm is for the sender to use the sequence number as the IV.

For AES-CBC encryption, the IV SHALL contain a random 16-byte value.

For all other modes, the IV SHALL have zero length.

3.2.3.5.2.2 SecureData
This field contains the encrypted and/or integrity-protected data being transmitted in the packet (see 0).

3.2.3.5.2.2.1 DataLength
This field is the length of the SecureData's Data field, in bytes.

3.2.3.5.2.2.2 Data
This field contains the encrypted or integrity-checked subpackets

3.2.3.5.2.2.3 Pad
This field contains any necessary padding required to fulfill the alignment constraints for the encryption
mode in use. For AES-CBC encryption, the length of the Pad field SHALL include a number of padding

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 47 of 314

bytes such that the total length of the Data field plus the Pad field is congruent to zero mod 16. For
GCM and CCM, there is no required padding.

The value for pad bytes SHALL be 0x00.

3.2.3.5.2.3 Message Authentication Code (MAC)
This field contains a message authentication code that protects the integrity of the packet. The MAC
SHALL encompass the entire Packet header, including the Reserved field, IV, and, for encrypted data,
the ciphertext (the value of the SecureData field, which is made up of the Data Length, Data, and Pad
fields), or, for unencrypted data, the unencrypted SecureData field.

3.2.4 Methods
Begin Informative Content

This section describes the syntax and encoding of method calls.

End Informative Content

3.2.4.1 Method Syntax
A method invocation is made up of the following parts:

1. Method Header – The method header is made up of the InvokingID and the MethodID, and
identifies what method is being called and on what the method is operating.

1. InvokingID – This is the 8-byte UID of the table, object, or SP upon which the method is
being invoked.

a. For SP methods invoked within a session, the InvokingID SHALL be 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x01, which is used to signify “this SP”.

b. For methods invoked at the Session Manager Layer, the InvokingID SHALL be 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0xFF, known as the "SMUID".

c. For other methods, this is the 8-byte UID of the table or object upon which the method
is being invoked.

2. MethodID – This is the 8-byte UID of the method being invoked.

a. For methods invoked within a session, this SHALL be the UID column value of the
object that represents the methed as assigned in the MethodID table.

b. For Session Manager Layer methods, this SHALL be the UID as assigned in Table
239. There SHALL NOT be rows in the MethodID table that represent these methods.

2. Method Parameters – This is a list of the parameters submitted to the method. These
parameters MAY be one of two types.

1. Required parameters – These parameters are required to be submitted to the method
invocation. These parameters SHALL appear first in the method invocation, ahead of any
optional parameters, and SHALL be submitted in the order in which they are listed in a
method's signature as defined in this specification.

2. Optional parameters – These parameters SHALL NOT be required to be submitted to the
method invocation. Optional parameters that are submitted to a method invocation SHALL
be submitted after all required parameters, and SHALL appear in the order defined in this
specification.

a. Optional parameters are submitted to the method invocation as Named value pairs.
The Name portion of the Named value pair SHALL be a uinteger. Starting at zero,
these uinteger values are assigned based on the ordering of the optional parameters
as defined in this document.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 48 of 314

b. The first optional parameter in a method signature SHALL be represented by the
"name" zero (0x00) in the Named value pair when that method is invoked, and SHALL
thus have the format "0x00 = value" when that method is invoked.

c. Each optional parameter in a method signature after the first SHALL be represented by
the uinteger of the previous optional parameter indicated in the method's signature
incremented by one. Thus, the second optional parameter in an invocation of a
particular method SHALL have the format "0x01 = value".

3.2.4.2 Method Encoding
A method invocation is made up of a sequence of tokens that are sent from the application to the TPer,
and from the TPer to the host for Session Manager method responses, as follows:

1. Call token – A Call token is transmitted to indicate that a method invocation is to follow.

2. Method Header – This is the encoding of the InvokingID and the MethodID. This value is:

1. InvokingID – The InvokingID is a bytes token representing the 8-byte value that is the
first part of the Method Header being transmitted.

2. MethodID – The MethodID is a bytes token representing the 8-byte value that is the
second part of the Method Header being transmitted.

3. Parameters – The parameters are submitted to a method invocation as a list. The parameter
list follows this format:

1. Start List token – This identifies the beginning of the list of parameters.

2. Required parameters – This is the set of parameters that are required to be sent to a
method. The encoding of required parameters is dependent on the type associated
with that parameter, as defined by the method signature and the context in which the
method is being invoked.

3. Optional parameters – this is the set of zero or more Named value pairs that MAY be
sent to the method to represent the method's optional parameters. Each optional
parameter SHALL be made up of the following parts:

1. The Start Name token, which indicates the start of this optional parameter.

2. The encoded name, which in the case of optional parameters is a uinteger.

3. The encoded value. The encoding of the parameter value is dependent on the
type associated with that parameter, as defined by the method signature and the
context in which the method is being invoked.

4. The End Name token, which indicates the end of this optional parameter

4. End List token – this identifies the end of the list of parameters.

4. End Of Data token – The End of Data token is transmitted to indicate that the method
invocation is ended.

5. Status Code List – This is the status list, a list of values of type uinteger, which contains the
status codes expected from the host's invocation of the method. These status values are
encoded using List tokens.

1. The first value in the list SHALL be 0x00 for a method that the host expects to
complete properly. For a method that the host wishes to abort, the host SHALL NOT
include a value that is 0x00 as the first value in the status list, which SHALL cause the
TPer to abort processing on that method and return that non-0x00 value as the first
value in the status list.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 49 of 314

2. The second and third values in the status list are reserved, and are defined in this
specification to be 0x00 and 0x00 and SHOULD be ignored by the TPer.

Except for the Session Manager methods, each method call SHALL have a response that is a
sequence of tokens that are sent from the TPer to the host as follows.

1. Start List token – This identifies the beginning of the list of results.

2. Output Results – This is zero or more token sequences that represent the response to the
method, as defined in the method signature.

3. End List token – This identifies the end of the list of results.

4. End Of Data – The End of Data token is transmitted to indicate that the result list has ended.

5. Status List – This is the status list, a list of values of type uinteger, which contains the status
codes expected from the host's invocation of the method. These status values are encoded
using List tokens.

i. If the host invoked the method with a status list whose first uinteger was 0x00, then the
first value in the status list SHALL always be the status of the method, as described in
5.1.5. If the host invoked the method with a status list whose first byte was not 0x00,
then the first value in the status list SHALL contain the same value that was sent by the
host in the first uinteger of the host's status list.

ii. The second and third values in the list are uintegers reserved for use by the TCG, and
are defined in this specification to be 0x00 and 0x00 and SHOULD be ignored by the
host.

iii. Additional values MAY be returned in the status list, as long as the first three values in
the status list are returned as required by this specification.

Method responses SHALL be returned for all method invocations or method invocation attempts within
a session. Responses for method invocation attempts of methods not recognized by the TPer or that
result in some other failure condition MAY return an empty method result (the output result is an empty
list) and an error code. Unrecognized method invocation attempts outside of Regular sessions SHALL
be ignored by the TPer – in these cases, no response is sent.

Session Manager protocol layer method invocations that are recognized but fail SHALL result in the
normal response format for that method, accompanied by an error status code. Session startup
methods that fail in this way SHALL have returned the expected method response, but that method
SHALL have only the identifying parameters (Host, SP) and an error status code. If the identifying
parameters (particularly the Host parameter) are invalid (i.e. of the incorrect type), the TPer MAY ignore
the method.

The TPer MAY begin sending the response as soon as enough parameters have been received to
prepare a response.

3.2.4.3 Method Result Retrieval Protocol
A method is invoked by tokenizing the method call and its parameters as described in previous
sections, using the token encoding format and Subpacket-Packet-ComPacket format. The host sends
the ComPacket to the TPer in an IF-SEND command. Multiple IF-SEND commands MAY be required
to encompass the entirety of a method invocation or series of method invocations and their related
data.

The host then polls the TPer by transmitting IF-RECV commands. When the TPer has packaged its
response, it transmits the tokenized results to the host in the payload of an IF-RECV command.
Multiple IF-RECV commands MAY be required to retrieve all of the results of a particular method
invocation or series of method invocations.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 50 of 314

For additional information on the operation of the IF-SEND and IF-RECV commands, see the
descriptions for those commands as detailed in the appropriate interface specifications.

3.2.5 Tables
Tables SHALL be stored in SP-specific parts of the secure storage area of the TPer. The SP-related
secure storage area(s) of a TPer SHALL only be accessible via the host interface-specific IF-SEND and
IF-RECV commands. Table content SHALL NOT, unless otherwise stated, be part of the User
Addressable Logical Block Address space on the Storage Device and therefore is not affected by the
partitioning or formatting of the Storage Device by the host operating system.

Begin Informative Content

All persistent data for SPs are stored in tables – the only data for an SP that persists past the end of a
session is the data that is stored in tables. Tables survive operations on user-areas, such as
reformatting.

A table is defined as a grid with columns and addressable rows. At each column and row intersection
there is a cell. All the cells in a column have the same type. The column types for a host-created table
are specified at table creation.

For some SSCs, the number of rows in a table whose size is not specified is completely determined
when it is created (additional rows are not able to be allocated), but other SSCs define tables whose
size is not specified with a dynamically allocable number of rows. If an SSC permits additional rows to
be added to a table, then the number of rows specified at table creation is the initial number of rows
allocated for that table.

End Informative Content

A table name or table column name MAY be up to 32 bytes in length. By convention, the names
assigned in this document consist of ASCII characters, the first of which is a letter and others are
letters, digits or underscores. Adjacent underscores do not occur. All names are case sensitive.

Within an SP, tables MAY be created and deleted. For each table, rows MAY be created and deleted
(except within a Byte table – see 3.2.5.1), but columns are created only when the table is created.
Tables MAY contain zero or more rows. A specific Security Subsystem Class MAY disallow the
creation of any of these.

Each SP has a set of metadata tables (such as the Table table, Column table, etc.) that describes all
the tables of the SP including the metadata tables themselves.

Access control provides a means to limit the methods that MAY be successfully invoked on tables, or
particular rows or cells of tables.

Some table columns represent control points for functionality provided by an SP, either based on the
templates incorporated into the SP, or on the underlying TPer implementation. If the functionality
represented by a particular column or set of columns as defined in this Specification is not provided by
an SP, then access to the table columns that represent that functionality MAY be restricted.

3.2.5.1 Kinds of Tables
There are two kinds of tables:

a. Byte table. Byte tables provide raw data storage. A byte table has one unnamed column
of type bytes_1. The address of the first row in a byte table is 0. Upon creation, the value
of all cells in a byte table SHALL be 0x00. The rows of a byte table SHALL NOT be
allocated or freed (i.e. via CreateRow or DeleteRow). Byte table rows are addressed by
row number.

b. Object table. Object tables provide storage for data that binds a set of methods and
access controls to that data. When a table is created it SHALL be allocated a fixed number

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 51 of 314

of fixed-size columns. Zero or more columns are designated as the unique set of values
(see 3.2.5.4).

For Object tables:

a. A newly created table is initially empty and rows SHALL be created using the CreateRow
method, before they are usable.

b. There is always a UID column of type UID. In object tables, rows are addressed by UID.

3.2.5.2 Objects
Begin Informative Content

An object is any row of an object table. The particular object type is defined by the object table in which
the object occurs. The columns of the object table define the contents of each object in it.

For a specific SP, there are methods on the SP itself, methods that act on the tables and have the
whole table as their possible scope, and methods for each of the objects within the SP. Object-specific
ACLs are applied to the methods capable of manipulating that object’s data (see 3.4.2).

End Informative Content

3.2.5.3 Unique Identifiers (UIDs)
Each object table has a column named UID. This column contains an 8-byte unique identifier for that
row. Each row has an SP-wide unique value in this column. This value is never shared with another
row, and is never reused by that SP. The TPer SHALL guarantee that UIDs are unique across the
entire SP anytime that a UID is generated, and that UIDs SHALL NOT be re-used even if an object is
deleted and the UID is no longer in use.

The UID column is present to provide anti-spoofing capability, and to provide a means to address these
rows. New UIDs are assigned when rows are created and old values are discarded when rows are
deleted. If all UIDs have been used, no more rows are able to be created.

Each table is also represented by a UID. A table’s UID is derived from the UID of that table in the
Table table. The Table table is an object table in which each row is a table descriptor object that
stores metadata about the associated table.

The bytes in a UID SHALL be utilized as follows:

a. The first four bytes of a table row’s UID SHALL be the “containing table” portion of the UID
and the last four bytes SHALL be assigned in a TPer-specific manner.

b. UIDs of tables SHALL be assigned as follows:

i. The UIDs of table descriptor objects (the table’s row in the Table table) SHALL be
0x00 0x00 0x00 0x01 XX XX XX XX, where XX XX XX XX represents the values
assigned by the TPer to that object’s UID, or assigned by this specification or an
SSC for pre-defined tables. For example, The Table table’s UID SHALL be 0x00
0x00 0x00 0x01 0x00 0x00 0x00 0x01

ii. The UID used to reference the actual table (rather than that table’s row in the
Table table) SHALL be XX XX XX XX 0x00 0x00 0x00 0x00, where XX XX XX XX
are the last four bytes of the UID from that table's row in the Table table. Four
0x00’s as the last four bytes of a UID that does not have four 0x00’s at the
beginning are references to a table.

iii. All object UIDs SHALL have their high four bytes be the high four bytes of the
containing table’s UID. So, references to rows in a table are assigned UIDs based
on the UID of the containing table. For instance, references to the rows in table XX
XX XX XX 0x00 0x00 0x00 0x00 are assigned UIDs XX XX XX XX yy yy yy yy
where the first four bytes of the containing table UID and of the row are the same.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 52 of 314

All UIDs with their first four bytes equal to 0x00 0x00 0x00 0x00 are reserved for use by the TCG and
SHALL NOT be assigned by the TPer.

When necessary to refer to the SP with a UID, as when an SP method is invoked, a UID of 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x01 is reserved to signify “this SP”.

For each table defined in this specification, UIDs with last four bytes between 0x00 0x00 0x00 0x01
and 0x00 0x01 0x00 0x00 SHALL be reserved for use by the TCG.

A NULL UID reference is all zeroes (0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00). This is used to
indicate that no object is being referenced.

3.2.5.4 Unique Column Value Combinations
In addition to the UID column, an object table MAY also have one or more columns designated by the
host (for host-created tables) or by the specification (for tables specified in this document) as required
to be unique.

If a table has a column or set of columns defined as unique, then each row of the table SHALL have a
value or combination of values in the indicated column(s) that is unique within the table for those
column values. When more than one column is marked as participating in this uniqueness requirement,
each of these columns participate in the unique value ("multi-column unique value").

The TPer is not required to keep rows of the table sorted by these unique values.

3.2.6 Templates
Begin Informative Content

This document covers the following Templates:

a. Base Template: Provides the tables and methods common for all SPs.

b. Admin Template: Provides administrative control over other SPs and the TPer settings as
a whole, and control over Issuance of new SPs.

c. Clock Template: Contains tables and methods specialized for forensic and cryptographic
clocks.

d. Crypto Template: Contains functional extensions to the Base SP cryptographic and
procedural capabilities.

e. Locking Template: Provides tables and methods for storage encryption/decryption and
read/write lock state control.

f. Log Template: Contains tables and methods specialized to forensic logging.

End Informative Content

3.3 Interface Communications
Begin Informative Content

The TCG Storage Architecture Core Specification describes the architecture and main command set in
an interface protocol-independent way. The implementation of this specification on various interfaces
does have some differences (see [2]).

This section abstracts out the common features of these commands that serve as a requirement for an
interface protocol to implement the present specification. These sections address communications on
protocols 0x01 and 0x02 only (see Table 24).

The following assumptions are made regarding the interface commands:

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 53 of 314

a. The interface commands have two parts: (1) a command block and (2) a data payload.
Each host interface protocol has its own minimum payload size. The payload size is not
related to the 'logical block size' of the user data on the medium of the Storage Device. See
the definitions of IF-SEND and IF-RECV for details.

b. There is at least one command in the interface protocol that transfers data from the host to
the Storage Device. These commands are called IF-SEND.

c. There is at least one command in the interface protocol that transfers data from the Storage
Device to the host. These commands are called IF-RECV.

The abstracted command block of the interface commands are described in the format defined in Table
23.

The mapping of the IF-SEND and IF-RECV commands to specific interface protocol commands are
described in [2].

End Informative Content

Table 23 Interface Command – Command Block
Command Either IF-SEND or IF-RECV.

Protocol ID Between 0x01 and 0x06 (see
Table 24)

Transfer Length: at least 2
bytes (the length of this field
varies by host interface)

The amount of data to be
transferred.

ComID
The ComID to be used, for
Protocol IDs 0x01, 0x02, 0x06
(see 3.3.2 and 3.3.3).

Table 24 Protocol IDs
ID Description

0x00 See [6]

0x01 Defined in this document

0x02 Defined in this document

0x03 Reserved for TCG

0x04 Reserved for TCG

0x05 Reserved for TCG

0x06 Reserved for TCG

All others See [6]

3.3.1 Communicating With the TPer Through the Interface Protocol
Begin Informative Content

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 54 of 314

The communication between the Host and the TPer takes place through the use of IF-SEND and IF-
RECV as illustrated in Figure 3 . Most of the useful communication between a Host and a TPer is
encapsulated in the payload of these commands.

End Informative Content

Figure 3 TPer-Host Communication

3.3.2 The ComID
Begin Informative Content

The ComID is used to select the correct response data for the host. The ComID allows the TPer to
identify the caller of the IF-RECV command and appropriately populate the payload for the command.

For dynamic assignment of ComIDs, in order to open a session with a particular SP on a TPer, the host
application starts by requesting a ComID from the TPer if it doesn't already have one that's active.

The TPer then issues a ComID to the host application. Once the host application has a unique ComID,
the host is able to initiate the process of starting a session.

Once the session is started, the TPer associates the session number with the ComID. In this way,
when an IF-RECV is sent to the TPer using Protocol ID of 0x01, the TPer is able to respond with a
payload containing only the packets for the session numbers associated with the ComID. This allows
for multiple applications to be simultaneously communicating with the TPer without interfering with one
another.

In some situations it is useful to allow for a single entity, called the Host Session Manager, to manage
the TPer communications for a set of different applications running on the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 55 of 314

To the TPer, communication with a single host application is no different than communication with a
Session Manager that acts as an intermediary for multiple host applications with which the TPer is
communicating.

End Informative Content

To enable a single host application to manage communications for multiple other applications, multiple
sessions MAY be opened with a single ComID. All the sessions opened with a given ComID SHALL
be associated with it.

An application MAY open a single session to the TPer for itself, multiple sessions for itself, multiple
sessions for one or more other applications, multiple sessions for itself and one or more other
applications, or any other combination.

When an IF-RECV is sent to the TPer using a particular ComID, the TPer SHALL respond by putting
packets from the sessions associated with the ComID into the response. If there are more pending
responses from the various sessions associated with the ComID than fits the IF-RECV, it is up to the
TPer to determine which packets to include.

Begin Informative Content

The number of packets/subpackets that are included in the response is a function of the amount of
available responses, the transfer length of the command, and the flow control mechanism. The amount
of data still remaining to be retrieved and the minimum transfer length required to retrieve at least one
packet, at the time the ComPacket was generated, is reported in the ComPacket header.

End Informative Content

3.3.3 ComID Management
Begin Informative Content

A mechanism is required to enable dynamic management of ComIDs so as to minimize the chances of
two host applications using the same ComID in the rare occasions in which there are ComID conflicts.
Support for dynamic ComID management is SSC-specific.

End Informative Content

ComIDs SHALL be assigned based on the allocation presented in Table 25.

Table 25 ComID Assignments
ComID Description

0x0000 Reserved

0x0001 Level 0 Device Discovery

0x0002-0x07FF Reserved for TCG

0x0800-0x0FFF Vendor Unique

0x1000-0xFFFF ComID management (Protocol ID=0x01, and 0x02)

The lower 4096 out of the possible ComIDs SHALL be reserved – 0-2047 are reserved for TCG
use/assignment, and 2048-4095 are reserved as vendor-unique. The other, non-reserved ComIDs
SHALL be used for multiplexing the TPer responses to IF-RECVs.

A ComID SHALL be in one of the following three states:

1. Inactive: The ComID has not been assigned to anyone since the last hardware reset or power
cycle, or because the ComID was retired due to all sessions on the ComID being closed.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 56 of 314

2. Issued: The ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using this ComID.

3. Associated: One or more open sessions are associated with the ComID.

ComIDs that are either in the Issued state or the Associated state are considered Active. The state
diagram in Figure 4 shows these states and the possible transitions among them.

Figure 4 ComID State Transition Diagram

The possible state transitions are:

a. Inactive to Issued: A ComID SHALL transition from the Inactive state to the Issued state
when it is returned to the host during a successful execution of the GET_COMID command.

b. Issued to Associated: A ComID SHALL transition from the Issued state to the Associated
state once a session is open using that ComID. This occurs at the point when session
startup has successfully completed.

c. Issued to Inactive: A ComID SHALL transition from Issued to Inactive when any one of the
following conditions hold:

i. There is a hardware reset or power cycle.
ii. The host does not start a session using the ComID within MaxComIDTime from the

ComID being issued. MaxComIDTime defines a limit on the amount of time a
ComID is able to exist in the Issued state without an active session. A TPer's
MaxComIDTime value is retrieved using the Properties method. Support for
MaxComIDTime is SSC-dependent.

d. Associated to Inactive: A ComID SHALL transition from Associated to Inactive when any
of the following conditions are met:

i. There is a hardware reset or power cycle.
ii. After all sessions associated with the ComID are closed, and no session startup

activities are in progress.
In order to minimize the possibility of conflict, the ComID issuance mechanism SHALL have the
following two characteristics:

a. A ComID that is in an active state SHALL NOT be issued again. That is, only ComIDs that
are in the inactive state SHALL be returned to the host as a response to the GET_COMID
command.

b. The TPer SHALL issue ComIDs in a sequential manner (wrapping around cyclically as
needed).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 57 of 314

In addition to the above transitions, the TPer MAY transition a ComID to the Inactive state at any time
for any reason.

3.3.3.1 Extended ComID
Begin Informative Content

Despite all the mechanisms in place, there is always the possibility that some application holds on to its
ComID for an extended period of time and not recognize that the ComID has become inactive and
(possibly) subsequently issued to another application. Since there are only 61440 normal non-reserved
ComIDs, the probability of this occurring is not small enough to be neglected. To help deal with this
issue the TPer makes use of Extended ComIDs.

End Informative Content

Extended ComIDs SHALL be 4 bytes long and have the first 2 bytes equal to the ComID. The second 2
bytes make up the ComID Extension.

The MSB of the ComID is the first byte (MSB) of the Extended ComID, and the LSB of the ComID is the
second byte of the Extended ComID. The TPer arbitrarily generates the remaining 2 bytes (the ComID
Extension) every time a ComID is issued. The GET_COMID command returns the 4-byte Extended
ComID to the host. There MAY be many Extended ComIDs associated with the same ComID over the
life of the TPer. The ComID Extension associated with reserved ComIDs (0-4095) SHALL always be
0x0000.

The ComID Extension value of 0xFFFF is reserved to indicate that the host has attempted to
communicate using an inactive ComID.The ComID Extension for ComIDs that are not dynamically
assigned by the TPer SHALL be set to 0x0000.

The Extended ComID SHALL be in one of the following states

1. Inactive: The associated ComID is in the inactive state.

2. Issued: The Extended ComID has been issued (it was returned to the host during a successful
completion of a GET_COMID command) but no sessions have been started using the
associated ComID.

3. Associated: One or more open sessions were open with the ComID. These sessions are said
to be associated with the Extended ComID.

4. Invalid: The Extended ComID has not been issued since the last power cycle/reset, or has
become inactive and there exists another Extended ComID with the same associated ComID in
one of the active states (Issued or Associated).

The Extended ComID is used to determine if an application is using a conflicting ComID, i.e., if the
ComID the application is using has become inactive and subsequently assigned to another application.
When this happens, the application’s Extended ComID SHALL be invalid. When the application makes
an inquiry to the TPer using the Extended ComID, the TPer SHALL respond with an indication that the
Extended ComID is invalid.

When the TPer receives a ComPacket (via IF-SEND) that contains a ComPacket with an invalid
Extended ComID, the TPer SHALL ignore and discard the payload of the ComPacket.

When the host receives a ComPacket (via IF-RECV) that contains an unexpected Extended ComID,
this is an indication to the host that it is using an invalid Extended ComID and that the ComID is being
used by another host or application. The host SHOULD assume that any sessions it had open on that
ComID have been aborted. To resume communications with the TPer, the host SHALL acquire a new
ComID.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 58 of 314

3.3.3.2 IF-SEND to Inactive or Unsupported Reserved ComID
If the host sends an IF-SEND command to the TPer with a ComID value in the non-reserved range
(0x1000 – 0xFFFF), and the ComID is in the Inactive state:

a. If the TPer supports dynamic ComID allocation, the TPer SHALL:

i. Accept all data in the payload of the IF-SEND command and complete the
command normally with good status (provided there are no other errors which
would cause the command to abort at the interface level)

ii. Ignore and discard the entire payload of the IF-SEND command.

b. If the TPer does not support dynamic ComID allocation, the TPer SHALL:

i. Report “Other Invalid Command Parameter”[2] OR

ii. Perform the action described above for TPers that support dynamic ComID
allocation.

If the host sends an IF-SEND command to the TPer with a ComID value in the reserved range (0x0000
– 0x0FFF), and the ComID is not supported by the TPer, the TPer SHALL:

a. Report “Other Invalid Command Parameter” [2].

3.3.3.3 IF-RECV to Inactive or Unsupported Reserved ComID
If the host sends an IF-RECV command to the TPer with a ComID value in the non-reserved range
(0x0000 – 0x0FFF), and the ComID is in the Inactive state:

a. If the TPer supports dynamic ComID allocation, the TPer SHALL:

i. Respond to the IF-RECV with a zero-length ComPacket (a ComPacket header
only) in the IF-RECV payload. The fields in the ComPacket header SHALL contain:

1. ExtendedComID = {<ComID from SP_Specific field of CDB>, 0xFFFF}

a. Note: The value of 0xFFFF in bits 15 through 0 of the
ExtendedComID field is an indication to the host that the
ComID it is attempting to use is inactive, and that it should not
expect to receive any data on that ComID.

2. OutstandingData = 0x00000000

3. MinTransfer = 0x00000000

4. Length = 0x00000000

ii. Complete the command normally with good status (provided there are no other
errors which would cause the command to abort at the interface level)

b. If the TPer does not support dynamic ComID allocation, the TPer SHALL:

i. Report “Other Invalid Command Parameter”[2] OR

ii. Perform the action described above for TPers that support dynamic ComID
allocation.

If the host sends an IF-RECV command to the TPer with a ComID value in the reserved range (0x0000
– 0x0FFF), and the ComID is not supported by the TPer, the TPer SHALL:

a. Report “Other Invalid Command Parameter”[2].

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 59 of 314

3.3.4 Protocol Layers
Begin Informative Content

In order to describe the overall process for establishing communication with the TPer and initiating a
session to an SP, it is necessary to partition the protocol stack into layers. The commands in each
layer differ in the amount of functionality available. The lower level allows only one-way communication
(TPer to host) and uses only simplistic byte field responses. The higher layers have two-way
communication and use packets and methods.

Figure 5 depicts the protocol layers.

Figure 5 TPer-Host Communication Protocol Layers

a. Session layer: This layer is entered when a session is successfully established between
the host application and an SP in the TPer. Most of the commands and functionality
specified in the TCG Storage Architecture Core Specification operate in this layer.
Payloads in this layer are packetized and tokenized.

b. Management layer: This layer deals with establishing a session between an SP and a
host application. Payloads in this layer are packetized and tokenized.

c. Communication (Com) layer: In this layer the host application already has an assigned
ComID that is used for establishing two-way communication. It is a bidirectional
communication/control layer. This layer is used for management of ComIDs and dealing
with error conditions and other Storage Device management issues.

d. TPer layer: This is the first entry point to the TPer. This is a “one-way” communication
layer. That is, only IF-RECV commands are dealt with in this layer. The host application

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 60 of 314

does not have a ComID yet. There is a set of reserved ComIDs that is used to invoke
special commands at this layer.

e. Interface layer: This portion of the stack contains the protocol for allowing the host to
control a specific Storage Device. The interface protocol must support IF-SEND and IF-
RECV, i.e., have commands with the properties that are required for these TCG
commands.

f. Transport layer: This portion of the stack is responsible for transporting the data from one
particular host to one particular Storage Device and vice-versa. An example is Fibre
Channel.

End Informative Content

3.3.4.1 Transport Layer
Begin Informative Content

This layer of the protocol stack is responsible for transmitting the data from one particular host to one
particular Storage Device and vice-versa. There are no specific interactions with this layer described in
the TCG Core Specification. The only requirement is that this layer interact with the Interface layer in
such a way as to guarantee that the order of commands sent from a single host to a single Storage
Device are preserved.

End Informative Content

3.3.4.2 Interface Layer
The commands at this layer are the IF-SEND and the IF-RECV commands. The interface controller on
the Storage Device SHALL identify these commands and send them to the TPer level.

All commands that map to IF-SEND and all the commands that map to IF-RECV that have the protocol
ID field in the set {0x01, 0x02, 0x03, 0x04, 0x05, 0x06} SHALL be sent to the TPer.

3.3.4.3 TPer Layer
Begin Informative Content

This is the entry point into the TPer. This layer has very limited functionality. Commands at this layer
are designed to be used without ComIDs. In particular, the command used to request a ComID,
GET_COMID, is dealt with in this layer.

The only commands dealt with in this layer are IF-RECV commands with some specific reserved
ComIDs and protocol ID settings. All other commands are passed up to the Communication Layer.

End Informative Content

The commands specified in the TPer layer and in the communication layer SHALL utlilize Protocol ID =
0x02.

3.3.4.3.1 GET_COMID
The command block for the GET_COMID command is defined in Table 26. The payload of the
GET_COMID command is defined in Table 27.

Table 26 GET_COMID Command Block
FIELD VALUE

Command IF-RECV

Protocol ID 02

Transfer Length 00 01

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 61 of 314

ComID 00 00

Table 27 GET_COMID Payload
BYTE FIELD VALUE

0 to 3 Extended ComID Allocated ComID

a. The first 4 bytes of the payload SHALL be the Extended ComID. The first two bytes of the
Extended ComID are the ComID. If the TPer is not able to assign a new ComID for any
reason it SHALL return all zeroes in the Extended ComID field.

b. The TPer SHALL NOT assign the value of 0xFFFF as the ComID Extension.

c. See [2] for padding requirements.

3.3.4.4 Communication Layer
Begin Informative Content

The Communcation Layer provides a mechanism for two-way communication between the host
application and the TPer. The primary purpose of the communication at this layer is to manage the
allocated ComID and to verify the validity of the allocated ComID.

Communication at this layer occurs using IF-SEND and IF-RECV commands using Protocol ID 0x02.
The host must have a ComID that has been assigned by the TPer using the GET_COMID command
available at the TPer Layer.

If the host application uses a ComID that is not valid or has become invalid since its last usage (see
3.3.3.1), the host application may query the TPer at this layer to retrieve ComID state without raising
exceptions on lower layers such as the Interface or TPer layers. This allows host applications to verify
validity of ComIDs without disturbing the operation of the TPer.

End Informative Content

3.3.4.4.1 Communication Layer Protocol
Begin Informative Content

The commands for communication with the TPer at this layer are as follows:

a. HANDLE_COMID_REQUEST: IF-SEND to ComIDs with the caller’s Extended ComID
passed as the first 4 bytes of the payload.

b. GET_COMID_RESPONSE: IF-RECVs on ComIDs previously allocated by the TPer.

See 3.3.4.7 for information about the usage of these commands.

End Informative Content

3.3.4.5 Management Layer
Begin Informative Content

Commands dealt with in this layer are IF-SEND and IF-RECV with Protocol ID = 0x01 and with a valid
active ComID.

This is the first layer that makes use of tokenized and packetized payloads. Communications in this
layer occur between the TPer Session Manager (TSM) and the Host Session Manager (HSM). All
communications happen within Control Sessions.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 62 of 314

The Control Session associated with a particular ComID starts as soon as the ComID is issued. When
the ComID becomes inactive, the Control Session is terminated. The flow control for the Control
Session is performed in the same manner as the flow control for Regular Sessions, with the difference
that the communication is between the TSM and the HSM and these entities are responsible for the
flow control.

One of the main tasks of this layer is to manage the startup of Regular Sessions. During this process,
the TSM and the HSM assign the TSN and the HSN that compose the SN for the Session to be
created.

When the process is initiated the HSM assigns an HSN (i.e. newHSN). The HSM has the opportunity to
make sure newHSN is different from any other HSNs in use by other sessions managed by it, though
this is not required.

End Informative Content

Once the TSM processes the StartSession method and returns the SyncSession response, the
Regular Session SHALL be considered open for the case of sessions that do not require challenge-
response and/or key exchange. For sessions that require challenge-response and/or key exchange,
the Regular Session SHALL be considered open when the TSM finishes processing the
StartTrustedSession and has prepared the SyncTrustedSession response.

3.3.4.6 Session Layer
In this layer all communications SHALL occur within Regular Sessions.

3.3.4.7 Communication Layer Commands
For any given ComID, the host is expected to issue HANDLE_COMID_REQUEST and
GET_COMID_RESPONSE commands in pairs. Consecutive GET_COMID_RESPONSE commands
SHALL return data corresponding to the last HANDLE_COMID_REQEUST received by the TPer. The
response MAY be regenerated by the TPer at the time of receipt of the command.

3.3.4.7.1 HANDLE_COMID_REQUEST
This command is used to inquire about or manage the state of the ComID previously allocated by the
TPer. The command block for the HANDLE_COMID_REQUEST command is defined in Table 28.

Table 28 HANDLE_COMID_REQUEST Command Block
FIELD VALUE

Command IF-SEND

Protocol ID 02

Transfer Length 00 01

ComID Allocated ComID

The payload sent by the host to the TPer, at the minimum, consists of the 4-byte Extended ComID and
a Request code. Additional fields MAY be required for some request codes. Currently two request
codes are defined: VERIFY_COMID_VALID and STACK_RESET.

3.3.4.7.2 GET_COMID_RESPONSE

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 63 of 314

This command is used to retrieve the response of the TPer to a previous HANDLE_COMID_REQUEST
command. The command is sent to the ComID for which the status is requested. The command block
for the GET_COMID_RESPONSE command is defined in Table 29

Table 29 GET_COMID_RESPONSE Command Block
FIELD VALUE

Command IF-RECV

Protocol ID 02

Transfer Length 00 01

ComID Request_ComID

The Transfer Length is the amount of data that the TPer SHALL send in response to the command. If
the actual length of the response data is smaller, then the TPer SHALL pad the data with zeros. If the
actual length of the response data is larger, then the TPer SHALL only send the requested amount of
data.

Bytes 10-11 of the payload contain the length of the response data. The host MAY use this information
to repeat the response command with a transfer length that fits the available data.

3.3.4.7.3 No Response Available
If no response is currently available to the GET_COMID_RESPONSE command, "No Response
Available" is returned. "No Response Available" is defined in Table 30.

Table 30 No Response Available
BYTES FIELD VALUE

0 to 3 Extended ComID Allocated ComID

4 to 7 Request Code 00 00 00 00

8 to 9 Reserved 00 00

10 to 11 Available Data Length in bytes 00 00

12 to TRNSFLEN -
1 Reserved 00

3.3.4.7.4 VERIFY_COMID_VALID
On receiving this request, the TPer checks if the ComID sent in the payload matches any of the
ComIDs currently active in the TPer.

The command is delivered in the payload of the HANDLE_COMID_REQUEST command. The
response is reported in the payload of the next GET_COMID_RESPONSE command sent to the
requested ComID.

The VERIFY_COMID_VALID command is defined in Table 31. TRNSFLEN is defined as number of
bytes transferred via the interface.

Table 31 VERIFY_COMID_VALID Request
BYTES FIELD VALUE

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 64 of 314

BYTES FIELD VALUE

0 to 3 Extended ComID Allocated ComID

4 to 7 Request Code 00 00 00 01

8 to TRNSFLEN -
1 Reserved zero

The payload built by the TPer in response to the VERIFY_COMID_VALID command is defined in Table
32.

Table 32 VERIFY_COMID_VALID Command Response
BYTE FIELD VALUE

0 to 3 Extended ComID Requested ComID

4 to 7 Request Code 00 00 00 01

8 to 9 Reserved 00 00

10 to 11 Available Data Length in bytes 00 22

12 to 15 Current state of Extended
ComID

00 00 00 00 = Invalid,
00 00 00 01 = Inactive,
00 00 00 02 = Issued,
00 00 00 03 = Associated

16 to 25 Absolute time of allocation
relative to last reset of TPer 10 byte format – see Table 33.

26 to 35 Absolute time of expiry relative
to last reset of TPer 10 byte format – see Table 33.

36 to 45 Time since last reset of TPer 10 byte format – see Table 33.

46 to
TRNSFLEN - 1 Reserved 00

The Extended ComID field value is the ComID being verified.

If the TPer does not support a real-time clock, the Time values in the VERIFY_COMID_VALID
response (bytes 16 to 45) SHALL be all zeroes. If the TPer supports a real-time clock, the fields that
report the time SHALL use the following format described in Table 33.

Table 33 Date Values
Value Type Range

Year uinteger_2 1970 to 9999

Month uinteger_1 1 to 12

Day uinteger_1 1 to 31

Hour uinteger_1 0 to 23

Minute uinteger_1 0 to 59

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 65 of 314

Value Type Range

Second uinteger_1 0 to 59

Fraction uinteger_2 0 to 999

Reserved uinteger_1 0

If the current state of the ComID is reported as Invalid or Inactive, only the time since last reset of the
TPer is valid in the data payload. If the ComID state is reported as Issued, or Associated, the time of
expiry SHALL be greater than the time since last reset of the TPer.

3.3.4.7.5 STACK_RESET
This command is used to reset that state of the synchronous protocol stack (see 3.3.10).

The command is delivered in the payload of the HANDLE_COMID_REQUEST command. The ComID
field identifies the ComID being reset. The response to the STACK_RESET is retrieved using the
GET_COMID_RESPONSE command.

The STACK_RESET command is defined in Table 34.

TRNSFLEN is defined as number of bytes transferred via the interface. Reserved bytes SHOULD be
set to zero and SHALL be ignored by both host and device.

The device SHALL return an “Invalid Transfer Length parameter on IF-SEND” TPer Error[2] if less than
8 bytes are sent to the device.

Depending on the SSC, if the ComID value in the IF-SEND for the HANDLE_COMID_REQUEST
command represents a non Active ComID, the device SHALL respond as described in 3.3.3.2.

Table 34 STACK_RESET Command Request
BYTES FIELD VALUE

0 to 3 Extended ComID Allocated ComID

4 to 7 Request Code 00 00 00 02

8 to TRNSFLEN -
1 Reserved 00

Once received, the TPer SHALL reset the protocol stack for the ComID value defined in bytes 0-3 of the
command block payload. While resetting the stack, the Tper SHALL NOT process any command for
that ComID received via an IF-SEND on Protocol ID 0x01. A Security Protocol stack reset results in:

1. All open sessions for that ComID SHALL be aborted. CloseSession methods SHALL NOT be
prepared by the TPer;

2. All uncommitted transactions SHALL be aborted;
3. All pending session startup activities occurring on that ComID SHALL be aborted;
4. All TCG command and response buffers SHALL be invalidated for that ComID;
5. All related method processing occurring on that ComID SHALL be aborted;
6. The protocol stack SHALL reset to its initial state for that ComID only;
7. All communications properties (set via Properties method) and ComID associated properties

for that ComID SHALL be reset to their default values;
8. No notification of these events SHALL be sent to the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 66 of 314

The response SHALL be returned via the GET_COMID_RESPONSE (IF-RECV) command. The
STACK_RESET command response payload is defined in Table 35.

If the STACK_RESET is still processing and another HANDLE_COMID_REQUEST is received, the
STACK_RESET SHALL complete but a response for that STACK_RESET command SHALL NOT be
available.

Table 35 STACK_RESET Command Response
BYTES FIELD VALUE

0 to 3 Extended ComID Allocated ComID

4 to 7 Request Code 00 00 00 02

8 to 9 Reserved 00 00

10 to 11 Available Data Length in bytes 00 04

12 to 15 Success/Failure 00 00 00 00/
00 00 00 01

16 to TRNSFLEN -
1 Reserved 00

Success (0x00000000) indicates that the protocol stack has been reset for the specified ComID.
Failure (0x00000001) indicates tha the protocol stack has not been reset for the specified ComID.

The response SHALL be cleared from the response buffer if one of the following conditions is true:
a. The host retrieves the entire response via the GET_COMID_RESPONSE command;
b. The device is hard-reset or power-cycled.
c. Another HANDLE_COMID_REQUEST is made for that ComID.

The device SHALL return “No Response Available” if:

a. No HANDLE_COMID_REQUEST command preceded the GET_COMID_RESPONSE
command;

b. An error is detected in the HANDLE_COMID_REQUEST command payload.
If no Handle_ComID_Request was sent, the Extended ComID field SHALL contain zeroes.

The "No Response Available" payload is defined in Table 30.

The device SHALL return “Pending” if:
a. The host retrieves the command result via the GET_COMID_RESPONSE command while

the stack reset is in progress for that specific ComID.
The "Pending" payload is defined in Table 36.

Table 36 STACK_RESET Pending
BYTES FIELD VALUE

0 to 3 Extended ComID Allocated ComID

4 to 7 Request Code 00 00 00 02

8 to 9 Reserved 00 00

10 to 11 Available Data Length in bytes 00 00

12 to TRNSFLEN - Reserved 00

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 67 of 314

BYTES FIELD VALUE

1

3.3.5 Capability Discovery
Discovery is a process that provides a way for the Host to examine the SD's configurations and
capabilities.

There are three levels of discovery:

a. Level 0: This discovery level discloses basic SD status and configuration. This discovery
request is sent as an IF-RECV command (see 3.3.6).

b. Level 1: This discovery level discloses basic TPer capabilities via the Properties method
(see 5.2.2.1)

c. Level 2: This discovery level uses the Get method (see 5.3.3.6) to retrieve table cell
values under access control as defined by the ACLs in each SP's AccessControl table
(see 5.3.2.7), and the associated ACEs in each SP's ACE table (see 5.3.2.8).

3.3.6 Level 0 Discovery
The Level 0 Discovery command provides a host with some basic information about TPer capabilities,
both current and potential. More detailed information is obtainable through SP operations (see 3.3.7).

3.3.6.1 IF-SEND Command
IF-SEND command, with
 Protocol ID = 0x01
 ComID = 0x0001
 Transfer Length= (any length)
There is no IF-SEND command defined for Level 0 Discovery, so the TPer SHALL transfer all of the
data from the host, SHALL discard it, and return ’good’ status to the host.

3.3.6.2 IF-RECV Command
IF-RECV command, with
 Protocol ID = 0x01
 ComID = 0x0001
 Transfer Length = maximum length of the Level 0 Discovery response data that the host elects
to receive.
This IF-RECV command MAY be processed at any time, without regard to sessions or prior
authentication.

If the Transfer Length is less than the size of the Level 0 Discovery response data that is available, the
TPer SHALL return the requested amount of data, even if it is truncated.

If the Transfer Length is greater than the size of the Level 0 Discovery response data, the device shall
pad according to the rules specified in [6] and [5].

The Level 0 Discovery response data (see Table 37) consists of a header field and zero or more
variable length feature descriptors. A TPer SHALL NOT include feature descriptors for features that it
does not implement. The data is not packetized.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 68 of 314

Table 37 Level 0 Discovery Response Data Format

 Bit
Byte 7 6 5 4 3 2 1 0

0 – 47 Level 0 Discovery header (see Table 38)

48 – n Feature Descriptor(s) (see 3.3.6.3)

Table 38 Level 0 Discovery Header Format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
1
2
3

Length of Parameter Data

(LSB)
4 (MSB)
5
6
7

Data structure revision

(LSB)
8 (MSB)
…
15

Reserved

(LSB)
16 (MSB)
…
47

Vendor Unique

(LSB)

3.3.6.2.1 Length of parameter data
Indicates the total number of bytes that are valid in the Level 0 Discovery header and all of the feature
descriptors returned, not including this field.

3.3.6.2.2 Data structure version number
This version number describes the format of the Level 0 Discovery header returned. The value SHALL
be 0x00000001

3.3.6.2.3 Vendor Unique
These bytes are vendor specific.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 69 of 314

3.3.6.3 Features - Overview
A feature is a set of capabilities that MAY be implemented in a TPer. A Host MAY discover the
capabilities and properties of a TPer by examining its feature descriptors. Features that are
implemented by a TPer SHALL be indicated by the presence of a feature descriptor.

The feature descriptors SHALL be returned in the Level 0 Discovery response data in order of
increasing feature code values. Features that are not implemented SHALL NOT be returned.

Table 39 contains the list of defined feature codes.

Table 39 Feature Codes
Feature Code Feature Name Description
0000h Reserved
0001h TPer feature See 3.3.6.4
0002h Locking feature See 3.3.6.5
0003h – 00FFh Reserved
0100h – 03FFh SSCs
0400h - BFFFh Reserved
C000h - FFFFh Vendor Unique Vendor specific features

All feature descriptors SHALL conform to the general format defined in Table 40.

Table 40 Feature Descriptor Template Format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
1

Feature Code
(LSB)

2 Version Reserved
3 Length

4 – n Feature Dependent Data

3.3.6.3.1.1 Feature Code
The Feature Code field SHALL identify a feature (see Table 41) implemented by the TPer.

3.3.6.3.1.2 Version
The Version field describes the format of the data returned. Future versions of a feature SHOULD be
backward compatible; incompatible changes SHOULD be included in a different feature.

3.3.6.3.1.3 Length
The Length field indicates the length of the Feature Dependent Data (in bytes) that follow this header.
This field SHALL be an integral multiple of 4.

3.3.6.4 TPer Feature
This information reports support for various TPer parameters. This mandatory feature SHALL always be
returned in the Level 0 Discovery response.

These parameters indicate whether the TPer supports a variety of features. Having a given “support’
flag true does not imply that the feature is required or enabled. Actually enabling a feature MAY require
setting of host properties by invoking the Properties method.

The Feature Code value for the TPer feature is 0x0001.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 70 of 314

Table 41 TPer Feature Descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
1

Feature Code
(LSB)

2 Version Reserved
3 Length
4 Reserved ComID

Mgmt
Supported

Reserved Streaming
Supported

Buffer
Mgmt

Supported

ACK/NAK
Supported

Async
Supported

Sync
Supported

5 - 15

Reserved

The Feature Code field SHALL be set to 0x0001.

The Version field SHALL be set to 0x01.

The Length field SHALL be set to 0x0C.

3.3.6.4.1 Sync Supported
SyncSupported SHALL be set to one if the TPer supports the Synchronous Protocol (see 3.3.10),
otherwise SyncSupported SHALL be cleared to zero.

3.3.6.4.2 Async Supported
AsyncSupported SHALL be set to one if the TPer supports the Asynchronous Protocol, otherwise
AsyncSupported SHALL be cleared to zero.

3.3.6.4.3 ACK/NAK Supported
ACK/NAKSupported SHALL be set to one if the TPer supports transmission ACK/NAK flow control (see
3.3.8) or communications, otherwise ACK/NAKSupported SHALL be cleared to zero.

3.3.6.4.4 BufferMgmt Supported
BufferMgmtSupported SHALL be set to one if the TPer supports buffer management flow control
(see3.3.8.2) for communications, otherwise BufferMgmtSupported SHALL be cleared to zero.

3.3.6.4.5 Streaming Supported
StreamingSupported SHALL be set to one if the TPer supports data stream encoding (see 3.2.2 and
3.2.3), otherwise StreamingSupported SHALL be cleared to zero.

3.3.6.4.6 ComID Management Supported
SHALL be set to one if the TPer supports ComID management using Protocol ID 0x02 (see 3.3.3),
otherwise SHALL be cleared to zero.

3.3.6.5 Locking Feature
This information indicates support for an issued Locking template. This mandatory feature SHALL
always be returned in the Level 0 Discovery response.

The Feature Code value for the Locking feature is 0x0002.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 71 of 314

Table 42 Locking Feature Descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)
1

Feature Code
(LSB)

2 Version Reserved
3 Length
4 Reserved MBR

Done
MBR

Enabled
Media

Encryption
Locked Locking

Enabled
Locking

Supported
5 - 15 Reserved

The Feature Code field SHALL be set to 0x0002.

The Version field SHALL be set to 0x01.

The Length field SHALL be set to 0x0C.

3.3.6.5.1 LockingSupported
LockingSupported SHALL be set to one if the TPer supports the Locking template; otherwise
LockingSupported SHALL be set to zero.

3.3.6.5.2 LockingEnabled
LockingEnabled SHALL be set to one if an SP that incorporates the Locking template is in any state
other than nonexistent; otherwise LockingEnabled SHALL be set to zero.

3.3.6.5.3 Locked
Locked SHALL be set to one if LockingEnabled is set to one, and one or more LBA ranges in the
Locking table have either (ReadLockEnabled=True and ReadLocked=True) or
(WriteLockEnabled=True and WriteLocked=True); otherwise Locked SHALL be set to zero.

3.3.6.5.4 MediaEncryption
MediaEncryption SHALL be set to one if the TPer supports media encryption; otherwise
MediaEncryption SHALL be set to zero.

3.3.6.5.5 MBREnabled
MBREnabled SHALL be set to one if LockingEnabled is set to one, and the MBRControl and MBR
tables are implemented, and that the MBRControl table’s Enabled column has a value of "True";
otherwise MBREnabled SHALL be set to zero.

3.3.6.5.6 MBRDone
MBRDone SHALL be set to one if MBREnabled is set to one, and the MBRControl table’s Done column
has a value of "True"; otherwise MBRDone SHALL be set to zero.

3.3.6.6 Common SSC feature information
This information is supplied as part of every reported SSC feature.

Table 43 Common SSC Information

Bit
Byte

7 6 5 4 3 2 1 0

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 72 of 314

Bit
Byte

7 6 5 4 3 2 1 0

0 - 15

Reserved for common SSC parameters

3.3.7 Sessions, Methods, and Transactions
3.3.7.1 Sessions
Begin Informative Content

There are two types of sessions:

a. Regular Sessions (or just Sessions): These are communication channels between a host
application and an SP.

b. Control Sessions: These are between the TPer Session Manager (TSM) and the Host
Session Manager (HSM).

The Host Session Manager is an abstract entity that represents the peer, on the host side, of the TPer
Session Manager. The HSM could be an application that is routing traffic to several applications on the
host or it could simply be a module in a given application that deals with establishing sessions with the
TPer.
End Informative Content

All communications with an SP occurs within sessions. A session SHALL be started by a host and
successfully ended by a host.

Normally the host application ends a session when it has finished its communication, but either the
TPer or the host MAY abort a session at any time for any reason (see 3.3.7.1.5).

For a specific SP there MAY be any number of Read-Only sessions active simultaneously, but only one
Read-Write session with a particular SP SHALL be open at a time. Read-Only and Read-Write sessions
are mutually exclusive.

The existence of Read-Only sessions, the maximum number of simultaneous Read-Only sessions that
are able to be opened to any SP, and/or the total number of open sessions available to a TPer SHALL
be defined by Security Subsystem Class.

Except as noted, explicit changes to an SP made during a Read-Only session SHALL NOT be made
permanent, even when the session closes successfully. Indirect changes, such as PIN blocking, log
updates, etc., are noted where appropriate, and SHALL remain persistent.

3.3.7.1.1 Regular Sessions
Each Regular Session is identified by a distinct Session Number (SN). The SN is an 8-byte quantity
composed of two subparts: the TPer Session Number (TSN) and the Host Session Number (HSN),
each of which has 4 bytes. This is the value used in a packet's Session field.

SN = (TSN, HSN)

The HSN is assigned by the HSM. The HSM MAY assign HSNs in such a way as to make them unique
for all of its communications with one or more TPers.

The TSN is assigned by the TSM. The TSM SHALL guarantee that all Regular Sessions associated
with a particular ComID are assigned a different TSN. In addition, the TSM SHALL NOT assign any
TSN in the range 0 to 4095 to a regular session. These TSNs are reserved by TCG for special
sessions, of which the control session (0) is the only one currently defined.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 73 of 314

Additional details regarding session startup can be found in 3.3.7.1.4 and 5.3.4.1.4.

3.3.7.1.2 Control Sessions
All Session Manager Layer Methods SHALL be transmitted in packets where Packet.Session =
0x00000000_00000000.

Session Manager layer methods are:
a. Properties

b. StartSession

c. SyncSession

d. StartTrustedSession

e. SyncTrustedSession

f. CloseSession

Once a session has started (the session startup protocol has completed successfully), data is able to
be transmitted for that newly started session. The Packet.Session for that session SHALL be the
concatenation of the TSN and HSN (see 3.3.7.1.1), where HSN is initially transmitted in the
StartSession method and TSN is initially transmitted in the SyncSession method.

The life cycle of the Control Session is tied to the life cycle of the ComID, in that the Control Session
associated with a particular ComID starts as soon as the ComID is issued. When the ComID is retired,
the Control Session is terminated. The flow control for the Control Session is performed in the same
manner as the flow control for Regular Sessions, with the difference that the communication is between
the TSM and the HSM and these entities are responsible for the flow control.

There SHALL be only one Control Session per ComID.

3.3.7.1.3 Session Manager Protocol Layer
Begin Informative Content

The Session Manager Layer (see 3.3.4) is a special protocol layer session on any TPer with SPs. It is
the communications channel used by host applications to start and manage sessions with SPs, to
inform the TPer of the host's communications capabilities, and to inquire about TPer communication
characteristics. The Session Manager protocol layer does not provide a session “to” any SP – it
provides a communications control session. The method calls available on the Session Manager Layer
are identified in section 5.2.

End Informative Content

Although method invocations on the Session Manager layer SHALL NOT change permanent state on
the TPer, some method invocations MAY have side effects that occur outside of the normal method
invocation process, such as logging or PIN retry counts. In cases where these changes occur – for
example, logging a StartSession method call success or failure – the change SHALL occur on the SP
to which the method call was attempted.

Method calls on the Session Manager Layer are formatted/encoded the same as on any other session.
Due to the asynchronous nature of session startup and TPer communications, all of Session Manager
layer methods’ responses are formatted as method calls, so that the host is able to identify responses
to methods it has invoked.

The Session Manager Layer control session for a given ComID SHALL always be open. The TPer
SHALL ignore End of Session and Transaction Control tokens sent to the control session, and SHALL
not echo those tokens back to the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 74 of 314

3.3.7.1.4 Starting Sessions
Successful session startup depends upon three independent requirements:

1. The TPer and the requested SP having sufficient resources.

2. Successful negotiation of exchange keys if secure messaging with key exchange is required.

3. The required authentication is successful. (one of the following):

a. Host authenticates to SP

b. SP authenticates to Host

c. Both of the above

d. None of the above (No authentication)

Sessions are started with either a two or four method exchange on the Session Manager protocol layer:
 StartSession
 SyncSession
 StartTrustedSession (optional)
 SyncTrustedSession (required if StartTrustedSession is used)

Because of the asynchronous nature of session startup and other Session Manager layer traffic, the
StartSession/StartTrustedSession responses (SyncSession/SyncTrustedSession, respectively)
are formatted as method calls back to the host.

The authorities used during session startup determine the secure messaging and authentication
requirements.

a. HostExchangeAuthority: The authority that references the Host's Exchange Key – used for
exchange of session keys, provides implicit authentication

b. HostSigningAuthority: The authority that references the Host's Signing Key – used for
authenticating the host to the SP and session startup method integrity, provides explicit
authentication

c. SPExchangeAuthority: The authority that references the SP's Exchange Key – used for
exchange of session keys, provides implicit authentication

d. SPSigningAuthority: The authority that references the SP's Signing Key – used for
authenticating the SP to the host and session startup method integrity, provides explicit
authentication

These authorities are already known to the SP.

Host authorities and SP authorities enable mutual authentication between the host and the TPer. Host
authorities, if used, are passed in the StartSession method call. SP authorities are authorities that
MAY be referenced in the Host authorities’ Authority table rows. The ability to specify authorities in
the StartSession method call, coupled with the linking of authorities in the Authority table, provides
a large and diverse set of possible session protocols, including secure messaging. It is the initial
selection of authorities by the host that determines which protocol is to be followed.

When the host makes the StartSession method call it knows which SPExchangeAuthority and
SPSigningAuthority (if any) the SP uses. Those MAY be the root authorities in a certificate chain whose
ultimate effective authority, as represented by the chained-down certificate, the host does not know.
This is why the SP MAY return certificates to the host as part of SyncSession.

If a HostSigningAuthority or SPSigningAuthority requires a Challenge-Response, as is the case for all
PuK, SymK, and HMAC authorities, or if secure messaging is to be used (or both), then the
StartSession and SyncSession methods SHALL be followed by the StartTrustedSession and
SyncTrustedSession methods.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 75 of 314

An authority (HostExchangeAuthority, SPExchangeAuthority, HostSigningAuthority, or
SPSigningAuthority) that is also a Public Key Authority (an Authority with public key credentials--PuK)
MAY have additional information supplied for it in the form of a certificate or certificate chain. In this
case the Effective Authority (the one responding to the challenge) SHALL be the tail PuK of that chain.

The effective authority is transient to the session. It is necessary to create a new authority on the SP (in
a Read-Write session) if that authority is to persist on the SP past the end of that session.

All authorities that participate in the successful startup of a session SHALL be authenticated for that
session.

3.3.7.1.5 Ending Sessions
The Host or TPer is free at any time to end a session in which it is participating, but only the host
SHALL end the session successfully.

The session SHALL NOT be considered successfully closed until the party receiving the end of session
request has responded indicating whether or not it was able to comply with the session ending request.
Thus, a session is successfully ended when the TPer receives an End of Session token (see section
3.2.2.2) from the host and prepares a response with an End of Session token, and when transmission
acknowledgement for ending the session has been performed as noted in Section 3.3.9.5 (if
transmission acknowledgement is in use).

When a session closes, TPer resources that had been reserved for use with that session SHALL be
released. The release of resources is not dependent on whether the session closed successfully or
unsuccessfully – the end of the session releases the resources.

Sessions end unsuccessfully (abort) in a number of ways. These include (but are not limited to):

a. If the TPer detects any violation of flow control.

b. If the host does not (or is unable to) send any additional packets to the TPer to the TPer,
and sends no other communications, the TPer would time out while waiting for the
communication from the host.

c. One of the communicators reached its implementation-specific limit on the number of times
it re-sends a packet (due to negative acknowledgements or transmission timeouts while
waiting for acknowledgement).

If a session is ended in the middle of the transmission of a method call or its parameters, then the
method call SHALL be aborted in addition to the session being aborted. This is considered a fatal
session error indicating a communication synchronization error (or worse).

An aborted session causes the following to occur:

1. All uncommitted transactions SHALL be aborted.

2. All method processing for that session SHALL be aborted;

3. The TPer MAY transmit a CloseSession method on the Session Manager layer.

When a session is aborted, open transactions within that session SHALL be aborted, and any method
currently executing SHALL fail in its entirety.

The CloseSession method allows the TPer to notify the host that it has aborted a session. The TPer
MAY send a CloseSession method on the Session Manager layer when it aborts a session. This is
done by the TPer to notify the host that the TPer is ending the session.

Hardware resets and power cycles SHALL cause all open sessions to abort.

The host is able to abort a session by sending an End of Session token to the TPer.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 76 of 314

3.3.7.1.6 Session Timeouts
The session timeout is used to limit the lifetime of a session. A session timeout is associated with every
session and is specified in milliseconds.

The session timeout is a property of the session and is derived from three sources.

a. DefaultSessionTimeout : A value in the Properties method response.

b. SPSessionTimeout : A column in the SPInfo table.

c. SessionTimeout : An optional parameter in the StartSession method call used to open the
session to the SP.

The TPer and the Host both maintain a timer associated with every active session. The timer starts
when a session is successfully opened to an SP. Depending on the type of session started, this occurs
when the tokens for the SyncSession or the SyncTrustedSession method call are built by the TPer
and made available to the host.

The TPer MAY impose conditions on maximum and minimum timeouts supported by the device
depending on hardware and other design considerations. These are indicated in the Properties
method response values MaxSessionTimeout and MinSessionTimeout. These limits apply to all of the
three timeouts listed above. A value of zero for MaxSessionTimeout SHALL indicate that the timeout
value is infinite.

The actual timeout value used by the TPer device SHALL be the one that corresponds to the shortest of
the above three timeout values.

A column in the SPInfo table contains the SP default timeout SPSessionTimeout and MAY be modified
by the host if it has appropriate authority. If this value is the shortest of the three possible timeout
sources, then modification of this value SHALL take effect immediately on all sessions open on the SP,
including the session that made the change.

The TPer MAY abort the session any time after the session's lifetime exceeds the session timeout
value. The session is considered to have been closed / terminated when the last status token sent by
the TPer is picked out of the output buffer by the host, or when the TPer releases all the resources
(including the output buffer) for the session.

Session timeout SHALL NOT apply to the Session Manager Layer control session since it is always
open. The time taken to complete the Session Manager Layer exchange to successfully start a session
is not in the scope of this feature.

3.3.7.2 Methods
Begin Informative Content

Methods are remote procedure calls that operate on tables or SPs, and are called within a regular
session to an SP, or within a control session in the case of Session Manager Layer methods. The
caller passes a list of parameter values to the method and the method returns a list of result values
followed by a status list, the first value of which is the status code response to the method invocation.
Method calls, their parameters, and their results are all sent and received over session streams. Each
session to an SP has at least two streams of bytes onto which data is encoded. One stream goes from
the host to the SP, and the other comes from the SP to the host. Each stream operates asynchronously
from all other streams, unless the Synchronous Interface Communications Protocol is in use (see
section 3.3.10).

Typical host method calls send all their parameters/data to the SP before trying to read any of the
results, but the SP is free to generate results incrementally as it consumes its parameters. The host is
similarly free to try to read SP results while sending parameters. The TPer implementation determines
how synchronous or asynchronous to be, so long as the semantics of the method call(s) are not
compromised.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 77 of 314

End Informative Content

A well-formed method call SHALL consist of the following steps:

1 The host tells the SP the method it wants to call.
2 The host sends a list of parameters to the SP.
3 The method is processed in the SP.
4 The method results are returned from the SP to the host.

Steps 2-4 MAY be repeated when input and output are incrementally streamed.

Within a given session at most one method SHALL be active at a time. If a method is unable to be
processed completely, it SHALL fail and none of the direct changes made by the method take effect.

For information on method syntax, see 3.2.4.1. For information on method encoding, see 3.2.4.2.

3.3.7.3 Transactions
Begin Informative Content

Transactions are used to provide a clean model for how changes to an SP are to take effect. They also
provide an easy way for host applications to handle error recovery.

End Informative Content

If a session is aborted, any open transactions SHALL be aborted.

Changes are successfully committed and made persistent (to the media, made visible to subsequent
sessions on the same SP, etc.) in 2 ways:

a. When a method is invoked outside of a transaction, and resolves successfully, changes
made by that method SHALL be committed and made persistent immediately.

b. When a method is invoked inside of a transaction or set of nested transactions, changes
made by that method SHALL be committed and made persistent when the top-level
transaction is committed.

Changes made within a transaction SHALL be visible within that transaction. For instance, modification
of a table value within a transaction would result in the new value being returned by a Get method
invoked within that transaction. Those changes SHALL be made persistent when the top-level
transaction is committed. If the transaction is aborted, those changes SHALL be rolled back.

Changes that affect other aspects of the TPer (i.e. hardware settings) SHALL occur when associated
changes are successfully committed. This means that changes made during transactions that affect
the state of the device, such as changing media encryption keys or read/write lock state, SHALL NOT
occur until the changes are successfully committed.

Some changes MAY occur as exceptions to transactional rollback (i.e. logging), and SHALL commit
immediately even if they occur inside of a transaction or as a side effect of a method invocation that has
failed.

An aborted transaction SHALL only occur for one of two reasons:

a. At the request of the host, by host-transmission of the End Transaction token with a status
other than 0x00.

b. If an error occurs while committing the transaction (i.e. the host sends End Transaction with
a status of 0x00, but the TPer encounters some kind of error while committing the
transaction to media).

Specific transaction-related control tokens in the session stream, defined in the 3.2.2, serve to indicate
transaction start and end points. If a transaction control token is received at a point in the session
stream that occurs within a method invocation, the TPer SHALL abort the session.

All transactions consist of the following steps:

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 78 of 314

1. The transaction is opened.

2. Zero or more method calls are made.

3. The transaction is either aborted or committed.

If a transaction is aborted all SP state SHALL be reset ("rolled-back") to its value at the time the
transaction was opened, unless otherwise noted in this specification (i.e. authentication state, logging,
etc.). A transaction SHALL only be committed at the request of the host application. The TPer SHALL
only commit or abort a transaction upon receipt of an End Transaction token from the host except in the
case when a session is aborted.

The failure or success of the methods encapsulated in the transaction SHALL NOT directly affect
whether or not the host is able to commit the transaction, but committing a transaction in which method
invocations have not succeeded MAY leave the SP in an intermediate (and potentially unrecoverable)
state. A failed method within a transaction SHALL NOT affect the state of the transaction or the state of
the SP within the transaction, unless otherwise noted (i.e. logging, PIN tries count, etc.).

The TPer SHALL guarantee that a transaction completely commits to media (persists) or completely
aborts. This means that the TPer SHALL arrange that if a power cycle, reset, or other event occurs in
the middle of a commit, when the TPer recovers the commit is either finished or all the changes are
aborted. This guarantees SP consistency and prevents power-off or reset attacks.

3.3.7.3.1 Nested Transactions
A session MAY include nested transactions. The maximum number of transactions that MAY be nested
is Security Subsystem Class-specific, and SHALL be specified in response to the Properties method
invocation in the MaxTransactionLimit property if transactions are supported. If the TPer does not
support transactions, the Properties method response SHALL NOT contain the MaxTransactionLimit
property.

Nested transactions SHALL abort or commit relative to their parent transaction. In the case of an
aborted transaction, the SP state SHALL be rolled back to the point where the transaction was started,
unless otherwise noted in this specification (i.e. authentication state, logging, etc.). This is true whether
or not the transaction is nested. In the case of a commit, the nested transaction’s changes SHALL
become part of its parent transaction, as if the nested transaction boundaries had never been
established.

A commit of a nested transaction does not make a commit that necessarily persists since the parent
transaction is not yet ended. All transactions SHALL be committed before data is written to the SP.

3.3.7.3.2 Authentication Within Transactions
Successful explicit authentications (via invocation of the Authenticate method (see 5.3.3.12) within a
session) SHALL be exempt from transactional rollback, such that even in the event that a transaction in
which a successful authentication occurs is aborted, the authenticated authority SHALL continue to be
authenticated. Successful invocation of the Authenticate method is based on the current state of the
SP including changes made within the current transaction.

3.3.8 Stream Flow Control
3.3.8.1 Introduction
Begin Informative Content

Flow control ensures that when data is sent from a source to a destination that the destination has
enough buffer space to receive it. There are two kinds of flow control: Interface and Stream data.

Interface flow control is involved in moving IF-SEND or IF-RECV commands across an interface
between a host and TPer (see [2]).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 79 of 314

Stream data flow control is used to keep a Host or TPer from overwhelming the other party with data
during a session.

End Informative Content

3.3.8.2 Buffer Management
Begin Informative Content

Flow control is used to keep a Host or TPer from overwhelming the other party with data during a
session. The exchange of credits permits data to be moved from one communicator to the other.

Before session data is able to be sent, the receiver needs to notify the sender that it is ready to receive
data and how much data it is able to receive. This is done by sending a Credit Control Subpacket in the
direction opposite that of the data.

End Informative Content

As data in the receive buffers of the communicators is consumed and space released, additional Credit
Control Subpackets MAY be sent.

The InitialCredit parameters of the StartSession and SyncSession methods provide each
communicator in a session the opportunity to provide an initial amount of credits for use when the
session successfully starts. If either of these values is omitted, then once a session has been
successfully started, the communicator that omitted the value from the InitialCredit parameter of its
session startup method SHALL send to the other communicator a credit subpacket announcing its
available session buffer space.

Credit values are byte counts for the payload of data subpackets and do not include packet or
subpacket headers/overheads. Packets containing only ACK/NAK information, or only Credit Control
Subpackets, MAY be sent at any time regardless of how much credit the sender has.

The sender SHALL NOT send more data than it has credits from the receiver. As the sender transmits
data, the amount of transmitted data is subtracted from the total credits that had been provided to the
sender. This identifies the amount of data that MAY still be sent without receiving additional buffer
credits.

As the receiver consumes data, the receiver MAY notify the sender that it is able to receive additional
data. This is done by transmitting a Credit Control Subpacket identifying how much additional buffer
space the sender is able to utilize. The number of bytes of data that are able to be sent to that session
SHALL be increased by the value of each credit received. When a communicator transmits data, the
amount of data sent SHALL be subtracted from the credit total.

If buffer management is supported, credit subpackets SHALL be exchanged after ComID acquisition, so
that the host and TPer are able to exchange methods/responses on the control session. This credit
only applies to the control session for that ComID. Credit subpackets SHALL also be exchanged
immediately after session startup within the new session, unless values are posted in the InitialCredit
parameters, in which case additional credit subpackets are optional at that time.

Otherwise, Credit Control Subpackets SHOULD be sent infrequently and be bundled with other traffic,
in order to minimize interface overhead. Either communicator in a session MAY send Credit Control
Subpackets as frequently as in every packet, or when a threshold is reached (e.g. the unreported credit
is more than some percentage of the buffer size).

Violating flow control is one reason either side MAY abort a session.

3.3.9 Session Reliability
3.3.9.1 Introduction
Begin Informative Content

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 80 of 314

Session Reliability provides resilience against lost, duplicated, or deleted packets.

End Informative Content

3.3.9.2 Transmission Acknowledgement
If the TPer supports transmission acknowledgement and the host has informed the TPer (via invocation
of the Properties method) that it also supports transmission acknowledgement, each packet sent from
the TPer to the Host (or vice-versa) for a given session SHALL have a sequence number (SeqNumber)
that corresponds to the number of packets that have been sent by that communicator since the start of
the session. The first packet in a session SHALL have a SeqNumber value of 1.

If transmission acknowledgement is supported, each packet with SeqNumber N SHALL be
acknowledged by the receiver. Once the sender receives an acknowledgement for data contained in
packets up to packet N, the sender is able to safely discard the data for packets with SeqNumber N and
lower.

Packets that contain only ACK or NAK information SHALL NOT require an ACK/NAK response from the
receiver. These packets SHALL still have an appropriate SeqNumber field value. Packets for sessions
that are not protected by secure messaging that do not require ACK/NAK SHALL be those packets with
a Length field value of zero and a corresponding empty Data field value. Packets that are protected by
secure messaging that do not require ACK/NAK SHALL be those packets with a DataLength field value
of zero and an empty Data field (The IV and MAC fields MAY still contain values).

When a communicator sends a packet that contains only ACK/NAK information, it SHALL still keep that
packet (for possible re-transmission) until either it or a later packet is ACKed. This is because the
receiver MAY NAK that packet in the case of loss/corruption, and in this case the packet SHALL be
retransmitted.

After receiving a packet, the receiver SHOULD send an ACK within the TransTimeout period so that the
sender does not re-send un-ACK'ed packets.

3.3.9.3 Transmission Negative Acknowledgement
If the receiver detects data gap in the SeqNumbers of received packets, the receiver SHALL send a
negative-acknowledgement packet (NAK) with the SeqNumber of the packet at which the receiver
wishes the sender to begin retransmission. The receiver puts a value of the SeqNumber of the last
known good packet (N) received plus one. This automatically acknowledges all previous packets with
SeqNumbers less than or equal to N. The receiver SHALL NOT NAK a SeqNumber less than or equal
to the last ACKed SeqNumber. If the TPer receives a NAK for a SeqNumber less than or equal to the
last ACKed SeqNumber, it SHALL abort the session. Negative acknowledgement serves to notify the
sender that a retransmission of packet N+1, etc. is needed.

Upon dispatch of the NAK, the sender of the NAK SHALL discard all packets with SeqNumbers N+ 2
and higher, since the sender is expected to retransmit these. The NAK SHALL NOT be re-transmitted
due to receiving packets with SeqNumber containing a value other than N+1, because packets with
values greater than N+1 could have already been 'in flight' when that NAK was sent. Retransmission of
the NAK is dependent on the transmission timeout value for the session, not on subsequent receipt of
additional data.

Retransmitted packets SHALL be sent with no modifications or additions, including packet headers.

3.3.9.4 Transmission Timeouts
The transmission timeout is set during the exchange of session startup methods StartSession and
SyncSession. The transmission timeout for a session SHALL take effect after session startup has
successfully completed. Both communicators share the same transmission timeout value.

The transmission timeout in effect for control sessions is the transmission timeout reported in the
Properties method.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 81 of 314

The sender MAY provide, in the StartSession method, a value for the TransTimeout parameter. The
communicator that transmits the SyncSession method MAY include a value for the TransTimeout
parameter. If so, that communicator's timeout value SHALL be larger than the StartSession
TransTimeout value, and SHALL be the transmission timeout value in use for the session being started.
In either case, the TransTimeout value SHALL be greater than or equal to the MinTransTimeout value
and smaller than or equal to the MaxTransTimeout parameter reported in the Properties method
response. If neither communicator includes a value for the TransTimeout parameter, the
DefTransTimeout value, as reported in the Properties method response, SHALL be used.

If the sender detects a missing acknowledgment by means of a timeout, the sender SHALL retransmit
the data from the last valid acknowledgment. If the sender still receives no acknowledgement after a
timeout period, the sender SHALL retransmit the same packet with no modifications or additions,
including packet headers. This retransmission repeats up to an implementation-specific number of
times. Thereafter, the sender SHALL terminate the session, i.e. no more data is able to be be
transmitted for this session (the session times out at some point and is closed by the receiver).

SSCs that require support for transmission timeouts SHALL define a minimum required value for
retransmission repeats.

3.3.9.5 Closing a Session
If transmission acknowledgement is supported, when the host transmits a data subpacket that contains
the End of Session token, the host SHOULD NOT immediately assume the session has successfully
closed.

The host SHOULD wait for the TPer to both transmit the TPer's own data subpacket that contains the
End of Session token and to ACK the host’s packet that contained the End of Session token. The host
SHOULD then ACK the TPer's data subpacket that contains the End of Session token.

The host SHOULD follow the normal rules of the ACK mechanism. If the transmission timeout period
expires and the host has not received the TPer's ACK of its packet containing the End of Session token,
the host SHOULD retransmit that packet and continue doing so until it receives an ACK or it reaches its
timeout retransmission limit.

If the TPer has not received, by the end of the transmission timeout period, the host's ACK of the TPer's
packet containing the End of Session token, the TPer SHALL retransmit that packet, and continue
retransmitting it until it receives an ACK from the host or until it reaches its implementation-defined
timeout retransmission limit.

Once the TPer has received the packet containing the host's ACK of the packet the TPer transmitted
containing the data subpacket with the End of Session token, the TPer SHALL consider the session to
be closed.

Figure 6 Closing a Session

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 82 of 314

3.3.10 Synchronous Interface Communications
3.3.10.1 Introduction
Begin Informative Text

The communications protocol stack as described in this specification enables a fully asynchronous
exchange of data between host and TPer. Using the communications stack in this manner is a matter
of arbitrarily interleaving IF-SEND commands with IF-RECV commands.

Asynchronous communications allows the host to transmit methods and data to the TPer without having
to retrieve the results of those methods before sending additional methods, and enables the TPer to
return method results upon request at arbitrary boundaries. Flow control provides a mechanism for
buffer management to occur as data is successfully transmitted and received.

However, for some hosts and devices, these mechanisms are too complex and require more
processing capability and code space than is available. For these situations, the synchronous
communications protocol stack is tailored to better meet the capabilities of host and TPer.

For instance, fixed buffer sizes coupled with restrictions on the relationship between the exchange of
IF-SEND and IF-RECV commands negates the need for flow control for buffer management.

End Informative Text

3.3.10.2 Interface Commands
This section defines the requirements imposed on the exchange of IF-SEND and IF-RECV commands.

3.3.10.2.1 Restrictions
The restrictions imposed on the exchange of IF-SEND and IF-RECV commands are as follows:

1. Any number of non IF-SEND/IF-RECV commands MAY be interleaved with IF-SEND/IF-RECV
commands.

2. The normal communications state of an Associated ComID SHALL be to await receipt of an IF-
SEND command for that ComID.

a. While awaiting receipt of an IF-SEND interface command, any received IF-SEND
command for that ComID SHALL be accepted (provided it meets the other
requirements such as not exceeding the maximum supported length).

b. Once the entire command payload has been received, the TPer SHALL return an
interface status to the host.

c. Any IF-RECV command received for the Associated ComID awaiting receipt of an IF-
SEND command SHALL return to the host a ComPacket with a Length field value of
zero, an OutstandingData field value of zero, and a MinTransfer field value of zero.
This signals to the host that there is no pending response data to retrieve.

3. After an IF-SEND command has been received, a command completion without error has been
returned, and the payload has been decoded without an error, the TPer SHALL NOT accept
another IF-SEND command for that ComID until the host has retrieved the entire response via
IF-RECV(s).

a. Any subsequently received IF-SEND commands for the specified ComID SHALL be
aborted at the interface level. The interface status for this action SHALL be
"Synchronous Protocol Violation" (see [2]).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 83 of 314

b. If the TPer has not sufficiently processed the command payload and prepared a
response, any IF-RECV command for that ComID SHALL receive a ComPacket with a
Length field value of zero (no payload), an OutstandingData field value of 0x01, and a
MinTransfer field value of zero.

c. If the TPer has sufficiently processed the command payload and prepared a response,
an IF-RECV command that requests a transfer length less than the amount of response
data the TPer has prepared SHALL reply with a ComPacket with a Length field value of
zero (no payload) and OutstandingData value of total bytes currently available, and
MinTransfer field value of the minimum request required to transfer a packet.

d. The SSC MAY additionally require that each method response be retrieved separately
(along with Control Tokens as determined by the TPer), via multiple IF-RECV
commands. For these SSCs, if all responses have not been retrieved:

i. If additional responses are available, and the host has requested a transfer
length less than the minimum transfer required, the TPer SHALL respond to an
IF-RECV command with OutstandingData value of total bytes currently
available; and MinTransfer field value of the minimum request required to
transfer a packet.

ii. If additional responses are available and the host has requested a sufficient
transfer length, the TPer SHALL respond to an IF-RECV with OutstandingData
= 0x00, 0x01, or the amount of total bytes currently available; and MinTransfer
field value of zero or the minimum request required to transfer a packet.

iii. If no additional responses are prepared but more are to come, the TPer SHALL
respond to an IF-RECV command with OutstandingData field value of 0x01
and MinTransfer field value of Zero. Table 44 summarizes the values of the
Length, OutstandingData, and MinTransfer fields of the packets returned to the
host by the TPer in response to an IF-RECV command.

A summary of the values for ComPacket fields is displayed in Table 44.

Table 44 IF-RECV ComPacket Field Values Summary
IF-RECV Length Field

Value
OutstandingData Field
Value

MinTransfer Field
Value

Response(s) to
come, no
Response(s)
available

0x00 0x01 0x00

Response ready,
insufficient transfer
length request

0x00 Total bytes currently
available

The minimum request
required to transfer a
packet

Response, additional
Response(s)
available

Data Length Additional bytes
available, not including
the data transferred in
the current ComPacket.

The minimum request
required to transfer the
next packet

Response, additional
Response(s) to
come, no
Response(s)
available

Data Length 0x01 0x00

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 84 of 314

IF-RECV Length Field
Value

OutstandingData Field
Value

MinTransfer Field
Value

Response, all
Response(s)
returned – no further
data

Data Length 0x00 0x00

All Response(s)
returned – no further
data

0x00 0x00 0x00

3.3.10.3 Synchronous Communications Restrictions
This section defines additional restrictions specific to the Synchronous Communications protocol.

a. Methods SHALL NOT span ComPackets. In the case where an incomplete method is
submitted, if the TPer is able to identify the associated session, then that session SHALL
be aborted and a CloseSession MAY be prepared for delivery on that ComID's control
session.

b. The synchronous exchange of interface commands SHALL only apply to IF-SEND/IF-
RECV commands exchanged on Protocol ID 0x01, but SHALL NOT apply to Level 0
Discovery.

3.3.10.4 State Transition Diagram
The state transitions for the exchange of IF-SEND and IF-RECV commands are delineated in Figure
Figure 7 . The states used are defined in 3.3.10.5, and the state transitions are defined in 3.3.10.6.

Figure 7 Synchronous Communications State Transition Diagram

3.3.10.5 State Descriptions
This section defines the states used in Figure 7

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 85 of 314

State “Power-Off (S0)” – In this state, power is removed from the TPer and it is completely
unresponsive.

State “Awaiting IF-SEND (S1)” – In this state, the TPer command interface is ready and there are no
outstanding IF-SEND/IF-RECV commands for the specified ComID. A command is “outstanding” if it
has entered the “Processing” or “Awaiting IF-RECV” state. A command is not considered “outstanding”
if it is in the TPer command queue awaiting initial processing by the device.

a. While in this state, if IF-SEND is received or dequeued with the ComID for this state
machine, the TPer MAY request command payload transfer and SHALL return interface
status to the host.

b. While in this state, if IF-RECV is received or dequeued with the ComID for this state
machine, the TPer SHALL return a response ComPacket the specified ExtendedComID
with the Length, OutstandingData, and MinTransfer fields set per “All Response(s) returned
– no further data” defined in Table 44.

State “Processing (S2)” – In this state, the TPer has begun processing the payload of an IF-SEND
command.

a. While in this state, the TPer SHALL terminate any received or dequeued IF-SEND
commands. The interface status for this action SHALL be "Synchronous Protocol Violation"
(see [2]).

b. While in this state, the TPer SHALL return a response ComPacket for any received or
dequeued IF-RECV commands for the specified ExtendedComID with the Length,
OutstandingData, and MinTransfer fields set per “Response(s) to come, no Response(s)
available” defined in Table 44.

State “Awaiting IF-RECV (S3)” – The TPer has completely processed the TCG data payload and has
the associated TCG response ready for retrieval by the host.

a. While in this state, if IF-RECV is received or dequeued with the ComID for this state
machine and a transfer length less than the amount of response data staged for the
ComID, the TPer SHALL return a response ComPacket for the specified ExtendedComID
with the Length, OutstandingData, and MinTransfer fields set per “Response ready,
insufficient transfer length request” defined in Table 44.

b. While in this state, the TPer SHALL terminate any received or dequeued IF-SEND
command. The interface status for this action SHALL be "Synchronous Protocol Violation"
(see [2]).

3.3.10.6 State Transitions
This section defines the state transitions for each valid ComID as presented in Figure 7

S0:S1 – This transition occurs automatically when the TPer is powered on.

S1:S0 – This transition occurs when the TPer is powered off.

S1:S1 – This transition occurs when:

a. The TPer receives an interface initiated TCG reset (see [2]), or

b. The TPer receives a Protocol Stack Reset Command for the ComID of this state machine
(see 3.3.4.7.5), or

c. The TPer detects an error in a received IF-SEND payload that prevents the TPer from
resolving an intended session for the IF-SEND command payload, or other error that
prevents the TPer from processing the command (see 3.3.10.7), or

d. The TPer receives an IF-RECV command for this ComID (see the "Awaiting IF-SEND"
state description in 3.3.10.5).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 86 of 314

S1:S2 – This transition occurs when an IF-SEND command with the ComID associated with this state
machine is received or dequeued and successfully completes data transfer of the command payload.

S2:S0 – This transition occurs when the TPer is powered off.

S2:S1 – This transition occurs when:

a. The TPer receives an interface initiated TCG reset (see [2]), or

b. The TPer receives a Protocol Stack Reset Command for the ComID of this state machine
(see 3.3.4.7.5), or

c. The TPer detects an error in the IF-SEND payload that prevents the TPer from resolving an
intended session for the IF-SEND command payload (see 3.3.10.7).

S2:S2 – This transition occurs when:

a. The TPer receives an IF-SEND for this ComID (see the "Processing" state description in
3.3.10.5), or

b. The TPer receives an IF-RECV for this ComID and processing has not completed to the
point where data is available for retrieval by the host (see the "Processing" state description
in 3.3.10.5).

S2:S3 – This transition occurs when the TPer has completely processed the contents of the IF-SEND
command and has a complete response available for retrieval by the host. A separate resonse MAY be
generated for each method in the IF-SEND.

S3:S0 – This transition occurs when the TPer is powered off.

S3:S1 – This transition occurs when the TPer receives:

a. An interface initiated TCG reset (see [2]), or

b. A Protocol Stack Reset Command for the ComID of this state machine (see 3.3.4.7.5), or

c. An IF-RECV able to retrieve the entire response resulting from the IF-SEND, or

d. An IF-RECV for the last of multiple responses resulting from the IF-SEND.

S3:S2 – This transition occurs when the TPer receives an IF-RECV able to retrieve a response
resulting from an IF-SEND but still has additional responses to process from that IF-SEND.

S3:S3 – This transition occurs when:

a. The TPer receives an IF-SEND for this ComID (see the "Awaiting IF-RECV" state
description in 3.3.10.5), or

b. An IF-RECV is received or dequeued with the ComID for this state machine and a transfer
length less than the amount of response data staged for the ComID (see the "Awaiting IF-
RECV" state description in 3.3.10.5), or

c. The TPer receives an IF-RECV able to retrieve a response resulting from an IF-SEND, and
additional responses are still available. The TPer SHALL a response ComPacket for the
specified ExtendedComID with the Length, OutstandingData, and MinTransfer fields set per
“Response, additional Response(s) available” defined in Table 44.

3.3.10.7 Error Handling
This section defines the manner in which violations of the restrictions on Interface Command payloads
SHALL be handled by the TPer.

a. If a violation of packet structure occurs such that the TPer is unable to resolve a valid Session
ID in an IF-SEND command, or if the restriction violation occurs due to violations of packet

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 87 of 314

requirements, the TPer SHALL ignore the entire packet and SHALL immediately transition to
the state of awaiting an IF-SEND command.

b. If a violation of packet structure occurs such that the TPer is able to resolve the Session ID, the
TPer SHALL close that session and MAY prepare for transmission the CloseSession method
for retrieval by the host.

c. The device SHALL abort at the interface level any IF-SEND command whose transfer length (in
bytes) is greater than the reported MaxComPacketSize for the corresponding ComID. The
interface status for this action SHALL be "Invalid Transfer Length parameter on IF-SEND" (see
[2]).

d. For SSCs that require that entire method responses be retrieved, if data generated in response
to any single method in an IF-SEND command (together with required communications
overhead) does not fit entirely within the TPer's response buffer, the device SHALL NOT return
any part of that method response and SHALL instead return an empty response list with a
status code of RESPONSE_OVERFLOW in the response status list. Additionally, the TPer
SHALL continue processing methods and control tokens that had been sent in that command
payload (if any).

3.4 SP Operation Descriptions
This section defines the operational and access control model for SPs.

3.4.1 General SP Guidelines
3.4.1.1 Admin SP
Begin Informative Content

The Admin SP maintains information about other SPs and the TPer as a whole and enables creation of
other SPs under issuance control.

End Informative Content

There SHALL be exactly one Admin SP on every TPer that has SPs or that is able to have SPs issued.
If present, the Admin SP SHALL NOT be able to be deleted, disabled, or frozen. The Admin SP SHALL
have the name "Admin."

3.4.1.2 SPs
SPs are created by integrating portions of one or more of the templates supported by a TPer (as
identified in the Admin SP).

A template includes the following:

a. Each template SHALL have a different name.

b. Templates define a set of table and method definitions. These definitions are used to
define the initial tables and methods that MAY be included in an instance of that template.

c. A maximum instance count. A maximum instance count of zero means no limit. At any
time there SHALL be no more than this number of SPs based on this template instantiated
within the TPer.

An SP includes the following:

a. A name – Each SP SHALL have a different name.

b. A set of tables – Tables SHOULD be stored in a non-user addressable storage area on the
TPer.

c. A set of methods – The supported methods define the operations that MAY be performed
on the SP and the SP's tables.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 88 of 314

All SPs SHALL be created from at least the Base Template. The Base Template is combined with zero
or more other template(s) to create an SP, though the number of SPs that instantiate a particular
template MAY be limited by the template's maximum instance count. The number of Base Template
instantiations permitted in a particular TPer by definition limits the number of SPs that MAY be issued
for that TPer.

An SP MAY incorporate only a subset of the entire set of tables and methods provided by each
template that makes up the SP.

3.4.2 Access Control
Begin Informative Content

This section introduces the concepts utilized to permit and restrict operations within an SP.

End Informative Content

3.4.2.1 Overview
Begin Informative Text

Access control limits the methods that are able to be processed on an SP, a table, or on specific rows
and columns of a table.

Permission to process a method is governed by which secrets the method’s invoker has proven that it
knows. The secrets and their public parts are called Credentials. The operation for proving knowledge
of a secret is called an Authentication Operation. The actual proving of knowledge of a secret is called
Authentication.

End Informative Text

Authentication in this document describes either Explicit Authentication, which typically occurs as a
result of password validation or challenge/response; or Implicit Authentication, which occurs as a result
of implicitly proving knowledge of a secret, such as during session key exchange.

An authority SHALL be considered authenticated in either type of authentication scenario - the terms
explicit and implicit are descriptive and SHALL NOT limit the authentication or capabilities of an
authority.

Begin Informative Text

An authority is used by the host application to represent a person, a role, a program agent, etc. These
are distinctions of meaning to the application, not to the SP.

Access Control is specified in layers. The top layer of the mechanism is Access Control Lists (ACLs).
ACLs are lists of Access Control Elements (ACEs). This layering gives the host a way to delegate
control of an ACL, via control of its ACEs, to various independent entities.

ACEs are Boolean combinations of authorities. This permits the ACE to express cross-certification or
other forms of restriction.

End Informative Text

When an authority is authenticated, its value in an ACE Boolean expression SHALL be True. If the
authority has not been authenticated, its value in an ACE Boolean expression SHALL be False.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 89 of 314

Figure 8 Access Control

3.4.2.2 Authorities
An authority is an object in the Authority table. An authority is one of two kinds: Individual or Class.
Each individual authority MAY be a member of one class authority. A class authority MAY be a
member of one class authority. A class authority SHALL NOT refer directly to a credential. An
individual authority specifies one credential and one operation that uses that credential.

Begin Informative Content

Class authorities are a convenient way to allow an ACE to be set on a method without enumerating all
the individual authorities that authorize that method. This means that the individual authorities that
belong to that class authority are able to be changed without having to change any of the ACEs that
refer to the class authority.

End Informative Content

A class authority SHALL be authenticated when any member of the class is authenticated. Class
authorities SHALL NOT be directly authenticated.

• A credential is an object in a Credential table. All credential tables have a name that starts with
"C_". A credential table SHALL have at least one column that stores a secret. It MAY also
have “public” parts, which contain information such as public keys and certificates. A particular
credential MAY have only some of its columns filled in. For example, if only a public key and
certificates validating that public key are known, then the private key columns are unused
(zeroes in these columns indicate that this information is not present).

Authentication to an authority SHALL occur within a session or during session startup, and SHALL
apply only to that session. All authorities that participate in successful session startup are authenticated
for that session. During a session the host MAY make any number of Authenticate method
invocations. There MAY be Security Subsystem Class-defined TPer and per session limits on the
maximum number of authorities that MAY be authenticated at any one time.

A set of authorities is defined by this specification. The AdminExch authority, of the class Admins, is
one such pre-defined authority. Every SP has an AdminExch authority at time of issuance. SSCs MAY
specify authorities in addition to these, or MAY restrict the use of the authorities specified in this
document.

For details regarding the Admins authority and other pre-defined authorities, refer to 5.3.4.1.2.

3.4.2.3 ACEs and ACLs
Begin Informative Content

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 90 of 314

ACEs apply to methods on an SP, on a particular table in an SP, or on arbitrary parts of a particular
table in an SP, down to the granularity of a single table cell.

With ACEs as the building blocks of ACLs, each ACE is able to have separate managerial control. For
example, a host authenticated with one authority creates a table and gives another authority control of
some of the ACEs on that table. This allows flexible, fine-grained management of access.

End informative Content

The minimum and maximum number of ACEs in an ACL and the minimum and maximum number of
authorities in an ACE are SSC-specific. Every SSC SHALL at least stipulate the minimum.

3.4.3 SP Issuance, Personalization, and Operational State
Begin Informative Content

Issuance is the cryptographically controlled creation of SPs from templates. Issuance occurs within a
session to a TPer's Admin SP, and is achieved by demonstrating knowledge of the secrets required to
authorize the creation of new SPs and then, for each new SP, creating a unique credential for the
Admin authority on that SP.

End Informative Content

Issuance of a new SP SHALL be complete when the top-level transaction that contains the method
invocation is successfully committed or, if the method was invoked outside of a transaction, once the
TPer has processed the method and prepared a response. SPs SHALL be created using the templates
specified during issuance. Once an SP is issued, it is not possible to add functionality to the SP from
additional templates.

Begin Informative Content

Personalization follows Issuance. The AdminExch authority on the new SP accomplishes
personalization by opening a session to the issued SP, creating new tables (in addition to the tables
that were provided by the templates), provisioning those tables, creating and configuring new
authorities, and setting the access controls on the SP’s methods. Personalization is an ongoing
process that occurs during the entire life of an SP.

End Informative Content

3.4.3.1 Issuing an SP
Begin Informative Content

Issuing an SP is similar to building a train (see Figure 9 below). Every train (SP) must have an engine
(Base Template). Additional cars (other Templates) providing additional capabilities are able to be
added at the time of issuance. In the simplest case, an SP is issued from just the Base Template (see
part ‘a’). In more complex cases several templates are used.

End Informative Content

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 91 of 314

Figure 9 Issuance

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 92 of 314

4 Life Cycle of SPs

4.1 Life Cycle of SPs Overview
Begin Informative Content

Each SP in a TPer has its own life cycle state. This section defines the various life cycle states and the
transitions that an SP makes between them.

Life cycle applies to each individual SP. The life cycle state of the TPer as a whole emerges from life
cycle states of individual SPs.

End Informative Content

Life cycle states are recorded in the LifeCycleState column of the Admin SP’s SP table. This column
identifies the SP's current state. The value of this column SHALL be changed by the TPer whenever an
SP's life cycle state changes. The value of the Admin SP object's LifeCycleState column SHALL
only be Issued.

Access control on reading the SPs available in a TPer, and the life cycle states of those SPs, SHALL be
readable by the Anybody authority on the Admin SP.

4.2 Life Cycle States

Figure 10 Life Cycle State Transitions

The following list details the states depicted in Figure 10 .

a. Nonexistent: The Nonexistent state is a theoretical state that describes the condition of an SP
before it has been instantiated, or after it has been deleted.

b. Issued: The Issued state is the standard operational state of an SP, and defines the initial
required access control settings of an SP based on the templates incorporated into the SP and
as defined by this specification and/or a supported SSC, prior to personalization. .

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 93 of 314

c. Issued-Disabled: This state occurs after an SP has been issued, when the value of the
Enabled column of the SP’s SPInfo table is False.

d. Issued-Frozen: This state occurs after an SP has been issued, when the value of the Frozen
column of the Admin SP’s SP table is True.

e. Issued-Disabled-Frozen: This state occurs after an SP has been issued, when both the value
of the Frozen column of the Admin SP’s SP table is True and the value of the Enabled column
of the SP’s SPInfo table is False.

f. Failed: The Failed state describes the condition where the SP has experienced an
unrecoverable write failure; physical read error for the hidden (SP) space; or other
unrecoverable failure that prevents access to TCG related functionality and data structures (i.e.
the SP is unable to accept method invocations).

4.3 Life Cycle State Transitions
This section identifies and describes the possible transitions between life cycle states as depicted in
Figure 10 .

a. Nonexistent/Issued

i. An SP transitions from Nonexistent to Issued when successful invocation of the
IssueSP method causes the SP to be created. The SP SHALL be created in this state
if the SP is operational and if the value of the IssueSP method's parameter Enabled
was True.

ii. An SP transitions from Issued to Nonexistent when that SP is deleted.

b. Any State/Issued-Failed

i. An SP MAY transition into the Issued-Failed state if an unrecoverable write error or
other failure occurs. The TPer SHALL control entry to this state.

ii. The Failed state is a terminal state. The only exit available from the Failed state is to
the theoretical Nonexistent state, by invoking Delete on the SP's object in the Admin
SP's SP table.

c. Issued/Issued-Disabled

i. An SP is transitioned from the Issued state into the Issued-Disabled state by setting the
value of the Enabled column of the SP’s SPInfo table to False.

ii. An SP is transitioned from the Issued-Disabled state to the Issued state by setting the
value of the Enabled column of the SP's SPInfo table to True.

d. Issued/Issued-Frozen

i. An SP transitions from the Issued state into the Issued-Frozen state by setting the
value of the Frozen column of the SP's object in the Admin SP’s SP table to True.

ii. An SP transitions from the Issued-Frozen state into the Issued state by setting the
value of the Frozen column of the SP's object in the Admin SP’s SP table to False.

e. Issued-Disabled/Issued-Disabled-Frozen

i. An SP is transitioned from the Issued-Disabled state to the Issued-Disabled-Frozen
state by setting the value of the Frozen column of the SP's object in the Admin SP’s SP
table to True.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 94 of 314

ii. An SP is transitioned from the Issued-Disabled-Frozen state to the Issued-Disabled
state by setting the value of the Frozen column of the SP's object in the Admin SP’s SP
table to False.

f. Issued-Disabled/Nonexistent

i. The SP MAY be deleted, and thus enter the Nonexistent state, by successful invocation
of the DeleteSP method from within a session to the SP, or by successful invocation of
the Delete method on the SP's object in the Admin SP's SP table.

g. Issued-Frozen/Nonexistent

i. The SP MAY be deleted, and thus enter the Nonexistent state, by successful invocation
of the Delete method on the SP's object in the Admin SP's SP table.

h. Issued-Disabled-Frozen/Nonexistent

i. The SP MAY be deleted, and thus enter the Nonexistent state, by successful invocation
of the Delete method on the SP's object in the Admin SP's SP table.

4.4 Default Authorities
The initial authorities defined in this specification that MAY affect the life cycle states are defined for:

a. Base Template (Table 208) – the Admins Authority (SP owner) and Makers Authority.

b. Admin Template (Table 214) – In addition to the Base Template Authorities, the Issuing
(and related) authorities, and the SID (TPer Owner) authority.

These are the only authorities that are within the scope of the specification. Additional authorities MAY
be defined in a Security Subsystem Class; during SP personalization and operational use, as required
and permitted by the access control settings defined here; or both.

4.5 State Behaviors

4.5.1 Issued
Behavior of an SP in the Issued state is described in the Template Reference sections, and specifically
in the sections of the templates of which the SP has been constructed. Access control settings in those
sections apply at the point when an SP has been Issued and before personalization occurs.

4.5.2 Issued-Disabled
If the Log template has been issued into the SP, logging in the SP’s default log table MAY reflect at
least the successful or unsuccessful use of the disabling and enabling functions, any failed session
attempts, and failed attempts to invoke the DeleteSP method, dependant on personalization.

Template-specific information related to disabling of an SP that includes that template is found in the
template’s reference section in this document.

In the Issued-Disabled state, only a host application that is able to authenticate to the necessary access
controls SHALL have the ability to re-enable the SP. Only method invocations related directly to re-
enabling the SP are successful (access control requirements SHALL still be fulfilled).

Only the following method invocations to the disabled SP SHALL function (fulfilling appropriate access
control requirements SHALL be required):

a. Authenticate

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 95 of 314

b. Set on the Enabled column of the SPInfo table. Access control requirements SHALL be
met as normal.

c. DeleteSP – Access control requirements SHALL be met as normal.

In addition, the disabled state SHALL NOT affect control session methods, and session startup
methods SHALL operate as normal.

The TPer owner or an authorized authority SHALL still have the ability to invoke the Delete method
within a session to the Admin SP in order to delete the disabled SP.

All method invocations, other than those specifically identified in this section, invoked within a session
to an SP in the Issued-Disabled state, SHALL fail with the SP_DISABLED status code.

4.5.3 Issued-Frozen
If the Log template has been issued into the SP, logging in the SP’s default log table MAY reflect failed
session startup attempts, dependent on personalization.

Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail with status SP_FROZEN.

4.5.4 Issued-Disabled-Frozen
If the Log template has been issued into the SP, logging in the SP’s default log table MAY reflect failed
session startup attempts, dependent on personalization.

Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail with status SP_FROZEN.

4.5.5 Failed
When an SP is in the Failed state, session startup methods to the SP SHALL respond with an error
status SP_FAIL and session startup SHALL NOT be able to complete.

The TPer owner or an authorized authority MAY invoke the Delete method within a session to the
Admin SP in order to delete the failed SP.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 96 of 314

5 SP Reference

5.1 Globally Applicable SP Values
Begin Informative Content

The following sections define variables, functions, constants, or any system attribute that applies to any
SP.

End Informative Content

5.1.1 Column Types Overview
The following are the primitive data types used for column types as defined by the specification. How
these primitive values are stored in a table cell is implementation dependent.

a. integer. Signed integer. To differentiate among the type sizes, a size identifier is specified
with the type, i.e., a one-byte integer is denoted as integer_1, etc.

b. uinteger. Unsigned integer. To differentiate among the type sizes, a size identifier is
specified with the type, i.e. a one-byte integer is denoted as uinteger_1, etc.

c. bytes. A fixed size sequence of bytes that is used to represent any type of data such as
strings, blobs, bit vectors, time/dates, etc. To differentiate among the type sizes, a size
identifier is specified with the type, i.e. a one-byte bytes type is denoted as bytes_1, etc.

d. bytes{max=n}. A variable size sequence of bytes. To differentiate among the type sizes, a
size identifier is specified with the type, i.e. a one-byte max bytes type is denoted as
max_bytes_1, etc. Invocation of the Get method on a table cell with this type of value
SHALL return the exact sequence of bytes, with the same token length, as was originally
set.

The value of a Type object's Format column SHALL indicate the structure and required values of that
type. The parsing of the value of this column is defined in a general manner using the following rules in
ABNF (see [9]). Additional specific information is provided after the notation. In the Format column, the
Format code and the table_kind value SHALL be encoded as a uinteger_2. All other values are
encoded as indicated.
Type = Base_Type / Simple_Type / Enumeration_Type / Alternative_Type / List_Type /
Restricted_Reference_Type / General_Reference_Type / Named_Value_Type / Struct_Type
/ Set_Type

table_kind = 1/2

Base_Type = 0
Simple_Type = 1 bytes_8 uinteger_2
Enumeration_Type = 2 1*(uinteger_2 uinteger_2)
Alternative_Type = 3 2*bytes_8
List_Type = 4 uinteger_2 bytes_8
Restricted_Reference_Type = 5/6 1*bytes_8
General_Reference_Type = 7/8/9
General_Reference_Table_Type = 10 table_kind
Named_Value_Name_Type = 11 1*32bytes bytes_8
Name_Value_Integer_Type = 12 integer_2 bytes_8
Name_Value_Uinteger_Type = 13 uinteger_2 bytes_8
Struct_Type = 14 1*bytes_8
Set_Type = 15 1*(uinteger_2 uinteger_2)

a. Base_Type. The Base_Type format describes the most basic types. Other types are
created using the Base Types as building blocks. The Base Types SHALL NOT be used
directly. Base Types SHALL always have a Size column value of 0 in the Type table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 97 of 314

a. 0 – this is the Format code indicating that this is a Base_Type.

b. Simple_Type. The Simple_Type format defines an instance of one of the Base_Type
types. The Simple_Type always includes a uinteger in the format column, which defines
the size for that instance of that Simple_Type.

a. 1 – this is the Format code indicating that this is a Simple_Type.

b. bytes_8 – this SHALL be a uidref to a Type object that is a Base_Type.

c. uinteger_2 – this is the size of this instantiation of the Base_Type.

c. Enumeration_Type. This is a n unsigned integer in a specific range.

a. 2 – this is the Format code indicating this is an Enumeration_Type.

b. 1*(uinteger_2 uinteger_2) – this is a number of pairs of values of uinteger_2 that
represent the supported ranges of values in the enumeration.

If a non-contiguous range of values is supported, the Format column SHALL contain a
number of uinteger_2 pairs to identify all of the supported values.

a. An invocation of the CreateRow method SHALL contain only a single pair of uinteger_2
values.

b. Pseudo-code example: enum {0..2} represents a range of 0 to 2 inclusive.

d. Alternative_Type. This is a value that SHALL be an element of one of the specified types.
The Alternative_Type format defines a union with the uinteger specifying the number of
member types and followed by that many uidref{TypeObjectUID} references to the member
types.

a. 3 – this is the Format code indicating that this is an Alternative_Type

b. 2*bytes_8 – this is a number of 2 or more uidrefs to different Type objects, other than
Base_Types, that identify the options available for this type.

Pseudo-code example: typeOr{boolean,uinteger_4,bytes_7}

e. List_Type. This is a sequence of values of the same type. The maximum number of
elements is specified. The elements of the list are not required to be provided in any
specified order. The elements of the list SHALL be returned to the host (with the Get
method, for example) in the order in which they were received by the TPer.

a. 4 – this is the format code indicating that this is a List_Type.

b. uinteger_2 – this is the maximum number of elements that make up the list.

c. bytes_8 – this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the elements of the list.

Pseudo-code example: list[10]{boolean} is a list of boolean values, with a maximum of 10
elements.

f. Restricted_Reference_Type. A reference to a row SHALL be contained in a specific table
or group of tables. The reference is to a physical row number (5) or a UID (6) within the
table. The value of a ref is the uinteger row number for a byte table. The value of a uidref is
a UID from the UID column of an object table. A uidref value of 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00, called the NULL UID, serves as a “null pointer”.

a. 5/6 – these are the format codes indicating that this is a Restricted_Reference_Type

i. 5 – this format code indicates that this type SHALL be the row number
contained in one of the indicated byte tables.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 98 of 314

ii. 6 – this format code indicates that this type SHALL be the UID of an object
contained in one of the indicated object tables.

b. 1*bytes_8 – this is 1 or more UIDs that SHALL be to different Table UIDs that identify
the tables within which the row number or uidref SHALL exist.

In this example, TableName is the name of the referenced table:

a. Pseudo-code example: uidref{ <TableName>ObjectUID }

b. Pseudo-code example: ref{ <TableName>ObjectUID }

g. General_Reference_Type. This is a reference to a row of some byte table, to the UID of
some object, or to the UID of some table. The General_Reference_Type format defines a
physical row number of a byte table (7), a uid of some object (8), or a uid of some table (9).
The UID reserved to represent “this SP” is encompassed by a General_Reference_Type
of 8. The value of a ref is the uinteger row number for a byte table. The value of a uidref is
a UID from the UID column of an object table. A uidref value of 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00, called the NULL UID, serves as a “null pointer”.

a. 7/8/9 – these are the format codes indicating that this is a General_Reference_Type.

i. 7 – this format code indicates that this type SHALL be the physical row number
of a byte table.

ii. 8 – this format code indicates that this type SHALL be the UID of some object.

iii. 9 – this format code indicates that this type SHALL be the UID of some table.

Pseudo-code example: uidref{*}

Pseudo-code example: ref{*}

h. General_Reference_Table_Type. This is a reference to a a specific kind of table, either
byte or object.

a. 10 – this format code indicates that this is a General_Reference_Table_Type.

b. table_kind (1/2) – this identifies whether the type value is the UID of an object table or
the UID of a byte table.

i. 1 – this table_kind value indicates that the type value SHALL be the UID of an
object table.

ii. 2 – this table_kind value indicates that type the SHALL be the UID of a byte
table.

i. Named_Value_Name_Type. This is a Named value pair where the Name in the pair is a
max_bytes_32, and the value is a uidref to the required type of the value.

a. 11 – this format code indicates that this is a Named_Value_Name_Type.

b. max_bytes_32 – this is a string with a maximum length of 32 characters that SHALL be
the name submitted with the value.

c. bytes_8 – this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the value to be submitted.

j. Named_Value_Integer_Type. This is a Named value pair where the Name in the pair is
an integer_2, and the value is a uidref to the required type of the value.

a. 12 – this format code indicates that this is a Named_Value_Name_Type.

b. integer_2 – this is a signed integer that SHALL be the name submitted with the value.

c. bytes_8 – this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the value to be submitted.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 99 of 314

k. Named_Value_Uinteger_Type. This is a Named value pair where the Name in the pair is
a uinteger_2, and the value is a uidref to the required type of the value.

a. 13 – this format code indicates that this is a Named_Value_Name_Type.

b. uinteger_2 – this is an unsigned integer that SHALL be the name submitted with the
value.

c. bytes_8 – this SHALL be a uidref to a Type object, other than a Base_Type, that
indicates the type of the value to be submitted.

l. Struct_Type. This is a combination of different Named value types. The Struct_Type
format indicator is followed by the number of elements and then uidrefs to the rows in the
Type table that represent each of those elements. Name-value pairs in structs represent
optional components. These MAY be excluded when passing that struct as a method
parameter. When used as a column type, the size SHALL account for inclusion of all of a
struct's components.

a. 14 – this format code indicates that this is a Struct_Type

b. 1*bytes_8 – this is a number of uidrefs to different Type objects, other than
Base_Types, that identify the components of this type.

Named value types in a struct SHALL all be different uidrefs and SHALL all be defined to
utilize different names.

If an element of a Struct is supplied when the Struct is referenced (for instance, in a method
parameter), then that element SHALL appear in the order identified for that Struct in the
Type table.

For a Struct made up of Named value parameters A, B, C, and D, if the Struct is
referenced, as in a method parameter, if element A is supplied then it SHALL be supplied
first within the Struct. Other correct element orderings include:

a. ExampleStruct [A, C, D]

b. ExampleStruct [B, D]

c. ExampleStruct [A, D]

Invalid element orderings include:

a. ExampleStruct [D, C]

b. ExampleStruct [B, C, A]

c. ExampleStruct [B, A, D, C]

m. Set_Type. A set of unsigned integers in a specific range. The Set_Type format defines the
range of the valid elements of the set, where the first integer is the start value of the valid
elements of the set and the second integer is the end value. The type itself is not limited to
only a single selection from among the choices defined, as in the Enumeration_Type. The
Set_Type provides the host the ability to select more than one of the options. Each SHALL
appear only once in the Set. The Set MAY hold any amount of selections, from zero to the
number of selections.

a. 15 – this format code indicates that this is a Set_Type

b. 1*(uinteger_2 uinteger_2) – this is a number of pairs of values of uinteger_2 that
represent the supported ranges of values in the set.

i. If a non-contiguous range of values is supported, the Format column SHALL
contain a number of uinteger_2 pairs to identify all of the supported values.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 100 of 314

ii. An invocation of the CreateRow method SHALL contain only a single pair of
uinteger_2 values.

Pseudo-code example: Set{0..2} – Valid values for this set are made up of the following =
{}, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}.

5.1.2 Types Encoding
Certain column types used in messaging as method parameters (particularly in the Set method) utilize
the interface grouping mechanisms (Named and List values) to provide clarity regarding the scope of
the transmitted values.

a. Simple types – values of this type require no special handling in the messaging stream.

b. Enumeration types – values of this type require no special handling in the messaging
stream.

c. Alternative types – values of this type are encoded in Get and Set methods as follows:

a. The Alternative column type is handled similarly to a Named value in a parameter list.
The Named value grouping tokens are used (SN and EN tokens, which represent
"StartName" and "EndName" respectively). The Name for the pair is the last four bytes
of the UID ("half_uid") of the value's Type object. The value in the Named value is the
value of the option being set to or retrieved from the column.

Example: When setting a 16-byte key value to the Key column of the K_AES_128 table, the
value would be encoded as:

F2 A400000202 D010000102030405060708090A0B0C0D0E0F F3

d. List type – values of this type are encoded as follows:

a. The List column type is handled in the same way a parameter list is handled, by using
the interface List value grouping tokens (F0 and F1 tokens, which represent "[" and "]"
respectively) to enclose the values in the list.

Example: F0 tokenized_value tokenized _value tokenized _value F1

e. Restricted Reference types – values of this type require no special handling in the
messaging stream.

f. General Reference types – values of this type require no special handling in the messaging
stream.

g. Named value types – values of this type are encoded as follows:

a. Values of this type are handled in the same way a Named value in a parameter list is
handled, by using the Named value grouping tokens (SN and EN tokens, which
represent "StartName" and "EndName" respectively) to enclose the name-value pair.

Example: F2 tokenized_name tokenized_value F3

h. Struct value types – Structs allow the creation of composite types by combining Named
value types and other types. Values of the struct type are made up of either optional
Named value types, or other types that are required to be supplied. The optional types
MAY NOT be included when sending values for a struct. Values of this type are encoded
as follows:

a. The struct itself is delimited using the List value grouping tokens (F0 and F1 tokens,
which represent "[" and "]" respectively) to enclose the values in the struct. The Named
values that make up the values stored in the struct are each grouped using the
interface Named value-grouping tokens (SN and EN tokens, which represent
"StartName" and "EndName" respectively) to enclose each name-value pair.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 101 of 314

Example: F0 F2 tokenized_name tokenized_value F3 F2 tokenized_name tokenized_value
F3 F1

i. Set value types – values of this type are encoded as follows:

a. The Set column type is handled in the same way that the List type is handled, by using
the interface List value grouping tokens (F0 and F1 tokens, which represent "[" and "]"
respectively) to enclose the values in the Set.

Example: F0 tokenized_value tokenized_value F1

5.1.3 Column Types
This section describes each of the column types in the Template Reference sections of the Core
Specification. The UID, Name, and Format columns identify the column values of the Type table. These
values SHALL comprise the Type table for every SP, prior to any personalization. These types SHALL
NOT be able to be changed or deleted by the host.

Included in this section are descriptions of the column types for each column of each table defined in
this specification, as well as descriptions of each of the component types of the column types.
Component types are types that have entries in the Type table, but are not referenced directly as
column types. They are used to make up other types that do represent column types.

The UID column in the description table in each section SHALL be the UID for that type.

The Name column specifies the name for that type.

The Format column identifies the structure of the associated type. The first value in the Format column
is the name of that type's Format code. Additional values listed in the column are determined by the
type's format code. For readability, the names of Type objects are used in place of their UID, and
commas are used to separate values.

An asterisk (*) in any of the descriptive tables indicates SSC-specific or implementation-specific values.

5.1.3.1 AC_element
An AC_element is a list type made up of ACE_expressions. The size of the AC_element list is
implementation-dependant. A minimum size restriction MAY be defined by an SSC.

Table 45 AC_element
UID Name Format

00 00 00 05 00 00 08 01 AC_element List_Type,
*,
ACE_expression

5.1.3.2 ACE_columns
This Set type identifies the columns to which an ACE applies. The values are: 0=Column0,
1=Column1, 2=Column2, etc. Each value in the set maps to a "Column Number". The size of the set is
SSC/implementation dependant based on the maximum number of columns allowed in a table. For
tables created from templates, the table descriptions in this specification indicate the ordering of the
columns, such that the first column listed in a table description is "Column0", the second is "Column1",
etc. For object tables created using the CreateTable method, the UID column SHALL be Column
Number 0, the first column defined in the Columns parameter of CreateTable SHALL be Column
Number 1, etc.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 102 of 314

Table 46 ACE_columns
UID Name Format

00 00 00 05 00 00 1A 03 ACE_columns Set_Type,
0,
*

5.1.3.3 ACE_expression
This is an alternative type where the options are either a uidref to an Authority object or one of the
boolean_ACE (AND = 0 and OR = 1) options. This type is used within the AC_element list to form a
postfix Boolean expression of Authorities.

Table 47 ACE_expression Encoding Example
Token Meaning

F0 Start List

F2 Start Name

A4 00 00 0C 05 Half-UID – Authority_object_ref

A8 00 00 00 09 00 00 00 32 Authority_object_ref

F3 End Name

F2 Start Name

A4 00 00 0C 05 Half-UID – Authority_object_ref

A8 00 00 00 09 00 00 00 24 Authority_object_ref

F3 End Name

F2 Start Name

A4 00 00 04 0E Half-UID – boolean_ACE

00 boolean_ACE - AND

F3 End Name

F2 Start Name

A4 00 00 0C 05 Half-UID – Authority_object_ref

A8 00 00 00 09 00 00 82 73 Authority_object_ref

F3 End Name

F2 Start Name

A4 00 00 04 0E Half-UID – boolean_ACE

01 boolean_ACE - OR

F3 End Name

F2 Start Name

A4 00 00 0C 05 Half-UID – Authority_object_ref

A8 00 00 00 09 00 00 77 28 Authority_object_ref

F3 End Name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 103 of 314

Token Meaning

F2 Start Name

A4 00 00 04 0E Half-UID – boolean_ACE

00 boolean_ACE - AND

F3 End Name

F1 End List

Table 47 is the AC_element list representing the infix ACE expression:

((00 00 00 09 00 00 00 32 AND 00 00 00 09 00 00 00 24) OR 00 00 00 09 00 00 82 73) AND 00 00 00
09 00 00 77 28

Table 48 ACE_expression
UID Name Format

00 00 00 05 00 00 06 01 ACE_expression Alternative_Type,
Authority_object_ref,
boolean_ACE

5.1.3.4 ACE_object_ref
This type describes a uidref to an object contained in the ACE table.

Table 49 ACE_object_ref
UID Name Format

00 00 00 05 00 00 0C 04 ACE_object_ref Restricted_Reference_Type{6},
uidref{ACETableUID}

5.1.3.5 ACL
The ACL type is a list of uidrefs to ACE objects. The length of the list, and therefore the number of
ACEs that MAY be included in a single Access Control List, is SSC/implementation dependant.

Table 50 ACL
UID Name Format

00 00 00 05 00 00 08 02 ACL List_Type,
*,
ACE_object_ref

5.1.3.6 adv_key_mode
This enumeration type defines the behavior of the NextKey column.

Table 51 adv_key_mode
UID Name Format

00 00 00 05 00 00 04 0F adv_key_mode Enumeration_Type,
0,
7

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 104 of 314

The enumeration values are associated with key behaviors as defined in Table 52.

Table 52 adv_key_mode Enumeration Values
Enumeration Value Behavior

0 Wait for AdvKey_Req

1 Auto-advance keys

2-7 Reserved

5.1.3.7 attr_flags
This set type describes the types of attributes available for the AttributeFlags column of the Column
table.

Table 53 attr_flags
UID Name Format

00 00 00 05 00 00 1A 04 attr_flags Set_Type,
0,
31

The set values are associated with column behaviors as defined in Table 54.

Table 54 attr_flags Set Values
Set Value Behavior

0 Get Not Permitted

1 Set Not Permitted

2-31 Reserved

5.1.3.8 auth_method
This enumeration type is used to represent the authentication methods that MAY be used to
authenticate authorities (see 5.3.4.1.3).

Table 55 auth_method
UID Name Format

00 00 00 05 00 00 04 08 auth_method Enumeration_Type,
0,
23

The enumeration values are associated with authentication methods as defined in Table 56.

Table 56 auth_method Enumeration Values
Enumeration Value Authentication Method

0 None

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 105 of 314

Enumeration Value Authentication Method

1 Password

2 Exchange

3 Sign

4 SymK

5 HMAC

6 TPerSign

7 TPerExchange

8-23 Reserved

5.1.3.9 Authority_object_ref
The Authority_object_ref type describes a uidref to an object in the Authority table.

Table 57 Authority_object_ref
UID Name Format

00 00 00 05 00 00 0C 05 Authority_object_ref Restricted_Reference_Type{6},
uidref {AuthorityTableUID}

5.1.3.10 boolean
The boolean column type is an enumeration used to represent True or False.

Table 58 boolean
UID Name Format

00 00 00 05 00 00 04 01 boolean Enumeration_Type,
0,
1

The enumeration values are associated as defined in Table 59.

Table 59 boolean Enumeration Values
Enumeration Value Associated Value

0 False

1 True

5.1.3.11 boolean_ACE
This enumeration is used to identify the Boolean operators "And", "Or", and "Not".

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 106 of 314

Table 60 boolean_ACE
UID Name Format

00 00 00 05 00 00 04 0E boolean_ACE Enumeration_Type,
0,
2

The enumeration values are associated with Boolean operators as defined in Table 61.

Table 61 boolean_ACE Enumeration Values
Enumeration Value Operator

0 And

1 Or

2 Not

5.1.3.12 byte_row_ref
Type used for referencing a row in a byte table.

Table 62 byte_row_ref
UID Name Format

00 00 00 05 00 00 0F 01 byte_row_ref General_Reference_Type {7}

5.1.3.13 byte_table_ref
This is a reference type that SHALL be used specifically for uidrefs to byte tables. When performing
type checking, as part of that type checking the TPer SHALL validate that this uidref is to a table that is
a byte table.

Table 63 byte_table_ref
UID Name Format

00 00 00 05 00 00 10 01 byte_table_ref General_Reference_Table_Type,
2

5.1.3.14 bytes
This type represents the bytes base type, and is used to represent a value made up of a fixed-size
sequence of bytes.

Table 64 bytes
UID Name Format

00 00 00 05 00 00 00 02 bytes Base_Type

5.1.3.15 bytes_12
This is a bytes type with a size requirement of 12.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 107 of 314

Table 65 bytes_12
UID Name Format

00 00 00 05 00 00 02 01 bytes_12 Simple_Type,
bytes,
12

5.1.3.16 bytes_16
This is a bytes type with a size requirement of 16.

Table 66 bytes_16
UID Name Format

00 00 00 05 00 00 02 02 bytes_16 Simple_Type,
bytes,
16

5.1.3.17 bytes_20
This is a bytes type with a size requirement of 20.

Table 67 bytes_20
UID Name Format

00 00 00 05 00 00 02 36 bytes_20 Simple_Type,
bytes,
20

5.1.3.18 bytes_32
This is a bytes type with a size requirement of 32.

Table 68 bytes_32
UID Name Format

00 00 00 05 00 00 02 05 bytes_32 Simple_Type,
bytes,
32

5.1.3.19 bytes_48
This is a bytes type with a size requirement of 48.

Table 69 bytes_48
UID Name Format

00 00 00 05 00 00 02 37 bytes_48 Simple_Type,
bytes,
48

5.1.3.20 bytes_64
This is a bytes type with a size requirement of 64.

Table 70 bytes_64
UID Name Format

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 108 of 314

UID Name Format

00 00 00 05 00 00 02 06 bytes_64 Simple_Type,
bytes,
64

5.1.3.21 Certificates_object_ref
The Certificates_object_ref type describes a uidref to an object in the Certificates table.

Table 71 Certificates_object _ref
UID Name Format

00 00 00 05 00 00 0C 06 Certificates_object_ref Restricted_Reference_Type{6},
uidref {CertificatesTableUID}

5.1.3.22 clock_kind
This enumeration type is used to define the type of clock currently active.

Table 72 clock_kind
UID Name Format

00 00 00 05 00 00 04 0B clock_kind Enumeration_Type,
0,
3

The enumeration values are associated as defined in Table 73.

Table 73 clock_kind Enumeration Values
Enumeration Value Associated Value

0 Timer

1 Low

2 High

3 LowAndHigh

5.1.3.23 clock_time
This is a struct type made up of name-value pairs, and is used to represent time. Any value not
supplied is treated as 0.

If the host has supplied a trusted time since powerup, that time is used; otherwise a monotonic counter
is used.

The clock_time type represents times in either Generalized Time or UTC Time. Using this type to
represent UTC Time requires 0’s (zeroes) in fields where Generalized time requires a value but UTC
Time does not (i.e. 2006 in UTC Time would be represented as 0006). Per the definition for the
component types, the names for these name-value types are 0x00 (for the Year), 0x01 (for the Month),
0x02 (for the Day), 0x03 (for the Hour), 0x04 (for the Minute), 0x05 (for the Seconds), and 0x06 (for the
Fraction).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 109 of 314

Table 74 clock_time
UID Name Format

00 00 00 05 00 00 18 05 clock_time Struct_Type,
Year,
Month,
Day,
Hour,
Minute,
Seconds,
Fractoin

5.1.3.24 Column_object _ref
The Column_object _ref type describes a uidref to an object in the Column table.

Table 75 Column_object _ref
UID Name Format

00 00 00 05 00 00 0C 07 Column_object_ref Restricted_Reference_Type{6},
uidref {ColumnTable_UID}

5.1.3.25 cred_object_uidref
The cred_object_uidref type is a restricted reference type that SHALL be used specifically for uidrefs to
credential objects. When performing type checking, as part of that type checking the TPer SHALL
validate that this uidref is to an object in a credential (C_*) table.

In the Format column of Table 76, the * is used to indicate the entire range of that particular type of
credential table.

Table 76 cred_object_uidref
UID Name Format

00 00 00 05 00 00 0C 0B cred_object_uidref Restricted_Reference_Type{6},
uidref {C_PINTableUID},
uidref {C_AES_*TableUID},
uidref {C_RSA_*TableUID},
uidref{C_EC_*TableUID},
uidref{C_HMAC_*TableUID}

5.1.3.26 date
The date type represents the date portion of the time from the system clock. This is a set of name-
value pairs, with the names 0x00 (for the Year), 0x01 (for the Month), and 0x02 (for the Day).

Table 77 date
UID Name Format

00 00 00 05 00 00 18 04 date Struct_Type, Year,
Month,
Day

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 110 of 314

5.1.3.27 Day
Name-value pair that has a Name of "2" and takes day_enum as the value.

Table 78 Day
UID Name Format

00 00 00 05 00 00 14 03 Day Name_Value_Uinteger_Type,
2,
day_enum

5.1.3.28 day_enum
Used in association with the Day name-value pair.

Table 79 day_enum
UID Name Format

00 00 00 05 00 00 04 18 day_enum Enumeration_Type,
1,
31

5.1.3.29 enc_supported
This enumeration type is used to define the types of user data encryption supported by the TPer.

Table 80 enc_supported
UID Name Format

00 00 00 05 00 00 04 1D enc_supported Enumeration_Type,
0,
15

The enumeration values are associated as defined in Table 81.

Table 81 enc_supported Enumeration Values
Enumeration Value Associated Value

0 None

1 Media Encryption

2-15 Reserved

5.1.3.30 feedback_size
This uinteger type represents the feedback sizes for AES used in CFB mode. If AES Mode is CFB, this
SHALL be between 1 and the block length.

Table 82 feedback_size
UID Name Format

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 111 of 314

UID Name Format

00 00 00 05 00 00 02 14 feedback_size Simple_Type,
uinteger,
2

5.1.3.31 Fraction
Name-value pair that has a Name of "6" and takes fraction enum as the value.

Table 83 Fraction
UID Name Format

00 00 00 05 00 00 14 07 Fraction Name_Value_Uinteger_Type,
6,
fraction_enum

5.1.3.32 fraction_enum
Used in association with the Fraction name-value pair.

Table 84 fraction_enum
UID Name Format

00 00 00 05 00 00 04 1C fraction_enum Enumeration_Type,
0,
999

5.1.3.33 gen_status
This set type is used to identify the general status of the re-encryption process.

Table 85 gen_status
UID Name Format

00 00 00 05 00 00 1A 02 gen_status Set_Type,
0,
63

The enumeration values are associated as defined in table Table 86. Values 0-31 are valid for the
PAUSED state, value 32-63 are valid for the PENDING state (see 5.7.3.3).

Table 86 gen_status Enumeration Values
Column
Value

Associated Value Meaning

0 None

1 pending_tper_error Last ReEncryptState value was PENDING AND a
TPer_Error_Detect condition was detected

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 112 of 314

Column
Value

Associated Value Meaning

2 active_tper_error Last ReEncryptState value was ACTIVE AND a
TPer_Error_Detect condition was detected

3 active_pause_requested Last ReEncryptState value was ACTIVE AND PAUSE_req
was detected

4 pend_pause_requested Last ReEncryptState value was PENDING AND a
PAUSE_req value was detected

5 pend_reset_stop_detect A reset condition AND its associated ContOnReset
configuration does not allow re-encryption to continue AND
last state was PENDING

6 key_error ReEncryptState value was PENDING AND valid keys were
not found in any C_* table OR insufficient access control
granted for reading C_* table.

7 to 31 reserved

32 wait_AvailableKeys keys are not available

33 wait_for_TPer_resources TPer_Ready condition is not True

34 active_reset_stop_detect A reset condition AND its associated ContOnReset
configuration does not allow re-encryption to continue AND
last ReEncryptState value was ACTIVE

34-63 reserved

5.1.3.34 hash_protocol
This enumeration type determines the hash algorithm to be used when creating a digital signature.

Table 87 hash_protocol
UID Name Format

00 00 00 05 00 00 04 0D hash_protocol Enumeration_Type,
0,
15

The enumeration values are associated as defined in Table 88.

Table 88 hash_protocol Enumeration Values
Enumeration Value Associated Value

0 None

1 SHA 1

2 SHA 256

3 SHA 384

4 SHA 512

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 113 of 314

Enumeration Value Associated Value

5-15 Reserved

5.1.3.35 Hour
Name-value pair that has a Name of "3" and takes hour_enum as the value.

Table 89 Hour
UID Name Format

00 00 00 05 00 00 14 04 Hour Name_Value_Uinteger_Type,
3,
hour_enum

5.1.3.36 hour_enum
Used in association with the Hour name-value pair.

Table 90 hour_enum
UID Name Format

00 00 00 05 00 00 04 19 hour_enum Enumeration_Type,
0,
23

5.1.3.37 integer
This is the base type used to represent a signed integer.

Table 91 integer
UID Name Format

00 00 00 05 00 00 00 04 integer Base_Type

5.1.3.38 integer_1
This is an integer type with a size limit of 1 byte.

Table 92 integer_1
UID Name Format

00 00 00 05 00 00 02 10 integer_1 Simple_Type,
integer,
1

5.1.3.39 integer_2
This is an integer type with a size limit of 2 bytes.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 114 of 314

Table 93 integer_2
UID Name Format

00 00 00 05 00 00 02 15 integer_2 Simple_Type,
integer,
2

5.1.3.40 key_128
This is an alternative type, with options for various key sizes.

Table 94 key_128
UID Name Format

00 00 00 05 00 00 06 02 key_128 Alternative_Type,
bytes_16,
bytes_32

5.1.3.41 key_256
This is an alternative type, with options for various key sizes.

Table 95 key_256
UID Name Format

00 00 00 05 00 00 06 03 key_256 Alternative_Type,
bytes_32,
bytes_64

5.1.3.42 keys_avail_conds
This enumeration describes the conditions required to assert KeysAvailable in the Locking table.

Table 96 keys_avail_conds
UID Name Format

00 00 00 05 00 00 04 10 keys_avail_conds Enumeration_Type,
0,
7

The enumeration values are associated as defined in Table 97.

Table 97 keys_avail_conds Enumeration Values
Enumeration
Value

Associated Value

0 None

1 Authentication of an authority with Set access to any of the ReadLocked,
WriteLocked, ReadLockEnabled or WriteLockEnabled columns for that LBA range

2-7 Reserved

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 115 of 314

5.1.3.43 lag
A struct made up of 2 uinteger_2 name-value types, used to define the lag when setting time. The two
types represent seconds and fraction of seconds. The names required, as defined by the component
types, are 0x05 ("Seconds") for the first value and 0x06 ("Fraction") for the second. The "Fraction" value
is a number of milliseconds.

Table 98 lag
UID Name Format

00 00 00 05 00 00 18 02 lag Struct_Type,
Seconds,
Fraction

5.1.3.44 last_reenc_stat
This enumeration identifies the last attempted re-encryption step.

Table 99 last_reenc_stat
UID Name Format

00 00 00 05 00 00 04 11 last_reenc_stat Enumeration_Type,
0,
7

The enumeration values are associated as defined in Table 100.

Table 100 last_reenc_stat Enumeration Values
Enumeration Value Associated Value

0 Success

1 Read Error

2 Write Error

3 Verify Eror

4-7 Reserved

5.1.3.45 life_cycle_state
This enumeration is used to represent the current life cycle state of the SP.

Table 101 life_cycle_state
UID Name Format

00 00 00 05 00 00 04 05 life_cycle_state Enumeration_Type,
0,
15

The enumeration values are associated as defined in Table 102.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 116 of 314

Table 102 life_cycle_state Enumeration Values
Enumeration Value Associated Value

0 Issued

1 Issued-Disabled

2 Issued-Frozen

3 Issued-Disabled-Frozen

4 Issued-Failed

5-7 Unassigned

8-13 Reserved for SSC Usage

14-15 Unassigned

5.1.3.46 LogList_object_ref
The LogList_object_ref type describes a uidref to an object in the LogList table.

Table 103 LogList_object_ref
UID Name Format

00 00 00 05 00 00 0C 0D LogList_object_ref Restricted_Reference_Type{6},
uidref {LogListTableUID}

5.1.3.47 log_row_ref
This type SHALL be used specifically for rows in Log tables. When performing type checking, as part of
that type checking the TPer SHALL validate that this is the uid of a row in a Log table.

The * in the Format column of Table 104 indicates that other Log tables besides the default log MAY
exist in a particular SP, and that the Format column value for this type also includes those.

Table 104 log_row_ref
UID Name Format

00 00 00 05 00 00 0C 0A log_row_ref Restricted_Reference_Type {6},
uidref{LogTableUID},
*

5.1.3.48 log_select
This enumeration is used to identify the scope of the logging for an access control association or
authority authentication.

Table 105 log_select
UID Name Format

00 00 00 05 00 00 04 0C log_select Enumeration_Type,
0,
3

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 117 of 314

The enumeration values are associated as defined in Table 106.

Table 106 log_select Enumeration Values
Enumeration Value Associated Value

0 None

1 LogSuccess

2 LogFail

3 LogAlways

5.1.3.49 max_bytes
This is the base type that is used to represent a bytes value that is equal to or less than the size
specified for the type instance.

Table 107 max_bytes
UID Name Format

00 00 00 05 00 00 00 03 max_bytes Base_Type

5.1.3.50 max_bytes_32
This is a max bytes type that provides a maximum size of 32.

Table 108 max_bytes_32
UID Name Format

00 00 00 05 00 00 02 0D max_bytes_32 Simple_Type,
max_bytes,
32

5.1.3.51 max_bytes_64
This is a max bytes type that provides a maximum size of 64.

Table 109 max_bytes_64
UID Name Format

00 00 00 05 00 00 02 0E max_bytes_64 Simple_Type,
max_bytes,
64

5.1.3.52 mediakey_obj_uidref
This is a restricted reference type that SHALL be used specifically for uidrefs to media encryption key
objects (in the K_* tables). When performing type checking, as part of that type checking the TPer
SHALL validate that this uidref is to an object in a media encryption key table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 118 of 314

Table 110 mediakey_obj_uidref
UID Name Format

00 00 00 05 00 00 0C 0C mediakey_object_uidref Restricted_Reference_Type{6},
uidref {K_AES_128TableUID},
uidref {K_AES_256TableUID}

5.1.3.53 MethodID_object _ref
The MethodID_object _ref type describes a uidref to an object in the MethodID table.

Table 111 MethodID_object _ref
UID Name Format

00 00 00 05 00 00 0C 03 MethodID_object_ref Restricted_Reference_Type{6},
uidref {MethodIDTableUID}

5.1.3.54 messaging_type
This enumeration is used to describe the options for selecting secure messaging.

Table 112 messaging_type
UID Name Format

00 00 00 05 00 00 04 04 messaging_type Enumeration_Type,
0,
255

The enumeration values and their associations defined in Table 178.

5.1.3.55 Minute
Name-value pair that has a Name of "" and takes minute_enum as the value.

Table 113 Minute
UID Name Format

00 00 00 05 00 00 14 05 Minute Name_Value_Uinteger_Type,
4,
minute_enum

5.1.3.56 minute_enum
Used in association with the Minute name-value pair.

Table 114 minute_enum
UID Name Format

00 00 00 05 00 00 04 1A minute_enum Enumeration_Type,
0,
59

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 119 of 314

5.1.3.57 Month
Name-value pair that has a Name of "1" and takes month_enum as the value.

Table 115 Month
UID Name Format

00 00 00 05 00 00 14 02 Month Name_Value_Uinteger_Type,
1,
month_enum

5.1.3.58 month_enum
Used in association with the Month name-value pair.

Table 116 month_enum
UID Name Format

00 00 00 05 00 00 04 17 month_enum Enumeration_Type,
1,
12

5.1.3.59 name
This max bytes type, with a size limitation of 32, is used to represent names.

Table 117 name
UID Name Format

00 00 00 05 00 00 02 0B name Simple_Type,
max_bytes,
32

5.1.3.60 object_ref
Type used for referencing an object in an object table.

Table 118 object_ref
UID Name Format

00 00 00 05 00 00 0F 02 object_ref General_Reference_Type {8}

5.1.3.61 padding_type
This enumeration is used to identify the type of padding used with RSA encryption. RSAES-PKCS1-
v1_5 or RSAES-OAEP (see [18]) SHALL be used for RSA encryption. RSASSA-PKCS1-v1_5 or
RSASSA-PSS (see [18]) SHALL be used for RSA signing.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 120 of 314

Table 119 padding_type
UID Name Format

00 00 00 05 00 00 04 06 padding_type Enumeration_Type,
0,
15

The enumeration values are associated as defined in Table 120.

Table 120 padding_type Enumeration Values
Enumeration Value Associated Value

0 None

1 None

2 RSAES-PKCS1-v1_5

3 RSAES-OAEP

4 RSASSA-PKCS1-v1_5

5-15 Reserved

5.1.3.62 password
This max bytes type, with a size limitation of 32, is used in the C_PIN table.

Table 121 password
UID Name Format

00 00 00 05 00 00 02 0C password Simple_Type,
max_bytes,
32

5.1.3.63 protect_types
This set is used to identify the protection mechanisms in operation when a column is identified as
hidden.

Table 122 protect_types
UID Name Format

00 00 00 05 00 00 1A 05 protect_types Set_Type,
0,
65535

The empty set indicates that keys are not hidden. The values of the set are all applied to the protected
value. The set values are assigned in [3].

5.1.3.64 reencrypt_request
This enumeration is used to identify the host re-encryption request value.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 121 of 314

Table 123 reencrypt_request
UID Name Format

00 00 00 05 00 00 04 13 reencrypt_request Enumeration_Type,
1,
16

The enumeration values are associated as defined in 5.7.2.2.14.

5.1.3.65 reencrypt_state
This enumeration type identifies the present re-encryption state for an LBA range.

Table 124 reencrypt_state
UID Name Format

00 00 00 05 00 00 04 14 reencrypt_state Enumeration_Type,
1,
16

The enumeration values are associated as defined in Table 125.

Table 125 reencrypt_state Enumeration Values
Enumeration Value Associated Value

1 Idle

2 Pending

3 Active

4 Completed

5 Paused

6-16 Reserved

5.1.3.66 reset_types
This Set type identifies the various TCG reset options available.

Table 126 reset_types
UID Name Format

00 00 00 05 00 00 1A 01 reset_types Set_Type,
0,
31

The Set values are associated as defined in Table 127.

Table 127 reset_types Set Values
Enumeration Value Associated Value

0 Power Cycle

1 Hardware

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 122 of 314

Enumeration Value Associated Value

2 HotPlug

3-15 Reserved

16-31 Vendor Unique

5.1.3.67 Seconds
Name-value pair that has a Name of "5" and takes seconds_enum as the value.

Table 128 Seconds
UID Name Format

00 00 00 05 00 00 14 06 Seconds Name_Value_Uinteger_Type,
5,
seconds_enum

5.1.3.68 seconds_enum
Used in association with the Seconds name-value pair.

Table 129 seconds_enum
UID Name Format

00 00 00 05 00 00 04 1B seconds_enum Enumeration_Type,
0,
59

5.1.3.69 SPTemplates_object _ref
The SPTemplates_object _ref type describes a uidref to an object in the SPTemplates table.

Table 130 SPTemplates_object _ref
UID Name Format

00 00 00 05 00 00 0C 01 SPTemplates_object_ref Restricted_Reference_Type{6},
uidref{SPTemplatesTableUID}

5.1.3.70 SSC
This is a list of names used to represent the SSCs that a TPer supports.

Table 131 SSC
UID Name Format

00 00 00 05 00 00 08 03 SSC List_Type,
*,
name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 123 of 314

5.1.3.71 symmetric_mode
Defines the mode to be used with an AES credential.

Table 132 symmetric_mode
UID Name Format

00 00 00 05 00 00 04 0A symmetric_mode Enumeration_Type,
0,
23

The enumeration values are associated as defined in Table 133.

Table 133 symmetric_mode Enumeration Values
Enumeration Value Associated Value

0 ECB

1 CBC

2 CFB

3 OFB

4 GCM

5 CTR

6 CCM

7 XTS

8 LRW

9 EME

10 CMC

11 XEX

12-23 Reserved

5.1.3.72 symmetric_mode_media
Defines the modes availableto be used with AES for user data encryption.

Table 134 symmetric_mode_media
UID Name Format

00 00 00 05 00 00 04 03 symmetric_mode_media Enumeration_Type,
0,
23

The enumeration values are associated as defined in Table 133.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 124 of 314

Table 135 symmetric_mode_media Enumeration Values
Enumeration Value Associated Value

0 ECB

1 CBC

2 CFB

3 OFB

4 GCM

5 CTR

6 CCM

7 XTS

8 LRW

9 EME

10 CMC

11 XEX

12-22 Reserved

23 Media Encryption

5.1.3.73 table_kind
Defines the kinds of tables.

Table 136 table_kind
UID Name Format

00 00 00 05 00 00 04 15 table_kind Enumeration_Type,
1,
8

The enumeration values are associated as defined in Table 137.

Table 137 table_kind Enumeration Values
Enumeration Value Table Type

1 Object

2 Byte

3-8 Reserved

5.1.3.74 table_or_object_ref
This alternative type defines a reference to either the uid of a table or the uid of some object, or the UID
of "ThisSP".

Table 138 table_or_object_ref
UID Name Format

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 125 of 314

UID Name Format

00 00 00 05 00 00 06 06 table_or_object_ref Alternative_Type,
object_ref,
table_ref

5.1.3.75 Table_object _ref
The Table_object _ref type describes a uidref to an object in the Table table.

Table 139 Table_object _ref
UID Name Format

00 00 00 05 00 00 0C 09 Table_object_ref Restricted_Reference_Type{6},
uidref {TableTableUID}

5.1.3.76 table_ref
Type used for referencing a table.

Table 140 table_ref
UID Name Format

00 00 00 05 00 00 0F 03 table_ref General_Reference_Type {9}

5.1.3.77 Template_object _ref
The Template_object _ref type describes a uidref to an object in the Admin SP's Template table.

Table 141 Template_object _ref
UID Name Format

00 00 00 05 00 00 0C 08 Template_object_ref Restricted_Reference_Type{6},
uidref {TemplateTableUID}

5.1.3.78 type_def
The type_def type describes the format of the Type table's Format column. The value in the Format
column of this type SHALL be encoded and parseable based on the notation description of the type
formats (see 5.1.1).

Table 142 type_def
UID Name Format

00 00 00 05 00 00 02 03 type_def Simple_Type,
max_bytes,
*

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 126 of 314

5.1.3.79 Type_object _ref
The Type_object _ref type describes a uidref to an object in the Type table.

Table 143 Type_object _ref
UID Name Format

00 00 00 05 00 00 0C 02 Type_object_ref Restricted_Reference_Type{6},
uidref {TypeTableUID}

5.1.3.80 uid
This is the type used for the UID column of object tables.

Table 144 uid
UID Name Format

00 00 00 05 00 00 02 09 uid Simple_Type,
bytes,
8

5.1.3.81 uinteger
This is the base type that is used to represent an unsigned integer.

Table 145 uinteger
UID Name Format

00 00 00 05 00 00 00 05 uinteger Base_Type

5.1.3.82 uinteger_1
This is a uinteger type with a size restriction of 1 byte.

Table 146 uinteger_1
UID Name Format

00 00 00 05 00 00 02 11 uinteger_1 Simple_Type,
uinteger,
1

5.1.3.83 uinteger_128
This is a uinteger type with a size restriction of 128 bytes.

Table 147 uinteger_128
UID Name Format

00 00 00 05 00 00 02 12 uinteger_128 Simple_Type,
uinteger,
128

5.1.3.84 uinteger_2
This is a uinteger type with a size restriction of 2 bytes.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 127 of 314

Table 148 uinteger_2
UID Name Format

00 00 00 05 00 00 02 15 uinteger_2 Simple_Type,
uinteger,
2

5.1.3.85 uinteger_20
This is a uinteger type with a size restriction of 20 bytes.

Table 149 uinteger_20
UID Name Format

00 00 00 05 00 00 02 16 uinteger_20 Simple_Type,
uinteger,
20

5.1.3.86 uinteger_21
This is a uinteger type with a size restriction of 21 bytes.

Table 150 uinteger_21
UID Name Format

00 00 00 05 00 00 02 17 uinteger_21 Simple_Type,
uinteger,
21

5.1.3.87 uinteger_24
This is a uinteger type with a size restriction of 24 bytes.

Table 151 uinteger_24
UID Name Format

00 00 00 05 00 00 02 18 uinteger_24 Simple_Type,
uinteger,
24

5.1.3.88 uinteger_256
This is a uinteger type with a size restriction of 256 bytes.

Table 152 uinteger_256
UID Name Format

00 00 00 05 00 00 02 19 uinteger_256 Simple_Type,
uinteger,
256

5.1.3.89 uinteger_28
This is a uinteger type with a size restriction of 28 bytes.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 128 of 314

Table 153 uinteger_28
UID Name Format

00 00 00 05 00 00 02 1A uinteger_28 Simple_Type,
uinteger,
28

5.1.3.90 uinteger_30
This is a uinteger type with a size restriction of 30 bytes.

Table 154 uinteger_30
UID Name Format

00 00 00 05 00 00 02 1B uinteger_30 Simple_Type,
uinteger,
30

5.1.3.91 uinteger_36
This is a uinteger type with a size restriction of 36 bytes.

Table 155 uinteger_36
UID Name Format

00 00 00 05 00 00 02 1F uinteger_36 Simple_Type,
uinteger,
36

5.1.3.92 uinteger_4
This is a uinteger type with a size restriction of 4 bytes.

Table 156 uinteger_4
UID Name Format

00 00 00 05 00 00 02 20 uinteger_4 Simple_Type,
uinteger,
4

5.1.3.93 uinteger_48
This is a uinteger type with a size restriction of 48 bytes.

Table 157 uinteger_48
UID Name Format

00 00 00 05 00 00 02 23 uinteger_48 Simple_Type,
uinteger,
48

5.1.3.94 uinteger_64
This is a uinteger type with a size restriction of 64 bytes.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 129 of 314

Table 158 uinteger_64
UID Name Format

00 00 00 05 00 00 02 24 uinteger_64 Simple_Type,
uinteger,
64

5.1.3.95 uinteger_66
This is a uinteger type with a size restriction of 66 bytes.

Table 159 uinteger_66
UID Name Format

00 00 00 05 00 00 02 27 uinteger_66 Simple_Type,
uinteger,
66

5.1.3.96 uinteger_8
This is a uinteger type with a size restriction of 8 bytes.

Table 160 uinteger_8
UID Name Format

00 00 00 05 00 00 02 25 uinteger_8 Simple_Type,
uinteger,
8

5.1.3.97 verify_mode
This enumeration type defines the verification operation the TPer SHALL perform during the re-
encryption process after a sector has been written with the new encryption key.

Table 161 verify_mode
UID Name Format

00 00 00 05 00 00 04 12 verify_mode Enumeration_Type,
0,
7

The enumeration values are associated as defined in Table 162.

Table 162 verify_mode Enumeration Values
Enumeration Value Associated Value

0 No verify

1 Verify enabled

2-7 Reserved

5.1.3.98 Year
Name-value pair that has a Name of "0" and takes year_enum as the value.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 130 of 314

Table 163 Year
UID Name Format

00 00 00 05 00 00 14 01 Year Name_Value_Uinteger_Type,
0,
year_enum

5.1.3.99 year_enum
Used in association with the Year name-value pair.

Table 164 year_enum
UID Name Format

00 00 00 05 00 00 04 16 year_enum Enumeration_Type,
1970,
9999

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 131 of 314

5.1.4 Abstract Types
Begin Informative Content

Abstract types are representations of grouped interface types, or interface types that have limits on their
legal values, that are used specifically for encoding method parameters. These representations are
used primarily for documentation purposes, as part of the pseudo-code method signatures, to simplify
the description of those methods.

Abstract types do not affect the operation or regular encoding of a method, nor are they used as column
types or represented in the Type table (though they resemble some of these types in structure, name,
or both). The primary goals of the abstract type constructs are to simplify the pseudo-code description
of the methods themselves, and to provide insight into grouping using the List and Named value tokens
introduced previously.

End Informative Content

5.1.4.1 Name Representations in Abstract Type Named Value Components
Named values used in abstract types SHALL be encoded in the messaging stream using the rules
described in this section.

a. The name in the Named values that represent Named value components of method
parameters in a method invocation SHALL be a uinteger. Starting at zero, these uinteger
values are assigned based on the ordering of the components of these abstract types.

a. The first component of one of these grouped types SHALL be represented by the
"name" zero (0x00) in the Named value pair when that method is invoked, and thus has
the format "0x00 = value" when that method is invoked.

b. Each subsequent component in the grouped type after the first SHALL be represented
by the uinteger of the previous component, as indicated in the method's signature or
the abstract type definition, incremented by one. Thus, the second component of such
a type in an invocation of a particular method has the format "0x01 = value".
Components of such types are not required to be sent in a method invocation, but if
sent must appear in the order specified.

c. For each subsequent relevant type grouping in the method invocation, if such exists,
the components SHALL be numbered restarting at 0x00.

5.1.4.2 Abstract Type Definitions
Begin Informative Content

The following sections describe the pseudo-code parameters that each of these abstract types
represent when they appear in a pseudo-code method signature.

End Informative Content

5.1.4.2.1 access_control_list
An access_control_list is a list of uidrefs to objects in the ACE table. The length of the list is
implementation/SSC-specific.

Format:
[uidref ...]

5.1.4.2.2 boolean
This abstract type is similar to an enumeration column type, and has a valid range of the integer 0 to
the integer 1, where 0 is used to represent "False" and 1 is used to represent "True".

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 132 of 314

Format:
uinteger

In the messaging stream, "False" is represented as 0x00 and "True" is represented as 0x01.

5.1.4.2.3 cell_block
This type represents a grouping of Named values that are used to identify a portion of a table. In
messaging, this grouping is enclosed by List value delimiters, and each component is enclosed by
Named value delimiters.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

Because this is a group of Named values, its separate components are optional. However, there are
default requirements if components are omitted, and certain requirements for the values assigned to
these components depending on the context in which the method is invoked. These requirements are
as follows:

a. Table – this Named value has the Name "0x00" and a value that is a uid to a table.

a. If the value with Name "0x00" is omitted, then the operation defaults to the table upon
which the method was invoked.

b. Table SHALL be omitted if the method was invoked on an object. If the method is
invoked on an object and the value with the name "0x00" is included in the method
parameterization, then the method SHALL fail.

b. startRow – this Named value has the Name "0x01". This Named value type is assigned
one of two values – either a uid of an object or a RowNumber that corresponds to the
RowNumber value of a bytes table row. Only one of these two values SHALL appear in the
messaging stream. The "typeOr" identifier and accompanying curly brackets ("{", "}") in the
format description below have no effect on the values as represented in the message.

a. If the value with Name "0x01" is omitted and the method is invoked on a byte table,
then the operation defaults to the first row of that byte table.

b. If the method is invoked on an object table, the value "0x01" SHALL be the uid of the
object upon which the method is intended to operate. If the value with Name "0x01" is
omitted in this case, then the method invocation SHALL fail.

i. If the uid of the object does not belong to the table upon which the method was
invoked, the method invocation SHALL fail.

c. If the method is invoked on an object and the value with the name "0x01" is included in
the method parameterization, then the method SHALL fail.

c. endRow – this Named value has the Name "0x02". This Named value type is a uinteger
that corresponds to the RowNumber value of a byte table row.

a. If the value with Name "0x02" is omitted and the method is invoked on a byte table,
then the operation defaults to the last row of the table.

b. If the method is invoked on an object or object table and the value with the name
"0x02" is included in the method parameterization, then the method SHALL fail.

d. startColumn – this Named value has the Name "0x03". This Named value type has a
uinteger value that indicates the column number of the cellblock's start column.

a. If the value with Name "0x03" is omitted, then the operation defaults to the first column
of the table or object.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 133 of 314

b. If the value with Name "0x03" is included in the method parameterization, and the
method is invoked on a byte table, then the method SHALL fail.

e. endColumn – this Named value has the Name "0x04". This Named value type has a
uinteger value that indicates the column number of the cellblock's end column.

a. if the value with Name "0x04" is omitted, then the operation defaults to the last column
of the table or object.

b. If the value with Name "0x04" is included in the method parameterization, and the
method is invoked on a byte table, then the method SHALL fail.

Format:
[Table = uidref, startRow = typeOr { UID : uidref, Row : uinteger }, endRow =
uinteger, startColumn = uinteger, endColumn = uinteger]

5.1.4.2.4 clock_kind
This type is similar to the column type of the same name, and represents the type of clock time that has
been set, and is a return value of the GetClock method.

The possible values returned are as follows:

a. If the currently active clock kind is "Timer", the returned value is 0x00.

b. If the currently active clock kind is "Low", the returned value is 0x01.

c. If the currently active clock kind is "High", the returned value is 0x02.

d. If the currently active clock kind is "LowAndHigh", the returned value is 0x03.

Format:
uinteger

5.1.4.2.5 clock_time
This type represents a grouping of Named values that are used to identify time values, and is similar to
the column type of the same name. In messaging, this grouping is enclosed by List value delimiters,
and each component is enclosed by Named value delimiters.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

Because this is a group of Named values, its separate components are optional. Components that are
omitted are considered to have a value of 0.

The components are as follows:

a. Year – this Named value has the Name "0x00" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the year in a
timestamp. Valid values are unsigned integers ranging from 1970 to 9999

b. Month – this Named value has the Name "0x01" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 12, which correspond to
the months of the year as follows:

a. January = 1 (0x01)

b. February = 2 (0x02)

c. March = 3 (0x03)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 134 of 314

d. April = 4 (0x04)

e. MAY = 5 (0x05)

f. June = 6 (0x06)

g. July = 7 (0x06)

h. August = 8 (0x08)

i. September = 9 (0x09)

j. October = 10 (0x0A)

k. November = 11 (0x0B)

l. December = 12 (0x0C)

c. Day – this Named value has the Name "0x02" and a value that is implicitly defined as being
of uinteger of size 1. This Named value abstract type represents the day of the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 31.

d. Hour – this Named value has the Name "0x03" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the hour of the day in
a timestamp. Valid values are unsigned integers ranging from 0 to 23.

e. Minute – this Named value has the Name "0x04" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the minute of the hour
in a timestamp. Valid values are unsigned integers ranging from 0 to 59.

f. Seconds – this Named value has the Name "0x05" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the second of the
minute in a timestamp. Valid values are unsigned integers ranging from 0 to 59.

g. Fraction – this Named value has the Name "0x06" and a value that is implicitly defined as
being of uinteger size 2. This Named value abstract type represents fractions of a second
in a timestamp, measured in milliseconds. Valid values are unsigned integers ranging from
0 to 999.

Format:
 [Year = uinteger, Month = uinteger, Day = uinteger, Hour = uinteger, Minute =
uinteger, Second = uinteger, Fraction = uinteger]

5.1.4.2.6 columns
This is a list of two lists of Named values, where the List value delimiters enclose the entire list and both
subordinate lists, and the Named value delimiters enclose each component of each subordinate list.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

The Named values in both subordinate lists represent column names and their associated types. Each
Name portion of the Named value SHALL be the host-supplied name of a column to be created in the
new table, and the associated value is the uidref to the type to be assigned for that column.

The ordering of and within the subordinate lists determines the ordering of the columns and the unique
column combination in the newly created table. The first subordinate list contains the columns whose
combination of values is required to be unique within the table. The columns described within that list
are ordered first. The name associated with this Named value type is "0x00".

The second subordinate list contains the rest of the columns of the table. The columns described within
the second subordinate list are ordered according to their order in the list, all of which come after the

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 135 of 314

columns defined in the first subordinate list. The name associated with this Named value type is
"0x01".

For Byte tables, the external grouping SHALL be empty. For tables with no host-assigned unique
column combination, the first subordinate list SHALL be empty. For tables with no host assigned non-
unique columns, the second list SHALL be empty. For tables with no host assigned columns, both lists
SHALL be empty.

Format:
 [IsUnique = [ColumnName = uidref { TypeUID } ...], IsColumn = [ColumnName
= uidref { TypeUID } ...]]

Byte table format pseudo-code example:
 []

Object table with no unique column combination pseudo-code example:
 [IsUnique = [] IsColumn = [ColumnName1 = uidref1 ColumnName2 = uidref2
ColumnName3 = uidref3]]

5.1.4.2.7 date
This type represents a grouping of Named values that are used to identify time values, and is similar to
the column type of the same name. In messaging, this grouping is enclosed by List value delimiters,
and each component is enclosed by Named value delimiters.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

Because this is a group of Named values, its separate components are optional. Components that are
omitted are considered to have a value of 0.

The components are as follows:

a. Year – this Named value has the Name "0x00" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the year in a
timestamp. Valid values are unsigned integers ranging from 1970 to 9999

b. Month – this Named value has the Name "0x01" and a value that is implicitly defined as
being of uinteger of size 2. This Named value abstract type represents the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 12, which correspond to
the months of the year as follows:

a. January = 1 (0x01)

b. February = 2 (0x02)

c. March = 3 (0x03)

d. April = 4 (0x04)

e. MAY = 5 (0x05)

f. June = 6 (0x06)

g. July = 7 (0x06)

h. August = 8 (0x08)

i. September = 9 (0x09)

j. October = 10 (0x0A)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 136 of 314

k. November = 11 (0x0B)

l. December = 12 (0x0C)

c. Day – this Named value has the Name "0x02" and a value that is implicitly defined as being
of uinteger of size 1. This Named value abstract type represents the day of the month in a
timestamp. Valid values are unsigned integers ranging from 1 to 31.

Format:
 [Year = uinteger, Month = uinteger, Day = uinteger]

5.1.4.2.8 hash_protocol
This abstract type is similar to an enumeration column type, and is used to identify a selected hash
algorithm. This type has valid values in the range of integers from 0-15. These integers have the
following values:

a. 0 = none

b. 1 = SHA 1

c. 2 = SHA 256

d. 3 = SHA 384

e. 4 = SHA 512

f. 5-15 = reserved

Format:
uinteger

In the messaging stream, these values SHALL be represented as follows:

a. 0x00 represents none

b. 0x01 represents SHA 1

c. 0x02 represents SHA 256

d. 0x03 represents SHA 384

e. 0x04 represents SHA 512

f. 0x05 – 0x0F are reserved.

5.1.4.2.9 key_size
This abstract type is used for the AdminExch parameter of the IssueSP method, and enables the host
to select from supplying either a bytes_16 or a bytes_32 value to represent the size of the exchange
key being submitted to the newly created SP.

Only one of these two values appears in the messaging stream. The "typeOr" identifier and
accompanying curly brackets ("{", "}") have no effect on the values as represented in the message.

Format
 typeOr { AES_128 : bytes_16, AES_256 : bytes_32 }

In the message stream itself, the value is one of the following:

a. bytes_16

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 137 of 314

b. bytes_32

5.1.4.2.10 lag
This type represents a grouping of two Named value pairs, used to describe seconds and milliseconds,
and is similar to the column type of the same name. The components are encapsulated with the
interface type List value delimiters ("[", "]"). Each of the components is encapsulated with the Named
value delimiters. The components are optional.

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined by this specification. The associated number also appears in the appropriate
component description.

The components are as follows:

a. Seconds – this component is a Named value pair with a Name of "0x00" and a value of
uinteger. This value has an implicit size requirement of 2.

b. Milliseconds – this component is a Named value pair with a Name of "0x01" and a value of
uinteger. This value has an implicit size requirement of 2.

Format:
[Seconds = uinteger, Milliseconds = uinteger]

5.1.4.2.11 name
This type is a representation of the max bytes type, and in most methods in which it is used it is
assigned to parameters that are associated with a table's Name column or CommonName column. As
such, it has an implicit size restriction of 32 bytes.

Format:
 bytes

5.1.4.2.12 package
This abstract type is a grouping of Named value pairs that are used to describe the contents of a
package retrieved from a TPer using the GetPackage method, or sent to the TPer with the SetPackage
method. The components are encapsulated with interface type List value delimiters ("[", "]").

The name of each component is a uinteger representing the positioning of that component within the
grouping, as defined in this specification. The associated number also appears in the appropriate
component description.

The components are defined as follows:

a. Key - this component is a Named value pair with a Name of "0x00" and a value of bytes. It
represents the key material from the invoking credential. If a WrappingKey was supplied to
the GetPackage method, then this key material is encrypted using the WrappingKey
credential. The WrappingKey credential MAY be a symmetric key or the public key of a
public/private key pair. When retrieving the key material from credentials that store key
information in multiple columns, any of those columns that are empty or uninitialized
SHALL return as 0x00 for uinteger type columns and 0x00 for bytes type columns.

b. Purpose – this component is a Named value pair with a Name of "0x01" and a value of
package_purpose. This is the value of the Purpose parameter of the GetPackage method
invocation.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 138 of 314

c. Date – this component is a Named value pair with a Name of "0x02" and a value of date.
This is the value of the Date parameter of the GetPackage method invocation. This
component is omitted if the Date parameter was not supplied to the GetPackage method
invocation.

d. Log – this component is a Named value pair with a Name of "0x03" and a value of bytes.
This is the value of the Log parameter of the GetPackage method invocation. This
component is omitted if the Log parameter was not supplied to the GetPackage method
invocation.

e. MAC – this component is a Named value pair with a Name of "0x04" and a value of bytes.
This is the hash of the package contents (except this component) and is signed by the
SigningKey credential identified in the GetPackage method invocation. The hash protocol
used to create the hash is identified in the Hash column of the SigningKey credential. The
value of this component is the signature of a private key if a public key credential is
specified, or an HMAC if a symmetric key credential is specified.

Format:
 [Key = bytes, Purpose = package_purpose, Date = date, Log = bytes, MAC =
bytes]

5.1.4.2.13 package_purpose
This abstract type is similar to an enumeration column type, and is used to identify a selected purpose
for the package in which it is being included. This type has valid values in the range of integers from 1-
32. These integers have the following values:

a. 1 = Issuance

b. 2 = Key Wrapping

c. 3 = Backup

d. 4-32 = reserved

Format:
uinteger

In the messaging stream, these values SHALL be represented as follows:

a. 0x00 is reserved

b. 0x01 represents Issuance

c. 0x02 represents Key Wrapping

d. 0x03 represents Backup

e. 0x04 – 0x20 are reserved

5.1.4.2.14 row_address
This abstract type is used to describe a parameter that is either a uinteger that indicates the address
within a bytes table, or a uidref of an object within an object table.

Only one of these two values appears in the messaging stream. The "typeOr" identifier and
accompanying curly brackets ("{", "}") have no effect on the values as represented in the message.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 139 of 314

Format
 typeOr { RowAddress : uinteger, UIDAddress : uidref }

In the message stream itself, the value is one of the following:

a. uinteger
b. uidref

5.1.4.2.15 row_data
This type represents a list of lists of Named values. Each interior list represents a row, so there are
multiple interior lists (a list of lists). The Named values represent column numbers and the values to be
associated with them as defined by this specification or the column ordering requirements of the table
when it was created. The value SHALL be of the type defined, as represented by the notation "<type of
column>".

The number of interior lists (i.e. the number of rows that MAY be represented by this type "at one time")
MAY be limited by SSC or implementation.

Format:

 [[ColumnNumber = <type of column> ...] ...]

5.1.4.2.16 table_kind
This abstract type is similar to an enumeration column type, and is used to represent table types in the
Table table. This type has valid values in the range of integers from 1-2. These integers have the
following values:

a. 1 = Object

b. 2 = Byte

Format:
uinteger

In the messaging stream, these values are represented as follows:

a. 0x01 represents Object

b. 0x02 represents Byte

5.1.4.2.17 table_sizes
This abstract type defines a grouping of pairs of values that are table object uidrefs and the size
associated with that particular table. The grouping is a list of uidrefs and uintegers. The set of values
are encapsulated by List value delimiters ("[", "]"). Inside the delimiters is a series of one or more pairs
of values. The first value in each pair is a uidref to a table descriptor object and the second value in
each pair is a uinteger that describes the number of rows that MAY be additionally created for that
table.

Format:
[[uidref {TableObjectUID}, uinteger] ...]

Pseudo-code example:
 [[uidref1 uinteger1] [uidref2 uinteger2] [uidref3 uinteger3]]

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 140 of 314

5.1.4.2.18 uidref
The uidref abstract type represents a uid of an object, table, or ThisSP that is expressed using a bytes
type with a size of 8, and corresponds to an object or table's UID column value.

In the pseudo-code method signatures, the uidref abstract type is often followed by curly brackets ("{",
"}") that are used to define the limitation of a valid value for that uidref. These valid values are typically
represented as requiring an object of a specific type. Limitations expressed with curly brackets have no
effect on the appearance of the associated uid value as it appears in the message stream.

Because this abstract type describes the inclusion of a uid, it represents a bytes value that has an
implicit size restriction, and that value SHALL always be 8 bytes long.

Format:
 bytes

5.1.5 Method Status Codes
Begin Informative Content

SP method calls invoke specific operations and receive associated status. The following sections
identify and define the status codes that are returned by the TPer in response to method invocations
and other operations. Table 165 identifies the value associated with each of these status codes.

End Informative Content

Table 165 Status Codes
Name Value
SUCCESS 0x00
NOT_AUTHORIZED 0x01
OBSOLETE 0x02
SP_BUSY 0x03
SP_FAILED 0x04
SP_DISABLED 0x05
SP_FROZEN 0x06
NO_SESSIONS_AVAILABLE 0x07
UNIQUENESS_CONFLICT 0x08
INSUFFICIENT_SPACE 0x09
INSUFFICIENT_ROWS 0x0A
INVALID_METHOD 0x0B
INVALID_PARAMETER 0x0C
OBSOLETE 0x0D
OBSOLETE 0x0E
TPER_MALFUNCTION 0x0F
TRANSACTION_FAILURE 0x10
RESPONSE_OVERFLOW 0x11
AUTHORITY_LOCKED_OUT 0x12
FAIL 0x3F

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 141 of 314

5.1.5.1 SUCCESS
This status SHALL be returned when a method is processed completely and without error by the TPer.

5.1.5.2 NOT_AUTHORIZED
This response is returned whenever an attempt is made to invoke a method for which the host does not
have authorization.

Unless otherwise noted in a method's description, this status code SHALL be returned whenever there
is no row in the AccessControl table to represent the InvokingID/MethodID combination, or when there
is a row but the ACL for the InvokingID/MethodID combination has not been satisfied.

This status code SHALL be returned in response to the GetACL method if there is no AccessControl
row that represents the InvokingID/MethodID combination as parameterized in the GetACL method, or
when the combination is present in the AccessControl table but the GetACLACL has not been satisfied.

This status code SHALL be returned in response to the AddACE method if there is no AccessControl
row that represents the InvokingID/MethodID combination as parameterized in the AddACE method, or
when the combination is present in the AccessControl table but the AccACEACL has not been satisfied.

This status code SHALL be returned in response to the RemoveACE method if there is no
AccessControl row that represents the InvokingID/MethodID combination as parameterized in the
RemoveACE method, or when the combination is present in the AccessControl table but the
RemoveACEACL has not been satisfied.

This status code SHALL be returned in response to the DeleteMethod method if there is no
AccessControl row that represents the InvokingID/MethodID combination as parameterized in the
DeleteMethod method, or when the combination is present in the AccessControl table but the
DeleteMethodACL has not been satisfied.

5.1.5.3 SP_BUSY
This status is returned as the status code of the SyncSession method if an attempt is made to open a
Read-Write session to an SP when any other session to that SP is already open, or when an attempt is
made to open a Read-Only session to an SP with which a Read-Write session is already open.

5.1.5.4 SP_FAILED
This status MAY be returned if an attempt is made to open a session to an SP that is in the Failed life
cycle state (see 4.2).

5.1.5.5 SP_DISABLED
This status MAY be returned if a method is invoked from within a session to an SP that is in the Issued-
Disabled state (see 4.2), and the method is not permitted because of the limitations placed on SP
operation by the state behavior.

5.1.5.6 SP_FROZEN
This status SHALL be returned as the status of the SyncSession response when the host attempts to
start a session to an SP that is in the Issued-Frozen or Issued-Disabled-Frozen state (see 4.2).

5.1.5.7 NO_SESSIONS_AVAILABLE
This status is returned if an attempt is made to open a session on a TPer on which the maximum
number of concurrent sessions available for use are already being used.

5.1.5.8 UNIQUENESS_CONFLICT
This occurs when a conflict between objects is created due to the attempt to create a second object
with a unique column combination that is already in use by another object. For instance, this status
MAY be received when attempting to create a table, when a table already exists with the Name-
CommonName-TemplateID combination submitted in the CreateTable invocation.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 142 of 314

5.1.5.9 INSUFFICIENT_SPACE
This status is returned if an attempt is made to:

a. Create an SP and there is insufficient space on the TPer to create the new SP
b. Create a table and there is insufficient space in the SP to create the new table
c. Create more rows in a table than is permitted by the TPer or by the table’s size settings.

Note that it is possible that re-invoking the method and requesting a smaller size for the SP or table
MAY enable the method to then complete properly.

5.1.5.10 INSUFFICIENT_ROWS
This status MAY be returned if an attempt is made to create a table or object, but the associated
metadata or support table rows (i.e., the Table, Column, AccessControl, or ACE tables) are not able to
be created to support the new object or table.

5.1.5.11 INVALID_METHOD
This status is returned in response to the attempted invocation of a method that is undefined,
nonexistent, or not available for that SP.

These conditions occur when the UID of the invoked method is valid and correctly encoded, but that
UID does not appear in an SP's MethodID table (i.e. is not available for that SP); or if it is an invalid
method UID, as when it is not a defined method, or the UID is incorrectly encoded.

5.1.5.12 INVALID_PARAMETER
This status is returned if a method invocation has any invalid parameters or parameter values, and is
applicable to any parameter inside the invoked method's parameter list, unless otherwise indicated or
another status code is directly applicable to the method failure.

There are many situations in which this error could be returned. Some of the specific situations where
this could occur are:

a. Columns specified in the CreateRow method invocation are not part of the table definition.
b. If an attempt is made to set a cell to a value larger (or smaller) than that cell’s type allows,

or attempts to set a value of a type different than that of the column.
c. If an incorrect credential type is parameterized.
d. A parameterized value is of the incorrect type for that method.
e. One of the context-related restrictions defined for an abstract type is violated (see 5.1.4.2).
f. A parameterized value is larger or smaller than the value required by that method

invocation
a. An example of this MAY occur if the TransTimeout parameter value submitted in a

StartSession method invocation is larger than the TPer's MaxTransTimeout property.

5.1.5.13 TPER_MALFUNCTION
This status is returned when some operational failure has occurred within the TPer that has caused the
method invocation to fail.

5.1.5.14 TRANSACTION_FAILURE
This status is returned when a method fails due to an error in the transactional context in which it was
invoked. An example of this is if a TPer is unable to process within the transaction the amount of data
supplied as a parameter of the method, which under other circumstances the TPer would be able to
process. The TPer in this case would return this status code to indicate that the method failed due to
the transactional context, not due to a problem with the method invocation itself.

Multiple consecutive method invocations that result in this status code indicate a failure in the
transactional context that MAY result in the entire transaction being uncommittable.

5.1.5.15 RESPONSE_OVERFLOW
This status is returned when a method fails if the method response and associated protocol overhead
do not fit entirely within the response buffer.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 143 of 314

5.1.5.16 AUTHORITY_LOCKED_OUT
This status MAY be returned as the status code of the SyncSession method or in response to the
Authenticate method under one of the following conditions:

1) If an authority with the Operation column value of Password is being authenticated and its
associated C_PIN object has a Tries column value equal to its TryLimit column value, and
the TryLimit column is not set to 0; or

2) If the Uses column of the authority being authenticated has reached the value of its Limit
column, and the Uses column is not set to 0.

5.1.5.17 FAIL
This status is returned when a method fails in a manner for which none of the other failure statuses
apply.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 144 of 314

5.2 Session Manager Methods
5.2.1 Overview
Begin Informative Content

Session Manager protocol layer methods permit a host to retrieve information about a TPer without
having to start a session and provide the methods required to enable session startup.

Due to the nature of the Session Manager protocol layer methods, the responses to methods at this
protocol layer are formatted as methods from the TPer to the host. In the case of multiple method
invocations by a host to a TPer on the Session Manager layer, this mechanism allows the host to
identify the method to which a response is directed.

End Informative Content

Session Manager methods SHALL be invoked using an InvokingID of SMUID, which is the reserved
UID 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF.

The UIDs used to invoke Session Manager Methods are defined in Table 239.

5.2.2 TPer Properties Method
5.2.2.1 Properties (Method)
The Properties method is a control session method used by the host to provide its communication
properties to the TPer, and to retrieve the communication properties of the TPer. The purpose of the
Properties method is to permit the host and the TPer to exchange the information about their
respective communications capabilities required for session startup and maintenance, without the need
to first start a session.

Properties are maintained on a per-ComID basis in both the host and the TPer. The HostProperties
parameter is used to describe the communications capabilities that the host possesses, and apply to
any sessions started using the ComID associated with this Properties method invocation once the
TPer has processed the method and prepared a response.

SMUID.Properties[HostProperties = list [name = value ...]]
=>
SMUID.Properties[Properties : list [name = value ...], HostProperties = list [
name = value ...]]

5.2.2.1.1 HostProperties
This parameter is a list of name/value pairs that MAY be submitted when invoking the Properties
method. This is a list of the communications capabilities that the host is able to support on
communications it receives.

5.2.2.1.2 Properties Response
Because of the session-less nature of the Session Manager protocol layer, and the possible different
ordering of responses to Session Manager layer methods, the response to a Properties method
invocation is itself formatted as a Properties method invocation so as to be identifiable as the
response to the Properties method.

5.2.2.1.2.1 Properties
This is a list of property names and values that represent the communications capabilities of the TPer.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 145 of 314

5.2.2.1.2.2 HostProperties
If the host includes the HostProperties parameter to the Properties method invocation, then this
portion of the method result SHALL include the communications limitations and capabilities that the
TPer SHALL use for messages sent from the TPer to the Host.

5.2.2.2 Retrieving Properties
The TPer SHALL return all property name/value pairs for capabilities that it supports. For capabilities
not supported by the TPer (for instance, Read-Only sessions), the associated property name/value pair
(in this case, MaxReadSessions) SHALL be omitted from the TPer's response.

The TPer MAY also respond with additional name/value pairs other than those specified in this
document.

The order of the name/value pairs returned by the TPer is not specified.

For the name/value pairs returned by the TPer, the TPer SHALL return values for the associated names
as described in Table 166 or in the associated SSC (the values in the SSC have precedence) for all
capabilities supported. The values returned SHALL apply to all sessions started with the currently
associated ComID.

Table 166 Properties Method Response
Property Type Description Applicable To
MaxMethods uinteger The maximum number of method

invocations per Subpacket that the
communicator can accept. If the TPer
supports the Asynchronous
Communication Protocol (the TPer’s
Asynchronous property is TRUE), then the
TPer’s MaxMethods SHALL be 0 (no
limit). If the Host supports the
Asynchronous Communication Protocol
(the Host sets its Asynchronous property
to TRUE), then the host SHOULD also set
its MaxMethods property to 0 (no limit).
The TPer SHALL ignore the Host’s
MaxMethods property if both the Host and
the TPer have the Asynchronous property
set to TRUE.

Host Property
and TPer
Property

MaxSubpackets uinteger Identifies the maximum number of
subpackets that the communicator SHALL
accept in a single Packet. A value of 0
indicates no limit.

Host Property
and TPer
Property

MaxPacketSize uinteger The maximum size of a packet (including
both data and header), in bytes, that the
communicator is able to receive. This
value SHALL be at least 1004 (1024 -
(ComPacket Header Size)). A value of 0
indicates no limit.

Host Property
and TPer
Property

MaxPackets uinteger Identifies the maximum number of packets
that the communicator is able to accept in
a single ComPacket. A value of 0
indicates no limit.

Host Property
and TPer
Property

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 146 of 314

Property Type Description Applicable To
MaxComPacketSize uinteger The maximum size of an IF Command

payload in bytes (includes both the
ComPacket header and payload) that the
communicator is able to receive. This
value SHALL be at least 1024. A value of
0 indicates no limit.

Host Property
and TPer
Property

MaxResponseComPacketSize uinteger The maximum length of an IF Command
payload, in bytes, that the communicator
is able to generate. A value of 0 indicates
no limit.

Host Property
and TPer
Property

MaxSessions uinteger The maximum number of simultaneous
sessions supported by the TPer across all
ComIDs. A value of 0 indicates no limit.

TPer Property

MaxReadSessions uinteger The maximum number of simultaneous
Read-Only sessions to any one SP
supported by the TPer. A value of 0
indicates no limit.

TPer Property

MaxIndTokenSize uinteger The maximum size of a token (in bytes) in
a single subpacket that the communicator
is able to accept. Token size refers to both
the token header and data. This value
SHALL be at least 968. A value of 0
indicates no limit.

Host Property
and TPer
Property

MaxAggTokenSize uinteger The maximum aggregate size of a
continued token, after all individual parts
of that token are combined, that the
communicator is able to accept. Token
size refers to both the token header and
data. This value SHALL be at least 968.
A value of 0 indicates no limit.

Host Property
and TPer
Property

MaxAuthentications uinteger The maximum number of simultaneously
authenticated individual authorities per
session that the TPer is able to support. A
value of 0 indicates no limit.

TPer Property

MaxTransactionLimit uinteger The maximum number of concurrently
open transactions that the TPer is able to
support in a single session. A value of 0
indicates no limit.

TPer Property

DefSessionTimeout uinteger The session timeout length (in
milliseconds) used by the TPer by default.
A value of 0 indicates no limit.

TPer Property

MaxSessionTimeout uinteger The longest supported session timeout
length (in milliseconds) supported by the
TPer. A value of 0 indicates no limit.

TPer Property

MinSessionTimeout uinteger The shortest supported session timeout
length (in milliseconds) supported by the
TPer. A value of 0 indicates session
timeouts are not supported.

TPer Property

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 147 of 314

Property Type Description Applicable To
DefTransTimeout uinteger The transmission timeout length (in

milliseconds) used by the TPer by default.
A value of 0 indicates no limit.

TPer Property

MaxTransTimeout uinteger The longest transmission timeout length
(in milliseconds) permitted by the TPer. A
value of 0 indicates no limit.

TPer Property

MinTransTimeout uinteger The shortest transmission timeout length
(in milliseconds) permitted by the TPer. A
value of 0 indicates transmission timeouts
are not supported.

TPer Property

MaxComIDTime uinteger The timeout length (in milliseconds) used
by the TPer after it has assigned a
ComID. The ComID SHALL transition to
Inactive after this much time has elapsed.
A value of 0 indicates no limit.

TPer Property

ContinuedTokens boolean TRUE: The communicator supports
continuted tokens.
FALSE: The communicator does not
support continued tokens.

Host Property
and TPer
Property

SequenceNumbers boolean TRUE: The communicator supports
Packet sequence numbers.
FALSE: The communicator does not
support Packet sequence numbers.

Host Property
and TPer
Property

AckNak boolean TRUE: The communicator supports the
Packet ACK/NAK protocol.
FALSE: The communicator does not
support the Packet ACK/NAK protocol.

Host Property
and TPer
Property

Asynchronous boolean TRUE: The communicator supports the
Asynchronous Communication Protocol.
FALSE: The communicator does not
support theAsynchronous Communication
Protocol.

Host Property
and TPer
Property

5.2.2.3 Setting HostProperties
If the method is invoked with the optional HostProperties parameter, the list of name/value pairs that the
TPer MAY support is the list of properties inTable 167.

These values MAY be submitted in any order by the host. Not all values are required to be submitted.
Subsequent submission of these values (in a subsequent invocation of the Properties method)
SHALL supersede values submitted to previous invocations of the Properties method for that ComID.
Submitted values, if applicable, SHALL only apply to sessions started after the submission of those
values, and not to sessions that are already open on that ComID.

The TPer uses these host properties when it is constructing responses to be transmitted to the host.
The host MAY omit properties as necessary, depending on the host’s communications capabilities. If
the host omits a property, or specifies a value for a property that does not meet the minimum
requirement as defined in Table 167, then the TPer SHALL use the minimum value defined in Table
167 in place of the value supplied by the host.

These values reflect the cumulative modifications of all processed Properties methods for the
associated ComID.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 148 of 314

If the host sends the HostProperties parameter in its Properties invocation, the TPer SHALL respond
with ALL host properties it supports, with their current values, in the HostProperties parameter of its
method response.

If a host includes property parameters to the Properties method invocation that the TPer does not
support, the TPer SHALL ignore those parameters, and SHALL NOT return them in its response.

It is the host's responsibility to insure that Properties method invocations have processed prior to
invocation of any session startup methods that rely on those invocations. Values for HostProperties at
session startup rely on the Properties method invocations that have been processed by the TPer.

5.2.2.4 Communications Minimums
When a ComID is first allocated, the TPer assumes some minimum communications capabilities of the
host until it receives a successful Properties method from the host. Similarly, the host assumes some
minimum communications capability of the TPer until the host successfully receives the results of the
Properties method from the TPer.

Invocation of the Properties method is optional. Communications MAY occur using just the minimum
communications capability.

Table 167 shows all the properties that affect the behavior of hosts and TPers when sending
ComPackets/Subpackets/Packets to the other. These are the properties that need to be considered for
minimum communications capability between the two. The host’s initial assumption about the TPer and
the TPer’s initial assumption about the host are listed for each of the properties.

Table 167 Communications Initial Assumptions
Property Name Initial Host Assumption About TPer Initial TPer Assumption About Host
MaxSubpackets 1 1

MaxPacketSize
1024 – (ComPacket Header
size) = 1004

1024 – (ComPacket Header
size) = 1004

MaxPackets 1 1
MaxComPacketSize 1024 1024

MaxIndTokenSize

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =
1024 - 20 - 24 - 12 = 968

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =
1024 - 20 - 24 - 12 = 968

MaxAggTokenSize

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =
1024 - 20 - 24 - 12 = 968

1024 - (ComPacket Header
Size) - (Packet Header Size) -
(Subpacket Header Size) =
1024 - 20 - 24 - 12 = 968

MaxMethods 1 1
ContinuedTokens False False
SequenceNumbers False False
AckNAK False False
Asynchronous False False

The values listed in Table 167 are the minimum values that TPers and hosts SHALL support. SSCs
MAY impose minimums that are greater than the values listed above.

SSCs MAY redefine the initial assumptions that the host and TPer make about each other. In such
cases, the initial assumptions the host makes about the TPer are based on the supported SSC the host
discovers during Level 0 Discovery.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 149 of 314

The host invokes Properties with the optional HostProperties parameter to inform the TPer of its
capabilities. The result from the TPer tells the host the TPer’s capabilities. All communication from that
point can use the mutually discovered capabilities. However, the initial invocation of Properties
SHALL be encoded using the minimum assumptions outlined above in Table 167, or the minimum
assumptions defined by the TPer’s SSC. The TPer MAY format its response to the Properties
invocation using the host’s capabilities it received in the HostProperties parameter.

If the host attempts to set a property in the HostProperties parameter that is less than the initial
assumed value, the TPer SHALL ignore the property value and the initial assumed value SHALL be
used. In the Properties method response, the TPer SHALL report the initial assumed value.

If a particular property is not returned by the TPer, then the host SHALL NOT change its assumption
about the TPer’s capabilities related to that property. Likewise, if the host does not send a particular
property in the HostProperties parameter, the TPer SHALL NOT change its assumption about the
host’s capabilities related to that property.

5.2.2.4.1 Communication Rules Based on TPer Properties and Host Properties
This section defines the rules for communication based on the TPer Properties and the Host Properties.
These rules SHALL be enforced on a per-ComID basis, as hosts on different ComIDs may set different
host properties.

Begin Informative Content

When communicating on statically allocated ComIDs, it is possible for the TPer’s knowledge of the
HostProperties to be reset without the host’s knowledge (e.g. due to a TCG Hardware reset or a TCG
Power Cycle reset). In this case, the TPer’s knowledge of the host’s communication properties will be
reset to the initial assumed values shown in Table 167. This could adversely affect the performance of
sessions that the host opens on the statically allocated ComID after the reset occurs. To prevent such
performance degredation, it is the host's responsibility to invoke Properties with the HostProperties
parameter prior to each invocation of StartSession on statically allocated ComIDs.

This problem does not occur when using dynamically allocated ComIDs, because dynamically allocated
ComIDs become inactive when the TPer is reset. The host receives an indication that the ComID is
inactive if it attempts further communication on that ComID. Therefore, the host needs to invoke
Properties with the HostProperties parameter only once per dynamically allocated ComID.

End Informative Content

5.2.2.4.1.1 MaxSubpackets
The host SHOULD NOT send a Packet that contains more Subpackets than the value of the TPer’s
MaxSubpackets property. If the host sends a Packet that contains too many Subpackets, the TPer MAY
abort the session associated with the Packet. In the case of too many Subpackets in a Control Session
Packet, the TPer SHALL discard and ignore the Packet.

The TPer SHALL NOT send a Packet that contains more Subpackets than the value of the host’s
MaxSubpackets property.

5.2.2.4.1.2 MaxPacketSize
The host SHOULD NOT send a Packet whose size (including Packet header) exceeds the value of the
TPer’s MaxPacketSize property. If the host sends a Packet that is too large, the TPer MAY abort the
session associated with the Packet. In the case of a Packet that is too large on the Control Session, the
TPer SHALL discard and ignore the Packet.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 150 of 314

The TPer SHALL NOT send a Packet whose size (including Packet header) exceeds the value of the
host’s MaxPacketSize property.

5.2.2.4.1.3 MaxPackets
The host SHOULD NOT send a ComPacket that contains more Packets than the value of the TPer’s
MaxPackets property. If the host sends a ComPacket that contains too many Packets, the TPer MAY
ignore the extra Packets.

The TPer SHALL NOT send a ComPacket that contains more Packets than the value of the host’s
MaxPackets property.

5.2.2.4.1.4 MaxComPacketSize
The host SHOULD NOT send a ComPacket whose size (including ComPacket header) exceeds the
value of the TPer’s MaxComPacketSize property. If the host attempts to send a ComPacket that is too
large, the TPer SHALL abort the IF-SEND command as described in the “Invalid Transfer Length
parameter on IF-SEND” section of the appropriate interface section of [2].

The TPer SHALL NOT send a ComPacket whose size (including ComPacket header) exceeds the
value of the host’s MaxComPacketSize property.

5.2.2.4.1.5 MaxIndTokenSize
The host SHOULD NOT send an individual token whose size (including token header) is greater than
the TPer’s MaxIndTokenSize property. If the TPer encounters a token that is too long, the TPer’s
response is defined in section 5.2.2.4.3.

The TPer SHALL NOT send an individual token whose size (including token header) is greater than the
host’s MaxIndTokenSize property.

5.2.2.4.1.6 MaxAggTokenSize
The host SHOULD NOT send an aggregate token whose size (including token header) is greater than
the TPer’s MaxAggTokenSize property. If the TPer encounters a token that is too long, the TPer’s
response is defined in section 5.2.2.4.3.

The TPer SHALL NOT send an aggregate token whose size (including token header) is greater than
the host’s MaxAggTokenSize property.

5.2.2.4.1.7 MaxMethods
The host SHOULD NOT send a Data Subpacket that contains more method invocations that the value
of the TPer’s MaxMethods property. If the host sends a Data Subpacket that contains too many method
invocations, the TPer MAY abort the session associated with the Packet. Results for methods that were
completed before the violating method invocation was encountered SHALL be sent to the host. In the
case of too many method invocations in a Data Subpacket of a Control Session Packet, the TPer MAY
ignore the extra method invocations.

The TPer SHALL NOT send a Data Subpacket that contains more method responses than the value of
the Host’s MaxMethods property, unless both the Host and the TPer have the Asynchronous property
set to TRUE. If both the Host and the TPer have the Asynchronous property set to TRUE, the TPer
SHALL ignore the Host’s MaxMethods property. Note that the TPer only sends method invocations on
the Control Session.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 151 of 314

5.2.2.4.1.8 ContinuedTokens
If the TPer’s ContinuedTokens property is TRUE, the host MAY send continued tokens to the TPer.
Otherwise, the host SHOULD NOT send continued tokens to the TPer. If the TPer encounters a
continued token when its ContinuedTokens property is FALSE, the TPer’s response is defined in
section 2.5.2.

If the host’s ContinuedTokens property is TRUE, the TPer MAY send continued tokens to the host.
Otherwise, the TPer SHALL NOT send continued tokens to the host.

If a communicator's ContinuedTokens property is FALSE, then that communicator's MaxAggTokenSize
property value SHALL be ignored by the other communicator.

5.2.2.4.1.9 SequenceNumbers
If both the host’s SequenceNumbers property and the TPer’s SequenceNumbers property are TRUE:

a. The TPer SHALL generate sequence numbers for Packets sent to the host.

b. The TPer SHALL check the sequence numbers of Packets received from the host.

c. The host SHOULD generate sequence numbers for Packets sent to the TPer.

d. The host SHOULD check the sequence numbers of Packets received from the TPer.

If either the host’s SequenceNumbers property or the TPer’s SequenceNumbers property are FALSE:

a. The TPer SHALL put a value of 0x00000000 in the SeqNumber field for Packets sent to the
host.

b. The TPer SHALL ignore the sequence numbers of Packets received from the host.

c. The host SHOULD put a value of 0x00000000 in the SeqNumber field for Packets sent to
the TPer.

d. The host SHOULD ignore the sequence numbers of Packets received from the TPer.

Sequence Numbers SHALL be supported for transmission acknowledgement, MAY be supported for
secure messaging, and MAY be supported otherwise

5.2.2.4.1.10 AckNak
If both the host’s AckNak property and the TPer’s AckNak property are TRUE:

a. The TPer SHALL use the Transmission Acknowledgement protocol.

b. The host SHOULD use the Transmission Acknowledgement protocol. If it does not, the
TPer will not be able to discard the packets it has sent to the host, causing a transmit buffer
overflow and a session abort.

If either the host’s AckNak property or the TPer’s AckNak property are FALSE:

a. The TPer SHALL NOT use the Transmission Acknowledgement protocol, and SHALL
ignore the AckType and Acknowledgement fields on all packets received from the host.
The TPer SHALL put a value of 0x0000 in the AckType field and a value of 0x00000000 in
the Acknowledgement field for Packets sent to the host.

b. The host SHOULD NOT use the Transmission Acknowledgement protocol, and SHOULD
ignore the AckType and Acknowledgement fields on all packets received from the TPer.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 152 of 314

The host SHOULD put a value of 0x0000 in the AckType field and a value of 0x00000000 in
the Acknowledgement field for Packets sent to the TPer.

5.2.2.4.1.11 Asynchronous
If both the host’s Asynchronous property and the TPer’s Asynchronous property are TRUE:

a. The TPer SHALL use the Asynchronous Communication protocol.

b. The TPer SHALL generate Credit Control Subpackets for informing the host how much
data can be sent to the TPer.

c. The TPer SHALL accept Credit Control Subpackets from the host, and SHALL only send as
much data as it has credit to send.

d. The host SHOULD use the Asynchrounous Communication protocol.

e. The host SHOULD generate Credit Control Subpackets for informing the TPer how much
data can be sent to the host. If it does not, the TPer will eventually stop sending data to the
host after it uses all of the initial credit it was granted during session start up.

f. The host SHOULD accept Credit Control Subpackets from the TPer, and SHOULD only
send as much data as it has credit to send. If it sends more data than it has credit to send,
the TPer MAY abort the session.

If either the host’s Asynchronous property or the TPer’s Asynchronous property are FALSE:

a. The TPer SHALL use the Synchronous Communication protocol.

b. The TPer SHALL NOT generate Credit Control Subpackets.

c. The TPer SHALL ignore Credit Control Subpackets from the host.

d. The host SHOULD use the Synchronous Communication protocol. If it does not, it will likely
cause Synchronous Protocol Violations on the TPer, and possible session aborts.

e. The host SHOULD NOT generate Credit Control Subpackets.

f. The host SHOULD ignore Credit Control Subpackets from the TPer.

5.2.2.4.2 AckNak and SequenceNumbers Dependency
If the TPer’s AckNak property is TRUE, then its SequenceNumbers property SHALL also be true.

If the host invokes Properties with the HostProperties parameter, and sets its AckNak property to
TRUE but its SequenceNumbers property to FALSE, and if the TPer supports those host properties,
then the TPer SHALL treat both the host’s AckNak and SequenceNumbers properties as FALSE, and
shall return FALSE for both properties in the HostProperties parameter of the Properties method
response. If the TPer does not support those host properties, it SHALL ignore them, and SHALL NOT
list them in the HostProperties parameter of the Properties method response.

5.2.2.4.3 TPer Response for Invalid Token/Atom
If the TPer receives an invalid token or atom in the message stream, then:

a. If the violating token/atom occurs within a Regular Session, the TPer SHALL abort the
session associated with the Packet that contained the violating token/atom. Results for
methods that were completed before the violating token/atom was encountered SHALL be
sent to the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 153 of 314

b. If the violating token/atom occurs within a Control Session Packet, the TPer SHALL stop
processing the Packet where the violating token/atom occurs, and ignore the remainder of
the Packet. Results for methods that were completed before the violating token was
encountered SHALL be sent to the host.

5.2.2.4.4 Interaction with TCG Reset Events
TCG Hardware Resets and TCG Power Cycle Resets SHALL cause the TPer’s knowledge of the host’s
communications capabilities, on all ComIDs, to be reset to the initial minimum assumptions defined in
this document or in the TPer’s SSC definition. Other TCG reset events SHALL NOT cause the TPer’s
knowledge of the host’s communications capabilities to be reset.

5.2.2.4.5 Interaction with TCG Protocol Stack Reset
Receiving a TCG Protocol Stack Reset SHALL cause the TPer’s knowledge of the host’s
communications capabilities, on the ComID receiving the reset command, to be reset to the initial
minimum assumptions defined in this document or in the TPer’s SSC definition.

5.2.3 Session Startup Methods
Begin Informative Content

This section describes the methods used to start a session. For information on session startup, and
how authorities interact during session startup, see section 5.3.4.1.4.

For details on using the session startup methods with Elliptic Curve parameters and EC-MQV or EC-
DH, see section 5.3.4.2.3 and 5.3.4.2.4 respectively.

End Informative Content

5.2.3.1 StartSession Method
SMUID.StartSession [

HostSessionID : uinteger,
SPID : uidref {SPObjectUID},
Write : boolean,
HostChallenge = bytes,
HostExchangeAuthority = uidref {AuthorityObjectUID},
HostExchangeCert = bytes,
HostSigningAuthority = uidref {AuthorityObjectUID},
HostSigningCert = bytes,
SessionTimeout = uinteger,
TransTimeout = uinteger,
InitialCredit = uinteger,
SignedHash = bytes]

=>
SMUID.SyncSession [see SyncSession definition in 5.2.3.2]

5.2.3.1.1 HostSessionID
The HostSessionID parameter in the StartSession invocation is the host-side session number
assigned and used by the host to identify this session. All further invocations in this series of method
invocations and responses use this host-assigned session number in the HostSessionID parameter.
This is the number that becomes the HSN portion of the packet header Session field (see 3.2.3.3 and
3.3.7.1).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 154 of 314

5.2.3.1.2 SPID
The SPID parameter in the StartSession invocation is the uid of the SP with which the host is
attempting to start a session. This is the uid of the SP's object in the Admin SP’s SP table.

5.2.3.1.3 Write
The Write parameter determines the type of session that is being started. This value SHALL be True
when a Read-Write session is requested and False when a Read-Only session is requested.

5.2.3.1.4 HostChallenge
If the Signing Authority (identified in the HostSigningAuthority parameter) has an Operation column
value of Password in the Authority table and references a C_PIN credential, then the HostChallenge
parameter is used by the host to submit a password for authentication. Otherwise, this parameter is
used to submit a nonce to the SP that, during secure session startup, returns a response based on the
HostChallenge value and the authentication requirements of the Signing Authority.

5.2.3.1.5 HostExchangeAuthority
The HostExchangeAuthority identifies the authority whose credential is used to exchange keys with
the SP.

5.2.3.1.6 HostExchangeCert
The HostExchangeCert parameter provides the certificate associated with the credential to be used
with the HostExchangeAuthority.

5.2.3.1.7 HostSigningAuthority
The HostSigningAuthority's credential is used to formulate the response to the SP's challenge. The
HostSigningAuthority parameter identifies the authority whose credential is used to sign the method
hash (sent in the SignedHash parameter).

5.2.3.1.8 HostSigningCert
The optional HostSigningCert parameter provides attestation to the HostSigningAuthority's credential.

5.2.3.1.9 SessionTimeout
The SessionTimeout parameter is used to allow the host to provide a requested timeout value for the
session.

The value, in milliseconds, SHOULD be less than the TPer’s MaxSessionTimeout property, greater
than the TPer’s MinSessionTimeout property (see 5.2.2.1), and less than the value of the
SPSessionTimeout column in the SP’s SPInfo table. If the parameter value is outside of these limits,
the method invocation SHALL fail.

If no value is specified for this parameter, then the SP's default value, stored in the SPInfo table's
SPSessionTimeout column, SHALL be used. If no value exists as an SP default (i.e. the
SPSessionTimeout column value is zero), then the TPer default (as reported in the Properties
method response, DefSessionTimeout) SHALL be used.

5.2.3.1.10 TransTimeout
The TransTimeout parameter is used to allow the host to provide a requested timeout value for
acknowledgement.

The value, in milliseconds, SHOULD be less than the TPer's MaxTransTimeout property and greater
than the TPer's MinTransTimeout property (these values are reported as the results of the Properties
method (see 5.2.2.1). If the parameter value is outside of these limits, the method invocation SHALL
fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 155 of 314

If this capability is supported and no value is specified for this parameter, then the TPer's default value
(identified as the DefTransTimeout response to the Properties mehod), SHALL be used as the
transmission timeout value. For more information on the transmission timeout mechanism, see 3.3.9.4.

5.2.3.1.11 InitialCredit
The InitialCredit parameter enables the host to provide an amount of credits to the TPer for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.3.8.2.

5.2.3.1.12 SignedHash
The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see 5.3.4.1.4). This is a signed hash of all the other
parameters to the method, other than the SignedHash parameter. The purpose of this is to provide
integrity during session startup, prior to the point when secure messaging takes effect.

The Host Control Authority identifies the hash type and signing type if hashing has been called out on
messages from the host to the SP (see 5.3.4.1.6).

5.2.3.2 SyncSession Method
The SyncSession is returned by the TPer in response to invocation of the StartSession method by the
host.

SMUID.StartSession [see StartSession definition in 5.2.3.1]
=>
SMUID.SyncSession [

HostSessionID : uinteger,
SPSessionID : uinteger,
SPChallenge = bytes,
SPExchangeCert = bytes,
SPSigningCert = bytes,
TransTimeout = uinteger,
InitialCredit = uinteger,
SignedHash = bytes]

5.2.3.2.1 HostSessionID
The HostSessionID parameter in the SyncSession invocation SHALL be the same as that in the
StartSession invocation.

5.2.3.2.2 SPSessionID
The SPSessionID parameter in the SyncSession invocation is the TPer side session number, which is
assigned by the TPer. All further invocations in this series of method invocations and responses use
this TPer-assigned session number in the SPSessionID parameter.

This is the number that becomes the TSN portion of the packet header Session field (see 3.2.3.3 and
3.3.7.1).

5.2.3.2.3 SPChallenge
The SPChallenge parameter value is sent if the StartSession invocation includes a
HostSigningAuthority that directly invokes a signing credential. Otherwise, this parameter is omitted.

5.2.3.2.4 SPExchangeCert
The SPExchangeCert is the certificate for the credential referenced by the SP exchange authority that
MAY be referenced by the parameterized HostSigningAuthority specified in the StartSession
invocation.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 156 of 314

5.2.3.2.5 SPSigningCert
The optional SPSigningCert is the certificate for the credential referenced by the SP signing authority
that MAY be referenced by the parameterized HostSigningAuthority specified in the StartSession
invocation.

5.2.3.2.6 TransTimeout
The TransTimeout parameter in the SyncSession method is used by the TPer to report the Timeout
value it SHALL use. This parameter is used to allow the TPer to provide a transmission timeout value
for acknowledgement larger than that requested by the host.

This optional parameter SHALL be greater than or equal to the value of the TransTimeout parameter of
the StartSession method, unless the TransTimeout parameter of StartSession contained a value
that was greater than the TPer's MaxTransTimeout property, in which case the SyncSession method
SHALL indicate a failure result.

The TransTimeout parameter value (measured in milliseconds) SHALL be less than the TPer's
MaxTransTimeout property and greater than the TPer's MinTransTimeout property (see 5.2.2.1).

If this capability is supported and no value is specified for this parameter in either the StartSession or
SyncSession methods, then the TPer's default value (identified as the DefTransTimeout response to
the Properties mehod), SHALL be used as the transmission timeout value. For more information on
the transmission timeout mechanism, see 3.3.9.4.

5.2.3.2.7 InitialCredit
The InitialCredit parameter enables the TPer to provide an amount of credits to the host for use in data
exchange once the session has been successfully opened. For more information on the buffer
management/flow control mechanism, see 3.3.8.2.

5.2.3.2.8 SignedHash
The SignedHash of the SyncSession method, if present, is the hash of the method’s parameter’s
signed by the response signing credential that is the credential referred to by the SPSigningAuthority.

The SP Control Authority, if referenced by the Host Control Authority, identifies the hash type and
signing type if hashing has been called out on messages from the SP to the host (see 5.3.4.1.6).

5.2.3.3 StartTrustedSession Method
The StartTrustedSession/SyncTrustedSession method exchange, if needed, SHALL occur after the
StartSession/SyncSession method exchange. If invoked at any other time, the attempted method
invocation SHALL return an error result.

SMUID.StartTrustedSession [
HostSessionID : uinteger,
SPSessionID : uinteger,
HostResponse = bytes,
HostEncryptSessionKey = bytes,
HostIntegritySessionKey = bytes,
SignedHash = bytes]

=>
SMUID.SyncTrustedSession [See SyncTrustedSession definition in 5.2.3.4]

5.2.3.3.1 HostSessionID
The HostSessionID parameter in the StartTrustedSession invocation SHALL be the same as that in
the StartSession invocation.

5.2.3.3.2 SPSessionID

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 157 of 314

The SPSessionID parameter in the StartTrustedSession invocation is the TPer side session number,
which was assigned by the TPer and delivered to the host in the SyncSession method.

5.2.3.3.3 HostResponse
The HostResponse is included if the SyncSession method contained an SPChallenge parameter. The
value of the HostResponse parameter is dictated by the credential of the HostSigningAuthority.

5.2.3.3.4 HostEncryptSessionKey
The HostEncryptSessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the host to the SP.

5.2.3.3.5 HostIntegritySessionKey
The HostIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the SP. This session keyset is used to create a MAC of the data sent from the
host to the SP (if required), to aid in integrity assurance.

5.2.3.3.6 SignedHash
The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see 5.3.4.1.4). This is a signed hash of all the other
parameters to the method, other than the SignedHash parameter. The purpose of this is to provide
integrity during session startup, prior to the point when secure messaging begins.

The Host Control Authority identifies the hash type and signing type if hashing has been called out on
messages from the host to the SP (see 5.3.4.1.6).

5.2.3.4 SyncTrustedSession Method
The SyncTrustedSession method is returned by the TPer in response to invocation of the
StartTrustedSession method by the host.

SMUID.StartTrustedSession [See StartTrustedSession definition in 5.2.3.3]
=>
SMUID.SyncTrustedSession [

HostSessionID : uinteger,
SPSessionID : uinteger,
SPResponse = bytes,
SPEncryptSessionKey = bytes,
SPIntegritySessionKey = bytes,
SignedHash = bytes]

5.2.3.4.1 HostSessionID
The HostSessionID parameter in the SyncTrustedSession invocation SHALL be the same as that in
the StartSession invocation.

5.2.3.4.2 SPSessionID
The SPSessionID parameter in the SyncTrustedSession invocation is the TPer side session number,
which was assigned by the TPer and delivered to the host in the SyncSession method.

5.2.3.4.3 SPResponse
A value is submitted in the SPResponse parameter if the StartSession method contained a
HostChallenge parameter value. The response is dictated by the Operation column value and
credential of the SPSigningAuthority.

5.2.3.4.4 SPEncryptSessionKey

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 158 of 314

The SPEncryptSessionKey is the session keyset generated by the SP and encrypted with the key
used for exchange with the host (see Session Startup (section 5.3.4.1.4) for more information). This
session keyset is used in secure messaging to encrypt packets sent from the SP to the host.

5.2.3.4.5 SPIntegritySessionKey
The SPIntegritySessionKey is the session keyset generated by the host and encrypted with the key
used for exchange with the host. This session keyset is used to create a MAC of the data sent from the
SP to the host (if required), to aid in integrity assurance.

5.2.3.4.6 SignedHash
The optional SignedHash parameter of each session startup method is present if hashing is required
by the Control Authority for that communicator (see 5.3.4.1.4). This is a signed hash of all the other
parameters to the method, other than the SignedHash parameter. The purpose of this is to provide
integrity during session startup, prior to the point when secure messaging begins.

The SP Control Authority, if referenced by the Host Control Authority, identifies the hash type and
signing type if hashing has been called out on messages from the SP to the host (see 5.3.4.1.6).

5.2.3.5 CloseSession Method
This method SHALL only be transmitted by the TPer. The TPer MAY transmit this method to notify the
host that it is aborting the session identified in the CloseSession method, as well as all open un-
committed transactions and methods undergoing processing (see 3.3.7.1.5).

SMUID.CloseSession [
RemoteSessionNumber : uinteger,
LocalSessionNumber : uinteger]

5.2.3.5.1 RemoteSessionNumber
This is the portion of the session number assigned by the host (i.e. the HSN portion of the packet
header Session field for the aborted session).

5.2.3.5.2 LocalSessionNumber
This is the portion of the session number assigned by the TPer (i.e. the TSN portion of the packet
header Session field for the aborted session).

5.3 Base Template
5.3.1 Overview
The Base Template defines a common set of tables and methods, a subset of which SHALL be
incorporated into all SPs.

5.3.1.1 Base Template Tables and Methods Overview
Begin Informative Content

Base Template tables are categorically divided into the following groups:

a. General metadata tables – store an SP’s self-descriptive information, such as SP
identification, size, and version numbers.

b. Table and method metadata tables – store data about the tables and methods that make
up this SP.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 159 of 314

c. Access control tables – define authorities, the secrets and authentication methods those
authorities require, and the access control associations that permit method operation.

d. Credential tables – define available encryption/decryption algorithms and authentication
mechanisms, and also store associated secrets or keys.

Base Template methods are divided into the following groups:

a. Basic table – enable creation of tables, addition and deletion of rows to tables, and
modification of table cell values.

b. Access control – define which authorities are permitted to successfully invoke which
methods and modify ACLs.

End Informative Content

5.3.2 Data Structures
5.3.2.1 General Metadata Group - SPInfo (Object Table)
The SPInfo table of each SP contains information about the SP, and a copy of some relevant
information from the Admin SP. This table SHALL have exactly one row.

The SPID of the SPInfo table and the GUDID of the TPerInfo table in the Admin SP form an
sp_guid that uniquely identifies the SP.

Table 168 SPInfo Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 SPID uid
0x02 Name name
0x03 Size uinteger_8
0x04 SizeInUse uinteger_8
0x05 SPSessionTimeout uinteger_4
0x06 Enabled boolean

5.3.2.1.1 UID
This is the unique identifier of this row of the SPInfo table.

This column SHALL NOT be modifiable by the host.

5.3.2.1.2 SPID
This is the unique identifier of this SP as assigned in the Admin SP’s SP table.

This column SHALL NOT be modifiable by the host.

5.3.2.1.3 Name
This is the name of the SP. This SHALL be the same as the name recorded for this SP in the Admin
SP’s SP table.

This column SHALL NOT be modifiable by the host.

5.3.2.1.4 Size
This defines the total space allocated for the SP at creation, in bytes. This value SHALL be the same
as the value of the Bytes column in the SP's object in the Admin SP’s SP table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 160 of 314

This column SHALL NOT be modifiable by the host.

5.3.2.1.5 SizeInUse
This value is the amount of the allocated space that is in use (for tables), in bytes.

This column SHALL NOT be modifiable by the host.

5.3.2.1.6 SPSessionTimeout
This is the length of timeout interval (in milliseconds) that this SP uses by default.

5.3.2.1.7 Enabled
The value of this column identifies whether the SP is enabled or disabled. The column value is True if
the SP is enabled, False if the SP is disabled.

Initial access control over modification of this column SHALL permit only the SP Owner (i.e. the Admins
class authority) to disable or reenable this SP.

When the value of this column is False, the operation of the SP is modified according to 5.3.5.1.

As soon as the method invocation that changes this column value to False completes successfully,
even inside of a transaction, the SP SHALL be considered disabled.

5.3.2.2 General Metadata Group - SPTemplates (Object Table)
Begin Informative Content

The SPTemplates table is an object table that identifies the component templates used to form the
SP.

End Informative Content

There SHALL be one row in this table for each template used to create the SP, including a row for the
Base Template (for all SPs), and one for the Admin Template in the Admin SP’s SPTemplates table.

Table 169 SPTemplates Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 TemplateID Template_object_ref
0x02 Name name
0x03 Version bytes_4

5.3.2.2.1 UID
This is the unique identifier of this row of the SPTemplates table.

This column SHALL NOT be modifiable by the host.

5.3.2.2.2 TemplateID
The value of the TemplateID column is the UID assigned to this template in the Admin SP’s
Template table.

This column SHALL NOT be modifiable by the host.

5.3.2.2.3 Name
This is the name of the template used as a component in the creation of this SP. This SHALL be the
same as the value recorded in Name column of the Admin SP’s Template table for the associated
template.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 161 of 314

This column SHALL NOT be modifiable by the host.

5.3.2.2.4 Version
The value of the Version column refers to TCG defined versions of templates. For devices compliant
with the template versions defined in this specification, the 4-byte value SHALL be 0x00 0x00 0x00
0x02.

This column SHALL NOT be modifiable by the host.

5.3.2.3 Table and Method Metadata Group - Table (Object Table)
Begin Informative Content

The Table table contains one row for each table descriptor object, which store metadata about each of
the tables in the SP.

End Informative Content

In the Table table of every SP, there SHALL be a row for each table that exists in that SP. Each of
these rows SHALL have a CommonName column value. Each table at issuance SHALL have a
CommonName column value that is the name of the template from which that table was issued – the
template name is the name from the associated row in the Admin SP’s Template table.

The Table table in the Admin SP includes a row for each table that the TPer supports, in addition to a
row for each table that exists in the Admin SP.

Table 170 Table Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 TemplateID Yes Template_ref
0x04 Kind table_kind
0x05 Column Column_object_ref
0x06 NumColumns uinteger_4
0x07 Rows uinteger_4
0x08 RowsFree uinteger_4
0x09 RowBytes uinteger_4
0x0A LastID uid
0x0B MinSize uinteger_4
0x0C MaxSize uinteger_4

5.3.2.3.1 UID
This is the unique identifier of this row of the Table table.

This column SHALL NOT be modifiable by the host.

5.3.2.3.2 Name
This is the name of the table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 162 of 314

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.3.3 CommonName
This is a name that MAY be shared among multiple table descriptor objects.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.3.4 TemplateID
In the Admin SP, this column is used to identify the template to which this table belongs and indicates a
table that is not present in the Admin SP. In SPs other than the Admin SP, the value of this column
SHALL be zeroes. See 5.4.4.1 for details.

This column SHALL NOT be modifiable by the host.

5.3.2.3.5 Kind
This value indicates the type of table – either object or byte.

This column SHALL NOT be modifiable by the host.

5.3.2.3.6 Column
This is a reference to the Column table row of this table’s first column. For byte tables this value SHALL
be the null uid.

This column SHALL NOT be modifiable by the host.

5.3.2.3.7 NumColumns
This value indicates the number of columns in the table. For byte tables this SHALL be 0x01.

This column SHALL NOT be modifiable by the host.

5.3.2.3.8 Rows
This value indicates the actual number of rows that have been created for the table.

This column SHALL NOT be modifiable by the host.

5.3.2.3.9 RowsFree
This value indicates the number of unused rows in the table out of those allocated for use.

This column SHALL NOT be modifiable by the host.

5.3.2.3.10 RowBytes
This value is the number of bytes in each row of the table. This is the total number of bytes utilized by
each table row, and SHALL include bytes devoted to overhead for system columns, type identification,
etc.

This column SHALL NOT be modifiable by the host.

5.3.2.3.11 LastID
For object tables, this value is the most recent uid assigned to an object in that table. For byte tables,
this value SHALL be the null uid.

This column SHALL NOT be modifiable by the host.

5.3.2.3.12 MinSize
This is the number of rows initially requested for this table. The table is able to contain at least this
many rows. This column is user-settable (access control permitting). For more information see
5.3.4.3.1.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 163 of 314

5.3.2.3.13 MaxSize
This is a host-defined maximum number of rows that MAY exist in this table. The table SHALL never
have more than this many rows, although the TPer is not required to guarantee that the table can grow
to MaxSize rows.

This column is user-settable (access control permitting), but the TPer MAY prevent the value in this
column from being changed. A value of 0 indicates no host-defined limit of rows that MAY be created
in this table.

5.3.2.4 Table and Method Metadata Group - Column (Object Table)
The Column table SHALL have one row for every column of every object table. Byte tables SHALL
NOT have representative columns in the Column table.

The SP implementation is free to have hidden system columns in any table, as long as those columns
do not interfere with host operations, including the operation of any methods invoked on that table.
These columns SHALL NOT be recorded in the Column table.

The Column table in the Admin SP includes a row for each column that the TPer supports, in addition to
a row for each column that exists in the Admin SP.

Table 171 Column Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name name
0x02 CommonName name
0x03 Type Type_object_ref
0x04 IsUnique boolean
0x05 ColumnNumber uinteger_4
0x06 Transactional boolean_def_true
0x07 Next Column_object_ref
0x08 AttributeFlags attr_flags

5.3.2.4.1 UID
This is the unique identifier of this row of the Column table.

This column SHALL NOT be modifiable by the host.

5.3.2.4.2 Name
This is the name of the column.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.4.3 CommonName
This is a name that MAY be shared among multiple table descriptor objects. The value of the
CommonName column for rows that exist upon issuance is the name of the template (from the
SPTemplates table) to which that column belongs.

This column SHALL NOT be modifiable by the host for tables that are created during issuance.

5.3.2.4.4 Type
The value of this column identifies the type formatting the column’s data.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 164 of 314

This column SHALL NOT be modifiable by the host.

5.3.2.4.5 IsUnique
The value of this column indicates whether the column participates in the unique column combination
for the table. The value of this column is True if this column is, or is part of, the unique columns for the
table. If the value of this column is False, this column is not a part of the table’s unique columns.

This column SHALL NOT be modifiable by the host.

5.3.2.4.6 ColumnNumber
The value of this column identifies the number of the column, and by extension, the ordering of columns
in the containing table.

This column SHALL NOT be modifiable by the host.

5.3.2.4.7 Transactional
This value indicates whether the column is subject to transactional rollback.

If the value of the Transactional column is False, then modifications to this column take effect
immediately, even if the method invocation that modifies the column is included in a transaction that
has not yet resolved. Changes to the column are not rolled back if the transaction containing the
modification is aborted. The value of this column for user-created table columns SHALL be True.

This column SHALL NOT be modifiable by the host.

5.3.2.4.8 Next
This is a reference to the row of the Column table that represents the next column in this column’s table.
If this is the last column in the containing table, then the value of this column is the NULL UID.

This column SHALL NOT be modifiable by the host.

5.3.2.4.9 AttributeFlags
Identifies globally assigned attributes for this table column, such as whether or not the Get and Set
methods are globally permitted for this column regardless of access controls.

In the case of tables created by the host post-issuance, the value of this column for resulting additional
rows in the Column table SHALL be the empty set. System-managed columns (such as the UID
column) of those tables SHALL have a value of {1} for that column in the corresponding Column table
row.

This column SHALL NOT be modifiable by the host.

5.3.2.5 Table and Method Metadata Group - Type (Object Table)
Begin Informative Content

The Type table stores the format and metadata for all of the column types used in the SP. The host
adds host-defined types by invoking the CreateRow method on the Type table.

The Type table values that represent the built-in types, as well as all those types pre-defined in this
specification, are found in 5.1.1.

End Informative Content

Any of the types predefined in the Core Specification MAY be included by default in the table for an SP.
The default contents of the table are SSC-specific.

No user-defined types SHALL be removed by the Delete or DeleteRow methods unless the TPer is
able to verify that no column of that type is currently in use.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 165 of 314

Types are often constructed of other types. The TPer SHALL prevent modification or removal of a type
object upon which another type is dependent.

The TPer SHALL prevent type recursion.

Table 172 Type Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Format type_def
0x04 Size uinteger_2

5.3.2.5.1 UID
This is the unique identifier of this row in the Type table.

This column SHALL NOT be modifiable by the host.

5.3.2.5.2 Name
This is the name of the type.

This column SHALL NOT be modifiable by the host.

5.3.2.5.3 CommonName
This is a name that MAY be shared by multiple types.

This column SHALL NOT be modifiable by the host.

5.3.2.5.4 Format
The value of this column describes the format of the data type. For details, see the format specification,
section 5.1.1.

This column SHALL NOT be modifiable by the host.

5.3.2.5.5 Size
This is the size (in bytes) needed to store a value of this type. The value of the Size column includes
any necessary overhead (such as for bytes{max=<n>}, for tagging a value of an Alternative_Type,
etc. The TPer calculates the value of this column. It is an error for the host to specify a value for this
column in the CreateRow method invocation. This value SHALL be 0 for a base type (integer, uinteger,
bytes, max bytes).

This column SHALL NOT be modifiable by the host.

5.3.2.6 Table and Method Metadata Group - MethodID (Object Table)
This table associates method names and uids. Access control SHALL permit this table to be read with
the use of the Anybody authority, and SHALL prevent this table from being modified. In the MethodID
table of every SP, there SHALL be a row for each method that MAY be invoked within a session to that
SP.

The Name-CommonName-TemplateID column value combination SHALL be unique for each row in the
table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 166 of 314

Table 173 MethodID Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 TemplateID Yes Template_object_ref

5.3.2.6.1 UID
This is the unique identifier of this row in the MethodID table. This is also the uid value used to invoke
the method.

This column SHALL NOT be modifiable by the host.

5.3.2.6.2 Name
This is the name of the method.

For MethodID objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.6.3 CommonName
This is a name that MAY be shared by multiple methods.

Each row that exists at issuance SHALL have a CommonName column value that is the name of the
template from which it was issued. This is the name of the template from the Admin SP’s Template
table.

For MethodID objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.6.4 TemplateID
In the Admin SP, this column is used to identify the template to which this method belongs and
indicates a method that is not present in the Admin SP. In SPs other than the Admin SP, the value of
this column SHALL be zeroes. See 5.4.4.1 for details.

This column SHALL NOT be modifiable by the host.

5.3.2.7 Table and Method Metadata Group - AccessControl (Object Table)
Begin Informative Content

The AccessControl table contains SP/method, table/method, and object/method access control
associations and logging settings, and each access control association’s related meta-ACL access
requirements and meta-ACL logging settings.

End Informative Content

New rows SHALL NOT be created in or deleted from the AccessControl table directly (i.e. via
CreateRow, Delete, or DeleteRow).

New rows are created in the AccessControl table as a side effect whenever a table is created or when
a row in an object table is created. New rows added to the AccessControl table in this way SHALL
NOT cause additional new rows to be added to the AccessControl table.

AccessControl table rows MAY be deleted through the use of the DeleteMethod method.
AccessControl table rows associated with a particular object or table SHALL be removed whenever
that table or object is deleted.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 167 of 314

Table 174 AccessControl Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 InvokingID Yes table_or_object_ref
0x02 MethodID Yes MethodID_object_ref
0x03 CommonName name
0x04 ACL ACL
0x05 Log log_select
0x06 AddACEACL ACL
0x07 RemoveACEACL ACL
0x08 GetACLACL ACL
0x09 DeleteMethodACL ACL
0x0A AddACELog log_select
0x0B RemoveACELog log_select
0x0C GetACLLog log_select
0x0D DeleteMethodLog log_select
0x0E LogTo LogList_object_ref

5.3.2.7.1 UID
This is the unique identifier of this row in the AccessControl table.

This column SHALL NOT be modifiable by the host.

5.3.2.7.2 InvokingID
This is the uidref to the SP/Table/Object portion of this access control association.

This column SHALL NOT be modifiable by the host.

5.3.2.7.3 MethodID
This is the unique identifier of the method portion of this access control situation, and is the same as the
method's UID column value in the MethodID table.

This column SHALL NOT be modifiable by the host.

5.3.2.7.4 CommonName
This is a name that MAY be shared among multiple access control associations. The value for this
column when a row is created is the empty string.

This column SHALL NOT be modifiable by the host.

5.3.2.7.5 ACL
This is the access control list for this SP/method, table/method, or object/method combination. This
column is modified/accessed via the methods GetACL, RemoveACE, and AddACE. This column SHALL
NOT be modifiable directly via the Set method.

5.3.2.7.6 Log
This column identifies the logging conditions when this method is invoked on this SP/table/object. The
conditions indicate whether logging is performed when the method succeeds, fails, both, or neither.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 168 of 314

This column SHALL be disregarded if the Log Template has not been issued into the SP, and SHOULD
be set to 0.

5.3.2.7.7 AddACEACL
This column holds the access control list that controls invocation of the AddACE method on the ACL
column of this row in the AccessControl table.

5.3.2.7.8 RemoveACEACL
This column holds the access control list that controls invocation of the RemoveACE method on the ACL
column of this row in the AccessControl table.

5.3.2.7.9 GetACLACL
This column holds the access control list that controls invocation of the GetACL method on the ACL
column this row in the AccessControl table.

5.3.2.7.10 DeleteMethodACL
This column holds the access control list that controls invocation of the DeleteMethod method on the
access control association represented by this row in the AccessControl table.

5.3.2.7.11 AddACELog
This column identifies the conditions under which logging of the AddACE method invocation on this
access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.12 RemoveACELog
This column identifies the conditions under which logging of the RemoveACE method invocation on this
access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.13 GetACLLog
This column identifies the conditions under which logging of the GetACL method invocation on this
access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.14 DeleteMethodLog
This column identifies the conditions under which logging of the DeleteMethod method invocation on
this access control association occurs. This column SHALL be disregarded if the Log Template has not
been issued into the SP, and SHOULD be set to 0.

5.3.2.7.15 LogTo
This column value is a uidref to a LogList object. Log entries for this access control association are
added to the Log table associated with that LogList object. This column SHALL be disregarded if the
Log Template has not been issued into the SP, and SHOULD be set to the NULL UID.

5.3.2.8 Table and Method Metadata Group - SecretProtect (Object Table)
This table column is used by the host to identify the key protection mechanism(s), if any, in use by the
storage device to "hide" the device's media encryption key material/secrets.

Table 175 SecretProtect Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 169 of 314

Column Number Column Name IsUnique Column Type
0x01 Table Table_object_ref
0x02 ColumnNumber uinteger_4
0x03 ProtectMechanisms protect_types

5.3.2.8.1 UID
This is the unique identifier of this row of the SecretProtect table.

This column SHALL NOT be modifiable by the host.

5.3.2.8.2 Table
This is a uid ref to an object in the Table table. This represents the table that, in conjunction with the
column value identified in the ColumnNumber column, is protected using the mechanism(s) specified in
the ProtectMechanisms column.

This column SHALL NOT be modifiable by the host.

5.3.2.8.3 ColumnNumber
This is a column number. This number represents a column in table (as identified in the Table column),
which is protected using the mechanism(s) specified in the ProtectMechanisms column.

This column SHALL NOT be modifiable by the host.

5.3.2.8.4 ProtectMechanisms
This column identifies the type of key protection used by the storage device to hide key
material/secrets. The protection mechanisms identified in this column SHALL all be applied to
protection of the associated table column value.

This column SHALL NOT be modifiable by the host.

5.3.2.9 Access Control Metadata Group - ACE (Object Table)
The ACE table SHALL have one row for each access control element that MAY be referenced in the
AccessControl table's ACL column.

Table 176 ACE Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 BooleanExpr AC_element
0x04 Columns ACE_columns

5.3.2.9.1 UID

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 170 of 314

This is the unique identifier of this row in the ACE table.

This column SHALL NOT be modifiable by the host.

5.3.2.9.2 Name
This is the name of the ACE.

For ACE objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.9.3 CommonName
This is a name that MAY be shared by multiple ACE objects.

For ACE objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.9.4 BooleanExpr
This column value is a Boolean expression of Authorities that authorizes the ACE if the expression
evaluates to True. If the conditions described in this access control element are True, then the ACE is
considered authenticated.

5.3.2.9.5 Columns
This column value dentifies the columns to which this ACE applies. An empty set indicates that this
ACE applies to all columns in the table (when referenced in the ACL of a method that supports column
restrictions).

The value for the Columns column SHALL be applicable to the table upon which a method requiring
authentication of this ACE is being invoked. If the method is not column-dependant (e.g. the Next
method), this column is ignored.

5.3.2.10 Access Control Metadata Group - Authority (Object Table)
Begin Informative Content
A row of the Authority Table is called an authority. An authority is a specific use of a credential and,
possibly, other authorities. A class authority is an authority object referenced by multiple individual
authorities and does not use a credential.
End Informative Content

Table 177 Authority Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 IsClass boolean
0x04 Class Authority_object_ref
0x05 Enabled boolean
0x06 Secure messaging_type
0x07 HashAndSign hash_protocol
0x08 PresentCertificate boolean
0x09 Operation auth_method
0x0A Credential cred_object_uidref
0x0B ResponseSign Authority_object_ref
0x0C ResponseExch Authority_object_ref

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 171 of 314

Column Number Column Name IsUnique Column Type
0x0D ClockStart date
0x0E ClockEnd date
0x0F Limit uinteger_4
0x10 Uses uinteger_4
0x11 Log log_select
0x12 LogTo LogList_object_ref

5.3.2.10.1 UID
This is the unique identifier of this row in the Authority table.

This column SHALL NOT be modifiable by the host.

5.3.2.10.2 Name
This is the name of the authority.

For Authority objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.10.3 CommonName
This is a name that MAY be shared by multiple authorities.

For Authority objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.10.4 IsClass
This column identifies whether or not this is an individual authority or a class authority.

If True, this row is a class authority. If False, this row is an individual authority.

This column SHALL NOT be modifiable by the host.

5.3.2.10.5 Class
The Class column identifies the authority class of which an authority object is a member. Class
authorities MAY be members of another class authority. However, this SHALL only be valid if it extends
to one level. Class authorities are not permitted to be members of a class authority that is already a
member of another class authority. The TPer SHALL enforce this requirement.

The value of this column SHALL be a NULL UID reference if the authority is not a member of a class.

5.3.2.10.6 Enabled
This column identifies whether the authority is enabled, thus identifying if the authority object is
authenticatable. When this value is True, this authority is enabled.

If the value of this column is False, then this authority is disabled and SHALL NOT be authenticatable.
All attempts to authenticate this authority either directly, through the use of the Authenticate method,
or indirectly during session startup, SHALL return a result of False and a method status of SUCCESS if
the value of this column is False.

5.3.2.10.7 Secure
The Secure column identifies the type of secure messaging (if any) that is required by this authority,
and identifies the size of the key(s) that SHALL be generated during secure session startup if secure
messaging is required. A value of “None” indicates secure messaging is not required. The value of this
column SHALL be enforced when any attempt is made to authenticate this authority, including the use
of the Authenticate method. If the conditions are not met when authentication is attempted, that
authentication SHALL fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 172 of 314

The options for the Secure column, which are the options defined for the messaging_type type, are
identified in Table 178.

Table 178 Secure Column Values
Column value Algorithm Secure Messaging Type
0 None None
1 HMAC_SHA_256 Integrity only
2 HMAC_SHA_384 Integrity only
3 HMAC_SHA_512 Integrity only
4 RSASSA-PKCS1-v1_5 _1024 Integrity only
5 RSASSA-PKCS1-v1_5 _2048 Integrity only
6 RSASSA-PKCS1-v1_5 _3072 Integrity only
7 RSASSA-PSS_1024 Integrity only
8 RSASSA-PSS_2048 Integrity only
9 RSASSA-PSS_3072 Integrity only
10 ECDSA_256_SHA_256 Integrity only
11 ECDSA_384_SHA_384 Integrity only
12 ECDSA_512_SHA_512 Integrity only
13 CMAC_128 with 128-bit MAC Integrity only
14 CMAC_256 with 128-bit MAC Integrity only
15 GMAC_128 with 128-bit MAC and 96-bit IV Integrity only
16 GMAC_256 with 128-bit MAC and 96-bit IV Integrity only
17-63 RESERVED Integrity only
64 AES_CBC_128 Confidentiality only
65 AES_CBC_256 Confidentiality only
66-128 RESERVED Confidentiality only
129 AES_CBC_128 with HMAC_SHA_256 Integrity and Confidentiality
130 AES_CBC_256 with HMAC_SHA_256 Integrity and Confidentiality
131 AES_CBC_256 with HMAC_SHA_384 Integrity and Confidentiality
132 AES_CBC_256 with HMAC_SHA_512 Integrity and Confidentiality
133 AES_CCM_128 with 128-bit MAC Integrity and Confidentiality
134 AES_CCM_256 with 128-bit MAC Integrity and Confidentiality
135 AES_GCM_128 with 128-bit MAC Integrity and Confidentiality
136 AES_GCM_256 with 128 bit MAC Integrity and Confidentiality
137-255 RESERVED Integrity and Confidentiality

Note that the IV size for both the CCM and GCM modes is 12-bytes. The lower 8-bytes are directly
provided within the secure message. The upper 4-bytes of the IV are taken from the last 4-bytes of the
EncryptSessionKey parameters of the StartTrustedSession/SyncTrustedSession method pair (see
[16] for CCM and [17] for GCM). The EncryptSessionKey parameters of the
StartTrustedSession/SyncTrustedSession method pair SHALL be 4-bytes longer for the CCM and

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 173 of 314

GCM modes to accommodate the 4-bytes used as 'salt' within the IV. For CMAC see [15]. For GMAC
see [17]. For RSASSA-PKCS1-v1_5 and RSASSA-PSS see [18].

5.3.2.10.8 HashAndSign
The value of the HashAndSign column determines if hashing and signing of session startup method
parameters are required. If the value of this column is other than “None”, a signed hash of the session
startup method parameters SHALL be used during session startup.

The value of the Operation column and the type of the credential referenced in the Credential
column (and the hash protocol identified in that credential) determine the type of the hashing and
signing.

HashAndSign is only enforced for a particular authority during session startup. Otherwise, this attribute
SHALL be ignored (for instance, during an Authenticate method invocation). For additional
information see 5.3.4.1.4.

5.3.2.10.9 PresentCertificate
The value of this column indicates if a certificate needs to be supplied with an authority at session
startup. If the value of the PresentCertificate column is True, the authority is a public key authority,
and the credential contains a certificate or certificate chain, then a certificate or certificate chain
associated with this authority SHALL be sent as a parameter of the session startup protocol. If any of
those conditions is False, no certificate is required to be sent.

5.3.2.10.10 Operation
The value of this column identifies the operation (see 5.3.4.1.3) to perform with the associated
credential (e.g., Exchange, Sign, SymK, HMAC, Password, None).

5.3.2.10.11 Credential
The value of the Credential column identifies the specific credential object to be used with this
authority. For a class authority, the value of this column SHALL be zeroes a NULL UID reference.

5.3.2.10.12 ResponseSign
This column identifies the signing authority with which the SP SHALL respond during session startup.
This column value MAY be self-referential. The value of the ResponseSign column identifies the
authority with which the TPer SHALL respond in the SyncSession method of the session startup
method exchange, as the SP Signing Authority. If the value of this column is the NULL UID, then no SP
Signing Authority is used for initiating that session.

5.3.2.10.13 ResponseExch
This column identifies the exchange authority with which the SP SHALL respond during session startup.
This MAY be self-referential. The value of the ResponseExch column identifies the authority with which
the TPer SHALL respond in the SyncSession method of the session startup method exchange, as the
SP Exchange Authority. If the value of this column is the NULL UID, then no SP Exchange Authority is
used for initiating that session.

5.3.2.10.14 ClockStart
This value identifies the date on which this authority becomes valid.

An authority is automatically valid starting on the date defined in the ClockStart column if the TPer
supports this capability. A value of either all zeroes or an empty struct indicates no start date, and the
authority SHALL be authenticatable until the date in the ClockEnd column is reached. Attempts to
authenticate an authority before the ClockStart column value date has been reached SHALL fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 174 of 314

The values in the ClockStart column's date struct SHALL be complete and valid or the authority
SHALL NOT be authenticatable.

If the Clock Template has not been issued with this SP, then the value of this column SHOULD be
disregarded, and SHALL be set to an empty struct. Any authority with a non-zero ClockStart date
SHALL NOT be authenticatable if the ClockTime table’s TrustMode column is “Timer”.

See 5.5 for additional details on the Clock Template.

5.3.2.10.15 ClockEnd
This value identifies the date on which this authority expires/becomes invalid.

An authority is automatically invalid starting on the date defined in the ClockEnd column if the TPer
supports this capability. A value of either all zeroes or an empty struct indicates no end date, and the
authority’s ability to be authenticated SHALL NOT expire. Attempts to authenticate an authority after
the ClockEnd column value date has been passed SHALL fail.

The values in the ClockStart column's date struct SHALL be complete and valid or the authority
SHALL NOT be authenticatable.

If the Clock Template has not been issued with this SP, then the value of this column SHOULD be
disregarded, and SHALL be set to an empty struct. Any authority with a non-zero ClockEnd date
SHALL NOT be authenticatable if the ClockTime table’s TrustMode column is “Timer”.

See 5.5 for additional details on the Clock Template.

5.3.2.10.16 Limit
The Limit column defines a limit on the number of times that an authority MAY be authenticated, either
explicitly or implicitly. This value represents the maximum number of total successful authentications
with this authority, including session start-up invocations and Authenticate method invocations. A
value of 0 SHALL mean no limit.

5.3.2.10.17 Uses
This column defines the total number of successful authentications made with this authority, including
both successful session start-up invocations and Authenticate method invocations. The value of the
Uses column identifies the number of times an authority has been successfully authenticated.

If the value of Uses is equal to or greater than the value of Limit for this authority and the value of the
Limit column is not 0, then this authority SHALL NOT be authenticatable.

This value SHALL NOT be subject to transactional rollbacks.

5.3.2.10.18 Log
The value of the Log column identifies when uses of this authority (i.e., authentications and
authentication attempts) are logged.

If the Log Template has not been issued into the SP, then this column SHALL be disregarded and
SHOULD be set to zero.

5.3.2.10.19 LogTo
This column value is a uidref to a LogList object. Log entries for this access control association are
added to the Log table associated with that LogList object. This column SHALL be disregarded if the
Log Template has not been issued into the SP, and SHOULD be set to the NULL UID.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 175 of 314

5.3.2.11 Access Control Metadata Group - Certificates (Object Table)

Table 179 Certificates Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 CertData byte_table_ref
0x04 CertSize uinteger_4

5.3.2.11.1 UID
This is the unique identifier of this row in the Certificates table.

This column SHALL NOT be modifiable by the host.

5.3.2.11.2 Name
This is the name of the certificate.

For Certificates objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.11.3 CommonName
This is a name that MAY be shared by multiple certificates.

For Certificates objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.11.4 CertData
This is the uidref to the byte table that holds the certificate data for this Certificates object.

5.3.2.11.5 CertSize
The value of this column is the number of bytes actually used in the certificate.

5.3.2.12 Credential Table Group - C_PIN (Object Table)
The C_PIN table contains one row for each password credential.

The C_PIN object with UID=0x00 0x00 0x00 0x0B 0x00 0x00 0x00 0x01 and Name=“SID” is the
default SID object.

Table 180 C_PIN Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 PIN password
0x04 CharSet byte_table_ref
0x05 TryLimit uinteger_4
0x06 Tries uinteger_4
0x07 Persistence boolean

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 176 of 314

5.3.2.12.1 UID
This is the unique identifier of this row in the C_PIN table.

This column SHALL NOT be modifiable by the host.

5.3.2.12.2 Name
This is the name of the C_PIN object.

For C_PIN objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.12.3 CommonName
This is a name that MAY be shared by multiple C_PIN objects.

For C_PIN objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.12.4 PIN
This is the bytes value to which authentication attempts on this C_PIN object are matched.

5.3.2.12.5 CharSet
This is a reference to the byte table that holds the character set used for TPer-generated PIN column
values created using the GenKey method.

If the value of this column is a NULL UID reference, then the default character set is used with the
GenKey method.

See 5.3.4.1.1.1 for a description of the use of this column.

5.3.2.12.6 TryLimit
The value of this column is the maximum number of failed authentication attempts that are able to be
made using this C_PIN object.

The default value of the TryLimit column when a new C_PIN object is created is 0. The value 0 in this
column indicates that there is no limit on the number of authentication attempts for that object.

For more information on the uses of this column see 5.3.4.1.1.2.

5.3.2.12.7 Tries
This column identifies the current number of failed authentication attempts using this C_PIN object.

For more information on the uses of this column see 5.3.4.1.1.2.

5.3.2.12.8 Persistence
The value of this column identifies if value of Tries column is persistent through power cycles.

5.3.2.13 Credential Table Group - C_RSA_1024 (Object Table)

Table 181 C_RSA_1024 Table Description
Column
Number Column Name IsUnique Column Type

0x00 UID uid
0x01 Name Yes name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 177 of 314

Column
Number Column Name IsUnique Column Type

0x02 CommonName Yes name
0x03 Format padding_type
0x04 Pu_Exp uinteger_128
0x05 Mod uinteger_128
0x06 Pr_Exp uinteger_128
0x07 P uinteger_64
0x08 Q uinteger_64
0x09 Dmp1 uinteger_64
0x0A Dmq1 uinteger_64
0x0B Iqmp uinteger_64
0x0C Hash hash_protocol
0x0D ChainLimit int_1_def_0
0x0E Certificate Certificates_object_ref

5.3.2.13.1 UID
This is the unique identifier of this row in the C_RSA_1024 table.

This column SHALL NOT be modifiable by the host.

5.3.2.13.2 Name
This is the name of the C_RSA_1024 object.

For C_RSA_1024 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.13.3 CommonName
This is a name that MAY be shared among C_RSA_1024 objects.

For C_RSA_1024 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.13.4 Format
This column defines the type of padding used with RSA encryption.

5.3.2.13.5 Pu_Exp
The value of this column is the RSA Public Exponent.

5.3.2.13.6 Mod
The value of this column is the RSA Public Modulus.

5.3.2.13.7 Pr_Exp
The value of this column is the RSA Private Exponent.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.13.8 P
The value of this column is the p prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 178 of 314

5.3.2.13.9 Q
The value of this column is the q prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.13.10 Dmp1
The value of this column is d mod (p-1) (often known as dmp1).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.13.11 Dmq1
The value of this column is d mod (q-1) (often known as dmq1).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.13.12 Iqmp
The value of this column is (1/q) mod p (often known as iqmp).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.13.13 Hash
If an authority object that references this C_RSA_1024 object has a HashAndSign column value of True,
this column identifies the hash algorithm to create the session startup method parameter MAC to be
signed by this credential.

5.3.2.13.14 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.13.15 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.14 Credential Table Group - C_RSA_2048 (Object Table)

Table 182 C_RSA_2048 Table Description
Column
Number Column Name IsUnique Column Type

0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes

name

0x03 Format padding_type
0x04 Pu_Exp uinteger_256
0x05 Mod uinteger_256
0x06 Pr_Exp uinteger_256
0x07 P uinteger_128
0x08 Q uinteger_128
0x09 Dmp1 uinteger_128
0x0A Dmq1 uinteger_128

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 179 of 314

Column
Number Column Name IsUnique Column Type

0x0B Iqmp uinteger_128
0x0C Hash hash_protocol
0x0D ChainLimit int_1_def_0
0x0E Certificate Certificates_object_ref

5.3.2.14.1 UID
This is the unique identifier of this row in the C_RSA_2048 table.

This column SHALL NOT be modifiable by the host.

5.3.2.14.2 Name
This is the name of the C_RSA_2048 object.

For C_RSA_2048 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.14.3 CommonName
This is a name that MAY be shared among C_RSA_2048 objects.

For C_RSA_2048 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.14.4 Format
This column defines the type of padding used with RSA encryption.

5.3.2.14.5 Pu_Exp
The value of this column is the RSA Public Exponent.

5.3.2.14.6 Mod
The value of this column is the RSA Public Modulus.

5.3.2.14.7 Pr_Exp
The value of this column is the RSA Private Exponent.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.8 P
The value of this column is the p prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.9 Q
The value of this column is the q prime from the key generation.

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.10 Dmp1
The value of this column is d mod (p-1) (often known as dmp1).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.11 Dmq1
The value of this column is d mod (q-1) (often known as dmq1).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 180 of 314

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.12 Iqmp
The value of this column is (1/q) mod p (often known as iqmp).

A value of 0x0 in this column indicates that there is no value, or that the column has not been initialized.

5.3.2.14.13 Hash
If an authority object that references this C_RSA_2048 object has a HashAndSign column value of True,
this column identifies the hash algorithm to create the session startup method parameter MAC to be
signed by this credential.

5.3.2.14.14 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.14.15 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.15 Credential Table Group - C_AES_128 (Object Table)

Table 183 C_AES_128 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Key bytes_16
0x04 Mode symmetric_mode
0x05 FeedbackSize feedback_size
0x06 ResidualData bytes_16
0x07 Hash hash_protocol

5.3.2.15.1 UID
This is the unique identifier of this row in the C_AES_128 table.

This column SHALL NOT be modifiable by the host.

5.3.2.15.2 Name
This is the name of the C_AES_128 object.

For C_AES_128 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.15.3 CommonName
This is a name that MAY be shared by multiple C_AES_128 objects.

For C_AES_128 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.15.4 Key
This column stores the key associated with this C_AES_128 object.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 181 of 314

5.3.2.15.5 Mode
This column value defines the encryption mode with which this credential SHALL be used.

5.3.2.15.6 FeedbackSize
This column defines the feedback size for CFB mode, and SHALL be ignored for all other modes.

5.3.2.15.7 ResidualData
The value in this column provides the IV for use with the Encrypt/Decrypt method (unless the IV
parameter in the EncryptInit/DecryptInit method is invoked).

The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the EncryptInit/DecryptInit method is invoked). The TPer then sets this value based
on the last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’s mode, as defined in Table 184.

5.3.2.15.8 Hash
The value of this column defines the hash protocol to be used with this credential.

Table 184 C_AES_128/C_AES_256 ResidualData Column Values After
Encrypt/Decrypt/EncryptFinalize/DecryptFinalize

Mode Column Value
ECB All 00’s
CBC The ciphertext of the last block encrypted/decrypted
CFB The (128 – FeedbackSize) LSBs of the last input to the AES cipher function, concatenated with

the ciphertext of the last block encrypted/decrypted
OFB The last output block of the AES cipher function
CTR The last input block to the AES cipher function + 1
GCM The last input block to the AES cipher function + 1
CCM The last input block to the AES cipher function + 1

5.3.2.16 Credential Table Group - C_AES_256 (Object Table)

Table 185 C_AES_256 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Key bytes_32
0x04 Mode symmetric_mode
0x05 FeedbackSize feedback_size
0x06 ResidualData bytes_16

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 182 of 314

Column Number Column Name IsUnique Column Type
0x07 Hash hash_protocol

5.3.2.16.1 UID
This is the unique identifier of this row in the C_AES_256 table.

This column SHALL NOT be modifiable by the host.

5.3.2.16.2 Name
This is the name of the C_AES_256 object.

For C_AES_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.16.3 CommonName
This is a name that MAY be shared by multiple C_AES_256 objects.

For C_AES_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.16.4 Key
This column stores the key associated with this C_AES_256 object.

5.3.2.16.5 Mode
This column value defines the encryption mode with which this credential SHALL be used.

5.3.2.16.6 FeedbackSize
This column defines the feedback size for CFB mode, and SHALL be ignored for all other modes..

5.3.2.16.7 ResidualData
The value in the ResidualData column provides the IV for the Encrypt/Decrypt method (unless the IV
parameter in the EncryptInit/DecryptInit method is invoked). The TPer then sets this value based
on the last block encrypted by the Encrypt method or last block decrypted by the Decrypt method.
Subsequent method invocations use this column value as its IV. The value set to this column during
Encrypt/Decrypt operations is dependent on this object’s mode, as defined in Table 184.

5.3.2.16.8 Hash
The value of this column defines the hash protocol to be used with this credential.

5.3.2.17 Credential Table Group - C_EC_160 (Object Table)

Table 186 C_EC_160 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 p uinteger_20
0x04 r uinteger_20
0x05 b uinteger_20
0x06 x uinteger_20

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 183 of 314

Column Number Column Name IsUnique Column Type
0x07 y uinteger_20
0x08 alpha uinteger_20
0x09 u uinteger_20
0x0A v uinteger_20
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

5.3.2.17.1 UID
This is the unique identifier of this row in the C_EC_160 table.

This column SHALL NOT be modifiable by the host.

5.3.2.17.2 Name
This is the name of the C_EC_160 object.

For C_EC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.17.3 CommonName
This is a name that MAY be shared by multiple C_EC_160 objects.

For C_EC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.17.4 p
Modulus

5.3.2.17.5 r
Order of the curve

5.3.2.17.6 b
Curve coefficient (y2=x3–3x+b mod p)

5.3.2.17.7 x
Base point x-coordinate

5.3.2.17.8 y
Base point y-coordinate

5.3.2.17.9 alpha
Private key

5.3.2.17.10 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.17.11 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.17.12 Hash

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 184 of 314

The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.17.13 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.17.14 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.17.15 Values for C_EC_160
Table 187 represents the set of elliptic curve domain parameters as specified in [4]. The entries p, r, b,
x and y are represented in decimal format. These are example values for a curve that MAY be used
with the C_EC_160 table. These values are set as the default values for the associated columns when a
new row is created in the C_EC_160 table and when values for those columns are not specified at table
creation. These default values are not represented by a Type table entry; the TPer SHALL be required
to keep track of these values and set them as defaults for new objects, as necessary.

Table 187 AACS Values for C_EC_160
Column Value
p 900812823637587646514106462588455890498729007071

r 900812823637587646514106555566573588779770753047

b 366394034647231750324370400222002566844354703832

x 264865613959729647018113670854605162895977008838

y 51841075954883162510413392745168936296187808697

5.3.2.18 Credential Table Group - C_EC_192 (Object Table)

Table 188 C_EC_192 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 p uinteger_24
0x04 r uinteger_24
0x05 b uinteger_24
0x06 x uinteger_24
0x07 y uinteger_24
0x08 alpha uinteger_24
0x09 u uinteger_24
0x0A v uinteger_24
0x0B Hash hash_protocol

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 185 of 314

Column Number Column Name IsUnique Column Type
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

5.3.2.18.1 UID
This is the unique identifier of this row in the C_EC_192 table.

This column SHALL NOT be modifiable by the host.

5.3.2.18.2 Name
This is the name of the C_EC_192 object.

For C_EC_192 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.18.3 CommonName
This is a name that MAY be shared by multiple C_EC_192 objects.

For C_EC_192 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.18.4 p
Modulus

5.3.2.18.5 r
Order of the curve

5.3.2.18.6 b
Curve coefficient (y2=x3–3x+b mod p)

5.3.2.18.7 x
Base point x-coordinate

5.3.2.18.8 y
Base point y-coordinate

5.3.2.18.9 alpha
Private key

5.3.2.18.10 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.18.11 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.18.12 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.18.13 ChainLimit

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 186 of 314

This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.18.14 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.18.15 Values for C_EC_192
Table 189 represents the set of elliptic curve domain parameters that is the fixed set known as P-192 in
[11] and secp192r1 in [19]. The entries p, r, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_192 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_192 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 189 FIPS P-192 Values for C_EC_192
Column Value
p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF

= 2192 – 264 – 1

r FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

b 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

y 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

5.3.2.19 Credential Table Group - C_EC_224 (Object Table)

Table 190 C_EC_224 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 p uinteger_28
0x04 r uinteger_28
0x05 b uinteger_28
0x06 x uinteger_28
0x07 y uinteger_28
0x08 alpha uinteger_28
0x09 u uinteger_28
0x0A v uinteger_28
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 187 of 314

5.3.2.19.1 UID
This is the unique identifier of this row in the C_EC_224 table.

This column SHALL NOT be modifiable by the host.

5.3.2.19.2 Name
This is the name of the C_EC_224 object.

For C_EC_224 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.19.3 CommonName
This is a name that MAY be shared by multiple C_EC_224 objects.

For C_EC_224 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.19.4 p
Modulus

5.3.2.19.5 r
Order of the curve

5.3.2.19.6 b
Curve coefficient (y2=x3–3x+b mod p)

5.3.2.19.7 x
Base point x-coordinate

5.3.2.19.8 y
Base point y-coordinate

5.3.2.19.9 alpha
Private key

5.3.2.19.10 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.19.11 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.19.12 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.19.13 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.19.14 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.19.15 Values for C_EC_224

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 188 of 314

Table 191 represents the set of elliptic curve domain parameters that is the fixed set known as P-224 in
[11] and secp224r1 in [19]. The entries p, r, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_224 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_224 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry – the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 191 FIPS P-224 Values for C_EC_224
Column Value
p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000000 00000000 00000001

= 2224 – 296 + 1

r FFFFFFFF FFFFFFFF FFFFFFFF FFFF16A2 E0B8F03E 13DD2945 5C5C2A3D

b B4050A85 0C04B3AB F5413256 5044B0B7 D7BFD8BA 270B3943 2355FFB4

x B70E0CBD 6BB4BF7F 321390B9 4A03C1D3 56C21122 343280D6 115C1D21

y BD376388 B5F723FB 4C22DFE6 CD4375A0 5A074764 44D58199 85007E34

5.3.2.20 Credential Table Group - C_EC_256 (Object Table)

Table 192 C_EC_256 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 p uinteger_36
0x04 r uinteger_36
0x05 b uinteger_36
0x06 x uinteger_36
0x07 y uinteger_36
0x08 alpha uinteger_36
0x09 u uinteger_36
0x0A v uinteger_36
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

5.3.2.20.1 UID
This is the unique identifier of this row in the C_EC_256 table.

This column SHALL NOT be modifiable by the host.

5.3.2.20.2 Name
This is the name of the C_EC_256 object.

For C_EC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 189 of 314

5.3.2.20.3 CommonName
This is a name that MAY be shared by multiple C_EC_256 objects.

For C_EC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.20.4 p
Modulus

5.3.2.20.5 r
Order of the curve

5.3.2.20.6 b
Curve coefficient (y2=x3–3x+b mod p)

5.3.2.20.7 x
Base point x-coordinate

5.3.2.20.8 y
Base point y-coordinate

5.3.2.20.9 alpha
Private key

5.3.2.20.10 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.20.11 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.20.12 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.20.13 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.20.14 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.20.15 Values for C_EC_256
Table 193 represents the set of elliptic curve domain parameters that is the fixed set known as P-256 in
[11] and secp256r1 in [19]. The entries p, r, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_256 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_256 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 193 FIPS P-256 Values for C_EC_256
Column Value

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 190 of 314

Column Value
p FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF

FFFFFFFF = 2256 – 2224 + 2192 + 296 – 1

r FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2
FC632551

b 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E
27D2604B

x 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945
D898C296

y 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068
37BF51F5

5.3.2.21 Credential Table Group - C_EC_384 (Object Table)

Table 194 C_EC_384 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 p uinteger_48
0x04 r uinteger_48
0x05 b uinteger_48
0x06 x uinteger_48
0x07 y uinteger_48
0x08 alpha uinteger_48
0x09 u uinteger_48
0x0A v uinteger_48
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

5.3.2.21.1 UID
This is the unique identifier of this row in the C_EC_384 table.

This column SHALL NOT be modifiable by the host.

5.3.2.21.2 Name
This is the name of the C_EC_384 object.

For C_EC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.21.3 CommonName
This is a name that MAY be shared by multiple C_EC_384 objects.

For C_EC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 191 of 314

5.3.2.21.4 p
Modulus

5.3.2.21.5 r
Order of the curve

5.3.2.21.6 b
Curve coefficient (y2=x3–3x+b mod p)

5.3.2.21.7 x
Base point x-coordinate

5.3.2.21.8 y
Base point y-coordinate

5.3.2.21.9 alpha
Private key

5.3.2.21.10 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.21.11 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.21.12 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.21.13 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.21.14 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.21.15 Values for C_EC_384
Table 195 represents the set of elliptic curve domain parameters that is the fixed set known as P-384 in
[11] and secp384r1 in [19]. The entries p, r, b, x and y represented in that table are example values for
a curve that MAY be used with the C_EC_384 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_384 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 195 FIPS P-384 Values for C_EC_384
Column Value
p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF = 2384 – 2128 – 296 + 232 –
1

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 192 of 314

Column Value
r FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF C7634D81

F4372DDF 581A0DB2 48B0A77A ECEC196A CCC52973

b B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112 0314088F
5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

x AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98 59F741E0
82542A38 5502F25D BF55296C 3A545E38 72760AB7

y 3617DE4A 96262C6F 5D9E98BF 9292DC29 F8F41DBD 289A147C E9DA3113
B5F0B8C0 0A60B1CE 1D7E819D 7A431D7C 90EA0E5F

5.3.2.22 Credential Table Group - C_EC_521 (Object Table)

Table 196 C_EC_521 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 p uinteger_66
0x04 r uinteger_66
0x05 b uinteger_66
0x06 x uinteger_66
0x07 y uinteger_66
0x08 alpha uinteger_66
0x09 u uinteger_66
0x0A v uinteger_66
0x0B Hash hash_protocol
0x0C ChainLimit integer_1
0x0D Certificate Certificates_object_ref

5.3.2.22.1 UID
This is the unique identifier of this row in the C_EC_521 table.

This column SHALL NOT be modifiable by the host.

5.3.2.22.2 Name
This is the name of the C_EC_521 object.

For C_EC_521 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.22.3 CommonName
This is a name that MAY be shared by multiple C_EC_521 objects.

For C_EC_521 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.22.4 p
Modulus

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 193 of 314

5.3.2.22.5 r
Order of the curve

5.3.2.22.6 b
Curve coefficient (y2=x3–3x+b mod p)

5.3.2.22.7 x
Base point x-coordinate

5.3.2.22.8 y
Base point y-coordinate

5.3.2.22.9 alpha
Private key

5.3.2.22.10 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.22.11 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.22.12 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.22.13 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.22.14 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.22.15 Values for C_EC_521
Table 197 represents the set of elliptic curve domain parameters is the fixed set known as P-521 in [11]
and secp521r1 in [19]. The entries p, r, b, x and y represented in that table are example values for a
curve that MAY be used with the C_EC_521 table. These values are set as the default values for the
associated columns when a new row is created in the C_EC_521 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 197 FIPS P-521 Values for C_EC_521
Column Value
p 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF = 2521 - 1

r 01FF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFA 51868783 BF2F966B 7FCC0148 F709A5D0 3BB5C9B8 899C47AE
BB6FB71E 91386409

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 194 of 314

Column Value
b 0051 953EB961 8E1C9A1F 929A21A0 B68540EE A2DA725B 99B315F3 B8B48991

8EF109E1 56193951 EC7E937B 1652C0BD 3BB1BF07 3573DF88 3D2C34F1
EF451FD4 6B503F00

x 00C6 858E06B7 0404E9CD 9E3ECB66 2395B442 9C648139 053FB521 F828AF60
6B4D3DBA A14B5E77 EFE75928 FE1DC127 A2FFA8DE 3348B3C1 856A429B
F97E7E31 C2E5BD66

y 0118 39296A78 9A3BC004 5C8A5FB4 2C7D1BD9 98F54449 579B4468 17AFBD17
273E662C 97EE7299 5EF42640 C550B901 3FAD0761 353C7086 A272C240
88BE9476 9FD16650

5.3.2.23 Credential Table Group - C_EC_163 (Object Table)

Table 198 C_EC_163 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name

0x02 CommonName Yes name
0x03 k1 uinteger_1
0x04 k2 uinteger_1

0x05 k3 uinteger_1
0x06 r uinteger_21

0x07 a uinteger_1
0x08 b uinteger_21

0x09 x uinteger_21
0x0A y uinteger_21
0x0B alpha uinteger_21

0x0C u uinteger_21
0x0D v uinteger_21

0x0E Hash hash_protocol
0x0F ChainLimit integer_1

0x10 Certificate Certificates_object_ref

5.3.2.23.1 UID
This is the unique identifier of this row in the C_EC_163 table.

This column SHALL NOT be modifiable by the host.

5.3.2.23.2 Name
This is the name of the C_EC_163 object.

For C_EC_163 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 195 of 314

5.3.2.23.3 CommonName
This is a name that MAY be shared by multiple C_EC_163 objects.

For C_EC_163 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.23.4 k1
High non-leading, non-constant term of irreducible pentanomial

5.3.2.23.5 k2
Middle non-leading, non-constant term of irreducible pentanomial

5.3.2.23.6 k3
Low non-leading, non-constant term of irreducible pentanomial

5.3.2.23.7 r
Order of the curve

5.3.2.23.8 a
Curve coefficient (y2 +xy = x3 + ax2 + b), SHALL be zero or one

5.3.2.23.9 b
Curve coefficient (y2 +xy = x3 + ax2 + b)

5.3.2.23.10 x
Base point x-coordinate

5.3.2.23.11 y
Base point y-coordinate

5.3.2.23.12 alpha
Private key

5.3.2.23.13 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.23.14 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.23.15 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.23.16 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.23.17 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.23.18 Values for C_EC_163

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 196 of 314

Table 199 represents the set of elliptic curve domain parameters that is the fixed set known as K-163 in
[11] and sect163k1 in [19]. The entries k1, k2, k3, r, a, b, x and y represented in that table are example
values for a curve that MAY be used with the C_EC_163 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_163 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry; the TPer SHALL be required to keep track of these values and set them as defaults
for new objects, as necessary.

Table 199 FIPS K-163 Values for C_EC_163
Column Value
k1 07

k2 06

k3 03

r 04 00000000 00000000 00020108 A2E0CC0D 99F8A5EF

a 01

b 00 00000000 00000000 00000000 00000000 00000001

x 02 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8

y 02 89070FB0 5D38FF58 321F2E80 0536D538 CCDAA3D9

5.3.2.24 Credential Table Group - C_EC_233 (Object Table)

Table 200 C_EC_233 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 k uinteger_2
0x04 r uinteger_30
0x05 a uinteger_1
0x06 b uinteger_30
0x07 x uinteger_30
0x08 y uinteger_30
0x09 alpha uinteger_30
0x0A u uinteger_30
0x0B v uinteger_30
0x0C Hash hash_protocol
0x0D ChainLimit integer_1
0x0E Certificate Certificates_object_ref

5.3.2.24.1 UID
This is the unique identifier of this row in the C_EC_233 table.

This column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 197 of 314

5.3.2.24.2 Name
This is the name of the C_EC_233 object.

For C_EC_233 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.24.3 CommonName
This is a name that MAY be shared by multiple C_EC_233 objects.

For C_EC_233 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.24.4 k
Non-leading, non-constant term of irreducible trinomial

5.3.2.24.5 r
Order of the curve

5.3.2.24.6 a
Curve coefficient (y2 +xy = x3 + ax2 + b), SHALL be zero or one

5.3.2.24.7 b
Curve coefficient (y2 +xy = x3 + ax2 + b)

5.3.2.24.8 x
Base point x-coordinate

5.3.2.24.9 y
Base point y-coordinate

5.3.2.24.10 alpha
Private key

5.3.2.24.11 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.24.12 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.24.13 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.24.14 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.24.15 Certificate
This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.24.16 Values for C_EC_233
Table 201 represents the set of elliptic curve domain parameters that is the fixed set known as K-233 in
[11] and sect233k1 in [19]. The entries k, r, a, b, x and y represented in that table are example values

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 198 of 314

for a curve that MAY be used with the C_EC_233 table. These values are set as the default values for
the associated columns when a new row is created in the C_EC_233 table and when values for those
columns are not specified at table creation. These default values are not represented by a Type table
entry; the TPer SHALL be required to keep track of these values and set them as defaults for new
objects, as necessary.

Table 201 FIPS K-233 Values for C_EC_233
Column Value
k 4A (= 74 in decimal)

r 0080 00000000 00000000 00000000 00069D5B B915BCD4 6EFB1AD5 F173ABDF

a 00

b 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

x 0172 32BA853A 7E731AF1 29F22FF4 149563A4 19C26BF5 0A4C9D6E EFAD6126

y 01DB 537DECE8 19B7F70F 555A67C4 27A8CD9B F18AEB9B 56E0C110 56FAE6A3

5.3.2.25 Credential Table Group - C_EC_283 (Object Table)

Table 202 C_EC_283 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name

0x02 CommonName Yes name

0x03 k1 uinteger_1
0x04 k2 uinteger_1

0x05 k3 uinteger_1
0x06 r uinteger_36

0x07 a uinteger_1
0x08 b uinteger_36

0x09 x uinteger_36
0x0A y uinteger_36
0x0B alpha uinteger_36

0x0C u uinteger_36
0x0D v uinteger_36

0x0E Hash hash_protocol
0x0F ChainLimit integer_1
0x10 Certificate Certificates_object_ref

5.3.2.25.1 UID
This is the unique identifier of this row in the C_EC_283 table.

This column SHALL NOT be modifiable by the host.

5.3.2.25.2 Name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 199 of 314

This is the name of the C_EC_283 object.

For C_EC_283 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.25.3 CommonName
This is a name that MAY be shared by multiple C_EC_283 objects.

For C_EC_283 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.25.4 k1
High non-leading, non-constant term of irreducible pentanomial

5.3.2.25.5 k2
Middle non-leading, non-constant term of irreducible pentanomial

5.3.2.25.6 k3
Low non-leading, non-constant term of irreducible pentanomial

5.3.2.25.7 r
Order of the curve

5.3.2.25.8 a
Curve coefficient (y2 +xy = x3 + ax2 + b), SHALL be zero or one

5.3.2.25.9 b
Curve coefficient (y2 +xy = x3 + ax2 + b)

5.3.2.25.10 x
Base point x-coordinate

5.3.2.25.11 y
Base point y-coordinate

5.3.2.25.12 alpha
Private key

5.3.2.25.13 u
Public key x-coordinate: (u, v) = α (x,y)

5.3.2.25.14 v
Public key y-coordinate: (u, v) = α (x,y)

5.3.2.25.15 Hash
The value of this column identifies the hash type used for ECDSA (message digesting), for ECDH and
ECMQV (key derivation), and for creation of the MAC of session startup methods if a referencing
authority has a HashAndSign column value of True.

5.3.2.25.16 ChainLimit
This column value identifies the chaining limit for using a chained down key from the base certificate. A
value of –1 indicates no limit. A value of 0 indicates no chain.

5.3.2.25.17 Certificate

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 200 of 314

This is a reference to a Certificates object, which if needed identifies a chained set of unencoded
X.509 certificates to prove an ancestor authority.

5.3.2.25.18 Values for C_EC_283
Table 203 represents the set of elliptic curve domain parameters that is the fixed set known as K-283 in
[11] and sect283k1 in [19]. The entries k1, k2, k3, r, a, b, x and y represented in that table are example
values for a curve that MAY be used with the C_EC_283 table. These values are set as the default
values for the associated columns when a new row is created in the C_EC_283 table and when values
for those columns are not specified at table creation. These default values are not represented by a
Type table entry; the TPer SHALL be required to keep track of these values and set them as defaults
for new objects, as necessary.

Table 203 FIPS K-283 Values for C_EC_283
Column Value
k1 0C (= 12 in decimal)

k2 07

k3 05

r 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE
2ED07577 265DFF7F 94451E06 1E163C61

a 00

b 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000001

x 0503213F 78CA4488 3F1A3B81 62F188E5 53CD265F
23C1567A 16876913 B0C2AC24 58492836

y 01CCDA38 0F1C9E31 8D90F95D 07E5426F E87E45C0
E8184698 E4596236 4E341161 77DD2259

5.3.2.26 Credential Table Group – C_HMAC_160 (Object Table)

Table 204 C_HMAC_160 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Key bytes_20
0x04 Hash hash_protocol

5.3.2.26.1 UID
This is the unique identifier of this row in the C_HMAC_160 table.

This column SHALL NOT be modifiable by the host.

5.3.2.26.2 Name
This is the name of the C_HMAC_160 object.

For C_HMAC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.26.3 CommonName

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 201 of 314

This is a name that MAY be shared by multiple C_HMAC_160 objects.

For C_HMAC_160 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.26.4 Key
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.26.5 Hash
The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

5.3.2.27 Credential Table Group – C_HMAC_256 (Object Table)

Table 205 C_HMAC_256 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Key bytes_32
0x04 Hash hash_protocol

5.3.2.27.1 UID
This is the unique identifier of this row in the C_HMAC_256 table.

This column SHALL NOT be modifiable by the host.

5.3.2.27.2 Name
This is the name of the C_HMAC_256 object.

For C_HMAC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.27.3 CommonName
This is a name that MAY be shared by multiple C_HMAC_256 objects.

For C_HMAC_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.27.4 Key
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.27.5 Hash
The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

 See [13] for details on matching key size to hash protocol selection.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 202 of 314

5.3.2.28 Credential Table Group – C_HMAC_384 (Object Table)

Table 206 C_HMAC_384 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Key bytes_48
0x04 Hash hash_protocol

5.3.2.28.1 UID
This is the unique identifier of this row in the C_HMAC_384 table.

This column SHALL NOT be modifiable by the host.

5.3.2.28.2 Name
This is the name of the C_HMAC_384 object.

For C_HMAC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.28.3 CommonName
This is a name that MAY be shared by multiple C_HMAC_384 objects.

For C_HMAC_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.28.4 Key
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.28.5 Hash
The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

5.3.2.29 Credential Table Group – C_HMAC_512 (Object Table)

Table 207 C_HMAC_512 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Key bytes_64
0x04 Hash hash_protocol

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 203 of 314

5.3.2.29.1 UID
This is the unique identifier of this row in the C_HMAC_512 table.

This column SHALL NOT be modifiable by the host.

5.3.2.29.2 Name
This is the name of the C_HMAC_512 object.

For C_HMAC_512 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.29.3 CommonName
This is a name that MAY be shared by multiple C_HMAC_512 objects.

For C_HMAC_512 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.3.2.29.4 Key
The value of the Key column of this table holds key material to be used with an HMAC authentication
operation, or a host-invoked HMAC operation as enabled by the Crypto Template.

5.3.2.29.5 Hash
The value of the Hash column identifies the hash protocol to be used with this HMAC credential when
this credential is referenced by an authority and used for authentication. The value of this column is
ignored for host-invoked HMAC operations.

See [13] for details on matching key size to hash protocol selection.

5.3.3 Methods
This section details the methods provided to an SP by the Base Template.

5.3.3.1 SP Method Group - DeleteSP (SP Method)
This method is used to delete the SP to which the DeleteSP method has been invoked (see 5.3.4.5).

ThisSP.DeleteSP[]
=>
[]

5.3.3.1.1 DeleteSP Result

5.3.3.1.1.1 Result
• The DeleteSP method returns an empty list. Success or failure of the method invocation is

determinable based on the status code returned in response to the method invocation.

5.3.3.2 Basic Table Method Group - CreateTable (SP Method)
This method is used to create a new table in an SP (see 5.3.4.3.1).

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 204 of 314

ThisSP.CreateTable [
 NewTableName : name,
 Kind : table_kind,
 GetSetACL : access_control_list,
 Columns : columns,
 MinSize : uinteger,
 MaxSize = uinteger,
 HintSize = uinteger,
 CommonName = name]
=>
[UID : uid, Rows : uinteger]

5.3.3.2.1 NewTableName
The NewTableName parameter is the name for this table. The NewTableName-CommonName
combination SHALL be unique within the Table table.

5.3.3.2.2 Kind
The Kind parameter identifies the table’s type (object or byte).

5.3.3.2.3 GetSetACL
GetSetACL is the list of ACE object uids placed in the AddACEACL, RemoveACEACL, GetACLACL, and
DeleteMethodACL columns of the AccessControl table rows that represent the methods available on
the new table (see 5.3.4.3.3).

5.3.3.2.4 Columns
The Columns parameter defines the columns of the new table. For byte tables this parameter SHALL
be an empty list.

5.3.3.2.5 MinSize
The MinSize parameter is used to define the initial number of rows allocated for the new table.

5.3.3.2.6 MaxSize
The optional MaxSize parameter defines the host-requested maximum number of rows that MAY be
created for the table. If this parameter is included when creating a byte table, the method invocation
SHALL fail with INVALID_PARAMETER.

5.3.3.2.7 HintSize
The optional HintSize parameter is used to suggest a number of rows to be created for the table. If this
parameter is included when creating a byte table, the method invocation SHALL fail with
INVALID_PARAMETER.

5.3.3.2.8 CommonName
The CommonName parameter is the CommonName column value for this table's object in the Table table,
as well as for all associated objects that get created in the Column table.. The NewTableName-
CommonName parameter value combination SHALL be unique within the Table table.

5.3.3.2.9 CreateTable Result

5.3.3.2.9.1 UID
This is the UID column value that is assigned to the newly created table in the Table table.

5.3.3.2.9.2 Rows
This value is the number of rows allocated for usage for the table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 205 of 314

5.3.3.2.10 Fails
a. If a table with the specified Name/CommonName column values already exists.
b. If there isn’t space in the SP for the new table.
c. If metadata/support tables (i.e. Table, Column, AccessControl, and ACE) are not all able to

create all required rows to support this table.

5.3.3.3 Basic Table Method Group - Delete (Object Method)
Successful invocation of this method deletes the object upon which this method was invoked. See
5.3.4.3.4 for information on deleting table rows and 5.3.4.3.5 for information on deleting tables.

If invoked on an SP object (a row in the Admin SP’s SP table), the SP is deleted (see 5.4.4.2).

ObjectUID.Delete[]
=>
[]

5.3.3.3.1 Delete Result

5.3.3.3.1.1 Result
The Delete method returns an empty list. Success or failure of the method invocation is determinable
based on the status code returned in response to the method invocation. The object and all of its
associated objects in other tables SHALL be deleted, or the method SHALL return FAIL status and
none of those items SHALL be deleted.

5.3.3.3.2 Fails
a. If the object does not exist.

5.3.3.4 Basic Table Method Group - CreateRow (Table Method)
This method inserts one or multiple rows into a table. This method is not available on byte tables. The
list of uidrefs returned is the list of all UIDs of the rows created (see 5.3.4.3.3).

TableUID.CreateRow [
 Row : row_data]
=>
[Result : list [uidref ...]]

5.3.3.4.1 Row
The Row parameter identifies the values to be stored in the columns indicated in the parameter for
each row created.

5.3.3.4.2 CreateRow Result

5.3.3.4.2.1 Result
The result of the CreateRow method is a list containing the UID column values assigned to each of the
newly created rows in the table.

5.3.3.4.3 Fails
a. When the table is full (i.e. MaxSize of the table was reached).
b. If a row where the unique column value combination already exists that is the same as that

requested in the method
c. Columns specified are not part of table definition.
d. Attempts to create more rows than are able to be allocated

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 206 of 314

e. If all required associated rows are not able to be created in all related tables (i.e. the Table,
AccessControl, Column, and ACE tables)

5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)
This method is used to delete table rows. This method SHALL NOT be able to be successfully invoked
on byte tables. See 5.3.4.3.4 for information on deleting table rows and 5.3.4.3.5 for information on
deleting tables.

TableUID.DeleteRow [
 Rows : list [uidref ...]]
=>
[Result : boolean]

5.3.3.5.1 Rows
The Rows parameter consists of a list of uids that represent each of the rows to be deleted from the
table.

5.3.3.5.2 DeleteRow Result

5.3.3.5.2.1 Result
The DeleteRow method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation. The object and
all of its associated objects in other tables SHALL be deleted, or the method SHALL return FAIL status
and none of those items SHALL be deleted.

5.3.3.5.3 Fails
a. If the addressed row does not exist.

5.3.3.6 Basic Table Method Group - Get (Table and Object Method)
This method is used to fetch the values of selected table cells (see 5.3.4.3.2).

TableUID.Get [
ObjectUID.Get [
 Cellblock : cell_block]
=>
[Result : typeOr { Bytes : bytes, RowValues : list [ColumnNumber = Value ...] }]

5.3.3.6.1 Cellblock
The Cellblock parameter defines the scope of the data that the method is attempting to retrieve by
identifying the cells on which the method should operate.

5.3.3.6.2 Get Result

5.3.3.6.2.1 Bytes
This is the value returned if the method is invoked on a byte table. If multiple row values are returned
from a byte table, values SHALL be returned from the lowest numbered row to the highest numbered
row.

5.3.3.6.2.2 RowValues

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 207 of 314

This value is returned if the method is invoked on an object table. This is a list of Named value pairs
representing the columns returned for the object identified in the method invocation. Each Named
value pair consists of a name that represents the column, identified by column number. The value of
each Named value pair is the value of the indicated column.

Column name-value pairs SHALL be returned in the order in which they are listed in the Column table.

5.3.3.6.3 Fails
a. If table/object doesn’t exist.
b. If the object method’s Cellblock parameter contains row values or a table value.
c. If the method is invoked on a Byte table and has column values in the Cellblock parameter.
d. If the any of the Cellblock parameter values are out of bounds for the table upon which it

was invoked.

5.3.3.7 Basic Table Method Group - Set (Table and Object Method)
This method is used to change the values of selected table cells (see 5.3.4.3.6).

TableUID.Set [
ObjectUID.Set [
 Where = row_address,
 Values = typeOr { Bytes : bytes, RowValues : list [ColumnNumber = <type of
column> ...] }]
=>
[]

5.3.3.7.1 Where
This parameter identifies the location of the cells whose values the method is attempting to change.

If the Set method is invoked on an object, the Where parameter SHALL be omitted, or the method
SHALL fail and return an error status code.

If the Set method is invoked on an object table, the Where parameter SHALL be the UID option, or the
method SHALL fail and return an error status code.

If the Set method is invoked on a byte table and the Where parameter is included in the invocation, the
Where parameter SHALL be the Row option, or the method SHALL fail and return an error status code.

5.3.3.7.1.1 UID
For Object.Set, if a value for the Where parameter is included in the method invocation, the method
SHALL fail and return an error status code.

For Table.Set on an object table, "Where = { UID }" indicates the row upon which the operation is
taking place. Invocations of Table.Set on an object table without a value for the Where parameter
SHALL fail and return an error status code.

5.3.3.7.1.2 Row
For Table.Set on byte tables, "Where = { Row }" identifies the byte address (i.e. RowNumber) where
the Set method is to begin operating.

If the Where parameter is omitted, the Set method's operation begins at the first row of the byte table.

5.3.3.7.2 Values
This parameter contains the values to be set to the indicated table cells.

If the Set method is invoked on an object or an object table, the Values parameter SHALL be the
RowValues option, or the method SHALL fail and return an error status code.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 208 of 314

If the Set method is invoked on a byte table, the Values parameter SHALL be the Bytes option, or the
method SHALL fail and return an error status code.

5.3.3.7.2.1 Bytes
When this method is invoked on a byte table, this parameter is used. It is a bytes value, used when
attempting to modify the values in a byte table, The byte table is modified beginning at the byte address
indicated in the Where parameter, or at the beginning of the table if the Where parameter is omitted.

If the Where parameter is a Row, the Values parameter SHALL be Bytes or the method invocation
SHALL fail and return an error status code.

5.3.3.7.2.2 RowValues
This value is used when attempting to modify an object in an object table. When this method is invoked
on an object table, as either an object method or a table method, this parameter is a list of column
numbers and values, where the columns are those to be changed and the associated values are the
values to be set to those columns.

If the Where parameter is a UID, the Values parameter shall be RowVals or the method invocation shall
fail and return an error status code.

5.3.3.7.3 Set Result
The Set method returns an empty list. Success or failure of the requested modifications is
determinable based on the status code returned in response to the method invocation.

5.3.3.7.4 Fails
a. If the table/object doesn’t exist.
b. If an attempt is made to change the value of an UID or other system cell.
c. If an attempt is made to set a cell to a value larger than that cell’s type allows.
d. If the method is invoked on a byte table and the Values parameter contains column values
e. Set is restricted by an access control limitation on any of the rows and columns requested.

5.3.3.8 Basic Table Method Group - Next (Table Method)
The Next method is used to iterate through an object table, returning that the UID column value for
zero or more rows in the table based on the current ordering of the rows in the table; the requested
starting point for the method's operation; and the number of uids requested. For information on the
operation of this method, see 5.3.4.3.7.

TableUID.Next [
 Where = uidref,
 Count = uinteger]
=>
[Result : list [uidref ...]]

5.3.3.8.1 Where
This parameter identifies the row from which iteration begins. If the Where parameter is specified, the
Next method returns a list of zero or more UID column values following the specified row.

If Where is not specified, the first row in the TPer's current ordering of the table SHALL be the first UID
column value returned.

5.3.3.8.2 Count
This parameter identifies the number of rows through which the method is to iterate, beginning at the
row specified in the Where parameter or, if Where is omitted, beginning at the first row of the table.

If the Count parameter is omitted, the method iterates through to the last row in the table's ordering.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 209 of 314

5.3.3.8.3 Next Result

5.3.3.8.3.1 Result
The result of this method is a list of UID column values.

5.3.3.8.4 Fails
a. If the table/object doesn’t exist.

5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)
The GetFreeSpace method is an SP method that enables the host to retrieve the number of rows that
MAY be additionally created in each table.

ThisSP.GetFreeSpace []
=>
[FreeSpace : uinteger, TableRows : table_sizes]

5.3.3.9.1 GetFreeSpace Result

5.3.3.9.1.1 FreeSpace
The FreeSpace result value is the approximate amount of free space (in bytes) available in the SP.

5.3.3.9.1.2 TableRows
The second is a list containing the UID column value of each table descriptor object and the number of
rows that MAY be additionally created for each table (separately) under current conditions of the SP
and the TPer. This number MAY change in subsequent invocations of this method, based on
modifications subsequent to the method invocation.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system is able to generate per table.

5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)
The GetFreeRows method is a table method that enables the host to retrieve the number of rows that
MAY be additionally created in a table.

TableObjectUID.GetFreeRows []
=>
[FreeRows : uinteger]

5.3.3.10.1 GetFreeRows Result

5.3.3.10.1.1 FreeRows
The result of this method is the number of rows that MAY be additionally created for that table.

The number of rows returned for a table(s) is not directly related to the free space remaining on the SP.
The number of rows is only indicative of how many rows the system is able to generate per table.

5.3.3.10.2 Fails
a. When the table TableObjectUID does not exist in the SP.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 210 of 314

5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)
Successful invocation of the DeleteMethod method removes the indicated SP/method, table/method, or
object/method access control association from the AccessControl table.

The DeleteMethod method allows the host to prevent the usage of certain methods on certain tables,
objects, or the SP by removing the access control association that permits the method to be invoked.

This does not remove the capability of invoking the indicated method from the SP entirely. It only
removes the indicated access control association that allows the method to be invoked in that particular
fashion.

The association that is deleted from the AccessControl table is the row where the InvokingID column
value is the InvokingID parameter of the method, and the value of the MethodID column is the uid
referenced in the MethodID parameter of the DeleteMethod invocation. There is no mechanism that
enables a deleted access control association to be re-added.

AccessControlTableUID.DeleteMethod [
 InvokingID : uidref { SP/table/object },
 MethodID : uidref { MethodID }]
=>
[]

5.3.3.11.1 InvokingID
This parameter is the uidref to the SP, table, or object identified in the InvokingID portion of the access
control association to be deleted from the AccessControl table.

5.3.3.11.2 MethodID
This parameter is the uidref to the method portion of the access control association to be deleted from
the AccessControl table. This is the uidref of the method object in the MethodID table.

5.3.3.11.3 DeleteMethod Result

5.3.3.11.3.1 Result
The DeleteMethod method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.3.3.11.4 Fails
a. If the InvokingID/MethodID combination does not exist.
b. If the DeleteMethodACL is not authenticated.

5.3.3.12 Access Control Method Group - Authenticate (SP Method)
Authorities invoked during session startup are implicitly authenticated. The Authenticate method is
used to explicitly authenticate an authority within a session, i.e., after a session has already
successfully begun. See 5.3.4.2.6.

ThisSP.Authenticate [
 Authority : uidref { AuthorityObjectUID },
 Proof = bytes]
=>
[Result : typeOr { Success : boolean, Challenge : bytes }]

5.3.3.12.1 Authority
This parameter is the UID column value of the authority object the host is attempting to authenticate.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 211 of 314

5.3.3.12.2 Proof
This is the proof the host is submitting as part of the authentication process.

5.3.3.12.3 Authenticate Result
The Authenticate method's result is dependant on the parameterized authority's Operation column
value and the step in the authentication protocol.

5.3.3.12.3.1 Success
This parameter is used to indicate whether the authority was successfully authenticated. The value
returned is True if the authority was successfully authenticated, and False otherwise.

5.3.3.12.3.2 Challenge
This result is returned in response to the method invocation when the method is invoked as the first
step of authenticating an authority that requires a challenge response protocol.

5.3.3.12.4 Fails
a. If the authority called out in the method invocation does not exist.

5.3.3.13 Access Control Method Group - GetACL (Meta-Method)
This method is used to retrieve the contents of an access control association’s ACL, which are stored in
the AccessControl table.

AccessControlTableUID.GetACL [
 InvokingID : uidref { SP/table/object },
 MethodID : uidref { MethodID }]
=>
[Result : access_control_list]

5.3.3.13.1 InvokingID
This parameter is the uidref to the SP, table, or object identified in the InvokingID portion of the access
control association to be retrieved from the AccessControl table.

5.3.3.13.2 MethodID
This parameter is the uidref to the method portion of the access control association to be retrieved form
the AccessControl table. This is the uidref of the method object in the MethodID table.

5.3.3.13.3 GetACL Result

5.3.3.13.3.1 Result
This method returns a list of uidrefs to ACE objects.

5.3.3.13.4 Fails
a. If the InvokingID/MethodID combination does not exist.
b. If the GetACLACL is not authenticated.

5.3.3.14 Access Control Method Group - AddACE (Meta-Method)
This method is used to add an ACE object uidref to the ACL column of an existing SP/method,
table/method, or object/method access control association, which is a row in the AccessControl table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 212 of 314

AccessControlTableUID.AddACE [
 InvokingID : uidref { SP/table/object },
 MethodID : uidref { MethodID },

ACE : uidref { ACEObjectUID}]
=>
[]

5.3.3.14.1 InvokingID
The InvokingID parameter is the uidref to ThisSP (always 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x01), the table, or the object of the access control association.

5.3.3.14.2 MethodID
The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the MethodID table.

5.3.3.14.3 ACE
The ACE parameter is a uidref to the ACE to be added to the ACL column of the appropriate
AccessControl table row, as identified by the InvokingID and MethodID parameters.

5.3.3.14.4 AddACE Result

5.3.3.14.4.1 Result
The AddACE method returns an empty list. Success or failure of the method invocation is determinable
based on the status code returned in response to the method invocation.

5.3.3.14.5 Fails
a. If the InvokingID/MethodID combination does not exist.
b. If the ACE does not exist in the ACE table.
c. If the ACE already exists in the ACL of the invoked access control association.
d. If the ACL of the invoked access control association is full.
e. If the AddACEACL is not authenticated.

5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)
This method is used to remove an ACE object uidref from the ACL column of an existing SP/method,
table/method, or object/method access control association, which are rows in the AccessControl table.

AccessControlTableUID.RemoveACE [
 InvokingID : uidref { SP/table/object },
 MethodID : uidref { MethodID },

ACE : uidref { ACEObjectUID}]
=>
[]

5.3.3.15.1 InvokingID
The InvokingID parameter is the uidref to ThisSP (always 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x01), the table, or the object of the access control association.

5.3.3.15.2 MethodID
The MethodID parameter is the uidref to the method of the access control association. This is the
uidref of the method object in the MethodID table.

5.3.3.15.3 ACE

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 213 of 314

The ACE parameter is a uidref to the ACE to be removed from the ACL column of the appropriate
AccessControl table row.

5.3.3.15.4 RemoveACE Result

5.3.3.15.4.1 Result
The RemoveACE method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.3.3.15.5 Fails
a. If the InvokingID/MethodID combination does not exist.
b. If the ACE does not exist in the ACE table.
c. If the RemoveACEACL is not authenticated.

5.3.3.16 Key Related Method Group - GenKey (Object Method)
This section describes the method used for key creation.

An existing object in any of the C_AES_*, K_AES_*, C_EC_*, C_PIN, C_RSA_* or C_HMAC_* tables is
filled in with new key material This method fills in the new key as appropriate for the type of the
credential on which the method was invoked.

CredentialObjectUID.GenKey [
 PublicExponent = uinteger,
 PinLength = uinteger]
=>
[]

5.3.3.16.1 PublicExponent
This parameter identifies the public exponent to be used when the method is invoked on a C_RSA_1024
or C_RSA_2048 object. If a value is not specified for this parameter, then the keys SHALL be calculated
using the public exponent 216+1 (65537).

5.3.3.16.2 PinLength
If this method is invoked on a C_PIN object, then a new value with PinLength characters is generated
and stored in that C_PIN object’s Password column. The character set used to generate the C_PIN
value is referenced in the C_PIN table’s CharacterSet column, or the default character set if the C_PIN
table’s CharacterSet column is the NULL UID (see C_PIN table description in section 5.3.2.12).

For other behavior of GenKey on C_PIN objects see 5.3.4.1.1.2.

If PinLength is not specified in the method invocation, the default value is 32. The maximum permitted
value for the PinLength parameter is 32.

5.3.3.16.3 GenKey Result

5.3.3.16.3.1 Result
The GenKey method returns an empty list. Success or failure of the method invocation is determinable
based on the status code returned in response to the method invocation.

5.3.3.16.4 Fails
a. If the credential object does not exist.
b. If a bad exponent is included.
c. If PublicExponent is provided when GenKey is invoked on a non-C_RSA_* credential object.
d. If PinLength is provided when GenKey is invoked on a non-C_PIN credential object
e. If PinLength is greater than the size of the Password column in the C_PIN table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 214 of 314

5.3.3.17 Key Related Method Group - GetPackage Method (Object Method)
The purpose of this method is to retrieve key material from a credential table in a secure manner. In
addition to fulfilling the access control restrictions for invoking GetPackage, this method should only
succeed if access control is fulfilled for WrappingKey.Encrypt and SigningKey.Sign.

CredentialObjectUID.GetPackage [
 Purpose : package_purpose,
 WrappingKey = uidref { CredentialObjectUID },
 SigningKey = uidref { CredentialObjectUID },
 Date = date,
 Log = bytes
=>
[Result : package]

5.3.3.17.1 Purpose
This parameter defines the host-supplied usage of the package.

5.3.3.17.2 WrappingKey
This is a uidref to the credential used to encrypt the key material in the invoking object. If no wrapping
key is supplied, the key material is included in the package in plaintext.

5.3.3.17.3 SigningKey
This is a uidref to the credential used to sign the hash of the package contents. If no signing key is
supplied, no hash is included in the package.

5.3.3.17.4 Date
This is an optional parameter with which the host MAY supply a date to be included in the result
package

5.3.3.17.5 Log
This is an optional parameter with which the host MAY supply a host-defined value to be included in the
result package.

5.3.3.17.6 GetPackage Result

5.3.3.17.6.1 Result
The return result is a “package” (see 5.1.4.2.12).

5.3.3.17.7 Fails
a. If the object does not exist
b. If the WrappingKey is not a valid credential.
c. If the SigningKey is not a valid credential.

5.3.3.18 Key Related Method Group - SetPackage Method (Object Method)
The SetPackage method is used to set the key material columns of a credential with key material that is
sent securely to the TPer (see 5.3.4.6). For other behavior of SetPackage on C_PIN objects see
5.3.4.1.1.2.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 215 of 314

CredentialObjectUID.SetPackage [
Value : package,

 WrappingKey = uidref { CredentialObjectUID },
 SigningKey = uidref { CredentialObjectUID },
]
=>
[]

5.3.3.18.1 Value
This is a package that is generated as the result of a GetPackage method (see 5.3.3.17)

5.3.3.18.2 WrappingKey
This is a uidref to the credential to be used to decrypt the encrypted key material in the parameterized
package. This parameter MAY be omitted, if the key material in the parameterized package is being
sent in plaintext.

5.3.3.18.3 SigningKey
This is a uidref to the credential to be used to verify the signed hash in the parameterized package.
This parameter MAY be omitted, if the package contents have not been hashed and signed.

5.3.3.18.4 SetPackage Result
This method returns an empty results list. Success or failure of the method invocation is determined by
the method's accompanying status code.

5.3.3.18.5 Fails
a. If the object does not exist
b. If the WrappingKey is not a valid credential.
c. If the SigningKey is not a valid credential.
d. If the signed hash is not verifiable

5.3.4 Description
5.3.4.1 Authentication

5.3.4.1.1 Credential Tables
Credential tables represent an extensible basis for providing the public and private parts of
authentication mechanisms and key stores. Each credential table represents a different mechanism or
key store type and each row a different authentication or key using the mechanism or key store
represented by the table. The credential tables supported SHALL be listed in the CryptoSuite table in
the Admin SP.

In the credential table definitions, marked columns (those shaded gray) MAY be hidden. The
mechanism(s), if any, used to hide the values stored in those columns are discoverable via the
SecretProtect table (see 5.3.2.8).

5.3.4.1.1.1 GenKey on C_PIN Objects
If the value of the CharSet column is a NULL UID reference, then the default character set used when
creating a new PIN column value with the GenKey method SHALL be made up of the set of valid ASCII
printable characters (see [7]). The default value of the CharSet column is zeroes.

If the CharSet column value is not zeroes, it SHALL be a uid to a byte table in which SHALL be defined
a character set to be used when creating a new PIN column value with the GenKey method to generate
a new PIN column value.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 216 of 314

A CharSet column value of 0x00 0x00 0x00 0x0B 0x00 0x00 0x00 0x01 SHALL indicate that
character set is not restricted, and all byte values are legal.

The TPer SHALL NOT enforce the character set when the host sets the PIN column via the Set
method.

5.3.4.1.1.2 Authentication Attempt Limits with C_PIN Objects
A mechanism to limit the number of authentication attempts with a C_PIN credential, either during
session startup or using the Authenticate method, is provided for in the C_PIN table through the
Tries and TryLimit columns.

The default value of the Tries column when a new C_PIN object is created is 0. If the value of the
TryLimit column is not 0, then the value of the Tries column is incremented by the TPer on every
failed authentication attempt, including the implicit authentication if the authority is a Signing Authority
invoked during session startup.

When the value of the Tries column is equal to the value of the TryLimit column, and the TryLimit
column is not equal to 0, further attempts to authenticate using this credential SHALL always fail (until
the value of the Tries column is reset), but Tries SHALL NOT increment beyond TryLimit.

The value of the Tries column is set to 0 by the TPer upon successful invocation of the Authenticate
method or implicit session startup authentication of the authority referencing this C_PIN object.

The value of the Tries column MAY be reset from the host by successful invocation of the Set method
on that cell to set the value to 0 (access control SHALL be properly fulfilled).

Additionally, the value of the Tries column SHALL be reset to 0 after a power cycle if the value of the
Persistence column is False. Otherwise, the value of the Tries column SHALL persist across power
cycles. Other TCG resets (i.e. Hardware Reset) SHALL NOT cause the value of the Tries column to
be reset, even if the value of the Persistence column is False.

Successful invocation of methods on a C_PIN object that modify the value of the PIN column also set
the value of that object’s Tries column to 0. These methods are GenKey, Set, and SetPackage.
If TryLimit is 0, there is no limit to the number of Tries, and Tries SHALL remain 0.

The value of the Tries column is not subject to transactional rollback when changed by the TPer. The
TPer SHALL be able to set the Tries column value during a Read-Only session, but the host SHALL
only be able to set this column during a Read-Write session.

5.3.4.1.2 Authorities
Authorities are made up of two types – Class and Individual.

Class authorities MAY be members of another class authority, but this SHALL NOT be permitted to
expand beyond a single level. The TPer SHALL enforce that class authorities are not permitted to be
members of a class authority that is already a member of another class authority. Class authorities
SHALL NOT reference credentials or secure messaging requirements. Class authorities SHALL NOT
be directly authenticated – authentication attempts that reference class authorities SHALL always fail.

Individual authorities MAY be members of class authorities. When an individual authority is
authenticated, either from session startup or explicitly via the Authenticate method, the class authority
that the individual authority references is considered to be authenticated also. If that class authority
also references a class, then the class authority referenced by the initial class authority is also
considered to be authenticated.

The default authorities that MAY be supplied by the Base Template are enumerated in Table 208.

Table 208 Default Base Template Authorities
Name UID Common Name IsClass Class Operation

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 217 of 314

Name UID Common Name IsClass Class Operation

Anybody 00 00 00 09 00 00 00 01 Anybody False Sign

Admins 00 00 00 09 00 00 00 02 Admin True

Makers 00 00 00 09 00 00 00 03 Maker True

MakerSymK 00 00 00 09 00 00 00 04 Maker False Makers SymK

MakerPuK 00 00 00 09 00 00 00 05 Maker False Makers Sign

SID 00 00 00 09 00 00 00 06 TPerOwner False Password

TPerSign 00 00 00 09 00 00 00 07 TPerSign False TPerSign

TPerExch 00 00 00 09 00 00 00 08 TPerExch False TPerExchange

AdminExch 00 00 00 09 00 00 00 09 Admin False Admins Exchange

5.3.4.1.2.1 Anybody
The Anybody authority MAY used as the Host Signing Authority during session startup, and when used
in this way allows session startup without providing a proof or secret. If a value is included in the
StartSession method's HostChallenge parameter where the Anybody authority is called out as the
HostSigningAuthority, the HostChallenge parameter SHALL be ignored by the TPer. Assuming all
StartSession method syntax is correct, the method SHALL complete successfully.

The Anybody authority is always considered "authenticated" within a session, even if the Anybody
authority was not specifically called out during session startup. Invocations of the Authenticate
method that use the Anybody authority SHALL always succeed, assuming all other Authenticate
method syntax is correct. Values in the Challenge parameter of that Authenticate method SHALL be
ignored.

The Anybody authority counts against the maximum number of authenticated authorities permitted per
session (as reported in the Properties method response MaxAuthentications field, if such a limit
exists). Thus, if the maximum number of authorities within a session is 9, the Anybody authority counts
as one of these and the host MAY authenticate up to 8 additional authorities (during session startup or
through the use of the Authenticate method).

5.3.4.1.2.2 Makers
The members of the Makers authority class permit the manufacturer of the TPer to open an
authenticated session to the TPer. The MakerPuK (i.e., Manufacturer) authority only has the
Manufacturer Public Key (not the private) and a Certificate attesting to this, which is signed by the
Manufacturer.

5.3.4.1.2.3 SID
The SID authority is used by the TPer owner to authenticate to the Admin SP and perform operations
such as freezing or deleting SPs.

A copy of the SID is also present in each SP. This SID authority and credential provides the
personalizing host with a default password authority that MAY be used to open sessions or verify
physical presence. When an SP is issued or created, the value of the Password column of the C_PIN
credential object referenced by the SID authority is the same as the value of the Password column of
the C_PIN credential object referenced by the SID authority in the Admin SP. Modifications to the SID

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 218 of 314

authority’s referenced C_PIN credential object in some SP (even the Admin SP) do not affect any other
SP.

By default, the SID credential object (the C_PIN credential object referenced by the SID authority) has a
Password column value length of 25 characters. The default character set for this value is made up of
the capital letters A-Z inclusive and the numbers 0-9 inclusive, excluding the letter "I" and the letter "O".
By default, the CharSet column of the SID credential is the uid to a byte table that stores this character
set. Subsequent invocations of GenKey on SID with this CharSet column value utilize this character set
to generate the new SID value.

The host application SHOULD manage translation of I's/1's and O's/0's.

5.3.4.1.2.4 TPerSign and TPerExch
The authorities TPerSign and TPerExch are references to the TPer’s signing and exchange keys, and
allow a host with knowledge of the TPer’s credentials to open a secure session with an authenticated
TPer. In the Admin SP Authority table, the Credential column contains the reference to locate the
appropriate credential for use with this authority.

These TPerSign and TPerExch authorities are present in the Authority table of each SP. The
credentials to which these authorities contain references are represented by objects in the appropriate
credential tables. The actual key values MAY be stored in only a single location, but the
implementation SHALL maintain appropriate references to these credentials so that they are usable in
each SP on the TPer.

In all SPs, the values TPerSign and TPerExchange in the Authority table’s Operation column
indicate that the signing or exchange operation is to be performed with the TPer credentials as
referenced in the Admin SP’s Authority table.

5.3.4.1.2.5 AdminExch
The AdminExch authority represents the initial credential value submitted during issuance. This is the
authority that enables the host to open a secure, implicitly authenticated session to the host’s SP and
personalize that SP. In the case of the Authority table in the Admin SP, the Base Template Authority
AdminExch SHALL be disabled. At issuance, prior to personalization, the AdminExch authority has a
RespExch column value set to the AdminExch authority's UID.

5.3.4.1.3 Authority Operations
The Operation column of the Authority table identifies the authentication method for which an
authority object SHALL be used.

The value of an Operation for a given authority SHALL match the purpose for which that authority is
being used during session startup. For instance, an authority with an Operation value of Signing or
None SHALL only be able to be successfully invoked during session startup as either a
HostSigningAuthority or SPSigningAuthority.

The operation types and their requirements are as follows:

a. None – This describes an authority that MAY be used to reference a response signing or
exchange authority. If used during session startup, an authority with this Operation
column value SHALL be referenced as the HostSigningAuthority or SPSigningAuthority.
Referencing an authority with this Operation column value as an exchange authority
SHALL result in an error. In the event that an attempt is made to invoke Authenticate
with an authority that has an Operation column value of None, that authentication SHALL
succeed if all other necessary requirements, as defined by the Authority object, are met.

b. Password – This describes an authority that MAY be used and authenticated with its
referenced C_PIN credential, either during session startup or using the Authenticate
method. If used during session startup, this authority SHALL be referenced as the
HostSigningAuthority or the SPSigningAuthority. Referencing an authority with this

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 219 of 314

Operation column value in another authority parameter of the session startup methods
SHALL result in an error.

c. Sign – This describes an authority that MAY be used and authenticated using a challenge
and response with its referenced public key (RSA/EC) credential, either during session
startup or using the Authenticate method. If used during session startup, an authority
with this Operation column value SHALL be referenced as the HostSigningAuthority or as
the SPSigningAuthority. Referencing an authority with this Operation column value in
another authority parameter of the session startup methods SHALL result in an error. The
Sign operation encompasses both Signing and Verification activities – the TPer SHALL
perform a signature operation for the SPSigningAuthority, and SHALL perform a signature
verification for the HostSigningAuthority.

d. Exchange – This describes an authority that MAY be used during session startup, and
SHALL be referenced as the HostExchangeAuthority or the SPExchangeAuthority.
Referencing an authority with this Operation column value in another authority parameter
of the session startup methods SHALL result in an error. The credential referenced by this
authority SHALL be used to encrypt session keys for transmission to the other party
involved in the session. This authority SHALL NOT be able to be authenticated explicitly
using the Authenticate method.

e. SymK – This describes an authority that MAY be used and authenticated using a challenge
and response with its referenced symmetric key credential, either during session startup or
using the Authenticate method. If invoked during session startup, an authority with this
Operation column value SHALL be referenced as the HostSigningAuthority or the
SPSigningAuthority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods SHALL result in an error.

f. HMAC – This describes an authority that MAY be used and authenticated using a
challenge and response with its referenced HMAC key credential and the referenced
HMAC algorithm, either during session startup or using the Authenticate method. The
HMAC credential referenced by the authority using this operation identifies the hash
algorithm used to generate the HMAC. If invoked during session startup, an authority with
this Operation column value SHALL be referenced as the HostSigningAuthority or the
SPSigningAuthority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods SHALL result in an error.

g. TPerSign – This describes the signing authority that represents the TPer, which enables
the host to verify the TPer credentials. This authority MAY be used and authenticated using
a challenge and response with its referenced public key (RSA/EC) credential during
session startup. If used during session startup, an authority with this Operation column
value SHALL be referenced as the SPSigningAuthority. Referencing an authority with this
Operation column value in another authority parameter of the session startup methods
SHALL result in an error. The TPer signing credential contains certificate chains that
establish the validity of this authority.

h. TPerExchange – This describes the exchange authority that represents the TPer. This
authority enables the host to establish a secure session with an SP using the TPer’s
exchange authority. Referencing an authority with this Operation column value in another
authority parameter of the session startup methods SHALL result in an error. The
credential referenced by this authority SHALL be used to encrypt session keys for
transmission to the other party involved in the session. This authority SHALL NOT be able
to be authenticated explicitly using the Authenticate method. The TPer exchange
credential contains certificate chains that establish the validity of this authority.

5.3.4.1.4 Session Startup
Session startup involves the exchange of either two or four methods between the host and the SP with
which the host is attempting to start the session.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 220 of 314

The properties of the session – i.e., whether secure messaging is required, the secure messaging type,
and the type of message authentication – are controlled by values in the columns of authority objects
referenced as parameters to the methods, and are determined independently for each communicator.

When the StartSession method is invoked, the authorities to be used for that session are referenced
as parameters. The following identifies the order of authority precedence in the StartSession
invocation. For the invoked host authorities, the following list defines the “Host Control Authority” that
identifies the Host-to-SP session property requirements, including the secure messaging properties for
communications from the host to the SP:

a. HostSigningAuthority

b. If no HostSigningAuthority is invoked, then the HostExchangeAuthority is the “Host Control
Authority”.

c. If neither the HostSigningAuthority nor the HostExchangeAuthority invoked, then there is no
“Host Control Authority”.

For SP response authorities referenced from the “Host Control Authority”, the following list defines the
“SP Control Authority” that identifies the SP-to-Host session property requirements, including the
secure messaging properties for communications from the SP to the host:

a. SPSigningAuthority

b. If no SPSigningAuthority is referenced, then the SPExchangeAuthority is the “SP Control
Authority”.

c. If neither the SPSigningAuthority nor the SPExchangeAuthority invoked, then there is no
“SP Control Authority”.

If the StartSession method fails, the return result is formatted as a SyncSession method invocation
from the TPer, using only the Host and SP parameters, with a non-Success status code.

If the StartTrustedSession method fails, the return result is formatted as a SyncTrustedSession
method invocation from the TPer, using only the Host and SP parameters, with a non-Success status
code.

5.3.4.1.5 Secure Messaging Control
As indicated in section 5.3.4.1.4, control of secure messaging for a session is determined
independently for each communicator. The authorities invoked in the StartSession method determine
the secure messaging types and algorithms required, and, based on the authorities included in the
session startup, the encrypting credential used to exchange session key(s) for secure messaging.

If the Host Signing Authority is invoked in StartSession, this authority determines if secure messaging
is required on messages from the Host to the TPer, and the type of secure messaging. In this
circumstance, the Host Signing Authority is the “Host Control Authority” for messaging from the Host to
the TPer.

If the Host Signing Authority is not present, and the Host Exchange Authority is present, the Host
Exchange Authority determines if secure messaging is required on messages from the Host to the
TPer, and the type of secure messaging. In this circumstance, the Host Exchange Authority is the
“Host Control Authority” for messaging from the Host to the TPer.

If the Host Signing Authority is the “Host Control Authority”, its Response (SP) Signing and Response
(SP) Exchange Authorities determine the authorities used to represent the SP. If the Host Signing
Authority is not invoked in StartSession, and the Host Exchange Authority is, it is the Host Exchange
Authority that is the “Host Control Authority” whose Response Signing and Response Exchange
Authorities determine the authorities used to represent the SP.

If the Response (SP) Signing Authority is linked from the “Host Control Authority”, it is considered the
“SP Control Authority”, and determines if secure messaging is required on messages from the TPer to
the Host, and the type of secure messaging. If the Response (SP) Signing Authority is not linked from

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 221 of 314

the “SP Control Authority” and the Response (SP) Exchange Authority is, then it is the Response (SP)
Exchange Authority that serves as the “SP Control Authority” and determines if secure messaging is
required on messages from the TPer to the Host, and the type of secure messaging.

If the value of a “Control Authority’s” Secure column is 0, then secure messaging SHALL NOT be
permitted for messaging from that communicator for the session to start successfully – all messaging
exchanges for sessions controlled by that authority SHALL be in plaintext.

5.3.4.1.6 Hashing and Signing Method Parameters
If the Host Signing Authority is the “Host Control Authority”, then its Authority.HashAndSign value
identifies whether or not it is required that the parameters of the Host-to-TPer session startup methods
(StartSession/StartTrustedSession) be hashed. If Authority.HashAndSign=True, then the
parameters of these methods are hashed and signed using Authority.Credential and the hash
protocol identified in that credential.

If the Host Exchange Authority is the “Host Control Authority”, then its Authority.HashAndSign value
identifies whether or not it is required that the parameters of the Host-to-TPer session startup methods
(StartSession/StartTrustedSession) be hashed and signed. If Authority.HashAndSign=T, then
the parameters of these methods are hashed and signed using Authority.Credential and the hash
protocol identified in that credential.

If the Response (SP) Signing Authority is the “SP Control Authority”, then its Authority.HashAndSign
value identifies whether or not it is required that the parameters of the TPer-to-Host session startup
methods (SyncSession/SyncTrustedSession) be hashed and signed. If Authority.HashAndSign=T,
then the parameters of these methods are hashed and signed using Authority.Credential and the
hash protocol identified in that credential.

If the Response (SP) Exchange Authority is the “SP Control Authority”, then its
Authority.HashAndSign value identifies whether or not it is required that the parameters of the TPer-
to-Host session startup methods (StartSession/StartTrustedSession) be hashed and signed. If
Authority.HashAndSign=T, then the parameters of these methods are hashed and signed using
Authority.Credential and the hash protocol identified in that credential.

5.3.4.2 Signed Hashing During Session Startup
If a Signing Authority is invoked in a session startup method (for either the Host or the SP), and the
authority’s HashAndSign column indicates that hashing is required, the signing Credential referenced
in that Signing Authority’s row of the Authority table and the hash protocol identified in the Hash
column of the associated credential are used for the hash/sign operation on the session startup
methods.

Session startup SHALL fail if an authority indicates that hashing and signing the session startup
methods are required and does not include the signed hash as a parameter of the method invocation.

If a Signing Authority requires the hash/sign operation to be performed, that Authority’s row of the
Authority table SHALL indicate an Operation/Credential pair of Signing/Private Key, SymK/Symmetric
Key, or HMAC/Symmetric Key.

The signed hash is sent as the last parameter of the method call and hashes the entire method call
(except the hash).

Note that the HostSigningAuthority and SPSigningAuthority provide separate controls for
hashing/signing method invocations from the host to the SP and from the SP to the host, respectively.
This means that hashing and signing MAY be performed in one of the two communications directions,
in both directions, or in neither direction, depending on the HashAndSign column values of the
HostSigningAuthority and SPSigningAuthority.

5.3.4.2.1 Session Key Exchange

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 222 of 314

If the Host Signing Authority requires secure messaging, session keys are encrypted with the SP
Exchange Authority’s symmetric key or public key. If there is no SP Exchange Authority, or if there is
an SP Exchange Authority but it does not reference a credential, then session keys are encrypted with
the Host Exchange Authority’s symmetric key. If there is also no Host Exchange Authority, or if there is
a Host Exchange Authority but it does not reference an appropriate credential, an error SHALL be
returned.

If the SP Signing Authority requires secure messaging, session keys are encrypted with the Host
Exchange Authority’s symmetric key or public key. If there is no Host Exchange Authority, or if there is
a Host Exchange Authority but it does not reference a credential, then session keys are encrypted with
the SP Exchange Authority’s symmetric key. If there is also no SP Exchange Authority, or if there is an
SP Exchange Authority but it does not reference an appropriate credential, an error SHALL be returned.

If there is no Host Signing Authority, the Host Exchange Authority MAY require secure messaging. If
so, session keys are encrypted with the SP Exchange Authority’s symmetric or public key. If there is no
SP Exchange Authority, or if there is an SP Exchange Authority but it does not reference a credential,
then session keys are encrypted with the Host Exchange Authority’s symmetric key. If the Host
Exchange Authority does not reference an appropriate credential, an error SHALL be returned.

If there is no SP Signing Authority, the SP Exchange Authority MAY require secure messaging. If so,
session keys are encrypted with the Host Exchange Authority’s symmetric key or public key. If there is
no Host Exchange Authority, or if there is a Host Exchange Authority but it does not reference a
credential, then session keys are encrypted with the SP Exchange Authority’s symmetric key. If the SP
Exchange Authority does not reference an appropriate credential, an error SHALL be returned.

When a key is required for integrity checking, that key SHALL always be exchanged as the
HostIntegritySessionKey or SPIntegritySessionKey parameters in the StartTrustedSession or
SyncTrustedSession method invocations. These keys are not used in the CCM and GCM
authenticated encryption modes. When a key is used for message encryption, that key is exchanged
as the HostEncryptSessionKey or SPEncryptSessionKey, even for authenticated encryption modes.

For secure messaging modes that use HMAC for message integrity, the following list identifies the size
of the key that SHALL be exchanged as the integrity session key for the appropriate HMAC usage.

a. For HMAC using SHA 256: The integrity session key SHALL be 256 bits.

b. For HMAC using SHA 384: The integrity session key SHALL be 384 bits.

c. For HMAC using SHA 512: The integrity session key SHALL be 512 bits.

For integrity algorithms that utilize public key cryptography, the Host uses the private key corresponding
to the chained down certificate supplied in the StartSession algorithm to sign the hash of the
message. The hash protocol for this operation is identified in the host control authority’s credential.
The SP uses the chained down certificate supplied in the SyncSession algorithm to sign the hash of the
message. The hash protocol for this operation is identified in the SP control authority’s credential.

5.3.4.2.2 Session Startup Authorities
If the HostSigningAuthority is specified in the StartSession invocation, and that authority has an
Operation column value of Signing, SymK, or HMAC, then the SP SHALL respond to the
StartSession invocation with a SyncSession invocation that contains the SPChallenge parameter,
which holds a 32-byte nonce. The host SHALL sign the SPChallenge nonce using the
HostSigningAuthority’s credential as appropriate, and then submit the signed challenge back to the SP
in a StartTrustedSession method invocation.

For HostSigningAuthorities with an Operation column value of "SymK", the host SHALL encrypt the
challenge using the appropriate symmetric key. This encryption SHALL be in ECB mode.

If the HostSigningAuthority is specified, and that authority has an Operation column value of
Password, then the credential referenced by the authority SHALL be a C_PIN object for session startup

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 223 of 314

to resolve properly. The host SHALL send the value of the PIN via the HostChallenge parameter in the
StartSession method invocation.

If the SPSigningAuthority is referenced, and that authority has an Operation column value of Signing,
SymK, or HMAC, then the host SHALL include in its StartSession method invocation the
HostChallenge parameter, which holds a 32-byte nonce. The SP SHALL sign the HostChallenge nonce
using the SPSigningAuthority’s credential as appropriate, and submit the signed challenge back to the
host in its SyncTrustedSession method.

For SPSigningAuthorities with an Operation column value of "SymK", the device SHALL encrypt the
challenge supplied by the host using the appropriate symmetric key. This encryption SHALL be in ECB
mode.

If the SPSigningAuthority is referenced, and that authority has an Operation column value of
Password, then the credential referenced by that authority SHALL be a C_PIN object for session
startup to resolve properly. The SP SHALL send the value of the PIN via the SPChallenge parameter
of the SyncSession method.

When session startup successfully completes, all authorities invoked during the session startup process
SHALL be considered authenticated.

5.3.4.2.3 EC-MQV Session Startup
It is possible to use the session startup method exchanges to start a session using EC-MQV. In order
to do so, it is necessary to follow the following protocol):

1. The host ECMQV ephemeral public key is conveyed in HostChallenge.

2. The host ECMQV static public key is conveyed in HostExchangeCert

3. The SP ECMQV ephemeral public key is conveyed in SPChallenge

4. The SP ECMQV static public key is conveyed in SPExchangeCert

5. The Full ECMQV, C(2,2,ECC MQV) scheme of NIST SP 800-56A, Section 6.1.1.4 is used.

6. The key derivation function (KDF) is Concatenation KDF as defined in Section 5.8.1 of NIST SP
800-56A. The AlgorithmID is the ASCII encoding of the string “TCG Storage ECMQV”. The
PartyUInfo is the uinteger Host value and the PartyVInfo is the uinteger SP value.
Supplementary fields are not used (that is, they are empty). The hash function used in the KDF
is SHA-256 if the elliptic curve is defined over a 163-bit, 192-bit, 224-bit, 256-bit, 233-bit or 283-
bit field, and is SHA-384 if the elliptic curve is defined over a 384-bit field.

7. The C(2,2) “Bilateral Key Confirmation” as defined in Section 8.4.1 of NIST SP 800-56A is used
(see below).

8. The value MacTagU is conveyed in HostResponse

9. The value MacTagV is conveyed in SPResponse

5.3.4.2.4 EC-DH Session Startup
It is possible to use the session startup method exchanges to start a session using EC-DH. In order to
do so, it is necessary to follow the following protocol:

1. The host ECDH static public key is conveyed in HostExchangeCert

2. The host nonce (the value NonceU used in key derivation and key confirmation) is conveyed in
HostChallenge

3. The SP ECDH static public key is conveyed in SPExchangeCert

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 224 of 314

4. The SP nonce (the value NonceV used in just key confirmation) is conveyed in the SPChallenge

5. The Cofactor Static Unified Model C(0,2,ECC CDH) scheme of NIST SP 800-56A, Section
6.3.2 is used.

6. The key derivation function (KDF) is Concatenation KDF as defined in Section 5.8.1 of NIST SP
800-56A. The AlgorithmID is the ASCII encoding of the string “TCG Storage ECDH”. The
PartyUInfo is the uinteger Host value and the PartyVInfo is the uinteger SP value.
Supplementary fields are not used (that is, they are empty). The hash function used in the KDF
is SHA-256 if the elliptic curve is defined over a 163-bit, 192-bit, 224-bit, 256-bit, 233-bit or 283-
bit field, and is SHA-384 if the elliptic curve is defined over a 384-bit field.

7. The C(0,2) “Bilateral Key Confirmation” as defined in Section 8.4.8 of NIST SP 800-56A is used
(see below).

8. The value MacTagU is conveyed in HostResponse

9. The value MacTagV is conveyed in SPResponse

5.3.4.2.5 Certificate Presentation
If an authority has a value of True in its PresentCertificate column; the authority references a public
key credential; and that credential references a certificate, then a certificate chain SHALL be presented
when that authority is referenced as an SP authority.

For details on certificate contents/formatting, see the TCG Storage Certificates Specification.

5.3.4.2.6 Explicit Authentication with the Authenticate Method
In addition to authentication of authorities that participate in a successful startup of a session,
authentication of an authority MAY also be achieved through successful invocation of the
Authenticate method.

The Authenticate method is an SP method, and as such its Invoking ID parameter SHALL be
"ThisSP".

If the invoked authority requires password authentication (the value of the Operation column of the
invoked authority is “Password”), one call to Authenticate is made and the Proof parameter is the
password. The response is either True or False – True if authentication was successful and False if
authentication was unsuccessful.

If the authority requires challenge and response (the value of the Operation column of the authority is
“Sign”, “SymK”, or “HMAC”), the host invokes the Authenticate method twice. In the first invocation
the method parameter list SHALL consist of the Authority parameter, which references the valid
Authority object UID of the authority the host is attempting to authenticate. In the second invocation, the
Authority parameter SHALL be the same Authority object UID as referenced in the initial Authenticate
method invocation and the Proof parameter is the response to the SP’s challenge. The Success
response is returned to the second invocation– this SHALL be either True if authentication was
successful or False if authentication was unsuccessful.

For authorities that require symmetric key challenge/response (have an Operation column value of
"SymK"), the Mode column value of that authority SHALL be "ECB". If such an authority is invoked as
the Authority parameter of the Authenticate method, the result of the intial method invocation SHALL
be a 32-byte nonce that is the challenge from the SP.

After receipt of the 32-byte challenge, the host SHALL encrypt that nonce using the appropriate
symmetric key, in ECB mode. The host SHALL then transmit the encrypted challenge to the TPer as
the Challenge parameter of the second Authenticate method invocation. The TPer SHALL then
validate the response.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 225 of 314

If an attempt is made to invoke the Authenticate method on an authority that requires secure
messaging, and the required secure messaging parameters as defined in the Secure column of the
Authority table are not currently fulfilled, then the Authenticate method invocation SHALL fail.

When the Authenticate method invocation protocol requires the host to invoke the Authenticate
method twice, the second Authenticate method MAY be sent anytime during the session. If the TPer
receives any Authenticate method after the first Authenticate method has been invoked, the TPer
SHALL attempt to resolve that authentication attempt, which SHALL fail if the second Authenticate
does not contain the appropriate response parameters.

The implementation MAY limit the number of authorities that are able to be authenticated at any one
time within a single session (as recorded in the MaxAuthentications value of the Properties method).
If the authentication attempt would cause the MaxAuthentications property value to be exceeded for the
session, a properly invoked Authenticate method SHALL return a status of SUCCESS and a result of
False.

5.3.4.2.6.1 Authenticate Method Failures
Authenticate returns different status codes and return results dependant on the success or failure of
the method.

The nature of the Authenticate method prescribes two states:

a. Awaiting Challenge

b. Awaiting Challenge Response

Behavior of the Authenticate method when the SP is in the Awaiting Challenge state:

1. The method returns INVALID_PARAMETER with an empty result list if the following conditions
apply, and remains in the Awaiting Challenge state:

a. There is no authority supplied to the method, or an invalid authority (as in, an authority
that does not exist in the Authority table) is supplied to the method

b. An incorrect optional parameter identifier or extra parameters are supplied, or a proof is
supplied to a non-Password/non-Anybody authority.

2. If the conditions defined in 5.1.5.16 are met, the method SHALL either return
AUTHORITY_LOCKED_OUT with an empty result list and remain in the Awaiting Challenge
state, or follow the result and status behavior defined in 5 below.

3. If the Authenticate invocation does not violate any of the conditions in 1 and 2, above, and if
the following conditions are met, then the method returns SUCCESS with a result of True
(authentication succeeded), and remains in the Awaiting Challenge state:

a. The authority invoked in the method is a valid individual authority object in the
Authority table.

b. All of the authority’s attributes are appropriate for the existing session and
authentication attempt – the secure messaging properties are appropriate, the authority
is enabled, has an Operation column value of Password, etc.

c. The authority references a valid C_PIN credential or the authority is the Anybody
authority.

d. For authorities other than the Anybody authority, the correct password was submitted
to the Authenticate method invocation.

4. If the Authenticate invocation does not violate any of the conditions in 1 and 2 above, and if
the following conditions are met, then the method returns SUCCESS with a result of a 32-byte
challenge, and transitions to the Awaiting Challenge Response state:

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 226 of 314

a. The authority invoked in the method is a valid individual authority object in the
Authority table.

b. All of the authority’s attributes are appropriate for the existing session and
authentication attempt – the secure messaging properties are appropriate, the authority
is enabled, references a valid credential, etc.

5. If the Authenticate invocation does not violate any of the conditions in 1 and 2 above, and if
the following conditions are met, then the method returns SUCCESS with a result of False
(authentication failed), and remains in the Awaiting Challenge state:

a. The authority is a class authority

b. The authority is a valid authority but one or more of its attributes are not appropriate or
valid – the secure messaging requirements have not been met, the authority is
disabled, the authority references an invalid credential, the authority has an Operation
column value of Exchange or TPerSign, etc.

c. The authority is a valid authority but an incorrect password is submitted to the
Authenticate method invocation.

Behavior of the Authenticate method when the SP is in the Awaiting Challenge Response state:

1. The method returns INVALID_PARAMETER with an empty result list if the following conditions
apply, and transitions to the Awaiting Challenge state:

a. There is no authority supplied to the method, or an invalid authority (as in, an authority
that does not exist in the Authority table) is supplied to the method

b. An incorrect optional parameter identifier or extra parameters are supplied, or a proof is
supplied to a non-Password/non-Anybody authority.

2. If the Authenticate invocation does not violate any of the conditions in 1 above, and if the
following conditions are met, then the method returns SUCCESS with a result of True
(authentication succeeded), and transitions to the Awaiting Challenge state:

a. The authority invoked in the method is a valid individual authority object in the
Authority table.

b. The authority invoked in the method is the same authority invoked in the initial
Authenticate invocation.

c. All of the authority’s attributes are appropriate for the existing session and
authentication attempt – the secure messaging properties are appropriate, the authority
is enabled, references a valid credential, etc.

d. The correct response was submitted to the Authenticate method invocation.

3. If the Authenticate invocation does not violate any of the conditions in 1 above, and if the
following conditions are met, then the method returns SUCCESS with a result of False
(authentication failed), and transitions to the Awaiting Challenge state:

a. The authority is a class authority.

b. The authority invoked in the method is not the same authority invoked in the initial
Authenticate invocation.

c. The authority is a valid authority but one or more of its attributes are not appropriate or
valid – the secure messaging requirements have not been met, the authority is
disabled, the authority references an invalid credential, the authority has exceed its
uses, etc.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 227 of 314

d. The authority is a valid authority but an incorrect challenge response is submitted to the
Authenticate method invocation.

5.3.4.3 Table Management

5.3.4.3.1 Creating Tables
New tables are created via successful invocation of the CreateTable method. The Name-CommonName
combination of the table created SHALL be unique in the Table table.

When a new table is created using the CreateTable method, the columns for the table are specified in
the Columns parameter. The type of this parameter is a typeOr (for more information on types, see the
format specification in section 5.1.1).

a. The first option of this typeOr represents a list of column names and the uid of the type
(from the Type table) to be associated with that column. This is to be used if the table does
not have unique column.

b. The second option of this typeOr represents a struct made up of two lists. The first list is
made up of a list of column names and the uid of the type (from the Type table) to be
associated with that column. The first list represents the set of columns in the table the
combination of which is required to be unique (these are the unique columns). The second
list represents the set of columns in the table that are not part of the unique columns of that
table, and is a list of the column names and the uid of the type to be associated with that
column.

For a byte table, all rows SHALL exist at table creation. For object tables, no rows SHALL exist, but
MAY be inserted using the CreateRow method.

The mechanism by which allocation of rows to a table is accomplished is implementation specific. A
manufacturer MAY choose to allocate rows statically (create all rows at table creation) or dynamically
(at each CreateRow method invocation).

The total number of rows that are able to be created for a table based on existing conditions SHALL be
obtainable using the GetFreeRows method.

The CreateTable method uses the MinSize parameter to define the initial number of rows that SHALL
be allocated for the new table. The created table SHALL always be able to have CreateRow invoked on
it that many times. If the MinSize is too large (requests more rows than MAY be allocated for that
table), the CreateTable method invocation SHALL result in an error.

MinSize is recorded in the MinSize column of the Table table. The MinSize column in the Table table
MAY be changed using a Set method invocation. Access control requirements SHALL be fulfilled as
normal. The TPer SHALL return an error if an attempt is made to set a lower value than is recorded in
the MinSize column. The TPer MAY reject the request and return an error.

The actual number of rows that have been created for a table are reflected in the value of the Table
table’s Rows column.

The optional MaxSize parameter defines the maximum number of rows that MAY be created for the
table. Note that this is a host-supplied number, and that the TPer is not required to guarantee that the
table can grow to MaxSize rows. However, the TPer SHALL guarantee that the table never has more
than MaxSize rows.

The MaxSize parameter value is recorded in the MaxSize column of the Table table. Access control
requirements SHALL be fulfilled as normal to permit this value to be changed, but the TPer MAY
prevent the value from being changed – in such a case the TPer SHALL return an
INVALID_PARAMETER. Attempts to set MaxSize to a value lower than MinSize or the current size of
the table SHALL result in failure with the INVALID_PARAMETER status code.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 228 of 314

The optional HintSize parameter represents a number of rows larger than MinSize that is requested for
the created table. It is a host-specified number of rows that the host suggests should be supplied by
the TPer for that table, if sufficient amount of row space is available. This allows the TPer to optimize
the allocation of rows for the table. The TPer is not required to allocate the number of rows requested
in HintSize.

When a new table is created, in addition to space being allocated for that table, other side effects occur
as well:

a. A row in the Table table SHALL be created. This row is a table descriptor object that
stores metadata about the newly created table, including the name of the table, the number
of rows allocated for the table, and the number of free rows in the table. The table
descriptor object also stores the type of the table (bytes or object), as well as a reference to
the Column table row of the table’s first column. Tables and their Table table entries are
differentiated from each other by different UID composition. A table is referred to by a UID
derived from that of the associated Table table entry (see section 3.2.5.3).

b. Rows in the Column table SHALL be created for each of the columns in the new table.
Each row in the Column table stores metadata about a column in the newly created table,
including the column’s name and data type, whether the column value is part of the unique
columns for the table (requires uniqueness across the table), and whether the column is
subject to transactional rollback, as well as the uidref to the row in the Column table that
stores metadata about the next column in the created table.

c. Rows in the AccessControl table SHALL be created for each of the methods available for
the newly created table, its associated Table table row, and the newly created Column
table rows (see 5.3.4.3.3). The access control associations that are created are as follows:

a. TableUID.Next

b. TableUID.Get

c. TableUID.Set

d. TableObjectUID.Get

e. ColumnObjectUID*.Get

f. ACEObjectUID.Get/Set (if a new ACE is created)

d. Rows in the ACE table MAY be created to limit access control on certain portions of the
table or its associated Table table row.

If the new table is unable to be created due to insufficient additional space in the Table table, the
method SHALL fail (INSUFFICIENT_SPACE). If the associated rows in all associated tables are
unable to be created, then the invocation of the CreateTable method SHALL fail
(INSUFFICIENT_ROWS).

5.3.4.3.2 Retrieving Table Data
Rows in the Table table are table descriptor objects. Since each table descriptor is an object, each row
in that table, like any other object, has its own methods that MAY be used to retrieve the data stored in
that object. So, upon creation of a table, the control authority for a session is set in the access control
associations for the Get method that enable the host to retrieve that table descriptor object’s data after
authenticating that authority.

Table data, the data stored in table cells, MAY be retrievable through successful invocation of the Get
method on that table. When the Get method is invoked on a table or object, only the values that are
readable based on currently authenticated authorities and their associated ACE restrictions for the
method SHALL be returned.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 229 of 314

Cell values that have been requested but are not permitted to be read by the currently authenticated
authorities are not returned. Since the return value of the method for non-byte tables is a list of name-
value pairs, cells to which the host invoking the Get method does not have access are omitted from the
return result. If a column is known to exist but not returned with a value, then the host is able to discern
that it did not have permission to invoke Get on that cell. It is not an error to request columns that are
not permitted to be retrieved.

If the currently authenticated authorities do not satisfy the access control restrictions for invoking Get on
a byte table, the method SHALL return an empty results list.

5.3.4.3.3 Creating Table Rows
Tables MAY be modified in the following ways:

a. New rows MAY be created

b. Existing rows MAY be deleted

c. Cell values MAY be changed

In most cases, new rows SHALL be added to a table through successful invocation of the CreateRow
method on that table. Exceptions to this, where rows are created in tables by methods other than
CreateRow, are defined as follows:

a. Table – the TPer automatically creates rows in the Table table upon successful invocation
of the CreateTable method.

b. Column – the TPer automatically creates rows in the Column table upon successful
invocation of the CreateTable method.

c. MethodID – the TPer SHALL NOT permit rows to be created in the MethodID table via the
CreateRow method.

d. AccessControl the TPer automatically creates rows in the AccessControl table when a
table or object is created, except in the case where those rows are created in the
AccessControl table.

e. Log – the TPer SHALL NOT permit rows to be created in the Log table via the CreateRow
method.

f. LogList – the TPer automatically creates rows in the LogList table upon successful
invocation of the CreateLog method.

Successful invocation of the CreateRow method creates a row in the invoking table where the column
values for that row are the values passed as parameters to the method invocation. Successful
invocation of the CreateRow method requires that the host supply values for each column in the row.

When invoking the CreateRow method on a table that requires certain column values to be unique, an
attempt to create a row with parameterized values equivalent to the values in the unique columns of
some row of that table SHALL fail.

When a row in an object table is created, a number of AccessControl table rows are created that
correspond to the default methods permitted for the created object. ACLs are set on those methods,
and in the meta-ACL columns associated with those methods, as follows:

a. Using the HostSigningAuthority from the StartSession method, if provided.

b. Otherwise, using the HostExchangeAuthority from the StartSession method, if provided.

c. Otherwise, using the Anybody Authority.

A new ACE SHALL be created in the ACE table for the new rows of the AccessControl table to
reference in its ACLs. All of the new AccessControl table rows reference the same ACE in their ACLs.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 230 of 314

For the new ACE created in the ACE table, additional new rows are created in the AccessControl table
for the new ACE's methods. Those new AccessControl table rows SHALL also reference the newly
created ACE in their ACLS.

Note that CreateRow MAY be limited in some instances based on required default values for some table
columns, and MAY be required to make certain validity checks when creating rows for some tables.

If a new object is unable to be created due to insufficient additional space in the containing table, the
CreateRow method SHALL fail (INSUFFICIENT_SPACE). If the associated rows in all associated
tables are unable to be created, then the invocation of the CreateRow method SHALL fail
(INSUFFICIENT_ROWS).

5.3.4.3.4 Deleting Table Rows
Rows MAY be deleted from a table in two ways:

a. Successful invocation of the DeleteRow method on the table

b. Successful invocation of the Delete object method on an object

When an object is deleted by a successful invocation of the DeleteRow method, the side effects of the
method are the same as if the object had been deleted via invocation of the Delete method.

Deleting objects MAY have side effects. For instance, invoking the Delete method on a Table table
row has the side effect of deleting the table with which that table descriptor object is associated. Side
effects that occur upon deletion of objects are documented where appropriate.

Deleting objects SHALL also cause all AccessControl table rows where this object’s UID appears in
the InvokingID column to be deleted.

Deletion of table rows via invocation of DeleteRow or Delete SHALL NOT be permitted for the following
tables:

a. Column – the TPer automatically deletes rows from the Column table when a table is
deleted.

b. MethodID – the TPer SHALL NOT permit rows to be deleted from the MethodID table.

c. AccessControl – the TPer automatically deletes rows from the AccessControl table whan
a table or object is deleted.

d. LogList - the TPer automatically deletes rows from the LogList table when a Log table is
deleted.

5.3.4.3.5 Deleting Tables
As indicated in Section 5.3.4.3.4, a table SHALL be deleted by successful invocation of the Delete
method or the DeleteRow method on the table descriptor object (Table table row) associated with the
table to be deleted.

When the method resolves, the following occurs:

a. The table descriptor object associated with the table is deleted.

b. The table itself is deleted.

c. All associated AccessControl table rows are deleted. This includes methods associated
with both the table itself as well as the table descriptor object.

d. All associated Column table rows SHALL be deleted.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 231 of 314

Due to their reusability, ACEs that were created when a table was created SHALL NOT be deleted
when that table is deleted, as the ACE MAY still be in use by another table. ACEs created as a side
effect of creating a table or object SHALL be deleted only by direct host action.

5.3.4.3.6 Modifying Tables
In most cases, modifications to tables are accomplished using the Set method (access control
permitting). Other cases that allow modification of tables without use of the Set method are noted in
the appropriate section of this specification.

Unlike with the Get method, when the Set method is invoked on a table but access control does not
permit some cell to be changed that the Set method invocation is attempting to change, the entire
method fails and returns NOT_AUTHORIZED. All changes parameterized in the Set method SHALL
be made for the method to resolve successfully.

5.3.4.3.7 Iterating Through Tables
The Next method is used to discover an ordering of rows in an object table. Since the ordering of
object tables is unspecified, the ordering that is discovered by successful invocation(s) of this method
on an object table is some undefined ordering, the "current" ordering.

When successfully invoked on an object table, the Next method returns a list of zero or more uidrefs
"following" the specified Where row in the current ordering. If a value for the Where parameter is not
specified in the method invocation, the first element, if any, of the list of uidrefs, SHALL denote the
"beginning" of the ordering, i.e. the row that has no predecessor in the current ordering.

The implementation is required to discover a consistent ordering of all rows of an object table only if the
object table is not modified between invocations of Next. Actions that cause modifications to the object
table that could result in a new ordering SHALL be specified in each SSC, and SHALL include at least
the method calls that add or delete rows if those are permitted by the SSC.

If both the Where parameter and the Count parameter are omitted, the scope of the Next method's
return value is the entire table.

If the Where parameter is included in the invocation and the Count parameter is omitted, the scope of
the Next method's return value begins at the starting point in the table's ordering indicated by the row
following that identified by the Where parameter, and ends at the end of the table's row ordering.

5.3.4.4 Access Control
Access control describes the system used to prevent modification of an SP’s contents by a host that
does not have proper authorization to make those modifications.

The AccessControl table stores access control associations between methods and the tables, objects,
or SP upon which those methods MAY operate. Each row is an access control association made up of
a reference to the method and a reference to the object/table/SP; an Access Control List (ACL); meta-
ACLs; and columns that store the logging settings for the access control association and its associated
meta-ACL methods.

Each InvokingID/MethodID combination in the AccessControl table SHALL be unique within the
table.

Each ACL column SHALL hold a limited number of ACEs. The actual number that each ACL column
MAY store is SSC-dependent.

5.3.4.4.1 Meta-ACLs

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 232 of 314

The ability to add ACEs to or delete ACEs from ACLs provides granularity of access control, as the
authorization required to add or remove ACEs from ACLs MAY be different from the authorization
required to invoke the method described in the access control association.

The methods that perform the operations that add or remove ACEs from ACLs, or retrieve the list of
ACEs from an ACL, are AddACE, RemoveACE, and GetACL. Additionally, access control associations
MAY be removed from the AccessControl table through successful invocation of the DeleteMethod
method. These four methods together are the meta-ACL methods.

Each access control association stores ACLs that govern the authorization requirements for these
methods on that access control association. A separate column in the AccessControl table exists for
each of the meta-ACL methods to store the ACL for that meta-ACL method. A separate column in the
AccessControl table also exists for each of the meta-ACL methods to store the logging settings for that
meta-ACL method. The AccessControl table does not have rows for access control associations
representing the meta-ACL methods.

In order to add an ACE to an ACL, the ACL for the AddACE method associated with that access control
association (stored in the AddACEACL column) SHALL be satisfied. RemoveACE, GetACL, and
DeleteMethod function in a similar way, and would have to fulfill the ACL stored in the RemoveACEACL,
GetACLACL, and DeleteMethodACL column respectively.

5.3.4.5 Deleting the SP
The TPer owner is able to delete an SP by opening a session to the Admin SP and invoking the Delete
method on the SP object in the Admin SP’s SP table, as defined in 5.4.4.2. However, the SP owner is
probably unable to delete the SP in this way, and instead uses the DeleteSP method.

The SP SHALL NOT be deleted until the session is successfully closed. When the method takes effect,
it produces the same results as defined in 5.4.4.2.

5.3.4.6 SetPackage Method Operation
The SetPackage method takes a value that is the result of a successful GetPackage method invocation,
a credential object uidref to the credential that is used to decrypt the encrypted key contents of the
package, and a credential object uidref to the credential that is used to verify the signed hash of the
contents of the package.

The TPer decrypts the key material using the credential referenced by the WrappingKey and verifies
the signed hash using credential referenced by the SigningKey and its associated hash algorithm. The
TPer then sets the columns of the invoking credential object with the decrypted key material from the
package.

The Log portion of the unwrapped package causes that log entry to be made to the default Log table,
along with the Date portion, if these values exist in the package. If the Log Template has not been
issued into the SP, then the Log and Date data are disregarded.

5.3.4.7 Default Logging Settings
The default logging settings associated with the Template methods assume that the Log Template has
been issued with the SP. Otherwise, these values should be disregarded, as values of log control
columns SHALL be ignored if the Log Template has not been issued with an SP.

a. Session startup logging (controlled in the Authority table) and logging invocation of the
Authenticate method SHALL have default settings of LogAlways.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 233 of 314

b. The following method invocations SHALL by default log as LogAlways:

a. AddACE

b. RemoveACE

c. DeleteMethod

d. Delete

e. CreateTable

f. CreateRow

g. DeleteRow

c. Invocation of the following method invocations SHALL by default log as LogFailure:

a. DeleteSP

b. Set

c. GenKey

d. All other methods described in the Base Template SHALL be default log as LogNever.

5.3.5 Life Cycle
5.3.5.1 Base Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Base Template has the following characteristics based on the current life cycle
state of that SP:

a. Disabled – A Base Template-enabled SP that is in the Disabled state SHALL NOT be able
to perform any user-invoked SP operations enabled, with the exceptions noted in section
4.5.2. These exceptions include invocation of the Authenticate method, the DeleteSP
method, and the Set method used to re-enable the SP. Session Manager protocol layer
methods invoked to the disabled SP SHALL operate as normal.

b. Frozen – Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail.

c. Issued-Disabled-Frozen – Attempts to open sessions to an SP in the Issued-Disabled-
Frozen state SHALL fail.

5.4 Admin Template
5.4.1 Overview
Begin Informative Content

The purpose of the Admin Template is to provide to the Admin SP the capability to optionally issue
additional SPs and to maintain information about the TPer.

End Informative Content

5.4.2 Data Structures
5.4.2.1 TPer Metadata Group - TPerInfo (Object Table)
The table in this section describes the metadata that the Admin SP stores about the TPer. The
TPerInfo table SHALL contain exactly one row that is always readable by the Anybody authority.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 234 of 314

Table 209 TPerInfo Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Bytes uinteger_8
0x02 GUDID bytes_12
0x03 Generation uinteger_4
0x04 FirmwareVersion uinteger_4
0x05 ProtocolVersion uinteger_4
0x06 SpaceForIssuance uinteger_8
0x07 SSC SSC

5.4.2.1.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.4.2.1.2 Bytes
This value is the size in bytes of the TPer’s entire protected storage area.

This column SHALL NOT be modifiable by the host.

5.4.2.1.3 GUDID
This column value is the TPer’s globally unique serial number - See Table 210 and accompanying text
for GUDID content description

This column SHALL NOT be modifiable by the host.

5.4.2.1.4 Generation
This is the generation number of the volume.

This column SHALL NOT be modifiable by the host.

5.4.2.1.5 FirmwareVersion
This is the manufacturer-defined revision number of the TPer firmware.

This column SHALL NOT be modifiable by the host.

5.4.2.1.6 ProtocolVersion
This is the revision number of the interface messaging protocol, defined by this specification or an SSC.

This column SHALL NOT be modifiable by the host.

5.4.2.1.7 SpaceForIssuance
This is the total amount of available bytes remaining for issuance.

This column SHALL NOT be modifiable by the host.

5.4.2.1.8 SSC
This is a list of the names of the SSCs supported by the TPer. An SSC's name is defined in the
specification that defines it.

This column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 235 of 314

5.4.2.2 TPer Metadata Group - Serial Number Contents

Table 210 GUDID Column Contents Description
Byte\Bit 7 6 5 4 3 2 1 0

0 0x02
1 0x23
2 0x00
3 0x08
4 NAA (0x05) (MSB) IEEE COMPANY ID
5
6

IEEE COMPANY ID

7 IEEE COMPANY ID (LSB) (MSB) VENDOR-SPECIFIC IDENTIFIER
8
9

10
VENDOR-SPECIFIC IDENTIFIER

11 VENDOR-SPECIFIC IDENTIFIER (LSB)
This structure meets the requirements of an identification descriptor as in SPC-3, and specifically
conforms to the NAA IEEE Registered format defined in that document.

5.4.2.3 TPer Metadata Group - CryptoSuite (Object Table)
The table in this section describes the metadata the TPer keeps about its cryptographic capabilities.
The rows in this table SHALL represent all of the crypto functionality on the TPer available to SPs.

The times recorded in the CryptoSuite table SHALL be average time based on 100 independent
samples using randomly generated keys. The times MAY be taken when the TPer is otherwise idle and
represent relative performance of the operations, not a guarantee of actual performance in the field.

Every type of crypto functionality present on the TPer SHALL have one row where the value of the
Special column is False, and MAY have one or more rows where the value of the Special column is
True. Rows where Special=True represent functionality that MAY be defined by special properties of
the device such as hardware accelerators or pre-computed cache values (in the case, for example, of
some key generation or random number provisioning).

Table 211 CryptoSuite Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 CryptoCall name
0x02 CryptoLen uinteger_2
0x03 CryptoOp name
0x04 Special boolean
0x05 Time uinteger_4
0x06 Variance uinteger_4

5.4.2.3.1 UID
This is the unique identifier of this row in the table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 236 of 314

This column SHALL NOT be modifiable by the host.

5.4.2.3.2 CryptoCall
This is the name of the crypto type whose characteristics are presented in this row.

This column SHALL NOT be modifiable by the host.

5.4.2.3.3 CryptoLen
This is the key length of the crypto type whose characteristics are presented in this row.

This column SHALL NOT be modifiable by the host.

5.4.2.3.4 CryptoOp
This is the name of the crypto operation being timed for this CryptoType/CryptoLen combination (i.e.,
KeyGen, Encrypt, Decrypt, Sign, Verify, Hash)

This column SHALL NOT be modifiable by the host.

5.4.2.3.5 Special
This column value defines if special operating properties exist for this CryptoType/CryptoLen
combination.

This column SHALL NOT be modifiable by the host.

5.4.2.3.6 Time
This is the nominal operation time, in milliseconds, associated with this crypto type.

This column SHALL NOT be modifiable by the host.

5.4.2.3.7 Variance
Nominal operation time or variance in milliseconds, as applicable.

This column SHALL NOT be modifiable by the host.

5.4.2.4 SPs on the TPer Group - Template (Object Table)
The table in this section describes the data that the Admin SP keeps about all of its templates. The
Template table SHALL have one row for each template that MAY be issued by the TPer.

Table 212 Template Table Description
Column
Number Column Name IsUnique Column

Type
0x00 UID uid
0x01 Name Yes name
0x02 RevisionNumber uinteger_4
0x03 Instances uinteger_2
0x04 MaxInstances uinteger_2

5.4.2.4.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.4.2.4.2 Name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 237 of 314

This is the unique name of this template.

This column SHALL NOT be modifiable by the host.

5.4.2.4.3 RevisionNumber
For Templates defined by the TCG Core Specification, this value is the TCG Core Specification revision
number of the Template.

This column SHALL NOT be modifiable by the host.

5.4.2.4.4 Instances
This is the number of SPs on the TPer that are currently instantiated from this Template. Only deleting
an SP decrements this number.

If the value of the Instances column is equal to the value of the MaxInstances column for a given
Template, then attempts to issue additional SPs incorporating that Template SHALL result in an error.

This column SHALL NOT be modifiable by the host.

5.4.2.4.5 MaxInstances
This is the maximum number of SPs that MAY be instantiated from this Template at any one time. If this
value is 0, then there is no limit on number of instances.

This column SHALL NOT be modifiable by the host.

5.4.2.5 SPs on the TPer Group - SP (Object Table)
The table in this section describes the data that the Admin SP keeps about all of the SPs on the TPer.
The Admin SP SHALL be UID=0x00 0x00 0x02 0x05 0x00 0x00 0x00 0x01 in the SP Table, and the
values in this table SHALL be readable by the Anybody authority.

Table 213 SP Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 ORG Authority_object_ref
0x03 EffectiveAuth bytes_32
0x04 DateofIssue date
0x05 Bytes uinteger_8
0x06 LifeCycleState life_cycle_state
0x07 Frozen boolean_def_false

5.4.2.5.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.4.2.5.2 Name
This is the unique name of the SP represented by this row.

This column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 238 of 314

5.4.2.5.3 ORG
This is the uidref to the Authority object that authorized this SP.

This column SHALL NOT be modifiable by the host.

5.4.2.5.4 EffectiveAuth
This is the OID of the chained-down certificate that actually authorized issuance of this SP.

This column SHALL NOT be modifiable by the host.

5.4.2.5.5 DateofIssue
This value is the date of Issuance (enabled by Clock Template). If the Clock Template is not issued
into the Admin SP, this value is set to an empty struct.

This column SHALL NOT be modifiable by the host.

5.4.2.5.6 Bytes
This is the size in bytes of the SP.

This column SHALL NOT be modifiable by the host.

5.4.2.5.7 LifeCycleState
This column value represents the life cycle state of this SP. The LifeCycleState column SHALL NOT
be written directly - the TPer changes it as appropriate.

This column SHALL NOT be modifiable by the host.

5.4.2.5.8 Frozen
This column provides TPer Owner control over whether sessions MAY be opened on this SP. A value
of True in this column indicates that attempts to open sessions to this SP SHALL fail. The default value
of this column at issuance is False.

5.4.3 Methods
5.4.3.1 IssueSP (SP Method)
This method is used to issue SPs on those TPers where the SPs are not fixed by the manufacturer.

ORGs that are permitted to only issue certain Templates into new SPs are controlled by attributes in the
ORG’s certificate.

ThisSP.IssueSP [
 SPName : name,
 Size : uinteger,
 Templates : list [TemplateObjectUID ...],
 AdminExch : key_size,
 Enabled : boolean]
=>
[UID : uid, Size : uinteger]

5.4.3.1.1 SPName
This is the name for the newly created SP. This SHALL be the value of the Name column of the SP
table.

5.4.3.1.2 Size

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 239 of 314

This value is the size in 512 byte blocks that is requested for this SP. If the TPer is unable to allocate
the requested Size, the IssueSP method invocation SHALL result in an error.

5.4.3.1.3 Templates
This is the list of templates from which the SP is to be created. It is a list of UIDs of templates to be
included in the issued SP. The UIDs are those of the templates as recorded for each template in the
Admin SP's Template table.

Issuance always assumes the Base template, but it is not an error to list it. The list of templates MAY
include any template except the template named “Admin,” though the templates available for use are
restricted by the MaxInstances allowed for each template.

The methods and tables from the templates requested become part of the issued SP.

5.4.3.1.4 AdminExch
A C_AES_* object of the size indicated by the parameter used is created upon SP issuance that uses
the key submitted in this parameter. The AdminExch authority in the new SP SHALL have a
Credential column value that references the newly created credential.

5.4.3.1.5 Enabled
This value identifies whether the SP is issued in an Enabled or Disabled state. The value submitted to
this parameter is set to the new SP's SPInfo table.

5.4.3.1.6 IssueSP Result

5.4.3.1.6.1 UID
This return value is the UID of the SP as assigned to the SP object in the Admin SP's SP table.

5.4.3.1.6.2 Size
The returned Size is the size actually allocated. The Size returned SHALL be equal to or greater than
the Size requested.

5.4.3.1.7 Fails
a. If there is already an SP of the same name.
b. If the maximum number of SPs permitted for this template already exist.
c. If there’s not enough free space for the new SP in the TPer.

5.4.4 Descriptions
There SHALL be exactly one Admin SP on every TPer that has SPs. The Admin SP SHALL NOT be
able to be disabled or deleted.

For TPers that have SPs when a TPer is shipped from the manufacturer there SHALL be two or more
predefined Templates and at least one SP (the Admin SP). There MAY also be additional SPs issued
on the TPer during the manufacturing process.

5.4.4.1 Templates and the Admin SP
Template metadata is stored in the Admin SP’s Table, Column, and MethodID tables.

In the Admin SP, the value of the TemplateID column in the Table table and MethodID table MAY be
zeroes. When the value of the TemplateID column in the Table or MethodID tables is zeroes (null uid
reference) it indicates that the row is a normal, active Table or MethodID table row of the Admin SP.
Otherwise, when it is not zeroes, the value of the TemplateID column in a row of the Admin SP's Table
table or MethodID table SHALL be the uid of the row of the Templates table to which that table
belongs. In addition, this indicates a table or method to be created when an SP is issued using that
template.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 240 of 314

Rows with a non-zero TemplateID are readable by Anybody.

The Rows column of the Table table on the Admin SP MAY be Set by the Issuers authority. The Rows
column indicates how many free rows are available in the given table after issuance is complete. Since
the process of issuing an SP MAY create rows in various tables, it is simpler to have this indicate “room
left for the host application to use” rather than “total space to allocate.”

In issued SPs (i.e. SPs other than the Admin SP), the TemplateID column value SHALL always be a
NULL UID.

5.4.4.2 Deleting SPs via the Admin SP
The TPer owner, or a host with equivalent permissions, is able to delete an SP by opening a session to
the Admin SP and invoking the Delete method on the SP object in the Admin SP’s SP table.

This method SHALL only operate within a Read-Write session to the Admin SP. The SP SHALL NOT
be deleted until the session is successfully closed. Upon successful deletion of the SP, the following
changes are made:

1. The row in the Admin SP’s SP table that represents this SP is deleted.

2. The value of the Instances column of the Admin SP’s Template table is reduced by 1 for each
of the templates that had been issued into the SP being deleted.

3. The SP itself is deleted. The means of deletion is implementation-specific. Once the SP has
been deleted, the Host SHALL no longer have the capability to open sessions to the SP.

4. Any TPer functionality affected by the existence of the SP based on the templates incorporated
into it is modified as defined in the appropriate Template reference section of this specification.

5.4.4.3 Admin SP Sessions
An open Read-Write session to the Admin SP SHALL NOT be able to be combined with sessions of
any type open to any other SPs on the TPer (including sessions that are already open when the attempt
to open a Read-Write session to the Admin SP is made).

5.4.4.3.1 Issuance Sessions
Issuance requires a session to the Admin SP that incorporates HostSigning, HostExchange,
SPExchange, and optionally SPSigning, all based on Manufacturer controlled Certificates. The Admin
SP SHALL require that the HostSigningAuthority and the HostExchangeAuthority (which MAY be
different) are present in the ORG section of the Authority Table. Certificate chain down is possible, to
the Chain Limit.

The critical method in issuance is IssueSP. The ACL on this method contains exactly one ACE that
SHALL NOT be changed, and it requires a Boolean combination of Authorities: (HostSigning AND
HostExchange AND SPExchange). The SPSigningAuthority is optional but recommended. Issuance
SHALL NOT be deemed completed until the method has completed successfully and the session has
successfully closed.

During issuance, the host is responsible for providing logging, and fetching information it requires to
confirm the issuance.

5.4.4.4 Authorities
The authorities that SHALL be required by the Admin Template are enumerated in Table 214.

Table 214 Default Admin Template Authorities
Name UID Common Name IsClass Class

Issuers 00 00 00 09 00 00 02 01 SPControl True

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 241 of 314

Name UID Common Name IsClass Class

Editors 00 00 00 09 00 00 02 02 SPControl True

Deleters 00 00 00 09 00 00 02 03 SPControl True

Servers 00 00 00 09 00 00 02 04 SPControl True

Reserve0 00 00 00 09 00 00 02 05 SPControl True

Reserve1 00 00 00 09 00 00 02 06 SPControl True

Reserve2 00 00 00 09 00 00 02 07 SPControl True

Reserve3 00 00 00 09 00 00 02 08 SPControl True

The TPerExch authority allows a secure session to be established immediately with the Admin SP.
Note the corresponding credentials contain certificate chains that establish the validity of TPerSign and
TPerExch signed by the manufacturer.

In addition to the authorities defined in Table 214, if a TPer supports Issuance, then it SHALL be
required that the Admin SP have up to an additional 216 entries in this table, in blocks of 16, starting
immediately after the default Base and Admin Template authorities. These are called ORG authority
blocks.

ORG0 is the ORG (anization) of the manufacturer or SP licensing authority. Other ORGs MAY include
other SP licensing authorities. The classes include SP Issuance authorities (Issuers), SP ORG Editors
that are able to edit values within an ORG block, SP Deleters that are restricted to deleting ORG
authorities within a 16 block, and SP Servers that are used to set up confidential messaging between
Issuance participants. Members of the Servers class are Sign and Exchange authorizations in order to
permit secure messaging.

5.4.4.5 Default Logging Settings
The default logging settings associated with the Admin Template methods are:

a. The default logging for Admin SP method, IssueSP, is LogAlways.

b. All other methods that apply to the Admin SP SHALL be as described in the Base Template
reference section (See Section 5.3.4.5).

5.4.5 Life Cycle
5.4.5.1 Admin Template-Specific Life Cycle State Descriptions/Exceptions
The Admin SP has the following characteristics based on the current life cycle state of that SP:

a. Disabled – Access control SHALL prevent the Admin SP from entering the Disabled state.

b. Frozen – Access control SHALL prevent the Admin SP from entering the Frozen state.

c. Issued-Disabled-Frozen – Access control SHALL prevent the Admin SP from entering the
Issued-Disabled-Frozen state.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 242 of 314

5.5 Clock Template
5.5.1 Overview
Begin Informative Content
The Clock Template enables an SP to manage information about time.
End Informative Content

A TPer MAY support any number of SPs that incorporate the Clock Template, up to the limit imposed
by the SSC or implementation and reported in the Admin SP's Template table.

5.5.2 Terminology

Table 215 Clock Template Terminology
Term Definition
ExactTime ExactTime is a time value represented by the clock_time type. ExactTime is a

return value in the GetClock method and a parameter of the SetClockHigh and
SetClockLow methods.

HighTime HighTime represents the actual current High Trust time value, which is the value
of the HighSetTime column plus the time elapsed on the IncrementalClock since
the HighSetTime value was set. This is the value returned as ExactTime when
GetClock is invoked and High Trust time is returned.

High Trust A time value retrieved from a remote but strongly protected source of time
IncrementalClock Each Clock Template-enabled SP SHALL have an incremental clock that is

accessible from the TPer and is used to measure time intervals.
LagTime The time period recorded by the Host Application between when it read time from

its time source and when it received the OK result from the SP upon successful
receipt and processing of the ExactTime parameter of the SetClockHigh or
SetClockLow method.

LowTime LowTime represents the actual current Low Trust time value, which is the value of
the LowSetTime column plus the time elapsed on the IncrementalClock since the
LowSetTime value was set. This is the value returned as ExactTime when
GetClock is invoked and Low Trust time is returned.

Low Trust An immediate but not strongly protected source of time, such as the local PC
clock

MonotonicTime A 64-bit persistent counter needed for clock requests that require a counter.
MonotonicTime operations increment the counter independent of transactions and
of the Read/Write state of the session.

MonotonicIncrement This is a counter kept in main memory that is used to reduce the number of writes
to media that are needed to support the MonotonicTime counter.

Timer Mode The Clock Template-enabled SP operates in this mode after a power
cycle/hardware reset, or if time values have never been set. Retrieving the time in
Timer mode returns the value of IncrementalClock and MonotonicTime.

5.5.3 Data Structures
5.5.3.1 ClockTime (Object Table)
The ClockTime table SHALL contain exactly one row, with UID=0x00 0x00 0x04 0x01 0x00 0x00
0x00 0x01.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 243 of 314

Table 216 ClockTime Table Description
Column
Number Column Name IsUnique Column Type

0x00 UID uid
0x01 HaveHigh boolean
0x02 HighByWhom Authority_object_ref
0x03 HighSetTime clock_time
0x04 HighInitialTimer clock_time
0x05 HighLag lag
0x06 HaveLow boolean
0x07 LowByWhom Authority_object_ref
0x08 LowSetTime clock_time
0x09 LowInitialTimer clock_time
0x0A LowLag lag
0x0B MonotonicBase uinteger_8
0x0C MonotonicReserve uinteger_8
0x0D TrustMode clock_kind

5.5.3.1.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.5.3.1.2 HaveHigh
If the value of this column is True, then the values in the High Trust time columns (HighByWhom,
HighSetTime, HighInitialTimer, and HighLag) are meaningful. If the value of the TrustMode column
is Low or Timer then the value of this column SHALL be False.

This column SHALL NOT be modifiable by the host.

5.5.3.1.3 HighByWhom
This is the uidref to the Authority that is in the control authority in the session in which the High Trust
time was set. This value is valid only if HaveHigh is set to True; otherwise it should be zeroes.

This column SHALL NOT be modifiable by the host.

5.5.3.1.4 HighSetTime
The value of this column is the time set to the value of the ExactTime parameter of the SetClockHigh
method when that method is successfully invoked. This value is valid only if HaveHigh is set to True;
otherwise it should be zeroes.

5.5.3.1.5 HighInitialTimer
The value of this column is set to the value of the IncrementalClock when the ExactTime parameter of
the SetClockHigh method was received. This value is valid only if HaveHigh is set to True; otherwise it
should be zeroes.

This column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 244 of 314

5.5.3.1.6 HighLag
The value of this column is set by the SetClockHigh method. This value is valid only if HaveHigh is set
to True; otherwise it should be zeroes. This represents seconds and fractions of a second.

This column SHALL NOT be modifiable by the host.

5.5.3.1.7 HaveLow
If the value of this column is True, then the values in the Low Trust time columns (LowByWhom,
LowSetTime, LowInitialTimer, and LowLag) are meaningful. If TrustMode is High or Timer, then this
value SHALL be False.

This column SHALL NOT be modifiable by the host.

5.5.3.1.8 LowByWhom
Authority that set the Low Trust time. This value is valid only if HaveLow is set to True; otherwise it
should be zeroes. This is the uidref to the Authority that is the control authority of the session.

This column SHALL NOT be modifiable by the host.

5.5.3.1.9 LowSetTime
The value of this column is the time set to the value of the ExactTime parameter of the SetClockLow
method when that method is successfully invoked. This value is valid only if HaveLow is set to True;
otherwise it SHOULD be zeroes.

This column SHALL NOT be modifiable by the host.

5.5.3.1.10 LowInitialTimer
The value of this column is set to the value of the IncrementalClock when the ExactTime parameter of
the SetClockLow method was received and processed. This value is valid only if HaveLow is set to
True; otherwise it SHOULD be zeroes.

This column SHALL NOT be modifiable by the host.

5.5.3.1.11 LowLag
The value of this column is set by the SetClockLow method. This value is valid only if HaveLow is set to
True; otherwise it SHOULD be zeroes. This represents seconds and fractions of a second.

This column SHALL NOT be modifiable by the host.

5.5.3.1.12 MonotonicBase
The monotonic time counter value is periodically saved here.

This column SHALL NOT be modifiable by the host.

5.5.3.1.13 MonotonicReserve
The value of this column indicates the frequency that the value of the MonotonicBase column is
updated. The value of MonotonicIncrement is added to MonotonicBase whenever MonotonicIncrement
== MonotonicReserve.

This column SHALL NOT be modifiable by the host.

5.5.3.1.14 TrustMode
This column value identifies whether HaveHigh, HaveLow, both, or neither are currently in effect.

5.5.4 Methods
The following section identifies methods that operate on the Clock.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 245 of 314

5.5.4.1 GetClock (Table Method)
This method is used to fetch information about the current time. See 5.5.5.7.

Successful invocation of this method increments the MonotonicTime.

ClockTimeTableUID.GetClock []
=>
[Kind : clock_kind, ExactTime : clock_time, LagTime : lag, MonotonicTime : uinteger
]

5.5.4.1.1 GetClock Result

5.5.4.1.1.1 Kind
This value returns the type of time currently active.

5.5.4.1.1.2 ExactTime
This value is the current time stored in the ClockTime table. The value returned is dependent on the
clock Kind that is currently active.

5.5.4.1.1.3 LagTime
This value returns the lag time associated with the current time stored in the ClockTime table. The
value returned is dependent on the clock Kind that is currently active.

5.5.4.1.1.4 MonotonicTime
This value is the current value of the monotonic counter. See 5.5.5.2

5.5.4.1.2 Fails
a. If ClockTimeTableUID is not the uid of the ClockTime table

5.5.4.2 ResetClock (Table Method)
Successful invocation of this method resets the Clock Template-enabled SP’s clock values and puts the
SP into Timer mode. This method is invoked automatically when a TPer undergoes a hardware
reset/power cycle.

ClockTimeTableUID.ResetClock []
=>
[]

5.5.4.2.1 ResetClock Result

5.5.4.2.1.1 Result
The ResetClock method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.5.4.2.2 Fails
a. If ClockTimeTableUID is not the uid of the ClockTime table

5.5.4.3 SetClockHigh (Table Method)
This is the first method in the method pair used to set the time from a High Trust source. For more
information on setting High Trust time, see 5.5.5.1.2.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 246 of 314

ClockTimeTableUID.SetClockHigh [
 ExactTime : clock_time]
=>
[]

5.5.4.3.1 ExactTime
This is the time value sent by the host to be stored in the ClockTime table.

5.5.4.3.2 SetClockHigh Result

5.5.4.3.2.1 Result
The SetClockHigh method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.5.4.3.3 Fails
a. If ClockTimeTableUID is not the uid of the ClockTime table.
b. If the SetLagHigh method is not received immediately after the SetClockHigh method.
c. If the value of TrustMode is not Low.

5.5.4.4 SetLagHigh (Table Method)
This is the second method in the method pair used to set the time from a High Trust source. For more
information on setting High Trust time, see 5.5.5.1.2.

ClockTimeTableUID.SetLagHigh [
 LagTime : lag]
=>
[LowPreserved : boolean]

5.5.4.4.1 LagTime
This value is the differential, in seconds and fractions of a second, recorded by the host application
between the time when it read the time source and the time it received confirmation from the TPer that
the time it sent was received.

5.5.4.4.2 SetLagHigh Result

5.5.4.4.2.1 LowPreserved
This value is a Boolean that returns True if Low Trust time values are preserved after setting of the High
Trust time source, and returns False otherwise.

5.5.4.5 SetClockLow (Table Method)
This is the first method in the method pair used to set the time from a Low Trust source. This
invocation is accepted only when the value of the TrustMode column is not “High”. For more
information see 5.5.5.1.3.

ClockTimeTableUID.SetClockLow [
 ExactTime : clock_time]
=>
[]

5.5.4.5.1 ExactTime

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 247 of 314

This is the time value sent by the host to be stored in the ClockTime table.

5.5.4.5.2 SetClockLow Result

5.5.4.5.2.1 Result
The SetClockLow method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.5.4.5.3 Fails
a. If ClockTimeTableUID is not the uid of the ClockTime table.
b. If the SetLagLow method is not received immediately after the SetClockLow method.
c. If the values of HighSetTime and HighLag do not bracket the SetClockLow method’s

ExactTime combined with the SetLagLow method’s LagTime.
d. If the value of the TrustMode column is not “High”.

5.5.4.6 SetLagLow (Table Method)
This is the second method in the method pair used to set the time from a Low Trust source. For more
information on setting High Trust time, see 5.5.5.1.3.

ClockTimeTableUID.SetLagLow [
 LagTime : lag]
=>
[]

5.5.4.6.1 LagTime
This value is the differential, in seconds and fractions of a second, recorded by the host application
between the time when it read the time source and the time it received confirmation from the TPer that
the time it sent was received.

5.5.4.6.2 SetLagLow Result

5.5.4.6.2.1 Result
The SetLagLow method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.5.4.7 IncrementCounter (Table Method)
This method increments and then returns the value of the monotonic counter. For more information see
5.5.5.2.

For two calls to IncrementCounter, the later call SHALL always return a value that is greater than that
returned by the earlier call.

This method is permitted in a Read-Only session. The incrementing of the counter’s value is not subject
to transactional rollback.

ClockTimeUID.IncrementCounter []
=>
[MonotonicTime : uinteger]

5.5.4.7.1 IncrementCounter Result

5.5.4.7.1.1 MonotonicTime
This method returns a uinteger that is the current value of the monotonic counter.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 248 of 314

5.5.4.7.2 Fails
a. If ClockTimeTableUID is not the uid of the ClockTime table.

5.5.5 Descriptions

Begin Informative Content
The Clock Template enables an SP to keep track of date-time utilizing two time markers:

a. A time value called ExactTime that records a time stamp that is interpretable either in
Generalized Time or UTC Time format.

b. An error value called LagTime
End Informative Content

5.5.5.1 Setting the Time
The SP that incorporates the Clock Template receives the time from a Host Application. It is expected
that the Host Application or some process communicating through the Host Application monitors and
records the time lag between the point when the Host Application reads the clock time from the source
it is using to get the time, and the point when the Host Application receives confirmation from the SP
that the value has been received.

The Host Application then sends to the SP the lag that it has recorded and, on receipt of this value, the
SP records both the time and the lag in the ClockTime table. In this way, the SP has a value for the
time and is able to bracket the error.

5.5.5.1.1 High Trust vs. Low Trust
A distinction is made between time from a High Trust source and time from a Low Trust source. A High
Trust source MAY be a remote but strongly protected source of time. A Low Trust source MAY be an
immediate but not strongly protected source of time, such as the local PC clock.

The High Trust source is expected to be able to provide a more authoritative time, but with a larger lag,
so the High Trust source is used to bracket the Low Trust source. In this way, a Low Trust but accurate
time MAY also be detected and used.

When the TrustMode is LowAndHigh and both High Trust and Low Trust values are present, then the
Low Trust time is rejected if it isn’t confirmed by the High Trust time. Specifically, the following should
be true (See 5.5.5.3 for descriptions of LowTime and HighTime):

a. LowTime > HighTime.
b. LowTime + LowLag < HighTime + HighLag.

If either of these conditions is not true, the Low Trust value is discarded because it is probably wrong.
This means that if Low Trust values exist in the ClockTime table, a SetClockHigh method invocation is
received, and either of the above conditions is false, then the Low Trust values are set to 0; or, if High
Trust values exist in the ClockTime table and a SetClockLow method invocation is received, the
method invocation fails if either of the above conditions is not true.

The SP that incorporates the Clock Template MAY accept a Low Trust time with or without an existing
High Trust bracket, or just a High Trust time.

5.5.5.1.2 Setting High Trust Time
High Trust Time is set using the SetClockHigh/SetLagHigh method pair.

The invocation of these methods operate as follows:

1. The host invokes the SetClockHigh method on the ClockTime table. The ExactTime input is
received and processed. At this time the value that is eventually used to set
HighInitialTimer should be computed by the SP, by reading the IncrementalClock value.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 249 of 314

2. The SP returns a Result of “True”, indicating that the ExactTime value was received and
processed.

3. The host invokes the SetLagHigh method on the ClockTime table. This method SHALL be the
next method invoked by the host after invocation of the SetClockHigh method invocation. If it
is not, the SetClockHigh method’s ExactTime values to be stored in the ClockTime table
SHALL NOT be saved to the table. When the SetLagHigh method is received under this
condition, the LagTime input is received and processed. If this invocation is accepted, then

1. The value of the HaveHigh column is set to True.

2. The value of the HighByWhom column is set to the authority for this session.

3. The value of the HighSetTime column is set to ExactTime.

4. The value of the HighInitialTimer column is set to the previously read
IncrementalClock value.

5. The value of the HighLag column is set to LagTime.

4. If the new HighSetTime and HighLag values do not bracket existing LowSetTime and LowLag
values, then the value of the HaveLow column is set to False and the values of the LowByWhom,
LowSetTime, LowInitialTimer, and LowLag columns are set to zeroes. For additional
information, see 5.5.5.1.1.

Once all of the above steps have been processed, the SP SHALL return the method result. If step 3
was completed successfully, the Result is returned as True. If any of the updates in step 3 were not
successfully completed, Result is returned as False. If the HaveLow column is not set to False from
True and the LowByWhom, LowSetTime, LowInitialTimer and LowLag columns are not set to zeroes
due to the described bracketing, then LowPreserved is returned as True. Otherwise, Low is returned as
False.

5.5.5.1.3 Setting Low Trust TIme
Low Trust Time is set using the SetClockLow/SetLagLow method pair.

The invocation of these methods operate as follows:

1. The host invokes the SetClockLow method on the ClockTime table. The ExactTime input is
received and processed. At this time the value that is eventually used to set LowInitialTimer
should be computed by the SP by reading the IncrementalClock value.

2. The SP returns a Result of “True”, indicating that the ExactTime value was received and
processed.

3. The host invokes the SetLagLow method on the ClockTime table. This method SHALL be the
next method invoked by the host after invocation of the SetClockLow method invocation. If it is
not, the SetClockLow method’s ExactTime values to be stored in the ClockTime table SHALL
NOT be saved to the table. When the SetLagLow method is received under this condition, the
LagTime input is received and processed. If this invocation is accepted, then

1. The value of the HaveLow column is set to True.

2. The value of the LowByWhom column is set to the authority for this session.

3. The value of the LowSetTime column is set to ExactTime.

4. The value of the LowInitialTimer column is set to the previously read
IncrementalClock value.

5. The value of the LowLag column is set to LagTime

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 250 of 314

4. If the value of TrustMode is LowAndHigh and HaveHigh is True, then this call SHALL be
accepted only when the existing HighSetTime and HighLag values bracket the new
LowSetTime and LowLag values. For additional information, see 5.5.5.1.1.

Once all of the above steps have been processed, the SP SHALL return the method result. If step 3
was completed successfully and the condition noted in step 4 was met, the updates are made to the
ClockTime table and the Result is returned as True. If any of the updates in step 3 were not
successfully completed or the condition noted in Step 4 was not met, Result is returned as False.

5.5.5.2 Monotonic Counter
An SP that incorporates the Clock Template also SHALL independently maintain a counter that
increments every time a clock time is read – this is a 64-bit persistent counter called MonotonicTime.
The counter is incremented independent of transactions and of the Read/Write state of the session.

This counter is needed for clock requests that require a counter, since it is possible to have the SP time
set back in time, and to enable differentiation between multiple requests received at the same clock
time.

For each SP that incorporates the Clock Template, there SHALL also be a counter kept in main
memory called MonotonicIncrement. This counter is used to reduce the number of writes to media that
are needed to support the MonotonicTime.

The value of the virtual variable MonotonicTime that the user sees (via the IncrementCounter or
GetClock methods) SHALL be:

 MonotonicTime = MonotonicBase + MonotonicIncrement

The following is always true:

 0 < MonotonicIncrement < MonotonicReserve

Note that in this case, MonotonicBase and MonotonicReserve are not necessarily the values stored in
the ClockTime table. Rather, these values of MonotonicBase and MonotonicReserve are written to
media only as needed to guarantee that the IncrementCounter method always returns a unique value
after a power cycle, etc.

In order to reduce writes to media, the MonotonicBase value stored in the ClockTime table is only
occasionally updated. This is controlled by the value in the MonotonicReserve column of the
ClockTime table.

The host MAY increment the Monotonic Counter value directly via invocation of the IncrementCounter
method. This is done as follows:

if ++MonotonicIncrement == MonotonicReserve

MonotonicBase += MonotonicReserve

MonotonicIncrement = 0

ClockTime.MonotonicBase = MonotonicBase

return MonotonicTime = MonotonicBase + MonotonicIncrement

5.5.5.3 Incremental Clock
Each TPer SHALL have a quickly accessible incremental clock. This is referred to as IncrementalClock.
Although this clock does not have the correct absolute time, it is accurate in measuring time intervals.

To support Host interaction with the Clock Template-enabled SP, two virtual variables – HighTime and
LowTime – are used. HighTime and LowTime internally represent actual current time values.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 251 of 314

Calculation of the values of HighTime and LowTime uses the original time set (the value of the
HighSetTime or LowSetTime columns), the value of IncrementalClock when those columns were set
(the value of the HighInitialTimer or LowInitialTimer columns), and the current value of
IncrementalClock:

 HighTime = HighSetTime + (IncrementalClock – HighInitialTimer)

 LowTime = LowSetTime + (IncrementalClock – LowInitialTimer)

The HighTime value is changed to new value v as follows (as when a SetClockHigh or SetClockLow
method invocation is received):

 HighSetTime = v

 HighInitialTimer = IncrementalClock

The LowTime virtual variable is changed similarly.

This approach avoids the need to update the media as the value of IncrementalClock changes.

Some TPers MAY also include other special hardware that is used to implement the Clock Template.
These include a real-time clock (with battery backup) and non-volatile memory that is used to store
monotonic counter values.

5.5.5.4 Timer Mode
The Clock Template provides an additional time mode, Timer Mode, to identify when the time has been
un-set after a disk controller reset or if the SP has never had a time set.

After a TPer reset or upon issuance, the SP is in Timer mode. In Timer mode, the time is incremented,
but a successful invocation of the GetClock method SHALL return a clock_kind of “Timer”, the values of
the IncrementalClock and MonotonicTime, and a LagTime of 0. This indicates that the time value is not
able to be trusted as an absolute because of the reset.

The ResetClock method is invoked at power up or after a TPer reset, before the SP that incorporates
the Clock Template is accessible. This places the TPer into Timer Mode.

If the TPer has a real-time clock, the TPer SHALL use that value at power up or after a TPer reset while
the real-time clock has power. Otherwise, the TPer reverts to the behavior previously described.

5.5.5.5 Storing Time
The clock_time data type is used to represent time in the ClockTime and other tables. This type
MAY be used to represent either UTC or Generalized time.

5.5.5.6 Storing LagTime
LagTime is stored in the ClockTime table and represented as a method parameter or return result by
the lag_time abstract type.

5.5.5.7 Reading the Time
The current time values stored by the Clock Template-enabled SP are retrieved using the GetClock
method. The values returned are dependant on the trust values of the time stored.

If the value of the HaveLow column is True and the value of the HaveHigh column is False, then the
result of the GetClock method invocation, in pseudo code, are [“Low”, LowTime, LowLag,
MonotonicTime].

If the value of the HaveHigh column is True, then the result of the GetClock method invocation, in
pseudo code, are [“High”, HighTime, HighLag, MonotonicTime].

If the value of both the HaveLow and HaveHigh columns is False then the result, in pseudo code, is
[“Timer”, IncrementalClock, 0, MonotonicTime].

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 252 of 314

5.5.5.8 Resetting the Clock
The time values in a Clock Template-enabled SP are reset using the ResetClock method.

The following properties are set when this method is invoked:

a. The HaveHigh column of the ClockTime table is set to False, and the values of the
HighByWhom, HighSetTime, HighInitialTimer, and HighLag columns are set to zeroes.

b. The HaveLow column of the ClockTime table is set to False, and the values of the
LowByWhom, LowSetTime, LowInitialTimer, and LowLag columns are set to zeroes.

c. MonotonicIncrement = 0

d. ClockTime.TrustMode = Timer

e. If ClockTime.MonotonicReserve == 0x00

a. ClockTime.MonotonicReserve = <some small value, e.g. 100>

b. ClockTime.MonotonicBase = ClockTime.MonotonicBase + ClockTime.MonotonicRe
serve

c. MonotonicBase = ClockTime.MonotonicBase

d. MonotonicReserve = ClockTime.MonotonicReserve

Note that this guarantees that the MonotonicTime value always increases (although it MAY, in a
ResetClock, skip up to the value of MonotonicReserve).

5.5.5.9 Default Logging Settings
The default logging settings associated with the Clock Template methods are:

a. The default logging for all Clock Template-enabled methods (ResetClock, SetClockHigh,
SetClockLow, IncrementCounter) is LogAlways.

b. All other methods that apply to the ClockTime table are as described in the Base Template
reference section (See Section 5.3.4.5).

5.5.6 Life Cycle
5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Clock Template has the following characteristics based on the current life cycle
state of that SP:

a. Disabled – If the Clock Template-enabled SP has entered the Disabled state, the SP
SHALL log authentication, session startup, and method invocation attempts, if the Log
Template has been issued into the SP. These log entries SHALL have timestamps of the
kind appropriate to that log entry. TPer resets SHALL cause the SP’s ClockTime table to
revert to Timer mode. Log entries added while the SP is in the Disabled state SHALL NOT
be retrievable – see other behaviors of SPs in the Disabled state, as described in section
4.5.2.

b. Frozen – Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail.

c. Issued-Disabled-Frozen – Attempts to open sessions to an SP in the Issued-Disabled-
Frozen state SHALL fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 253 of 314

5.6 Crypto Template
5.6.1 Overview
Begin Informative Content

The Crypto Template provides a set of cryptographic methods that operate on public and symmetric
key store tables, collectively called Credential tables, provided by the Base and other Templates. The
Crypto Template also provides a set of tables that supports these methods.

The set of cryptographic methods that the Crypto Template provides support functionality that includes
Encryption, Decryption, Signing, Verifying, Hashing, HMAC, and XOR. Other Templates MAY provide
Credential tables to an SP. Credential tables in an SP that does not incorporate the Crypto Template
MAY be key stores or contain credentials for use in media encryption, secure messaging, and
authentication. Incorporating the Crypto Template into an SP enables the host to perform encryption,
decryption, signing, and verification on the TPer, using keys and data stored on the TPer.

End Informative Content

5.6.2 Terminology

Table 217 Crypto Template Terminology
Term Definition
"stream" The term "stream", used in quotation marks in this section, is not related to session or

messaging streams. Rather, this term is used to identify a single operational context related
to a particular cryptographic operation. A "stream" is created using an initialization method, is
operated on by one or more calculation methods of the type appropriate to the initialized
"stream", and is closed by a finalization method. A particular context SHALL deal only with
the operation associated with it (encrypt, decrypt, HMAC, or hash).

5.6.3 Data Structures
Begin Informative Content

The Crypto Template provides tables similar to the Credential tables described by the Base and other
Templates. However, unlike those Credential tables, which represent key stores for authentication
associations, the Crypto Template’s tables are Credential support tables optimized for incremental on-
TPer operations.

End Informative Content

5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table)
This section describes the support table for use with SHA-1 hashing operations. Objects in this table
are used with the HashInit, Hash, HashFinalize, HMACInit, HMAC, HMACFinalize, Sign, and Verify
methods.

Table 218 H_SHA_1 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Proof bytes_20
0x04 Accumulator bytes_20
0x05 Signer cred_object_uidref

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 254 of 314

5.6.3.1.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.6.3.1.2 Name
This is the name of the object.

For H_SHA_1 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.1.3 CommonName
This is a name that MAY be shared by multiple H_SHA_1 objects.

For H_SHA_1 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.1.4 Proof
This is the proof to be checked when the Verify method is invoked on this credential object; or this is
the proof to be created when the Sign method is invoked on this Credential object.

5.6.3.1.5 Accumulator
This is the accumulator where a new hash is incrementally created upon invocation of the Hash or
HMAC methods on this credential, or where an initial condition is set.

5.6.3.1.6 Signer
This is a uidref to the signing/verification credential object. This is the signing credential whose public
key or symmetric key decrypts the proof to reveal the proof’s underlying hash when the Verify method
is invoked; or whose private or symmetric key encrypts the proof when the Sign method is invoked on
this credential; or whose HMAC key is used when the HMAC methods are invoked on this credential.

5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table)
This section describes the support table for use with SHA-256 hashing operations. Objects in this table
are used with the HashInit, Hash, HashFinalize, HMACInit, HMAC, HMACFinalize, Sign, and Verify
methods.

Table 219 H_SHA_256 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Proof bytes_32
0x04 Accumulator bytes_32
0x05 Signer cred_object_uidref

5.6.3.2.1 UID
This is the unique identifier of this row in the table.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 255 of 314

This column SHALL NOT be modifiable by the host.

5.6.3.2.2 Name
This is the name of the object.

For H_SHA_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.2.3 CommonName
This is a name that MAY be shared by multiple H_SHA_256 objects.

For H_SHA_256 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.2.4 Proof
This is the proof to be checked when the Verify method is invoked on this credential object; or this is
the proof to be created when the Sign method is invoked on this Credential object.

5.6.3.2.5 Accumulator
This is the accumulator where a new hash is incrementally created upon invocation of the Hash or
HMAC methods on this credential, or where an initial condition is set.

5.6.3.2.6 Signer
This is a uidref to the signing/verification credential object. This is the signing credential whose public
key or symmetric key decrypts the proof to reveal the proof’s underlying hash when the Verify method
is invoked; or whose private or symmetric key encrypts the proof when the Sign method is invoked on
this credential; or whose HMAC key is used when the HMAC methods are invoked on this credential.

5.6.3.3 Cryptographic Support Group - H_SHA_384 (Object Table)
This section describes the support table for use with SHA-384 hashing operations. Objects in this table
are used with the HashInit, Hash, HashFinalize, HMACInit, HMAC, HMACFinalize, Sign, and Verify
methods.

Table 220 H_SHA_384 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Proof bytes_48
0x04 Accumulator bytes_48
0x05 Signer cred_object_uidref

5.6.3.3.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.6.3.3.2 Name
This is the name of the object.

For H_SHA_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 256 of 314

5.6.3.3.3 CommonName
This is a name that MAY be shared by multiple H_SHA_384 objects.

For H_SHA_384 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.3.4 Proof
This is the proof to be checked when the Verify method is invoked on this credential object; or this is
the proof to be created when the Sign method is invoked on this Credential object.

5.6.3.3.5 Accumulator
This is the accumulator where a new hash is incrementally created upon invocation of the Hash or
HMAC methods on this credential, or where an initial condition is set.

5.6.3.3.6 Signer
This is a uidref to the signing/verification credential object. This is the signing credential whose public
key or symmetric key decrypts the proof to reveal the proof’s underlying hash when the Verify method
is invoked; or whose private or symmetric key encrypts the proof when the Sign method is invoked on
this credential; or whose HMAC key is used when the HMAC methods are invoked on this credential.

5.6.3.4 Cryptographic Support Group - H_SHA_512 (Object Table)
This section describes the support table for use with SHA-512 hashing operations. Objects in this table
are used with the HashInit, Hash, HashFinalize, HMACInit, HMAC, HMACFinalize, Sign, and Verify
methods.

Table 221 H_SHA_512 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Proof bytes_64
0x04 Accumulator bytes_64
0x05 Signer cred_object_uidref

5.6.3.4.1 UID
This is the unique identifier of this row in the table.

This column SHALL NOT be modifiable by the host.

5.6.3.4.2 Name
This is the name of the object.

For H_SHA_512 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.4.3 CommonName
This is a name that MAY be shared by multiple H_SHA_512 objects.

For H_SHA_512 objects that exist at issuance, this column SHALL NOT be modifiable by the host.

5.6.3.4.4 Proof

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 257 of 314

This is the proof to be checked when the Verify method is invoked on this credential object; or this is
the proof to be created when the Sign method is invoked on this Credential object. T

5.6.3.4.5 Accumulator
This is the accumulator where a new hash is incrementally created upon invocation of the Hash or
HMAC methods on this credential, or where an initial condition is set.

5.6.3.4.6 Signer
This is a uidref to the signing/verification credential object. This is the signing credential whose public
key or symmetric key decrypts the proof to reveal the proof’s underlying hash when the Verify method
is invoked; or whose private or symmetric key encrypts the proof when the Sign method is invoked on
this credential; or whose HMAC key is used when the HMAC methods are invoked on this credential.

5.6.4 Methods
5.6.4.1 Random Number Related Method Group - Random (SP Method)
This section describes the method used to generate random numbers. This method returns a
sequence of random bytes of a specified size. The quality of random numbers generated is under the
purview of the conformance profile.

ThisSP.Random[
Count : uinteger,
BufferOut = cell_block]

=>
[Result : bytes]

5.6.4.1.1 Count
This parameter specifies the size, bytes, of the sequence of random bytes to be generated.

5.6.4.1.2 BufferOut
This value identifies a specific cell or range of cells to which the generated bytes are stored.

All cells identified by the BufferOut parameter and to be written with the method result SHALL be of
type bytes. Cells are filled from the lowest column number to the highest column number.

5.6.4.1.3 Random Result

5.6.4.1.3.1 Result
This is the value randomly generated by invocation of this method. If the BufferOut parameter is
specified, Result SHALL be empty.

5.6.4.2 Random Number Related Method Group – Stir (SP Method)
The purpose of this method is to add additional information for use by the Random method for
subsequent invocations of that method.

ThisSP.Stir[
 Value : typeOr { Input : bytes, Internal : boolean }]
=>
[]

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 258 of 314

5.6.4.2.1 Value

5.6.4.2.1.1 Input
Invocation of the Stir method with the bytes Input parameter allows the host to pass a string of bytes
of its choice as the information to be added for use by the Random method.

5.6.4.2.1.2 Internal
Invocation of the Stir method with the Boolean Internal parameter indicates that the TPer should
generate the information to be used by the Random method.

Invocation of the Stir method with a Value parameter of False SHALL result in the method invocation
failing and returning a non-success status code.

5.6.4.2.2 Fails
a. BufferOut is not big enough to hold "Count" bytes
b. Set access control is not satisfied for BufferOut
c. BufferOut does not reference a byte table or references a cell that is not of type bytes

5.6.4.2.3 Stir Result

5.6.4.2.3.1 Result
The Stir method returns an empty list. Success or failure of the method invocation is determinable
based on the status code returned in response to the method invocation.

5.6.4.3 Decryption Method Group – DecryptInit (Object Method)
This method is used to initiate a decryption “stream” using the credential object that invoked the
method. Only one decryption “stream” SHALL be able to be open at any one time for any individual
credential object.

CredentialObjectUID.DecryptInit [
IV = bytes]

=>
[]

5.6.4.3.1 IV
If the IV parameter is included, the parameterized IV is used in place of that which is stored in the
credential object itself.

5.6.4.3.2 DecriptInit Result

5.6.4.3.2.1 Result
The DecryptInit method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.6.4.3.3 Fails
a. If the object does not exist
b. If the object does not contain a valid credential
c. If the object currently already has a decryption “stream” open

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 259 of 314

5.6.4.4 Decryption Method Group - Decrypt (Object Method)
The Decrypt method causes the TPer to perform decryption on the data supplied using the credential
object that invoked the method. The value passed upon invocation of the Decrypt method is decrypted
using the key in the specified credential.

This method SHALL require that the DecryptInit method has been invoked previously during the
session to start a decryption “stream” for the invoking credential object, and that the DecryptFinalize
method has not yet been invoked to close that “stream”. Invoking the Decrypt method when there is
no open decryption “stream” (i.e. before DecryptInit or after DecryptFinalize) SHALL result in an
error.

CredentialObjectUID.Decrypt [
Input : typeOr { Data : bytes, Buffer : cell_block },
BufferOut = cell_block]

=>
[Result : bytes]

5.6.4.4.1 Input
The value of the Input parameter MAY be either a bytes value, wherein bytes to be decrypted are
passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that
holds the data to be decrypted.

5.6.4.4.1.1 Data
This input parameter is used to supply bytes directly from the host for decryption. The required length
of the bytes is dependant upon the mode of operation selected for the credential. Should padding be
required, the host SHALL perform it.

5.6.4.4.1.2 Buffer
This input parameter is used to identify a block of table cells where the data to be decrypted is stored.
If the host invokes the Decrypt method using the data addressed via the cellblock as data input, then in
addition to fulfilling the access control on the Decrypt method, the host SHALL also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

5.6.4.4.2 BufferOut
This parameter identifies the cells to which the decrypted data should be set. If this value is specified,
the Input byte length SHALL be equal in size to or smaller than the cellblock specified for the Result.

If the host invokes the Decrypt method using the BufferOut cellblock as the target for the result bytes,
then in addition to fulfilling the access control on the Decrypt method, the host SHALL also fulfill the
access control required to invoke the Set method on the entirety of that cellblock.

5.6.4.4.3 Decrypt Result

5.6.4.4.3.1 Result
The result of the invocation of this method is the plaintext value of the bytes submitted for decryption. If
the BufferOut parameter is specified, the method Result SHALL be empty.

5.6.4.4.4 Fails
a. If the object does not exist
b. If the object does not contain a valid credential
c. If the DataInput cellblock reference is not a to valid cellblock
d. If the DataInput is a cellblock reference and Get access control on that cellblock has not

been fulfilled
e. If the BufferOut is not a valid cellblock

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 260 of 314

f. If BufferOut has been specified and Set access control on that cellblock has not been
fulfilled

g. If the DataInput byte size is not the same size as or smaller than the BufferOut cell size (if
specified)

h. If Decrypt has been invoked when no decryption “stream” is open

5.6.4.5 Decryption Method Group – DecryptFinalize (Object Method)
Invocation of this method closes the decryption “stream” associated with this object.

CredentialObjectUID.DecryptFinalize []
=>
[Result : bytes]

5.6.4.5.1 DecryptFinalize Result

5.6.4.5.1.1 Result
The result of this method is any remaining decrypted data from the previous Decrypt method
invocation that has not yet been returned to the host.

5.6.4.5.2 Fails
a. If the object does not exist
b. If the object does not contain a valid credential
c. If there is no decryption “stream” open for this credential object

5.6.4.6 Encryption Method Group – EncryptInit (Object Method)
This method is used to initiate an encryption “stream” using the credential object that invoked the
method. Only one encryption “stream” SHALL be able to be open at any one time for any individual
credential object.

CredentialObjectUID.EncryptInit [
IV = bytes]

=>
[]

5.6.4.6.1 IV
If the IV parameter is included, the parameterized IV is used in place of that which MAY be stored in the
credential object itself.

5.6.4.6.2 EncryptInit Result

5.6.4.6.2.1 Result
The EncryptInit method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.6.4.6.3 Fails
a. If the object does not exist
b. If the object does not contain a valid credential
c. If the object currently already has an encryption “stream” open

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 261 of 314

5.6.4.7 Encrytion Method Group - Encrypt (Object Method)
The Encrypt method causes the TPer to perform encryption on the data supplied using the credential
object that invoked the method. The value passed upon invocation of the Encrypt method is encrypted
using the key in the specified credential.

This method SHALL require that the EncryptInit method has been invoked previously during the
session to start an encryption “stream” for the invoking credential object, and that the EncryptFinalize
method has not yet been invoked to close that “stream”. Invoking the Encrypt method when there is
no open encryption “stream” (i.e. before EncryptInit or after EncryptFinalize) SHALL result in an
error.

CredentialObjectUID.Encrypt [
Input : typeOr { Data : bytes, Buffer : cell_block },
BufferOut = cell_block]

=>
[Result : bytes]

5.6.4.7.1 Input
The value of the Input parameter MAY be either a bytes value, wherein bytes to be encrypted are
passed as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that
holds the data to be decrypted.

5.6.4.7.1.1 Data
This input parameter is used to supply bytes directly from the host for encryption. The required length
of the bytes is dependant upon the mode of operation selected for the credential. Should padding be
required, the host SHALL perform it.

5.6.4.7.1.2 Buffer
This input parameter is used to identify a block of table cells where the data to be encrypted is stored.
If the host invokes the Encrypt method using the data addressed via the cellblock as data input, then in
addition to fulfilling the access control on the Encrypt method, the host SHALL also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

5.6.4.7.2 BufferOut
This parameter identifies the cells to which the encrypted data is to be set. If this value is specified, the
Input byte length SHALL be equal in size to or smaller than the cellblock specified for the Result.

If the host invokes the Encrypt method using the BufferOut cellblock as the target for the result bytes,
then in addition to fulfilling the access control on the Encrypt method, the host SHALL also fulfill the
access control required to invoke the Set method on the entirety of that cellblock.

5.6.4.7.3 Encrypt Result

5.6.4.7.3.1 Result
The result of the invocation of this method is the ciphertext value of the bytes submitted for encryption.
If the BufferOut parameter is specified, the method Result SHALL be empty.

5.6.4.7.4 Fails
a. If the object does not exist
b. If the object does not contain a valid credential
c. If the DataInput cellblock reference is not a to valid cellblock
d. If the DataInput is a cellblock reference and Get access control on that cellblock has not

been fulfilled
e. If the BufferOut is not a valid cellblock

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 262 of 314

f. If BufferOut has been specified and Set access control on that cellblock has not been
fulfilled

g. If the DataInput byte size is not the same size as or smaller than the Result cell size (if
specified).

h. If Encrypt has been invoked when no encryption “stream” is open

5.6.4.8 Encryption Method Group – EncryptFinalize (Object Method)
Invocation of this method closes the encryption “stream” associated with this object.

CredentialObjectUID.EncryptFinalize []
=>
[Result : bytes]

5.6.4.8.1 EncryptFinalize Result

5.6.4.8.1.1 Result
The result of this method is any remaining encrypted data from the previous Encrypt method
invocation that has not yet been returned to the host.

5.6.4.8.2 Fails
a. If the object does not exist
b. If the object does not contain a valid credential
c. If there is no encryption “stream” open for this credential object

5.6.4.9 Sign (Object Method)
This method is used to sign a data input using the private part of a public-private key pair.

CredentialObjectUID.Sign
HashObjectUID.Sign[

Input = typeOr { Data : bytes, Buffer : cell_block },
BufferOut = cell_block]

=>
[Result : bytes]

5.6.4.9.1 Input
The value of the Input parameter MAY be either a bytes value, wherein bytes to be signed are passed
as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that holds the
data to be signed.

For the Sign method invoked on an asymmetric credential object, the Input value is signed using the
private part of the key pair of the specified public key credential.

For the Sign method invoked on a hash object, the data in the hash object’s Accumulator column is
signed using the private part of the key pair of the public key credential referenced in the hash object’s
Signer column. It is an error for the Sign method to be invoked on a hash object and have the Input
parameter specified.

When invoking Sign on a hash object, access control on the Sign method for the credential referenced
in the Signer column of the hash object SHALL be fulfilled.

5.6.4.9.1.1 Data

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 263 of 314

This input parameter is used to supply bytes directly from the host for signing. Should padding be
required, the host SHALL perform it.

5.6.4.9.1.2 Buffer
This input parameter is used to identify a block of table cells where the data to be signed is stored. If
the host invokes the Sign method using the data addressed via the cellblock as data input, then in
addition to fulfilling the access control on the Sign method, the host SHALL also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

5.6.4.9.2 BufferOut
This parameter identifies the cells to which the signed data should be set. If the this value is specified,
the Input byte length SHALL be equal in size to or smaller than the cellblock specified for the Result.

If this parameter is specified as the target of the method result, in addition to fulfilling the access control
requirements to invoke the Sign method, the host SHALL also fulfill the access control requirements
necessary to invoke the Set method on the entirety of the specified cellblock.

5.6.4.9.3 Sign Result

5.6.4.9.3.1 Result
The result of the invocation of this method is the signed bytes that were submitted to the method. If the
BufferOut parameter is specified, the method Result SHALL be empty.

5.6.4.9.4 Fails
a. If the invoking object does not exist
b. If the Sign method is invoked on a hash object and that object does not reference a valid

public key credential (RSA, EC)
c. If the invoking credential, or the credential referenced from the hash object, does not

contain a valid private key
d. If the DataInput cellblock reference is not a to valid cellblock
e. If the host application has not fulfilled the access control requirements necessary to invoke

the Get method on the DataInput cellblock
f. If the BufferOut is not a valid cellblock
g. If the host application has not fulfilled the access control requirements necessary to invoke

the Set method on the BufferOut cellblock

5.6.4.10 Verify (Object Method)
This method MAY be invoked on a hash object or a public key credential. It is used to verify a signed
hash against a proof.

CredentialObjectUID.Verify [
HashObjectUID.Verify [

Input : typeOr { Data : bytes, Buffer : cell_block},
Data : typeOr { Proof : bytes, ProofBuffer : cell_block }]

=>
[Result : boolean]

5.6.4.10.1 Input
The value of the Input parameter MAY be either a bytes value, wherein bytes to be verified are passed
as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that holds the
data to be verified.

5.6.4.10.1.1 Data

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 264 of 314

This input parameter is used to supply bytes directly from the host for verification.

5.6.4.10.1.2 Buffer
This input parameter is used to identify a block of table cells where the data to be verified is stored. If
the host invokes the Verify method using the data addressed via the cellblock as data input, then in
addition to fulfilling the access control on the Verify method, the host SHALL also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

5.6.4.10.2 Data
The value of the Data parameter identifies the data that the Input is to be compared against. The value
of this parameter MAY be either a bytes value, wherein the proof data bytes are passed as a parameter
of the method; or a cellblock that addresses a subset of a table on the SP that holds the proof data.

5.6.4.10.2.1 Proof
This input parameter is used to supply bytes directly from the host against which the data input is to be
verified.

5.6.4.10.2.2 ProofBuffer
This input parameter is used to identify a block of table cells where the data to be verified against
stored. If the host invokes the Verify method using the data addressed via the cellblock as data input,
then in addition to fulfilling the access control on the Verify method, the host SHALL also fulfill the
access control required to invoke the Get method on the entirety of that cellblock.

5.6.4.10.3 Verify Result

5.6.4.10.3.1 Result
The result of this method invocation is a Boolean value that is True if the verification of the data against
the proof is successful, and False otherwise.

5.6.4.10.4 Fails
a. If the invoking object does not exist.
b. If the invoking credential object is not a valid public key credential (RSA, EC).
c. If the invoking hash object does not reference a public key credential.
d. If the host application has not fulfilled the access control requirements necessary to invoke

the Get method on the DataInput or Proof cellblock.
e. If the DataInput or Proof are not valid cellblocks.

5.6.4.11 Hash Method Group – HashInit (Object Method)
This method is used to initiate a hash “stream” using the hash object that invoked the method. Only
one hash “stream” SHALL be able to be open at any one time for any individual hash object.

Invocation of this method is required before the Hash method MAY be successfully invoked. In
preparation for beginning the hash “stream”, upon successful invocation of the Hashinit method, the
invoking hash object’s Accumulator column is set to zero.

HashObjectUID.HashInit [
 BufferOut = cell_block]
=>
[]

5.6.4.11.1 BufferOut

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 265 of 314

This parameter is used to identify a block of table cells to which the hashed data is to be set. If this
value is specified, the Input byte length SHALL be equal in size to or smaller than the cellblock
specified for the Result.

If the host invokes this method using the BufferOut cellblock as the target for the result, then in addition
to fulfilling the access control on the Hash method, the host SHALL also fulfill the access control
required to invoke the Set method on the entirety of that cellblock.

5.6.4.11.2 HashInit Result

5.6.4.11.2.1 Result
The HashInit method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.6.4.11.3 Fails
a. If the hash object does not exist
b. If BufferOut has been specified and is not a valid cellblock
c. If BufferOut has been specified and is not larger than or equal to the size of the hash

calculation result
d. If BufferOut has been specified and Set access control on that cellblock has not been

fulfilled
e. If the hash object currently already has a hash “stream” open

5.6.4.12 Hash Method Group – Hash (Object Method)
Invocation of the Hash method causes the data supplied in the Input parameter to be hashed. The TPer
hashes the data on block boundaries as they are reached.

This method SHALL require that the HashInit method has been invoked previously during the session
to start a hash “stream” for the invoking hash object, and that the HashFinalize method has not yet
been invoked to close that “stream”. Invoking the Hash method when there is not an open hash
“stream” (i.e. before HashInit or after HashFinalize) SHALL result in an error.

HashObjectUID.Hash [
Input : typeOr { Data : bytes, BufferIn : cell_block }]

=>
[Result : bytes]

5.6.4.12.1 Input
The value of the Input parameter MAY be either a bytes value, wherein bytes to be hashed are passed
as a parameter of the method; or a cellblock that addresses a subset of a table on the SP that holds the
data to be hashed.

5.6.4.12.1.1 Data
This input parameter is used to supply bytes directly from the host for hashing.

5.6.4.12.1.2 BufferIn
This input parameter is used to identify a block of table cells where the data to be hashed is stored. If
the host invokes the Hash method using the data addressed via the cellblock as data input, then in
addition to fulfilling the access control on the Hash method, the host SHALL also fulfill the access
control required to invoke the Get method on the entirety of that cellblock.

5.6.4.12.2 Hash Result

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 266 of 314

5.6.4.12.2.1 Result
The method returns the data input that has been consumed in the hash as the method result.

Results of the hashing operation are stored in the BufferOut cellblock of the HashInit method, if that
parameter is included. Otherwise the results are stored in the invoking hash object’s Accumulator
column. If the BufferOut parameter is specified in the HashInit method, the Hash method Result
SHALL be empty.

5.6.4.12.3 Fails
a. If the object does not exist
b. If the DataInput cellblock reference is not to a valid cellblock
c. If the DataInput parameter references a cellblock and Get access control on that cellblock

has not been fulfilled
d. If Hash has been invoked when no hash “stream” is open
e. If Hash is unable to write to BufferOut cellblock

5.6.4.13 Hash Method Group – HashFinalize (Object Method)
Invocation of the HashFinalize method causes the TPer to flush the remaining, non-blocked data
through the hash and sets the BufferOut cellblock specified in the HashInit method. If the BufferOut
cellblock was not supplied to the HashInit method, the hash result is set to the Accumulator column of
the invoking hash object.

If there is no open hash “stream” for the invoking hash object, the method invocation SHALL fail.

HashObjectUID.HashFinalize []
=>
[Result : bytes]

5.6.4.13.1 HashFinalize Result

5.6.4.13.1.1 Result
The method returns the input data not consumed by the hash prior to this method invocation. If the
BufferOut parameter is specified in the HashInit method, the Hash method Result SHALL be empty.

5.6.4.13.2 Fails
a. If the object does not exist
b. If the object does not reference a valid symmetric credential object that contains a valid key
c. If BufferOut is not a valid cellblock
d. If BufferOut is specified and Set access control on that cellblock has not been fulfilled
e. If HMACFinalize has been invoked when no HMAC “stream” is open

5.6.4.14 HMAC Method Group – HMACInit (Object Method)
This method is used to initiate an HMAC “stream” using the hash object that invoked the method. Only
one HMAC “stream” SHALL be able to be open at any one time for any individual hash object.

Invocation of this method is required before the HMAC method MAY be successfully invoked. In
preparation for beginning the HMAC “stream”, upon successful invocation of the HMACInit method, the
invoking hash object’s Accumulator column is set to zero.

HashObjectUID.HMACInit [
BufferOut = cell_block]

=>
[]

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 267 of 314

5.6.4.14.1 BufferOut
This parameter is used to identify a block of table cells to which the HMACed data is to be set. If the
this value is specified, the Input byte length SHALL be equal in size to or smaller than the cellblock
specified for the Result.

If the host invokes this method using the BufferOut cellblock as the target for the result, then in addition
to fulfilling the access control on the HMAC method, the host SHALL also fulfill the access control
required to invoke the Set method on the entirety of that cellblock.

5.6.4.14.2 HMACInit Result

5.6.4.14.2.1 Result
The HMACInit method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.6.4.14.3 Fails
a. If the hash object does not exist
b. If the hash object does not reference a valid symmetric credential object that contains a

valid key
c. If the hash object currently already has an HMAC “stream” open

5.6.4.15 HMAC Method Group – HMAC (Object Method)
Invocation of the HMAC method causes the data input to be hashed using the HMAC algorithm with the
symmetric key credential referenced from the invoking hash object.

This method SHALL require that the HMACInit method has been invoked previously during the session
to start an HMAC “stream” for the invoking hash object, and that the HMACFinalize method has not yet
been invoked to close that “stream”. Invoking the HMAC method when there is not an open HMAC
“stream” (i.e. before HMACInit or after HMACFinalize) SHALL result in an error.

HashObjectUID.HMAC [
Input : typeOr { Data : bytes, Buffer : cell_block }]

=>
[Result : bytes]

5.6.4.15.1 Input
The value of the Input parameter MAY be either a bytes value, wherein bytes to have the HMAC
operation performed are passed as a parameter of the method; or a cellblock that addresses a subset
of a table on the SP that holds the data to have the HMAC operation performed.

5.6.4.15.1.1 Data
This input parameter is used to supply bytes directly from the host for the HMAC operation.

5.6.4.15.1.2 Buffer
This input parameter is used to identify a block of table cells where the data upon which the operation is
to occur is stored. If the host invokes the HMAC method using the data addressed via the cellblock as
data input, then in addition to fulfilling the access control on the HMAC method, the host SHALL also fulfill
the access control required to invoke the Get method on the entirety of that cellblock.

5.6.4.15.2 HMAC Result

5.6.4.15.2.1 Result

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 268 of 314

The method returns the DataInput that has been consumed in the HMAC operation as the method
result.

Results of the operation are stored in the BufferOut cellblock of the HMACInit method, if that parameter
is included. Otherwise the results are stored in the invoking hash object’s Accumulator column. If the
BufferOut parameter is specified in the HMACInit method, the HMAC method Result SHALL be empty.

5.6.4.15.3 Fails
a. If the object does not exist
b. If the object does not reference a valid symmetric credential object that contains a valid key
c. If the DataInput cellblock reference is not a to valid cellblock
d. If the DataInput is a cellblock reference and Get access control on that cellblock has not

been fulfilled
e. If HMAC has been invoked when no HMAC “stream” is open

5.6.4.16 HMAC Method Group – HMACFinalize (Object Method)
Invocation of the HMACFinalize method causes the TPer to flush the remaining, non-blocked data
through the hash, computes the HMAC, and sets the result to the BufferOut cellblock. If the BufferOut
cellblock has not been supplied, the HMAC result is set to the Accumulator column of the invoking
Hash object.

If there is no open HMAC “stream” for the invoking Hash object, the method invocation SHALL fail.

HashObjectUID.HMACFinalize []
=>
[Result : bytes]

5.6.4.16.1 HMACFinalize Result

5.6.4.16.1.1 Result
The method returns the input data not consumed by the HMAC prior to this method invocation. If the
BufferOut parameter is specified in the HashInit method, the HMAC method Result SHALL be empty.

5.6.4.16.2 Fails
a. If the object does not exist
b. If the object does not reference a valid symmetric credential object that contains a valid key
c. If BufferOut is not a valid cellblock
d. If BufferOut is specified and Set access control on that cellblock has not been fulfilled
e. If the BufferOut cellblock is specified and it is not larger than or equal to the size of the

HMAC result
f. If HMACFinalize has been invoked when no HMAC “stream” is open

5.6.4.17 XOR (SP Method)
This method invocation causes the input data is XORed using the pattern specified in the PatternInput
parameter.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 269 of 314

ThisSP.XOR[
PatternInput : uidref {ByteTable},
DeletePattern : boolean,
Input : typeOr { Data : bytes, BufferIn : cell_block },
BufferOut = cell_block]

=>
[Result : bytes]

5.6.4.17.1 PatternInput
This parameter is a reference to the byte table that stores the pattern.

5.6.4.17.2 DeletePattern
This parameter identifies whether the table identified in the PatternInput parameter is zeroed. If the
DeletePattern parameter is True, the cell values in the referenced table SHALL be set to 00s after the
pattern is applied to the XOR operation. If the parameter value is False, no change is made to the
value stored in the cells of the PatternInput byte table.

5.6.4.17.3 Input
That Input parameter MAY be either a bytes value, wherein bytes to be XORed are passed as a
parameter of the method; or a cellblock that addresses a subset of a table on the SP that holds the data
to be XORed.

5.6.4.17.3.1 Data
This input parameter is used to supply bytes directly from the host for the XOR operation.

5.6.4.17.3.2 BufferIn
This input parameter is used to identify a block of table cells where the data upon which the operation is
to occur is stored. If the host invokes the XOR method using the data addressed via the cellblock as
data input, then in addition to fulfilling the access control on the XOR method, the host SHALL also fulfill
the access control required to invoke the Get method on the entirety of that cellblock.

5.6.4.17.4 BufferOut
This parameter is used to identify a block of table cells to which the XORed data is to be set. If this
value is specified, the Input byte length SHALL be equal in size to or smaller than the cellblock
specified to receive the result of the operation.

If the host invokes this method using the BufferOut cellblock as the target for the result, then in addition
to fulfilling the access control on the XOR method, the host SHALL also fulfill the access control required
to invoke the Set method on the entirety of that cellblock.

5.6.4.17.5 XOR Result

5.6.4.17.5.1 Result
The method returns the result of the XOR operation.

If the BufferOut parameter is specified, the result of the operation is stored in that location. Otherwise
the result of the operation is returned in the method result.

If the BufferOut parameter is specified, the Result value SHALL be empty.

5.6.4.17.6 Fails
a. If the PatternInput is not a byte table
b. If the DataInput cellblock reference is not to a valid cellblock
c. If BufferOut is not a valid cellblock

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 270 of 314

d. If PatternInput is smaller than the input data
e. If BufferOut is smaller than the input data
f. If associated access control conditions, as described in 5.6.5.4 are not met

5.6.5 Descriptions
5.6.5.1 Cellblocks
Methods of the Crypto Template utilize cellblocks for parameters. Cellblocks are the abstract type
cell_block, and define a set of rows and columns that make up a contiguous area of a table. Use of
cellblocks as method parameters necessitate special access control condition requirements.

Any cellblock used as input data to a method requires that the host invoking the method satisfy the
access control requirement necessary to invoke the Get method on the entirety of the parameterized
cellblock.

Any cellblock used as an output buffer for a method requires that the host invoking the method satisfy
the access control requirement necessary to invoke the Set method on the entirety of the
parameterized cellblock.

Exceptions or additions to this, such as are required for the XOR method’s PatternInput parameter, are
noted in the method’s description.

5.6.5.2 Hashing
Invocation of the HashInit method, followed by one or more Hash method invocations and the
HashFinalize method on a H_SHA_* object, causes the data parameterized in or referenced from the
Hash method invocations to be hashed in the manner described in [10].

A hash “stream” is initiated using the HashInit method invoked upon a hash object. Only one hash
“stream” SHALL be open at any one time for any individual hash object. During a session, invoking the
HashInit method on a hash object after invoking HashInit on that object but before invoking the
HashFinalize method SHALL cause the second HashInit method invocation to fail.

The HashInit method SHALL be invoked prior to invocation of the Hash method. In preparation for
beginning the hash “stream”, upon successful invocation of the HashInit method, the invoking hash
object’s Accumulator column is set to zeroes. After invocation of the HashInit method, the Set
method MAY be used to set an initial condition in the Accumulator column. Invoking the Set method
on the Accumulator column after the HashInit invocation and after one or more successful Hash
invocations MAY cause the final hash result to be an unexpected or inconsistent value.

The HashInit method has a parameter that allows the host to specify a particular cellblock as the
target of the hash’s final result. This cellblock SHALL be set to the final hash result upon successful
invocation of the HashFinalize method. Access control requirements necessary to permit invocation
of the Set method on the entirety of this cellblock SHALL be fulfilled, or the HashInit method
invocation SHALL fail. If the BufferOut parameter of the HashInit method was used, the cellblock
SHALL be larger than or equal to the size of the expected final hash calculation result, or the HashInit
method invocation SHALL fail.

Successful invocation of the Hash method causes the data input to the Hash method to be hashed with
the value currently stored in the Accumulator column of the invoking hash object. The Hash method
returns as its result the input data that has been consumed in the hash. Hashing is done at block
boundaries appropriate for the hash object type.

The Hash method SHALL accept either bytes passed across the interface as a parameter of the method
invocation; or SHALL identify a cellblock that holds the data to be hashed. If the data is addressed via
cellblock, the host SHALL fulfill access control requirements necessary to invoke the Get method on the
entirety of that cellblock, or the Hash method invocation SHALL fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 271 of 314

Upon invocation of the HashFinalize method, the TPer flushes the remaining, non-blocked data
through the hash function represented by the invoking hash object. Upon completion of hashing, the
final hash result is set to the cellblock specified in the HashInit method. If this parameter was not
included in the HashInit method, then the Accumulator column of the invoking hash object is set to
the final hash result. The HashFinalize method returns any data that had previously been input but
had not yet been hashed and returned in the Hash method. The HashFinalize method closes the hash
“stream” on the invoking hash object.

If the BufferOut parameter of the HashInit method was used, the referenced cellblock SHALL be set to
the final hash value. Access control requirements necessary to permit invocation of the Set method on
the entirety of this cellblock SHALL be fulfilled, or the HashFinalize method SHALL fail. If the
BufferOut parameter of the HashInit method was used, the cellblock SHALL be larger than or equal to
the size of the expected final hash calculation result, or the HashFinalize method invocation SHALL
fail.

Invoking Hash or HashFinalize on a hash object that does not have an open “stream” SHALL cause
that method invocation to fail.

5.6.5.3 HMAC
Invocation of the HMACInit method, followed be one or more HMAC method invocations and the
HMACFinalize method on a H_SHA_* object, causes the data parameterized in or referenced from the
HMAC method invocation to have a message authentication code computed on that input data using the
H_SHA_* object upon which the method was invoked, the HMAC key referenced from that H_SHA_*
object, and the HMAC algorithm described in [13].

An HMAC “stream” is initiated using the HMACInit method invoked upon a hash object. Only one
HMAC “stream” SHALL be open at any one time for any individual hash object.

During a session, invoking the HMACInit method on a hash object after invoking HMACInit on that
object but before invoking the HMACFinalize method SHALL cause the second HMACInit method
invocation to fail. The HMACInit method SHALL be invoked prior to invocation of the HMAC method.

Successful invocation of the HMAC method causes the data input to be hashed on block boundaries as
they are reached. Intermediate results are stored as internal state and are not accessible from the
host.

The HMAC method SHALL accept either bytes passed across the interface as a parameter of the method
invocation; or SHALL identify a cellblock that holds the data to be hashed. If the data is addressed via
cellblock, the host SHALL fulfill access control requirements necessary to invoke the Get method on the
entirety of that cellblock, or the HMAC method invocation SHALL fail.

Successful invocation of the HMAC method returns the input data that was consumed in the hash
method.

Upon invocation of the HMACFinalize method, the TPer flushes the remaining, non-blocked data
through the hash function represented by the invoking hash object, computes the HMAC, and sets the
result to the BufferOut cellblock if specified. If the BufferOut cellblock is specified, the host SHALL be
required to fulfill access control requirements necessary to successfully invoke the Set method on the
entirety of that cellblock.

If the BufferOut cellblock has been specified in the HMACFinalize method invocation, that cellblock
SHALL be larger than or equal to the size of the HMAC calculation result or the HMACFinalize method
invocation SHALL fail.

If the BufferOut cellblock has not been supplied, the HMAC result is set to the Accumulator column of
the invoking hash object.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 272 of 314

The HMACFinalize method invocation SHALL return the data that had been supplied as input to the
HMAC method that had not yet been consumed.

Invoking HMAC or HMACFinalize on a hash object that does not have an open “stream” SHALL cause
that method invocation to fail.

5.6.5.4 XOR
Invocation of the XOR method causes the XOR method’s input data to be XORed with the pattern
specified in the PatternInput parameter of the method invocation.

The XOR method SHALL accept either bytes passed across the interface as a parameter of the method
invocation; or SHALL identify a cellblock that holds the data to be XORed. If the data is addressed via
cellblock, the host SHALL fulfill access control requirements necessary to invoke the Get method on the
entirety of that cellblock, or the XOR method invocation SHALL fail.

The PatternInput parameter of the method SHALL be the uid of a byte table that holds the pattern with
which the input data SHALL be XORed. The PatternInput SHALL be the same size or larger than the
input data or the method SHALL fail. The host SHALL be required to fulfill access control requirements
necessary to invoke the Get method on the entirety of the PatternInput cellblock, or the XOR method
invocation SHALL fail.

The DeletePattern parameter identifies the behavior of the PatternInput table after the XOR operation is
complete. If the DeletePattern parameter is True, then at completion of the XOR operation the contents
of the byte table referenced as the PatternInput SHALL be set to all 00’s. If the DeletePattern
parameter is False, the method SHALL NOT alter the contents of the referenced byte table. If
DeletePattern is True, , the host SHALL fulfill access control requirements that permit invocation of the
Set method on the PatternInput table or the XOR method invocation SHALL fail.

If the host’s intention is to use the XOR method as a one-time pad, the host SHOULD invoke the XOR
method with a DeletePattern value of True.

The XOR method returns data in one of two ways. If the BufferOut parameter is specified in the method
invocation, then the XOR method result is set to that cellblock. The BufferOut parameter is specified, the
cellblock SHALL be the same size or larger than the XOR result. The host SHALL be required to fulfill
access control requirements necessary to invoke the Set method on the entirety of that cellblock, or the
XOR method invocation SHALL fail. If the BufferOut parameter is specified, the method result SHALL be
empty.

If the BufferOut parameter is not specified, the method result SHALL be the result of the XOR
operation.

5.6.5.5 Signing
Signing of a selected input is accomplished as described in the following subsections. The exact
algorithms used in the signing and verification of digital signatures are defined in [11], and are
dependent on the public scheme (RSA, EC, etc.) used.

5.6.5.5.1 Invocation of Sign on a Public Key Credential
Invocation of the Sign method is be done by invoking the method on a key pair credential object that
has a private key (for example, C_RSA_1024 or C_EC_256 objects) and either passing in data or
referencing data to be used as the input for signing. The TPer utilizes the private key stored in the
credential object referenced in the invocation and performs a private key signing operation on the input
data.

For this usage, if a cellblock is referenced to hold the output of the Sign method invocation, then no
data is returned, and the result of the Sign is stored in the referenced cell_block. The host SHALL fulfill
access control requirements necessary to invoke the Set method on the entirety of that target cellblock.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 273 of 314

If a cellblock is not referenced to hold the Sign method output, the data returned is the result of the
signing operation performed on the input data with the private key of the referenced credential object.

5.6.5.5.2 Invocation of Sign on a Hash Object
A second way to accomplish signing is to invoke the Sign method on a H_SHA_* object. If the
invocation is done in this manner, then the H_SHA_* object upon which the method was invoked SHALL
reference a key pair credential object that has a private key. The signing operation in this case is done
using the private key of that referenced credential object.

When invocation of the Sign method is done on a H_SHA_* object, the signing operation MAY be
performed on either:

a. Data parameterized in or referenced from the Sign method invocation. If this is the case,
the signed data SHALL either be stored in a cell_block referenced in the invocation or
returned as the result of the method invocation. If a cellblock is referenced as the target of
the signed data, the host SHALL be required to fulfill access control requirements
necessary to invoke the Set method on the entirety of that cellblock, or the Sign method
invocation SHALL fail.

b. Or, if no input data or reference is included in the method invocation, the signing operation
is performed on the value of the H_SHA_* object’s Accumulator column. If this is the case,
the signed data SHALL be stored to the Proof column of the H_SHA_* object, and MAY be
retrieved with a successful invocation of the Get method on that column.

5.6.5.6 Verifying
Verification of a signed hash is accomplished as described in the following subsections. The exact
algorithms used in the signing and verification of digital signatures are defined in [11], and are
dependent on the public scheme (RSA, EC, etc.) used.

5.6.5.6.1 Invocation of Verify on a Public Key Credential
Verification MAY be performed by invoking the Verify method on a public key credential.

The Verify method is invoked on a public key credential. The proof to be verified against MAY be
supplied in one of two ways.

a. The proof MAY be parameterized in bytes as the Proof parameter of the Verify method
invocation.

b. The proof MAY be stored in a cellblock, which is addressed by the Proof parameter of the
Verify method.

The value to be verified MAY be supplied by the DataInput parameter in one of two ways:

a. The value for verification MAY be supplied in bytes as the DataInput parameter of the
Verify method invocation.

b. The value for verification MAY be stored in a cellblock, which is addressed by the DataInput
parameter of the Verify method.

If either the DataInput or Proof parameters are supplied and address a cellblock, the host SHALL be
required to fulfill the access control requirements necessary to invoke the Get method on the entirety of
that cellblock or the Verify method invocation SHALL fail.

Verification of the input against the proof is performed using the public key of the invoking public key
credential.

Invocation of the Verify method SHALL return True if the verified value matches the proof. Otherwise,
the method invocation SHALL return False.

5.6.5.6.2 Invocation of Verify on a Hash Object

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 274 of 314

To perform signed hash verification in this way, the Verify method is invoked on a hash object.

The proof to be verified against MAY be supplied in one of three ways.

a. The proof MAY be parameterized in bytes as the Proof parameter of the Verify method
invocation.

b. The proof MAY be stored in a cellblock, which is addressed by the Proof parameter of the
Verify method.

c. If Proof parameter is not supplied to the Verify method, the proof used SHALL be the
value of the invoking hash object’s Proof column.

The value to be verified MAY also be supplied in one of three ways.

a. The value for verification MAY be supplied in bytes as the DataInput parameter of the
Verify method invocation.

b. The value for verification MAY be stored in a cellblock, which is addressed by the DataInput
parameter of the Verify method.

c. If the DataInput parameter is not supplied to the Verify method, the proof used SHALL be
the value of the invoking hash object’s Accumulator column.

If the Proof parameter is supplied and is a cellblock, the host SHALL be required to fulfill the access
control requirements necessary to invoke the Get method on the entirety of that cellblock or the Verify
method invocation SHALL fail.

Verification of the input against the proof is performed using the public key of the public key credential
that SHALL be referenced from the invoking hash object.

Invocation of the Verify method SHALL return True if the verified value matches the proof. Otherwise,
the method invocation SHALL return False.

5.6.5.7 Encrypting
Invocation of the EncryptInit method, followed by one or more Encrypt method invocations and the
EncryptFinalize method, encrypts data that has either been sent to the Crypto template-enabled SP
from the host in the method invocation, or that is currently stored in the SP.

Successful invocation of the EncryptInit method is used to initiate an encryption “stream” using the
credential object that invoked the method. Only one encryption “stream” SHALL be open in a session
at any one time for a particular credential object. During a session, invoking the EncryptInit method
on a credential object after invoking EncryptInit on that object but before invoking the
EncryptFinalize method SHALL cause the second EncryptInit method invocation to fail.

If the optional IV parameter is used in the EncryptInit method, the parameterized IV is used in place
of that which is stored in the ResidualData column of the invoking credential. Otherwise, the value of
the ResidualData column of the invoking credential is used as the IV, as required by the value of the
credential object’s Mode column.

As indicated, the host MAY generate an initialization vector externally and either pass it as a parameter
to the EncryptInit method, or Set the ResidualData column of the symmetric credential object that is
referenced for use with the encryption. Alternatively, the host MAY invoke the Random method and set
its output to the ResidualData column of the symmetric credential object that is referenced for use with
the encryption. For details and guidelines on generation and handling of initialization vectors, see [14].

If the EncryptInit method is invoked with an IV and the credential object or credential object’s Mode
column value do permit use of an IV, then the EncryptInit method SHALL fail.

The EncryptInit method, upon successful invocation, sets the ResidualData column of the invoking
credential to zero.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 275 of 314

Successful invocation of the Encrypt method causes the TPer to use the key stored in the invoked
credential object to encrypt the input data.

The input data MAY either be parameterized in the Encrypt method invocation, or stored in a table that
is referenced as a cellblock from the Encrypt method invocation. If the Encrypt method's DataInput
parameter references a cellblock, the host SHALL fulfill access control requirements necessary to
invoke the Get method on the entirety of that cellblock or the method invocation SHALL fail.

If a cellblock is referenced to hold the output of the Encrypt method invocation, then no data is
returned, and the result of the Encrypt is stored in the referenced cellblock. If the output cellblock is
used, the host SHALL be required to fulfill the access control requirements necessary to permit
invocation of the Set method on the entirety of the referenced cellblock. If the cellblock is not specified,
the data returned is the result of the encryption operation performed on the input data.

The length of the data input to the Encrypt method SHALL be as required by the block size of the
particular key type and mode used. Should padding be required, the host SHALL perform it.

Successful invocation of the Encrypt method causes the invoking symmetric credential object’s
ResidualData column to have the value specified in Table 184.

Upon invocation of the EncryptFinalize method, the encryption “stream” for the invoking credential
SHALL be closed. Invoking Encrypt or EncryptFinalize on a hash object that does not have an
open “stream” SHALL cause that method invocation to fail.

Note that only one write session is open at any given point in time. After closing a write session and
opening another write session to the same SP, the host MAY find that the ResidualData value MAY
have been modified by another write session.

5.6.5.8 Decrypting
Invocation of the DecryptInit method, followed by one or more Decrypt method invocations and the
DecryptFinalize method invocation decrypts data that has either been sent to the Crypto template-
enabled SP from the host in the method invocation, or that is currently stored in the SP.

Successful invocation of the DecryptInit method is used to initiate a decryption “stream” using the
credential object that invoked the method. Only one decryption “stream” SHALL be open in a session
at any one time for a particular credential object. During a session, invoking the DecryptInit method
on a credential object after invoking DecryptInit on that object but before invoking the
DecryptFinalize method SHALL cause the second DecryptInit method invocation to fail.

If the optional IV parameter is used in the DecryptInit method, the parameterized IV is used in place
of that which is stored in the ResidualData column of the invoking credential. Otherwise, the value of
the ResidualData column of the invoking credential is used as the IV, as required by the value of the
credential object’s Mode column.

If the DecryptInit method is invoked with an IV and the credential object or credential object’s Mode
column value do permit use of an IV, then the DecryptInit method SHALL fail.

The DecryptInit method, upon successful invocation, sets the ResidualData column of the invoking
credential to zero.

Successful invocation of the Decrypt method causes the TPer to use the key stored in the invoked
credential object to decrypt the input data. Decryption is performed using the key stored in invoking the
credential object.

The input data MAY either be parameterized in the Decrypt method invocation, or stored in a table that
is referenced as a cell_block from the Decrypt method invocation. If the Decrypt method's DataInput
parameter references a cellblock as the data input, the host SHALL fulfill access control requirements
necessary to invoke the Get method on the entirety of that cellblock or the method invocation SHALL
fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 276 of 314

If a cellblock is referenced to hold the output of the Decrypt method invocation, then no data is
returned, and the result of the Decrypt is stored in the referenced cellblock. If the output cellblock is
used, the host SHALL be required to fulfill the access control requirements necessary to permit
invocation of the Set method on the entirety of the referenced cellblock. If the cellblock is not specified,
the data returned is the result of the decryption operation performed on the input data.

The length of the data input to the Decrypt method SHALL be as required by the block size of the
particular key type and mode used. Should padding be required, the host SHALL perform it.

Successful invocation of the Decrypt method causes the invoking symmetric credential object’s
ResidualData column to have the value specified in Table 184.

Upon invocation of the DecryptFinalize method, the decryption “stream” for the invoking credential
SHALL be closed. Invoking Decrypt or DecryptFinalize on a hash object that does not have an
open “stream” SHALL cause that method invocation to fail.

Note that only one write session is open at any given point in time. After closing a write session and
opening another write session to the same SP, the host MAY find that the ResidualData value MAY
have been modified by another write session.

5.6.5.9 Default Logging Settings
The default logging settings associated with the Crypto Template methods are:

a. The default logging setting for the Delete object method on objects in the H_SHA_* tables,
and for invocation of the Verify method, is LogAlways.

b. The default setting for all instances of the Crypto Template methods (Sign, HashInit,
Hash, HashFinalize, HMACInit, HMAC, HMACFinalize, XOR, EncryptInit, Encrypt,
EncryptFinalize, DecryptInit, Decrypt, and DecryptFinalize) is LogSuccess.

c. All other methods that apply to the H_SHA_* tables SHALL be as described in the Base
Template reference section on Default Logging Settings (See 5.3.4.5).

5.6.6 Life Cycle
5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Crypto Template has the following characteristics based on the current life cycle
state of that SP:

a. Disabled – A Crypto Template-enabled SP that is in the Disabled state SHALL NOT be
able to perform any user-invoked SP operations, with the exceptions noted in section 4.5.2.

b. Frozen – Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail.

c. Issued-Disabled-Frozen – Attempts to open sessions to an SP in the Issued-Disabled-
Frozen state SHALL fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 277 of 314

5.7 Locking Template
5.7.1 Overview
Begin Informative Content

The Locking Template defines mechanisms for access control to user data, including controlling media
encryption, user data encryption key management, and Read/Write lock state.

Side effects occur when writing cells of the tables of the SP that incorporates the Locking Template.
These side effects include enabling Read/Write locking, enabling encryption with a certain encryption
key, and initiating the re-encryption process.

End Informative Content

The Locking Template also enables an SP to manage re-encryption of data. For the purpose of this
specification, re-encryption is defined as the process by which User Data LBAs are transformed from 1)
encrypted data using the active encryption key to encrypted data with a new encryption key (re-
encryption), 2) clear text data to encrypted data with a new key (encryption), or 3) encrypted data to
clear text data (decryption).
Re-encryption has the following basic attributes:

1. This process operates as a background TPer operation. Re-encryption MAY operate
concurrently with normal User Data Interface Commands.

2. Re-encryption processes are linked to a specific LBA range. Multiple concurrent re-encryption
operations are permitted up to the available TPer re-encryption resources.

5.7.1.1 Terminology

Table 222 Locking Template Terminology
Term Definition
Global range The entire User-Addressable LBA Range
Key Changing The changing of a Credential reference
KeysAvailable Condition: Host has provided enough information to enable access to Locking

LBA range keys. See the KeysAvailableCfg column in the LockingInfo Table
for more information.

LBA Range A sub-section of the User-Addressable LBA Range
MBR Shadowing This allows loading of preboot code that MAY be necessary to unlock an LBA

range that starts at LBA 0 for reading and writing
Media Encryption Inline encryption of data to media
Re-encryption Encryption of the original cleartext media data, which MAY have been

previously encrypted, to the media with a different key.
TPer_Error_Detect Condition: A TPer re-encryption error has been detected.
TPer_Job_Done Condition: TPer has completed re-encryption without errors
TPer_Key_Error Not all keys are valid

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 278 of 314

Term Definition
TPer_Ready Condition: ALL the following resources & conditions required to begin or

continue re-encryption are true:
- All TPer resources are available, such as buffer space, re-encryption H/W &
S/W resources.
- Re-encryption keys are valid
- TPer_Error_Detect condition is False
- TPer_Reset_Stop condition is False
- PAUSE_req is False
- KeysAvailable is True

TPer_Reset_Detect Condition: A reset condition has been detected.
TPer_Reset_Stop Condition: A reset condition is detected that does not permit the Re-encryption

process to continue.
User-Addressable LBA
Range

The user-accessible storage space on a Storage Device, where user data is
stored

5.7.2 Data Structures
Begin Informative Content

The Locking Template contains the following tables:

a. LockingInfo: Information about the TPer’s configuration

b. Locking: The storage encryption and read/write locking controls covering different
contiguous ranges of storage space on the TPer.

c. MBRControl and MBR: For MBR shadowing, needed to handle pre-boot authentication
environments.

d. K_AES_128 and K_AES_256: Tables used to store media encryption keys

End Informative Content

5.7.2.1 LockingInfo (Object Table)
The LockingInfo table is an object table that SHALL contain exactly one row, which contains
information about the TPer's configuration.

Table 223 LockingInfo Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name name
0x02 Version uinteger_4
0x03 EncryptSupport enc_supported
0x04 MaxRanges uinteger_4
0x05 MaxReEncryptions uinteger_4
0x06 KeysAvailableCfg keys_avail_conds

5.7.2.1.1 UID

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 279 of 314

This is the unique identifier of this row of the LockingInfo table.

This column SHALL NOT be modifiable by the host.

5.7.2.1.2 Name
This is the manufacturer-defined name for this feature.

This column SHALL NOT be modifiable by the host.

5.7.2.1.3 Version
This is a manufacturer-defined version number for this feature.

This column SHALL NOT be modifiable by the host.

5.7.2.1.4 EncryptSupport
This defines the types of encryption supported by this template. The value of this column is “None” if
the drive does not support media encryption.

This column SHALL NOT be modifiable by the host.

5.7.2.1.5 MaxRanges
This value defines the maximum number of supportable LBA ranges in addition to the Global Range. If
this value is 0, then the only range available is the entire Global Range of the Storage Device.

This column SHALL NOT be modifiable by the host.

5.7.2.1.6 MaxReEncryptions
This value defines the maximum number of simultaneous re-encryption operations supported.
Simultaneous re-encryptions refer to the number of different LBA ranges that MAY be concurrently re-
encrypted. A value of 0 indicates Re-encryption is not supported.

This column SHALL NOT be modifiable by the host.

5.7.2.1.7 KeysAvailableCfg
This column defines which conditions are required for re-encryption to proceed.

This column SHALL NOT be modifiable by the host.

5.7.2.2 Locking (Object Table)
Locking table rows define encryption, re-encryption, read locking, and write locking configuratoin for
the Storage Device’s LBA ranges. An LBA range is defined as an ordered sequence of RangeLength
logical blocks (as appropriate to the device, typically LBAs), numbered consecutively starting at LBA
RangeStart.

The Locking table SHALL always have at least one row. This required row of the Locking table
SHALL represent the entire User-Addressable LBA Range, called the Global Range. This row SHALL
have a UID column value of 0x00 0x00 0x08 0x02 0x00 0x00 0x00 0x01 and a Name column value
of "Global Range". This row SHALL NOT be deletable.

Table 224 Locking Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name name
0x02 CommonName name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 280 of 314

Column Number Column Name IsUnique Column Type
0x03 RangeStart uinteger_8
0x04 RangeLength uinteger_8
0x05 ReadLockEnabled boolean
0x06 WriteLockEnabled boolean
0x07 ReadLocked boolean
0x08 WriteLocked boolean
0x09 LockOnReset reset_types
0x0A ActiveKey mediakey_object_uidref
0x0B NextKey mediakey_object_uidref
0x0C ReEncryptState reencrypt_state
0x0D ReEncryptRequest reencrypt_request
0x0E AdvKeyMode adv_key_mode
0x0F VerifyMode verify_mode
0x10 ContOnReset reset_types
0x11 LastReEncryptLBA uinteger_8
0x12 LastReEncStat last_reenc_stat
0x13 GeneralStatus gen_status

5.7.2.2.1 UID
This is the unique identifier for this Locking object.

5.7.2.2.2 Name
This is the name of the Locking object.

5.7.2.2.3 CommonName
This is a name that MAY be shared by multiple Locking objects.

5.7.2.2.4 RangeStart
This column value defines the starting LBA value for this range. In non-Global Range rows, this column
MAY be modifiable based on access control settings. Changes to this column are subject to the same
constraints and checks defined for this column when rows of the Locking table are created (see
5.7.3.3).

5.7.2.2.5 RangeLength
This column value defines the quantity of contiguous LBAs for this LBA range (starting with the value
defined in the RangeStart column). In non-Global Range rows, this column MAY be modifiable based
on access control settings. Changes to this column are subject to the same constraints and checks
defined for this column when rows of the Locking table are created (see 5.7.3.3).

5.7.2.2.6 ReadLockEnabled
The value of this column determines whether or not the read-locking feature is enabled for this LBA
range and indicates whether or not the ReadLocked column value is meaningful for this range. If the
value of the ReadLockEnabled column is False, the read-locking feature is disabled, and the value of
the ReadLocked column is disregarded. If the value of the ReadLockEnabled column is True, the read-
locking feature is enabled, and the value of the ReadLocked column identifies the current read locking
state.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 281 of 314

5.7.2.2.7 WriteLockEnabled
The value of this column determines whether or not the write-locking feature is enabled for this LBA
range and indicates whether or not the WriteLocked column value is meaningful for this range. If the
value of the WriteLockEnabled column is False, the write-locking feature is disabled, and the value of
the WriteLocked column is ignored. If the value of the WriteLockEnabled column is True, the write-
locking feature is enabled, and the value of the WriteLocked column identifies the current write locking
state.

5.7.2.2.8 ReadLocked
The value of this column identifies the current read lock state for the associated LBA Range if the
range's ReadLockEnabled column is True. This column is ignored if the range's ReadLockEnabled
column is False. If this value is True, the range is read-locked. If this value is False, the range is read-
unlocked.

The Set method MAY be invoked by the host to change the value of this column and alter the read-lock
state. Setting the column value to True read locks the range. Setting the column value to False read
unlocks the range.

5.7.2.2.9 WriteLocked
The value of this column identifies the current write lock state for the associated LBA Range if the
range's WriteLockEnabled column is True. This column is ignored if the range's WriteLockEnabled
column is False. If this value is True, the range is write-locked. If this value is False, the range is write-
unlocked.

The Set method MAY be invoked by the host to change the value of this column and alter the write lock
state. Setting the column value to True write locks the range. Setting the column value to False write
unlocks the range.

5.7.2.2.10 LockOnReset
This value defines the locking behavior of this LBA range at reset, dependent on reset type. The values
enumerated in this column identify the reset types that cause the values of the ReadLocked and
WriteLocked columns of the Locking table to be set to True.

The Global Range’s LockOnReset value defines global TPer behavior. All other rows override the
Global Range's behavior, unless otherwise specified in an SSC.

An empty set indicates that ReadLocked and WriteLocked do not change on any reset.

5.7.2.2.11 ActiveKey
This column points to this LBA range’s media encryption key. If the value of this column is a NULL UID
then data in this range is stored in plaintext.

5.7.2.2.12 NextKey
This column identifies the LBA range’s next media encryption key. This value and the referenced media
encryption key object SHALL be writable when the value of the ReEncryptState column is IDLE only.
Otherwise, attempts to invoke any of the Set, Delete, DeleteRow, or GenKey methods on the
associated credential object SHALL return an error.

User Data SHALL be returned to clear text when the value stored in NextKey is a NULL UID and re-
encryption has been requested.

5.7.2.2.13 ReEncryptState
The value of this column identifies the currently applicable Re-encryption state (see 5.7.3.3). The value
in the column affects the TPer’s response to the host’s requests in the ReencryptRequest column.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 282 of 314

Reset configuration (ContOnReset) and a detected reset condition define the reported ReEncryptState
and PauseStatus values.

This column SHALL NOT be modifiable by the host.

5.7.2.2.14 ReEncryptRequest
A host application requests a re-encryption operation by invoking the Set method on this column.
Successful invocation of the Get method on this column SHALL return no value.

Only state transitions described in 5.7.3.6.1 SHALL be valid.

5.7.2.2.15 AdvKeyMode
This value defines when the value of the NextKey column moves to the ActiveKey column and whether
ReEncryptState transitions to COMPLETED or IDLE when the re-encryption process completes.

5.7.2.2.16 VerifyMode
This column value defines the verification requirement during re-encryption. When True, a Read Verify
SHALL be performed on the re-encrypted LBA before the LBA is considered good.

5.7.2.2.17 ContOnReset
This column value is a set of reset conditions. This value defines how a re-encryption process reacts to
reset conditions.
An empty set means the TPer_Reset_Stop condition is set for any reset condition. The
ReEncryptState value is set to PAUSED.

For each listed reset entry, the re-encryption process MAY continue after the associated reset is
detected.

5.7.2.2.18 LastReEncryptLBA
This column value defines the last good re-encrypted LBA for this region. This field is only valid when
the ReEncryptState is ACTIVE, COMPLETED, PENDING, or PAUSED. Typically, when the
ReencryptState is ACTIVE, this value is updated periodically. In COMPLETED, PENDING, or PAUSED
this value SHALL be valid. When no LBA has been successfully been re-encrypted, the value SHALL
be 0xFFFFFFFF_FFFFFFFF.

This column SHALL NOT be modifiable by the host.

5.7.2.2.19 LastReEncStat
This column value defines the last good re-encryption read-modify-write-verify sequence. This column
value is only valid when the ReencryptState is COMPLETED, PENDING or PAUSED. When the
LastReEncStat value is anything other than SUCCESS, the value of LastReEncryptLBA+1 is the LBA
in error or the LBA located at RangeStart if LastReEncryptLBA contains 0xFFFFFFFF_FFFFFFFF. Valid
values are defined in table Table 100.

This column SHALL NOT be modifiable by the host.

5.7.2.2.20 GeneralStatus
This field defines why the re-encryption operation arrived at the PAUSED or PENDING state. The value
in this column is only valid when in the PAUSED or PENDING state. The values are defined in table Table
86.

This column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 283 of 314

5.7.2.3 Media Encryption Key Table Group - K_AES_128 (Object Table)
This table is used to store media encryption keys, cipher mode of operation, and associated metadata
used with the Advanced Encryption Standard (see [12]).

Table 225 K_AES_128 Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes common_name
0x03 Key key_128
0x04 Mode symmetric_mode_media

5.7.2.3.1 UID
This is the unique identifier for this object.

This column SHALL NOT be modifiable by the host.

5.7.2.3.2 Name
This is the name assigned to this object.

For objects in this table that exist at issuance, this column SHALL NOT modifiable by the host.

5.7.2.3.3 CommonName
This is a name that MAY be shared by multiple K_AES_128 objects.

For objects in this table that exist at issuance, this column SHALL NOT be modifiable by the host.

5.7.2.3.4 Key
This column stores the key associated with this K_AES_128 object. Non-tweakable cipher modes such
as ECB, CBC, CFB, OFB, GCM, CCM, and CTR SHALL use the 16-byte option for the key size.
Tweakable cipher modes such as XTS or LRW SHALL use the 32-byte option

For MediaEncryption mode, the content of the Key column MAY be vendor-specific.

5.7.2.3.5 Mode
This column defines the encryption mode with which this object SHALL be used. Valid modes are
defined in 5.1.3.72. MediaEncryption mode permits a vendor-specific encryption mode.

5.7.2.4 Media Encryption Key Table Group - K_AES_256 (Object Table)
This table is used to store media encryption keys, cipher mode of operation, and associated metadata
used with the Advanced Encryption Standard (see [12]).

Table 226 K_AES_256 Table Description
Column
Number Column Name IsUnique Column Type

0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes common_name
0x03 Key key_256
0x04 Mode symmetric_mode_media

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 284 of 314

5.7.2.4.1 UID
This is the unique identifier for this object.

This column SHALL NOT modifiable by the host.

5.7.2.4.2 Name
This is the name assigned to this object.

For objects in this table that exist at issuance, this column SHALL NOT modifiable by the host.

5.7.2.4.3 CommonName
This is a name that MAY be shared by multiple K_AES_256 objects.

For objects in this table that exist at issuance, this column SHALL NOT be modifiable by the host.

5.7.2.4.4 Key
This column stores the key associated with this K_AES_256 object. Non-tweakable cipher modes such
as ECB, CBC, CFB, OFB, GCM, CCM, and CTR SHALL use the 32-byte option for the key size.
Tweakable cipher modes such as XTS or LRW SHALL use the 64-byte option

For MediaEncryption mode, the content of the Key column MAY be vendor-specific.

5.7.2.4.5 Mode
This column defines the encryption mode with which this object SHALL be used. Valid modes are
defined in 5.1.3.72. MediaEncryption mode permits a vendor-specific encryption mode.

5.7.2.5 MBRControl (Object Table)
The MBRControl table contains information that controls the use of the MBR table. This table SHALL
have only one row, with UID=0x00 0x00 0x08 0x03 0x00 0x00 0x00 0x01.

Table 227 MBRControl Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Enable boolean
0x02 Done boolean
0x03 MBRDoneOnReset reset_types

5.7.2.5.1 UID
This is the unique identifier of this table row.

This column SHALL NOT be modifiable by the host.

5.7.2.5.2 Enable
This column value identifies if this feature is enabled or disabled.

MBR shadowing is active when Enable is True and Done is False. When MBR shadowing is active, the
TPer responds to LBA requests for LBA 0 to the LBA that maps to the end of the MBR table with values
from the MBR table.

5.7.2.5.3 Done

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 285 of 314

This value indicates whether the TPer has completed processing the contents of the MBR table. After
the occurrence of a reset event that is listed in MBRDoneOnReset, until the host sets the MBRControl
table's Done column to True, LBA requests made by the host, for LBA 0 up to the LBA that maps to the
end of the MBR table, SHALL only be fulfillable by values from the MBR table.

The Done column is set to False on every occurrence of a reset event that is listed in MBRDoneOnReset.

The state of Done SHALL NOT affect the capacity of the Storage Device.

5.7.2.5.4 MBRDoneOnReset
This column value identifies the reset types that set the Done column to False.

The MBRDoneOnReset column identifies the types of resets that cause Done to be automatically set to
False. If the set is empty, the device SHALL NOT change the value of the Done column on any reset.
At issuance, the default value SHALL be Power Cycle.

5.7.2.6 MBR (Byte Table)
See 5.7.3.5.

5.7.3 Description
5.7.3.1 Locking State Descriptions
Figure 11 displays the states and state transitions for read lock and write lock. For simplicity, the
diagram and the accompanying textual information describe the operation of locking in general, rather
than both read lock and/or write lock in particular.

Note that the reset behavior of both read and write locking for each locking object is controlled at the
same point, by a single column in the Locking table, called LockOnReset.

When a reset is described in these state transitions, “reset” is used generically to refer to qualifying
resets, as determined by the value of the LockOnReset column and the reset behavior associated with
particular resets as determined by the appropriate interface-specific description of that reset. Interface-
specific reset definitions are defined in SIIF.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 286 of 314

Figure 11 Locking State Diagram

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 287 of 314

5.7.3.1.1 State Descriptions
This section describes the states that are used in Figure 11 , and the column values that each state
represents.

S0 LockEnabled=F

This describes the state where the TPer's Locking feature is turned off. Locking is not possible. The
Locked column and LockOnReset column values are disregarded.

S1 LockEnabled=T/Locked=T/LockOnReset=non-null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
Locked state is currently True, indicating that the range is locked. LockOnReset is non-null, indicating
that, upon any of the listed reset events, the range SHALL lock.

S2 LockEnabled=T/Locked=T/LockOnReset=null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
Locked state is currently True, indicating that the range is locked. LockOnReset is "False" (null set),
indicating that reset events do not cause the range to lock. The range SHALL maintain current locking
state (the value of the Locked column remains the same, True) through all resets.

S3 LockEnabled=T/Locked=F/ LockOnReset=non-null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
Locked state is currently False, indicating that the range is not locked. LockOnReset is "True" (non-null
set), indicating that the listed reset events cause the range to lock.

S4 LockEnabled=T/Locked=F/ LockOnReset=null

This describes the state where the TPer's Locking feature is turned on. Locking is possible. The
current Locked state is False, indicating that the range is not locked. LockOnReset is "False" (null set),
indicating that reset events do not cause the range to lock. The range SHALL maintain current locking
state (False in this case) through all reset events.

T0 ResetStateMatch=null/LockEnabled=F

This is the transition state where a reset is occurring and the Locking feature is disabled.

T1 ResetStateMatch=T/LockEnabled=T/Locked=T/ LockOnReset=non-null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is locked, and the LockOnReset value applies to
the currently occurring reset state.

T2 ResetStateMatch=F/LockEnabled=T/Locked=T/ LockOnReset=non-null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is locked, and the LockOnReset value does not
apply to the currently occurring reset state. This state is functionally equivalent to T3.

T3 ResetStateMatch=null /LockEnabled=T/Locked=T/ LockOnReset=null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is locked, and the LockOnReset value is null.
This state is functionally equivalent to T2.

T4 ResetStateMatch=T/LockEnabled=T/Locked=F/ LockOnReset=non-null

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is not locked, and the LockOnReset value applies
to the currently occurring reset state.

T5 ResetStateMatch=F/LockEnabled=T/Locked=F/ LockOnReset=non-null

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 288 of 314

This describes a transition state where a reset is occurring, and the range had the accompanying
attributes - the locking feature is turned on, the range is not locked, and the LockOnReset value value
does not apply to the currently occurring reset state. This state is functionally equivalent to T6.

T6 ResetStateMatch=null /LockEnabled=T/Locked=F/ LockOnReset=null

This describes a transition state where a reset is occurring and the range had the accompanying
attributes - the locking feature is turned on, the range is not locked, and the LockOnReset value is null.
This state is functionally equivalent to T5.

5.7.3.1.2 State Change Descriptions
This section describes the state changes depicted in the picture. In parentheses next to each state
transition identifier are the values that change to cause that transition. "Reset" indicates that a reset
occurs to cause the state change. "ResetStateMatch" is used to indicate if a reset event type that
occurred is applicable or matches the LockOnReset column value.

S0:T0 (Reset)

This state change occurs as the result of some device reset event. The locking range with
LockingEnabled=F exits the reset state into its previous state.

S0:S1 (LockEnabled=T, Locked=T, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to True, and the LockOnReset column value to non-
null.

S0:S2 (LockEnabled=T, Locked=T, LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to True, and the LockOnReset column value to null.

S0:S3 (LockEnabled=T, Locked=F, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to False, and the LockOnReset column value to non-
null.

S0:S4 (LockEnabled=T, Locked=F, LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to True, the Locked column value to False, and the LockOnReset column value to null.

S1:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S1:S2 (LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column value to null from non-null. The value of the LockEnabled column is still True, and the value of
the corresponding Locked column is still True.

S1:S3 (Locked=F)

This state change occurs when the host invokes the Set method to change the range's Locked column
to False from True. The value of the corresponding LockEnabled column is still True, and the value of
the LockOnReset column is still non-null.

S1:S4 (Locked=F, LockOnReset=null)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 289 of 314

This state change occurs when the host invokes the Set method to change the range's Locked column
to False from True, and the value of the LockOnReset column from null to non-null. The value of the
corresponding LockEnabled column is still True.

S1:T1 (Reset, ResetStateMatch=T)

This state change occurs as the result of some device reset event, where the reset type matches the
value defined in the LockOnReset column.

S1:T2 (Reset, ResetStatematch=F)

This state change occurs as the result of some device reset event, where the reset type does not match
the value defined in the LockOnReset column.

S2:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S2:S1 (LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column value to non-null from null. The value of the LockEnabled column remains True, and the value
of the corresponding Locked column remains True.

S2:S3 (Locked=F, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True, and to change the range's LockOnReset column value to non-null from null.
The value of the LockEnabled column remains True.

S2:S4 (Locked=F)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True. The value of the corresponding LockEnabled column remains True, and the
value of the LockOnReset column remains null.

S2:T3 (Reset)

This state change occurs as the result of some device reset event. The range with a LockOnReset
column value of null and other column values of the S2 state exits the T3 state back into the S2 state.

S3:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S3:S1 (Locked=F)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True. The value of the corresponding LockEnabled column remains True, and the
value of the LockOnReset column remains non-null.

S3:S2 (Locked=T, LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to True from False, and to change the range's LockOnReset column value to null from non-null.
The value of the LockEnabled column remains True.

S3:S4 (LockOnReset=null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column value to null from non-null. The value of the LockEnabled column remains True, and the value
of the corresponding Locked column remains False.

S3:T4 (Reset, ResetStateMatch=T)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 290 of 314

This state change occurs as the result of some device reset event, where the reset type matches the
value defined in the LockOnReset column.

S3:T5 (Reset, ResetStateMatch=F)

This state change occurs as the result of some device reset event, where the reset type does not match
the value defined in the LockOnReset column.

S4:S0 (LockEnabled=F)

This state change occurs when the host invokes the Set method to change the range's LockEnabled
column value to False from True.

S4:S1 (Locked=T, LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True, and the value of the LockOnReset column from null to non-null. The value of
the corresponding LockEnabled column remains True.

S4:S2 (Locked=T)

This state change occurs when the host invokes the Set method to change the range's Locked column
value to False from True. The value of the LockEnabled column remains True, and the value of the
LockOnReset column remains null.

S4:S3 (LockOnReset=non-null)

This state change occurs when the host invokes the Set method to change the range's LockOnReset
column from null to non-null. The value of the LockEnabled column remains True, and the value of the
corresponding Locked column remains False.

S4:T6 (Reset)

This state change occurs as the result of some device reset event. The range with a LockOnReset
column value of null and other column values of the S4 state exits the T6 state back into the S4 state.

T0:S0 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. This state change
represents behavior of a range for which LockEnabled is False.

T1:S1 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event matched that specified in the range's LockOnReset column. This causes the device to enter
the S1 state upon reset recovery, with a LockEnabled column value of True, a corresponding Locked
column value of True, and the same LockOnReset column value as existed immediately preceding
entry to T1.

T2:S1 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event did not match that specified in the range's LockOnReset column. This causes the device to
recover from the reset with the same LockEnabled, Locked, and LockOnReset column values that
existed previous to entry to T2.

T3:S2 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
LockOnReset column value of null causes the range to recover from the reset with the same
LockEnabled, Locked, and LockOnReset column values that existed previous to entry to T3.

T4:S1 (Reset recover)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 291 of 314

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event matched that specified in the range's LockOnReset column. This causes the device to enter
the S1 state upon reset recovery, with a LockEnabled column value of True, a corresponding Locked
column value of True, and the same LockOnReset column value as existed immediately preceding
entry to T4.

T5:S3 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
reset event did not match that specified in the range's LockOnReset column. This causes the device to
recover from the reset with the same LockEnabled, Locked, and LockOnReset column values that
existed previous to entry to T5.

T6:S4 (Reset recover)

This state change occurs as the result of a recovery from some device reset event. In this case, the
LockOnReset column value of null causes the range to recover from the reset with the same
LockEnabled, Locked, and LockOnReset column values that existed previous to entry to T6.

5.7.3.2 Reading/Writing User Data
This section identifies the device response for attempts by the host to read or write user data.

Table 228 specifies the device response for all cases when the host attempts to read user data.

Table 229 specifies the device response for all cases when the host attempts to write user data.

Table 228 Interface Read Command Access

M
B

R
C

on
tr

ol
 E

na
bl

e

M
B

R
C

on
tr

ol
 D

on
e

St
ar

tin
g

LB
A

 W
ith

in
 M

B
R

En
di

ng
 L

B
A

 w
ith

in
 M

B
R

R
ea

dL
oc

kE
na

bl
ed

 fo
r

R
eq

ue
st

ed
 L

B
A

 ra
ng

e

R
ea

dL
oc

ke
d

fo
r

R
eq

ue
st

ed
 L

B
A

 R
an

ge

R
eq

ui
re

d
B

eh
av

io
r

True False True True N/A N/A Return Data from MBR table
True False True False N/A N/A Transfer no data and terminate the command

with a "Data Protection Error" (see SIIF)
True False False False False N/A Return User LBA Data
True False False False True False Return User LBA Data
True False False False True True Return Zeroed Data
True True N/A N/A False N/A Return User LBA Data
True True N/A N/A True False Return User LBA Data
True True N/A N/A True True Transfer no data and terminate the command

with a "Data Protection Error" (see SIIF)
True True N/A N/A True Mixed (when crossing

range boundaries)
Transfer no data and terminate the command
with a "Data Protection Error" (see SIIF)

False N/A N/A N/A False N/A Return User LBA Data
False N/A N/A N/A True False Return User LBA Data

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 292 of 314

M
B

R
C

on
tr

ol
 E

na
bl

e

M
B

R
C

on
tr

ol
 D

on
e

St
ar

tin
g

LB
A

 W
ith

in
 M

B
R

En
di

ng
 L

B
A

 w
ith

in
 M

B
R

R
ea

dL
oc

kE
na

bl
ed

 fo
r

R
eq

ue
st

ed
 L

B
A

 ra
ng

e

R
ea

dL
oc

ke
d

fo
r

R
eq

ue
st

ed
 L

B
A

 R
an

ge

R
eq

ui
re

d
B

eh
av

io
r

False N/A N/A N/A True True Transfer no data and terminate the command
with a "Data Protection Error" (see SIIF)

False N/A N/A N/A True Mixed (when crossing
range boundaries)

Transfer no data and terminate the command
with a "Data Protection Error" (see SIIF)

Table 229 Interface Write Command Access

M
B

R
C

on
tr

ol
 E

na
bl

e

M
B

R
C

on
tr

ol
 D

on
e

St
ar

tin
g

LB
A

 W
ith

in

M
B

R

En
di

ng
 L

B
A

 w
ith

in

M
B

R

W
rit

eL
oc

kE
na

bl
ed

fo

r R
eq

ue
st

ed
 L

B
A

ra

ng
e

W
rit

eL
oc

ke
d

fo
r

R
eq

ue
st

ed
 L

B
A

R

an
ge

R
eq

ui
re

d
B

eh
av

io
r

True False True N/A N/A N/A Transfer no data and terminate the command
with a "Data Protection Error" (see SIIF).

True False False False False N/A Write user LBA data
True False False False True False Write user LBA data
True False False False True True Transfer no data and terminate the command

with a "Data Protection Error" (see SIIF).
True True N/A N/A False N/A Write user LBA data
True True N/A N/A True False Write user LBA data
True True N/A N/A True True Transfer no data and terminate the command

with a "Data Protection Error" (see SIIF).
True True N/A N/A True Mixed (when crossing

range boundaries)
Transfer no data and terminate the command
with a "Data Protection Error" (see SIIF).

False N/A N/A N/A False N/A Write user LBA data
False N/A N/A N/A True False Write user LBA data
False N/A N/A N/A True True Transfer no data and terminate the command

with a "Data Protection Error" (see SIIF).
False N/A N/A N/A True Mixed (when crossing

range boundaries)
Transfer no data and terminate the command
with a "Data Protection Error" (see SIIF).

5.7.3.2.1 User Data Read/Write Access Handling – Summary
The following is a summary of the rules in Table 228 and Table 229.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 293 of 314

While Enable is True and Done is False:
a) For LBA accesses within the limit of the MBR table

i. The device SHALL satisfy read requests only from the MBR table.
ii. The device SHALL transfer no data and terminate the command with a "Data

Protection Error" (see SIIF).
iii. SMART logging behaviors for the MBR data are vendor-specific.

b) For LBA accesses beyond the limit of the MBR table, the following rules apply

i. For Read LBA accesses
1. If Locking.ReadLockEnabled and Locking.ReadLocked are both

True, then the device SHALL return data containing a pattern of all
zeroes.

2. Otherwise, the device SHALL return the real data for the LBA
ii. For Write LBA accesses

1. If Locking.WriteLockEnabled and Locking.WriteLocked are both
True, then the device SHALL transfer no data and terminate the
command with a "Data Protection Error" (see SIIF)..

2. Otherwise, the device SHALL write the real data for the LBA

While Enable is False or Done is True:
a. The device SHALL satisfy all read and write LBA accesses from the normal user

LBA space, subject to normal locking controls.

5.7.3.3 Creating Locking Ranges
The TPer SHALL enforce that the creation of additional Locking objects complies with the following
rules:

a. Each additional row in this table represents a contiguous “subdivision” of the entire User-
Addressable LBA Range.

b. The number of rows in this table SHALL NOT exceed the value of the Locking_Info
table’s MaxRanges column + 1. If MaxRanges = 0, this is and SHALL only be a one row
table.

c. New rows of the Locking table are created using the CreateRow method. A valid
CreateRow method SHALL contain the following attributes:

a. The specified RangeStart and RangeLength values SHALL NOT overlap the LBA
range defined by any other row but the Global Range. The TPer SHALL validate the
parameterized LBA range before creating a row. An overlapping request SHALL result
in the CreateRow method failing and returning an error.

5.7.3.4 Zero Length Locking Ranges
Locking objects other than the Global Range that have a RangeLength column value of 0 do not have
any LBAs under their control, and thus do not overlap any other row even if their RangeStart column
values match.

Any Set method invocation that results in a non-Global Range's Locking table row's RangeLength
column value becoming non-0, or that does not change a non-0 column RangeLength column value but
does change a RangeStart column value, is subject to restrictions defined for overlapping column
ranges.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 294 of 314

5.7.3.5 MBR Table
Begin Informative Content

The intended purpose of the MBR table is to store code to be processed by the host after a power cycle
of the host and TPer, for example as part of the system bootstrapping process where the host's BIOS
reads the contents of LBA 0 and executes the instructions stored there. One use of this feature is to
load a pre-boot authentication program for authenticating the system's user and unlocking the Storage
Device.

End Informative Content

The values in the MBR table SHALL only be modifiable by properly authenticated Set method
invocations, even during the boot process. The size of the table is Security Subsystem Class (SSC)
specific, and is to be specified in the description of each SSC that supports the use of this functionality.
The size of the MBR table SHALL be retrievable from the Admin SP’s Table table.

Media encryption does not apply to the code stored in the MBR table, since this code is part of the
secure area and media encryption applies to the user LBA ranges defined in the Locking table.

MBR table data is byte addressable, so the host is required to map byte addresses to LBA addresses
when performing Get/Set operations on the MBR table.

5.7.3.6 Re-encryption
The host has the following re-encryption responsibilities:

a. Configures re-encryption options

b. Initiates re-encryption operations

c. Manages error recovery strategy when TPer detects errors. The host defines the next re-
encryption state

d. Optionally, acknowledge re-encryption completion

The TPer has the following re-encryption responsibilities:

a. Maintain persistent re-encryption state and status information across power cycles.

b. Quiesce and report re-encryption state and status

c. Detect re-encryption errors, completion and reset conditions

Re-encryption and normal Read/Write commands are concurrent activities. Re-encryption is a TPer
background task. As such, synchronization between normal Read/Write command processing and
background re-encryption processing is required. The means by which this synchronization is
accomplished is implementation dependent. However, the normal Storage Device firmware requires a
way to view the re-encryption process so that the proper encryption keys are selected for user data
Read/Write commands.

Attempts to modify the RangeStart and RangeLength columns of a Locking object that is undergoing
re-encryption (the Locking object's ReEncryptState column value is not IDLE) SHALL fail and return a
non-success status (FAIL) for the invoked method.

Attempts to delete a Locking object that has a ReEncryptState column of ACTIVE SHALL fail and
return a non-success status (FAIL) for the invoked method.

When the Global Locking Range is undergoing re-encryption (the Global Range's ReEncryptState
column value is not IDLE):

a. Attempts to modify the RangeStart and RangeLength columns of any Locking object
SHALL fail and return a non-success status (FAIL) for the invoked method.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 295 of 314

b. Attempts to delete any Locking object SHALL fail and return a non-success status (FAIL)
for the invoked method.

c. Attempts to create a new Locking object SHALL fail and return a non-success status
(FAIL) for the invoked method.

5.7.3.6.1 Re-encryption State Descriptions

Figure 12 LBA Range Re-encryption State Diagram

S1: IDLE: Re-encryption is idle in this state. No re-encryption is executing for this LBA range.

Transition S1:S2 START_req has been detected.

S2: PENDING: This LBA Range’s re-encryption process is waiting to start or continue re-encryption

Transition S2:S3 TPer_Ready condition is met.

Transition S2:S5 PAUSE_req has been detected OR TPer detected error condition

S3: ACTIVE: This LBA Range’s re-encryption process is executing
Transition S3:S4 TPer_Job_Done condition is met AND AdvKeyMode = 0.

Transition S3:S2 TPer_Reset_detect condition is met AND TPer_Reset_Stop is not met.

Transition S3:S5 A TPer_Error_Detect condition is met OR TPer_Reset_Stop condition is met OR
PAUSE_req has been detected

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 296 of 314

Transition S3:S1 Tper_Job_Done condition is met AND ADVKeyMode = 1 AND re-encryption has
completed

S4: COMPLETED: This LBA Range’s re-encryption process has completed without errors.

Transition S4:S1 ADVKey_req has been detected.

S5: PAUSED: This LBA Range’s re-encryption has temporarily halted. The re-encryption process has
been quiesced and awaiting host intervention.

Transition S5:S2 CONT_req has been detected

Transition S5:S1 ADVKey_req OR RETIDLE_req has been detected

5.7.3.6.2 ActiveKey Column Modifications
The following rules define how and when the ActiveKey column value is modified:

a. Host Application directly writes ActiveKey column value

b. When the ReEncryptState column value is COMPLETED or PAUSED and the Host sets the
ReEncryptRequest column value to ADVKey_req, the TPer moves the NextKey column
value to the ActiveKey column (setting the NextKey column to a NULL UID).

c. When the ReEncryptState column value is ACTIVE AND AdvKeyMode = 1 AND
TPer_Job_Done condition is detected, the TPer moves the NextKey column value to the
ActiveKey column (setting the NextKey column to a null uid reference).

When ReEncryptState value is PAUSED AND the Host sets ReEncryptRequest to ADVKey_req, the
TPer moves the NextKey column value to the ActiveKey column (setting the NextKey column to a
NULL UID).

5.7.3.6.3 ReEncryptState Column Values
When the ReEncryptState column value is:

a. 1 = IDLE: re-encryption is not active for this LBA range.
b. 2 = PENDING: This LBA Range’s re-encryption process is waiting to start or continue re-

encryption.
c. 3 = ACTIVE: This LBA Range’s re-encryption process is executing
d. 4 = COMPLETED: This LBA Range’s re-encryption process has completed without errors
e. 5 = PAUSED: This LBA Range’s re-encryption has temporarily halted.

5.7.3.6.4 ReEncryption Request Attempts
If a Set method invocation attempts to set a value to the ReEncryptRequest column that is not valid for
the current ReEncryptState column value, then this Set method invocation SHALL return an error.

a. 1 = START_req: Host requests a new re-encryption process. Only accepted when the
ReEncryptState column value is IDLE. The TPer changes the value of the
ReEncryptState column to PENDING.

b. 2 = ADVKEY_req: Host requests TPer to change the ReEncryptState column value to IDLE
AND move the value of the NextKey column to the ActiveKey column (this move also sets
the value of the NextKey column to a null uid reference). This request is only valid when the
ReEncryptState column is COMPLETED or PAUSED.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 297 of 314

c. 3 = RETIDLE_req: Host requests a return to the IDLE state WITHOUT moving keys. This
request provides the host application control over re-encryption resources and background
activity. This request is only valid when the ReEncryptState column is PAUSED.

d. 4 = CONT_req: Host requests the re-encryption process transition from
ReEncryptState=PAUSED to ReEncryptState=PENDING. Re-encryption begins at
(LastReEncryptLBA + 1). Invocation of the Set method to perform this operation SHALL
only succeed if the current ReEncryptState column value is PAUSED.

e. 5 = PAUSE_req: Host requests the quiescing of the re-encryption process. Invocation of the
Set method to perform this operation SHALL only succeed if the current ReEncryptState
column value is ACTIVE or PENDING.

5.7.3.6.5 AdvKeyMode Column Values
a. When AdvKeyMode = 0 AND TPer_Job_Done condition is detected AND ReencryptState is

ACTIVE, TPer changes the ReEncryptState value to COMPLETED.

b. When AdvKeyMode = 1 AND TPer_Job_Done condition is detected AND the value of the
ReencryptState column is ACTIVE, the TPer changes the ReEncryptState column value
to IDLE. In addition, the TPer changes the value of the ActiveKey column to be the value
of the NextKey column, and then sets the value of the NextKey column to a null uid
reference.

c. When AdvKeyMode = 0 AND Reencryptstate is COMPLETED AND AdvKey_req is True, the
TPer changes the ReEncryptState column value to IDLE AND NextKey becomes
ActiveKey.

5.7.3.7 Default Logging Settings
The default logging settings associated with the Locking Template methods are:

a. The default logging setting for the Delete object method, the DeleteRow table method, and
the Set method on objects in the Locking table SHALL be LogAlways.

b. The default logging setting for the Set method on the Locking_Info table, the MBR_Control
table, and the MBR table SHALL be LogAlways.

c. All other methods that apply to the Locking Template-related tables SHALL be as described
in the Base Template reference section on Default Logging Settings (See 5.3.4.5).

5.7.4 Life Cycle
5.7.4.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions
An SP issued with the Locking Template has the following characteristics based on the current life cycle
state of that SP:

a. Disabled – A Locking Template-enabled SP that is in the Disabled state SHALL NOT be
able to perform any user-invoked SP operations, with the exceptions noted in section 4.5.2.
This MAY result in boot-up failure (if MBR Shadowing is enabled), or the inability to lock or
unlock certain LBA ranges for reading and/or writing.

b. Frozen – Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail. This
MAY result in boot-up failure (if MBR Shadowing is enabled), or the inability to lock or
unlock certain LBA ranges for reading and/or writing.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 298 of 314

c. Issued-Disabled-Frozen – Attempts to open sessions to an SP in the Issued-Disabled-
Frozen state SHALL fail. This MAY result in boot-up failure (if MBR Shadowing is enabled),
or the inability to lock or unlock certain LBA ranges for reading and/or writing.

5.8 Log Template
5.8.1 Overview
Begin Informative Content

The Log Template is designed to maintain a log of the activities on the SP into which it was issued.
The purpose of providing this service is to aid in audits, forensic analysis, and general monitoring of the
operation of the SP.

End Informative Content

An issued SP that incorporates the Log Template SHOULD incorporate the Clock Template to exploit
the full capabilities of logging. See Section 5.5 for details on the Clock Template.

5.8.1.1 Terminology

Table 230 Log Template Terminology
Term Definition
Default log This is the initial log table created for an SP that incorporates the Log Template. By

default, all authority operations, access control associations, transaction events, and
session startup events log to this table.

5.8.2 Data Structures
5.8.2.1 Log (Object Table)
Log tables are object tables that store log entries. Each row in a Log table is an entry.

There MAY be more than one Log table in an SP. Each of these Log tables SHALL have a unique
name. Only the default Log table, which has the name “Log”, stores System log entries. The Log table
described in this section acts as the template for all log tables. Log tables are created using the
CreateLog method. User-created log tables each have an associated row in the LogList table.

Log tables SHALL only be accessible via table level methods. Individual log table rows SHALL NOT
have associated rows in the AccessControl table.

Table 231 Log Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Prev log_row_ref
0x02 Next log_row_ref
0x03 Session uinteger_4
0x04 SigningAuthority Authority_object_ref
0x05 SigningAuthName name
0x06 ExchangeAuthority Authority_object_ref
0x07 ExchangeAuthName name
0x08 MonotonicTime uinteger_8

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 299 of 314

0x09 ExactTime clock_time
0x0A TimeKind clock_kind
0x0B LogKind log_kind
0x0C Name name
0x0D Data max_bytes_64

5.8.2.1.1 UID
This is the unique identifier for this log entry.

This column SHALL NOT modifiable by the host.

5.8.2.1.2 Prev
The value of this column is the UID of the log entry (Log table row) added in this table immediately
preceding the addition of this log entry. If this row represents the first log entry added to the table, then
this value SHALL be the UID of the Log table row that is the final row used prior to reuse of the first row.
The value of this column is assigned upon creation of the table, and SHALL be updated only in the
event that the number of rows present in the table is modified.

This column SHALL NOT be modifiable by the host.

5.8.2.1.3 Next
The value of this column is the UID of the next log entry (Log table row) added in this table subsequent
to this log entry. This value in this column MAY be to a UID of a row that has not yet been used (i.e. has
a LogKind value of 0). The value of this column is assigned upon creation of the table, and SHALL be
updated only in the event that the number of rows present in the table is modified. If this row
represents the last log entry added to the table, then this value SHALL be the UID of the first row that is
reused.

This column SHALL NOT be modifiable by the host.

5.8.2.1.4 Session
The value of this column is the session number assigned by the TPer. All log entries for a single
session SHALL share the same unique session number.

This column SHALL NOT be modifiable by the host.

5.8.2.1.5 SigningAuthority
This value is the UID column value of the Host Signing Authority, if any, that opened the session.

This column SHALL NOT be modifiable by the host.

5.8.2.1.6 SigningAuthName
This is the Name column value of the Host Signing Authority, if any, that opened the session.

This column SHALL NOT be modifiable by the host.

5.8.2.1.7 ExchangeAuthority
This value is the UID column value of the Host Exchange Authority, if any, that opened the session.

This column SHALL NOT be modifiable by the host.

5.8.2.1.8 ExchangeAuthName
This is the Name column value of the Host Exchange Authority, if any, that opened the session

This column SHALL NOT be modifiable by the host.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 300 of 314

5.8.2.1.9 MonotonicTime
This is the value of the monotonic counter when the log entry was created, as defined in section 5.5.
Note that if the Clock Template was not issued into this SP then this value SHALL be 0.

This column SHALL NOT be modifiable by the host.

5.8.2.1.10 ExactTime
This is the time value (if any) when this log entry was added, as defined in section 5.5. Note that if the
Clock Template was not issued into this SP then this value SHALL be zeroes.

This column SHALL NOT be modifiable by the host.

5.8.2.1.11 TimeKind
This is the kind of time used (if any), as defined in section 5.5. Note that if the Clock Template was not
issued into this SP then this value SHALL be zero.

This column SHALL NOT be modifiable by the host.

5.8.2.1.12 LogKind
This is the user-provided type of this log entry. If the log is system generated, the value of this column
SHALL be "System".

This column SHALL NOT be modifiable by the host.

5.8.2.1.13 Name
This is the name, assigned by the user, upon creation of the log entry. For system generated log
entries, the Name column value SHALL be "System".

This column SHALL NOT be modifiable by the host.

5.8.2.1.14 Data
This is the actual log information associated with this log entry.

This column SHALL NOT be modifiable by the host.

5.8.2.2 LogList (Object Table)
The LogList table is an object table that contains exactly one row for each Log table, and contains
information about that log.

The LogList row with UID=0x00 0x00 0x0A 0x02 0x00 0x00 0x00 0x01 is automatically created on
SP issuance with the name Log. A corresponding Log table is also created at Issuance. The uid of
the created Log table is referenced in the LogList’s Log column.

At creation, the initial LogList table row SHALL have default values of HighSecurity=false and a
Serial column value that is a uidref to the UID column value of the first row in the Log table to be
used.

Table 232 LogList Table Description
Column Number Column Name IsUnique Column Type
0x00 UID uid
0x01 Name Yes name
0x02 CommonName Yes name
0x03 Log Table_object_ref

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 301 of 314

Column Number Column Name IsUnique Column Type
0x04 Serial log_row_ref
0x05 HighSecurity boolean

5.8.2.2.1 UID
This is the unique identifier of this LogList object.

This column SHALL NOT be modifiable by the host.

5.8.2.2.2 Name
This is the name of the associated Log table.

This column SHALL NOT be modifiable by the host.

5.8.2.2.3 CommonName
This is a name that MAY be shared by multiple Log tables.

This column SHALL NOT be modifiable by the host.

5.8.2.2.4 Log
This is the unique identifier of the associated Log table. This is the same as the unique identifier
recorded in the Table table entry for that log table.

This column SHALL NOT be modifiable by the host.

5.8.2.2.5 Serial
This is the cursor for the associated Log table. The log is circular. The Serial column value is the UID
column value of the most recently added entry in the Log table, and is updated for each log entry, in the
order defined by the Next column values in the Log table. Any row of the Log table that has LogKind =
0 marks that row as free and unused. At Log table creation, before any log entries have been added,
the Serial column value SHALL be the null uid.

This column SHALL NOT be modifiable by the host.

5.8.2.2.6 HighSecurity
This column value identifies the relative frequency with which log entries are committed to persistent
storage.

When HighSecurity is True, every log message is committed to persistent storage when received.
When False, messages MAY be queued for later writing (some messages could potentially be lost
when a TPer reset occurs).

5.8.3 Methods
5.8.3.1 AddLog (Table Method)
AddLog adds a log entry to the Log table on which the method was invoked.

Successful invocation of this method automatically sets the value of the LogKind column value to 9.

This method is not subject to transactional abort/rollback, and as such if successfully invoked within a
Read-Only session its effect is persistent. If multiple Read-Only sessions are open to the same SP, the
TPer is required to update the shared log without corruption. Log entries from each session are
guaranteed to be in their proper relative order, but no guarantee is made about the relative ordering of
entries between separate sessions.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 302 of 314

LogTableUID.AddLog[
LogEntryName : name,
Data : bytes]

=>
[]

5.8.3.1.1 LogEntryName
This is the value that is used for the Name column in the added Log object.

5.8.3.1.2 Data
This is the value that is used in the Data column in the added Log object.

5.8.3.1.3 AddLog Result

5.8.3.1.3.1 Result
The AddLog method returns an empty list. Success or failure of the method invocation is determinable
based on the status code returned in response to the method invocation.

5.8.3.1.4 Fails
a. If the referenced log table does not exist

5.8.3.2 CreateLog (Table Method)
Successful invocation of this method creates a row in the LogList table with the given name and
security level, and creates a corresponding Log table with the name given in the method invocation.
The Log table described in 5.8.2.1 is used as the template for the new table. ACLs are set for the new
row in the LogList table as if CreateRow had been used to create it, as described in 5.8.5. A row in the
Table table is created as normal for the new log table.

LogListUID.CreateLog[
NewLogTableName : name,
HighSecurity : boolean,
MinSize : uinteger,
MaxSize = uinteger,
Hintsize = uinteger,
CommonName = name]

=>
[LogListUID : uid, LogTableUID : uid, Rows : uinteger]

The result of a successful CreateLog method invocation is the uid of the new LogList object, the uid of
the new Log table, and the number of rows created in the new Log table.

5.8.3.2.1 NewLogTableName
This is the name assigned to the new Log table, and will be used in the Name columns of both the
LogList table and the Table table.

5.8.3.2.2 HighSecurity
This is the initial value to be used in the HighSecurity column of the newly created LogList object.

5.8.3.2.3 MinSize
The MinSize parameter is used to define the initial number of rows allocated for the new table.

5.8.3.2.4 MaxSize

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 303 of 314

The optional MaxSize parameter defines the host-requested maximum number of rows that MAY be
created for the table.

5.8.3.2.5 HintSize
The optional HintSize parameter is used to suggest a number of rows to be created for the table.

5.8.3.2.6 CommonName
The CommonName parameter is the CommonName column value for this table in the Table table. The
NewLogTableName-CommonName combination SHALL be unique within the Table table.

5.8.3.2.7 CreateLog Result

5.8.3.2.7.1 LogListUID
This is the UID column value that is assigned to the newly created LogList object in the LogList table.

5.8.3.2.7.2 LogTableUID
This is the UID column value that is assigned to the newly created Log table in the Table table.

5.8.3.2.7.3 Rows
This value is the number of rows allocated for usage for the table.

5.8.3.2.8 Fails
a. If a log table with the specified name already exists.
b. If there isn’t space in the SP for the new table.
c. If metadata/support tables (i.e. Table, Column, Method, or ACE) are not all able to create all

required rows to support this table.
d. If TPer determines MinSize is too large.

5.8.3.3 ClearLog (Table Method)
All entries in the indicated Log table are removed.

LogTableUID.ClearLog []
=>
[]

5.8.3.3.1 ClearLog Result

5.8.3.3.1.1 Result
The ClearLog method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

5.8.3.3.2 Fails
a. If the referenced log table does not exist.

5.8.3.4 FlushLog (Table Method)
Upon successful invocation of this method, all entries that exist only in the main memory and have not
yet been committed to media are committed to the indicated Log table on media.

When HighSecurity is true, FlushLog is implicitly invoked after any AddLog method invocation.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 304 of 314

LogTableUID.FlushLog []
=>
[]

5.8.3.4.1 FlushLog Result

5.8.3.4.1.1 Result
The FlushLog method returns an empty list. Success or failure of the method invocation is
determinable based on the status code returned in response to the method invocation.

The result is not generated until the persistent storage commit is complete.

5.8.3.4.2 Fails
a. If the referenced log table does not exist.

5.8.4 Descriptions
Logs are cyclical. Implementation SHALL prevent uncontrolled logging recursion.

5.8.4.1 Types of Logging
There are two types of logging:

a. User – User logging is the result of invocation of the AddLog method on a Log table.

b. System – System log entries SHALL be stored in the default Log table, or the log table
designated by the LogTo column of the Authority or AccessControl table. System
logging occurs automatically as the result of four classes of events:

a. Authentication attempts against an authority (success/failure). This includes
authentications made as a part of session startup, as well as due to invocations of the
Authenticate method. Logging for these events are controlled in the Authority
table.

b. Method invocations (success/failure). Logging for these events are controlled in the
AccessControl table.

c. Transaction events (TransactionStart, TransactionEnd, TransactionAbort). Logging for
transaction events is always to the default log table.

d. Each template reference section includes a description of the default logging values for
methods and authorities provided to an SP by that template.

5.8.4.2 Log Entries
Each log entry is a row in a Log table. Each of these rows includes columns for the Session ID, uidrefs
to Session authorities, the names of those authorities, a timestamp, a monotonic counter value, a
LogKind, a name for the log entry, and a data field that holds up to 64 bytes of data for a log message.

The value of the data field for system entries is dependent on the value of the LogKind column.

The LogKind column SHALL have one of the values defined in Table 233.

Table 233 LogKind Column Values
LogKind Column Value Meaning

0 Available

1 Method failed

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 305 of 314

LogKind Column Value Meaning

2 Method succeeded

3 Authentication attempt failed

4 Authentication attempt succeeded

5 Transaction opened successfully

6 Transaction committed successfully

7 Transaction aborted

8 Session ended successfully

9 User generated

10 to 23 reserved

The structure of the system entry is defined in Table 234.

Table 234 System Log Entry Structure
Bytes Values

0 to 7 The invoking uid of the method (either a table
or object UID, or this SP)

9 to 15 The uid of the method involved in the
operation. If there is no method, these bytes
SHALL be zeroes.

16 to 17 Status code for the operation.

5.8.4.3 Log Table Operation
Logs are maintained in a cyclical manner. All rows in a Log table SHALL be pre-allocated (that is, none
of them are free). UIDs for these rows SHALL be assigned at the time of table creation. The value 0 in
the LogKind column of a row indicates that that row has not yet been used. As log entries are added,
the value in the LogKind column for each of those used rows changes to reflect the type of log entry
added.

If dynamic row allocation is supported, the log table MAY have additional rows created. New rows
SHALL be added at the point in the table immediately following the value of the Serial column in the
LogList object that represents that table. The linking values in the Prev and Next columns of the
affected Log table SHALL be updated accordingly. These newly added rows, like the rows present at
table creation, are considered allocated and have the value 0 in the LogKind column.

Logs are maintained in a cyclical manner. For efficiency, all rows in a Log table should be pre-allocated
(that is, none of them is free). The value 0 in the LogKind column of a row indicates that that row has
not yet been used. As log entries are added, the value in the LogKind column for each of those used
rows changes to reflect the type of log entry added.

If dynamic row allocation is supported, the log table MAY have additional rows created. New rows are
added at the end of the table. These rows, like the rows present at table creation, are considered
allocated and have the value 0 in the LogKind column. The number of rows in a table MAY be changed
by invoking the Set method on the Rows column of the Table table. For information on adding rows to
a table, see section 5.3.4.3.1.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 306 of 314

A Log table row contains a timestamp and uidrefs to and names of the authorities used to start the
session in which the activity is being logged. Actual log data (the value stored to the Data column)
depends on the LogKind field (see section 5.8.4.2).

If the Clock Template has not been issued into the SP with the Log Template, when a new entry is
created in a Log table the values for the MonotonicTime, ExactTime, and TimeKind columns SHALL be
0.

The TPer SHALL atomically add log entries to a log table if multiple read sessions are open to the SP
and are affecting that log table.

5.8.4.4 Deleting a Log Table
Because a Log table and the LogList table is kept in sync, there SHALL be no ACL to allow the Log
table to be deleted via the Table table. The LogList object’s Delete method SHALL be used to delete a
Log table. Successful invocation of that method deletes the Log table and its associated entries in both
the LogList table and the Table table. For more information, see the Log Template Life Cycle section
5.8.5.

5.8.4.5 Specifying a Log Table
If supported, a host MAY define zero or more Log tables additional to that supplied by the Log Template
by default. If this capability is supported, the host MAY specify that specific actions be logged in the
host-designated Log tables.

The LogTo column of the AccessControl table allows the host to associate an access control
association to a particular Log table. All access control associations enumerated in the AccessControl
table at issuance SHALL be logged to the default log.

The LogTo column of the Authority table allows the host to associate an authority’s operations to a
particular Log table. All authorities at issuance SHALL be logged to the default log.

5.8.4.6 Default Logging Settings
The default logging settings associated with the Log Template methods are:

a. The default logging setting for the Delete object method on objects in the LogList table is
LogAlways.

b. The default logging setting for the ClearLog method on all Log tables is LogAlways.

c. All other methods that apply to the Log and LogList tables are as described in the Base
Template reference section (See Section 5.3.4.5).

5.8.5 Life Cycle
5.8.5.1 Log Template-Specific Life Cycle State Descriptions/Exceptions
Method invocations that occur to the Admin SP during the Issuance process are logged to the Admin
SP default Log table (if the Log Template is part of the Admin SP and if logging of those method
invocations is enabled).

An SP issued with the Log Template has the following characteristics based on the current life cycle
state of that SP:

a. Disabled – A Log Template-enabled SP in the Disabled state SHALL log authority
authentication attempts, session startup attempts, and all method invocation attempts
(dependent on log settings in the Authority and AccessControl tables). A Log Template-

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 307 of 314

enabled SP that is in the Disabled state SHALL NOT be able to perform any user-invoked
SP operations, with the exceptions noted in section 4.5.2.

b. Frozen – Attempts to open sessions to an SP in the Issued-Frozen state SHALL fail.

c. Issued-Disabled-Frozen – Attempts to open sessions to an SP in the Issued-Disabled-
Frozen state SHALL fail.

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 308 of 314

6 Appendix 1 – Required UID Assignments

6.1 Required UID Assignments Overview
The tables in this section define the required UID assignments for objects, methods, and tables, and
table rows as required by this specification.

6.2 Reserved UIDs
The first 216 + 1 uids in each table are reserved for use by the TCG. This represents reservation of the
lower 4 bytes of each uid, 0x00 0x00 0x00 0x00 to 0x00 0x01 0x00 0x00 inclusive. Reservation
allows categorization of table rows using the lower order bytes of each UID.

These default UIDs enable grouping for the following purposes:

a. To categorize rows of the Table table by Template

b. To categorize rows of the MethodID table by Template

c. To categorize rows of the Type table by type format

Each of these categories in each of the respective tables is grouped into 128 categories with 512 UIDs
reserved for each category. The following tables identify the values reserved, and the associated
category for which they are reserved. For additional information on UID assignment, see section
3.2.5.3.

Table 235 MethodID Table and Table Table LSB Value Ranges Assignment
Template Name Range Start Range End
Unassigned 00 00 00 00 00 00 00 00
Base 00 00 00 01 00 00 02 00
Admin 00 00 02 01 00 00 04 00
Clock 00 00 04 01 00 00 06 00
Crypto 00 00 06 01 00 00 08 00
Locking 00 00 08 01 00 00 0A 00
Log 00 00 0A 01 00 00 0C 00
Unassigned 00 00 0C 01 00 01 00 00
Non-reserved non-assigned 00 01 00 01 FF FE FF FF
Vendor unique (upper 64K) FF FF 00 00 FF FF FF FF

Table 236 Type Table Reserved LSB Value Ranges
Type Format Name Reserved

Start
Reserved
End

Base_Type 00 00 00 01 00 00 02 00
Simple_Type 00 00 02 01 00 00 04 00
Enumeration_Type 00 00 04 01 00 00 06 00
Alternative_Type 00 00 06 01 00 00 08 00
List_Type 00 00 08 01 00 00 0A 00
Restricted_Reference_Type {5} 00 00 0A 01 00 00 0C 00
Restricted_Reference_Type {6} 00 00 0C 01 00 00 0F 00
General_Reference_Type 00 00 0F 01 00 00 10 00
General_Reference_Table_Type 00 00 10 01 00 00 12 00
Name_Value_Name_Type 00 00 12 01 00 00 14 00

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 309 of 314

Type Format Name Reserved
Start

Reserved
End

Name_Value_Uinteger_Type 00 00 14 01 00 00 16 00
Name_Value_Integer_Type 00 00 16 01 00 00 18 00
Struct Type 00 00 18 01 00 00 1A 00
Set Type 00 00 1A 01 00 00 1C 00
Unassigned 00 00 1C 01 00 01 00 00
Unassigned 00 00 00 00

6.3 Assigned UIDs
The tables in this section display the assigned UIDs required to be used with the associated tables,
methods, objects, and table rows. For additional information on UID assignment, see section 3.2.5.3.

The tables in this section describe:

a. Special Purpose UIDs (Table 237) – this descriptive table contains UIDs assigned special
meanings/functions in the Core Specification, and a brief description of their functions.

b. Table UIDs (Table 238) – this descriptive table contains UIDs assigned to all table
descriptor objects (objects in the Table table), as well as the UIDs assigned to the tables
themselves.

c. Session Manager Method UIDs (Table 239) – this descriptive table contains the UIDs
assigned to Session Manager layer methods.

d. MethodID UIDs (Table 240) – this descriptive table contains the UIDs assigned in the
MethodID table to all preinstalled methods.

e. Authority UIDs (Table 241) – this descriptive table contains the UIDs assigned in the
Authority table to each of the default authorities described in the Core Spec.

f. Single Row Table UIDs (Table 242) – this descriptive table contains the UIDs assigned to
rows in the tables described in the TCG Core Specification as having only one row.

g. Table Default Rows (Table 243) – In some instances, the TCG Core Specification also
defines the UIDs of certain objects within some tables. This descriptive table contains the
UIDs assigned to these objects.

h. Template Table UIDs (Table 244) – this descriptive table contains the UIDs assigned to all
of the Templates defined in this specification that would appear in the Admin SP’s
Template table.

i. SPTemplates Table UIDs (Table 245) – this descriptive table contains the UIDs assigned to
all of the Templates defined in this specification that would appear in an SP’s SPTemplates
table.

Table 237 Special Purpose UIDs
UID Purpose
00 00 00 00 00 00 00 00 Used to represent null uid

00 00 00 00 00 00 00 01 Used as the SPUID, the UID that identifies "This SP" – used as the
InvokingID for invocation of SP methods

00 00 00 00 00 00 00 FF Used as the SMUID, the UID that identifies "the Session manager" –
used as InvokingID for invocation of Session Manager layer methods

00 00 00 00 00 00 FF xx Identifies UIDs assigned to Session Manager layer methods, where xx
is the UID assigned to a particular method (see Table 239)

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 310 of 314

UID Purpose

00 00 00 0B 00 00 00 01 Used in the C_PIN table's CharSet column to indicate that the GenKey
character set is not restricted (all byte values are legal).

Table 238 Table UIDs
UID of Table Descriptor
Object UID of Table Table Name Template
00 00 00 01 00 00 00 01 00 00 00 01 00 00 00 00 Table Base
00 00 00 01 00 00 00 02 00 00 00 02 00 00 00 00 SPInfo Base
00 00 00 01 00 00 00 03 00 00 00 03 00 00 00 00 SPTemplates Base
00 00 00 01 00 00 00 04 00 00 00 04 00 00 00 00 Column Base
00 00 00 01 00 00 00 05 00 00 00 05 00 00 00 00 Type Base
00 00 00 01 00 00 00 06 00 00 00 06 00 00 00 00 MethodID Base
00 00 00 01 00 00 00 07 00 00 00 07 00 00 00 00 AccessControl Base
00 00 00 01 00 00 00 08 00 00 00 08 00 00 00 00 ACE Base
00 00 00 01 00 00 00 09 00 00 00 09 00 00 00 00 Authority Base
00 00 00 01 00 00 00 0A 00 00 00 0A 00 00 00 00 Certificates Base
00 00 00 01 00 00 00 0B 00 00 00 0B 00 00 00 00 C_PIN Base
00 00 00 01 00 00 00 0C 00 00 00 0C 00 00 00 00 C_RSA_1024 Base
00 00 00 01 00 00 00 0D 00 00 00 0D 00 00 00 00 C_RSA_2048 Base
00 00 00 01 00 00 00 0E 00 00 00 0E 00 00 00 00 C_AES_128 Base
00 00 00 01 00 00 00 0F 00 00 00 0F 00 00 00 00 C_AES_256 Base
00 00 00 01 00 00 00 10 00 00 00 10 00 00 00 00 C_EC_160 Base
00 00 00 01 00 00 00 11 00 00 00 11 00 00 00 00 C_EC_192 Base
00 00 00 01 00 00 00 12 00 00 00 12 00 00 00 00 C_EC_224 Base
00 00 00 01 00 00 00 13 00 00 00 13 00 00 00 00 C_EC_256 Base
00 00 00 01 00 00 00 14 00 00 00 14 00 00 00 00 C_EC_384 Base
00 00 00 01 00 00 00 15 00 00 00 15 00 00 00 00 C_EC_521 Base
00 00 00 01 00 00 00 16 00 00 00 16 00 00 00 00 C_EC_163 Base
00 00 00 01 00 00 00 17 00 00 00 17 00 00 00 00 C_EC_233 Base
00 00 00 01 00 00 00 18 00 00 00 18 00 00 00 00 C_EC_283 Base
00 00 00 01 00 00 00 19 00 00 00 19 00 00 00 00 C_HMAC_160 Base
00 00 00 01 00 00 00 1A 00 00 00 1A 00 00 00 00 C_HMAC_256 Base
00 00 00 01 00 00 00 1B 00 00 00 1B 00 00 00 00 C_HMAC_384 Base
00 00 00 01 00 00 00 1C 00 00 00 1C 00 00 00 00 C_HMAC_512 Base
00 00 00 01 00 00 00 1D 00 00 00 1D 00 00 00 00 SecretProtect Base
00 00 00 01 00 00 02 01 00 00 02 01 00 00 00 00 TPerInfo Admin
00 00 00 01 00 00 02 03 00 00 02 03 00 00 00 00 CryptoSuite Admin
00 00 00 01 00 00 02 04 00 00 02 04 00 00 00 00 Template Admin
00 00 00 01 00 00 02 05 00 00 02 05 00 00 00 00 SP Admin
00 00 00 01 00 00 04 01 00 00 04 01 00 00 00 00 ClockTime Clock
00 00 00 01 00 00 06 01 00 00 06 01 00 00 00 00 H_SHA_1 Crypto
00 00 00 01 00 00 06 02 00 00 06 02 00 00 00 00 H_SHA_256 Crypto
00 00 00 01 00 00 06 03 00 00 06 03 00 00 00 00 H_SHA_384 Crypto

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 311 of 314

UID of Table Descriptor
Object UID of Table Table Name Template
00 00 00 01 00 00 06 04 00 00 06 04 00 00 00 00 H_SHA_512 Crypto
00 00 00 01 00 00 0A 01 00 00 0A 01 00 00 00 00 Log Log
00 00 00 01 00 00 0A 02 00 00 0A 02 00 00 00 00 LogList Log
00 00 00 01 00 00 08 01 00 00 08 01 00 00 00 00 LockingInfo Locking
00 00 00 01 00 00 08 02 00 00 08 02 00 00 00 00 Locking Locking
00 00 00 01 00 00 08 03 00 00 08 03 00 00 00 00 MBRControl Locking
00 00 00 01 00 00 08 04 00 00 08 04 00 00 00 00 MBR Locking
00 00 00 01 00 00 08 05 00 00 08 05 00 00 00 00 K_AES_128 Locking
00 00 00 01 00 00 08 06 00 00 08 06 00 00 00 00 K_AES_256 Locking

Table 239 Session Manager Method UIDs
Method UID Method Name
00 00 00 00 00 00 FF 01 Properties
00 00 00 00 00 00 FF 02 StartSession
00 00 00 00 00 00 FF 03 SyncSession
00 00 00 00 00 00 FF 04 StartTrustedSession
00 00 00 00 00 00 FF 05 SyncTrustedSession
00 00 00 00 00 00 FF 06 CloseSession

Table 240 MethodID UIDs
UID in MethodID Table Method Name Template
00 00 00 06 00 00 00 01 DeleteSP Base
00 00 00 06 00 00 00 02 CreateTable Base
00 00 00 06 00 00 00 03 Delete Base
00 00 00 06 00 00 00 04 CreateRow Base
00 00 00 06 00 00 00 05 DeleteRow Base
00 00 00 06 00 00 00 06 OBSOLETE *
00 00 00 06 00 00 00 07 OBSOLETE *
00 00 00 06 00 00 00 08 Next Base
00 00 00 06 00 00 00 09 GetFreeSpace Base
00 00 00 06 00 00 00 0A GetFreeRows Base
00 00 00 06 00 00 00 0B DeleteMethod Base
00 00 00 06 00 00 00 0C OBSOLETE *
00 00 00 06 00 00 00 0D GetACL Base
00 00 00 06 00 00 00 0E AddACE Base
00 00 00 06 00 00 00 0F RemoveACE Base
00 00 00 06 00 00 00 10 GenKey Base
00 00 00 06 00 00 00 11 Reserved for SSC Usage
00 00 00 06 00 00 00 12 GetPackage Base
00 00 00 06 00 00 00 13 SetPackage Base
00 00 00 06 00 00 00 16 Get Base

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 312 of 314

UID in MethodID Table Method Name Template
00 00 00 06 00 00 00 17 Set Base
00 00 00 06 00 00 00 1C Authenticate Base
00 00 00 06 00 00 02 01 IssueSP Admin
00 00 00 06 00 00 02 02 Reserved for SSC Usage
00 00 00 06 00 00 02 03 Reserved for SSC Usage
00 00 00 06 00 00 04 01 GetClock Clock
00 00 00 06 00 00 04 02 ResetClock Clock
00 00 00 06 00 00 04 03 SetClockHigh Clock
00 00 00 06 00 00 04 04 SetLagHigh Clock
00 00 00 06 00 00 04 05 SetClockLow Clock
00 00 00 06 00 00 04 06 SetLagLow Clock
00 00 00 06 00 00 04 07 IncrementCounter Clock
00 00 00 06 00 00 06 01 Random Crypto
00 00 00 06 00 00 06 02 Salt Crypto
00 00 00 06 00 00 06 03 DecryptInit Crypto
00 00 00 06 00 00 06 04 Decrypt Crypto
00 00 00 06 00 00 06 05 DecryptFinalize Crypto
00 00 00 06 00 00 06 06 EncryptInit Crypto
00 00 00 06 00 00 06 07 Encrypt Crypto
00 00 00 06 00 00 06 08 EncryptFinalize Crypto
00 00 00 06 00 00 06 09 HMACInit Crypto
00 00 00 06 00 00 06 0A HMAC Crypto
00 00 00 06 00 00 06 0B HMACFinalize Crypto
00 00 00 06 00 00 06 0C HashInit Crypto
00 00 00 06 00 00 06 0D Hash Crypto
00 00 00 06 00 00 06 0E HashFinalize Crypto
00 00 00 06 00 00 06 0F Sign Crypto
00 00 00 06 00 00 06 10 Verify Crypto
00 00 00 06 00 00 06 11 XOR Crypto
00 00 00 06 00 00 0A 01 AddLog Log
00 00 00 06 00 00 0A 02 CreateLog Log
00 00 00 06 00 00 0A 03 ClearLog Log
00 00 00 06 00 00 0A 04 FlushLog Log
00 00 00 06 00 00 08 03 Reserved for SSC Usage

*Note: See TCG Storage Architecture Core Specification version 0.9.

Table 241 Authority UIDs
UID in Authority Table Authority Name Template
00 00 00 09 00 00 00 01 Anybody Base
00 00 00 09 00 00 00 02 Admins Base
00 00 00 09 00 00 00 03 Makers Base
00 00 00 09 00 00 00 04 MakerSymK Base
00 00 00 09 00 00 00 05 MakerPuK Base
00 00 00 09 00 00 00 06 SID Base
00 00 00 09 00 00 00 07 TPerSign Base

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 313 of 314

00 00 00 09 00 00 00 08 TPerExch Base
00 00 00 09 00 00 00 09 AdminExch Base
00 00 00 09 00 00 02 01 Issuers Admin
00 00 00 09 00 00 02 02 Editors Admin
00 00 00 09 00 00 02 03 Deleters Admin
00 00 00 09 00 00 02 04 Servers Admin
00 00 00 09 00 00 02 05 Reserve0 Admin
00 00 00 09 00 00 02 06 Reserve1 Admin
00 00 00 09 00 00 02 07 Reserve2 Admin
00 00 00 09 00 00 02 08 Reserve3 Admin

Table 242 Single Row Table Row UIDs
UID of Row Single Row Table Name
00 00 00 02 00 00 00 01 SPInfo
00 00 02 01 00 00 00 01 TPerInfo
00 00 08 01 00 00 00 01 LockingInfo
00 00 08 03 00 00 00 01 MBRControl

Table 243 Table Default Rows
UID of Row Table Name Row Name
00 00 00 0B 00 00 00 01 C_PIN SID
00 00 02 05 00 00 00 01 SP Admin
00 00 04 01 00 00 00 01 ClockTime Clock
00 00 0A 02 00 00 00 01 LogList Log
00 00 08 02 00 00 00 01 Locking Global Range

Table 244 Template Table UIDs
UID of Row Template Name
00 00 02 04 00 00 00 01 Base
00 00 02 04 00 00 00 02 Admin
00 00 02 04 00 00 00 03 Clock
00 00 02 04 00 00 00 04 Crypto
00 00 02 04 00 00 00 05 Log
00 00 02 04 00 00 00 06 Locking
00 00 02 04 00 00 00 07 Reserved for SSC usage

Table 245 SPTemplates Table UIDs
UID of Row SPTemplates Name

TCG Storage Architecture Core Specification TCG Copyright 2009
Specification Version 2.00 Final

Revision 1.00 Page 314 of 314

UID of Row SPTemplates Name
00 00 00 03 00 00 00 01 Base
00 00 00 03 00 00 00 02 Admin
00 00 00 03 00 00 00 03 Clock
00 00 00 03 00 00 00 04 Crypto
00 00 00 03 00 00 00 05 Log
00 00 00 03 00 00 00 06 Locking
00 00 00 03 00 00 00 07 Reserved for SSC usage

	1 Introduction
	1.1 Scope and Audience
	1.2 Key Words
	1.3 References
	1.4 Terminology
	1.4.1 Global Terminology

	2 Trusted Storage Device Architecture
	2.1 Architecture Overview
	2.2 Architecture Components
	2.2.1 Multicomponent Trusted Platform (MCTP)
	2.2.2 Host
	2.2.2.1 Host Applications

	2.2.3 Trusted Peripheral (TPer)
	2.2.4 Security Providers (SPs)

	2.3 Core Architecture Operations
	2.3.1 Host <–> TPer Communication Infrastructure
	2.3.2 SP Issuance & Personalization Overview
	2.3.3 Security Subsystem Classes Overview
	2.3.4 Preliminary Architectural Components

	3 Architecture Elements
	3.1 Architecture Elements Overview
	3.2 Data Structure Descriptions
	3.2.1 Document Data Formats
	3.2.1.1 Table Definition Format
	3.2.1.2 Method Signature Pseudo-code
	3.2.1.3 Messaging Data Types
	3.2.1.4 Type Checking

	3.2.2 Data Stream Encoding
	3.2.2.1 Data Types
	3.2.2.2 Endianness
	3.2.2.3 Tokens
	3.2.2.3.1 Simple Tokens – Atoms Overview
	3.2.2.3.1.1 Tiny atoms
	3.2.2.3.1.2 Short atoms
	3.2.2.3.1.3 Medium atoms
	3.2.2.3.1.4 Long atoms
	3.2.2.3.1.5 Empty Atom

	3.2.2.3.2 Sequence Tokens
	3.2.2.3.2.1 Named
	3.2.2.3.2.2 List

	3.2.2.3.3 Control Tokens
	3.2.2.3.3.1 Call (CALL)
	3.2.2.3.3.2 End of Data (EOD)
	3.2.2.3.3.3 End of Session (EOS)
	3.2.2.3.3.4 Start Transaction (ST)
	3.2.2.3.3.5 End Transaction (ET)

	3.2.2.3.4 Unexpected/Out of Order Control Tokens

	3.2.3 ComPackets, Packets & Subpackets
	3.2.3.1 Format
	3.2.3.2 ComPacket Format
	3.2.3.2.1 ComPacket Header Fields
	3.2.3.2.1.1 Reserved
	3.2.3.2.1.2 ComID
	3.2.3.2.1.3 ComID Extension
	3.2.3.2.1.4 OutstandingData
	3.2.3.2.1.5 MinTransfer
	3.2.3.2.1.6 Length

	3.2.3.2.2 ComPacket Payload Fields
	3.2.3.2.2.1 Data

	3.2.3.3 Packet Format
	3.2.3.3.1 Packet Header Fields
	3.2.3.3.1.1 Session
	3.2.3.3.1.2 SeqNumber
	3.2.3.3.1.3 Reserved
	3.2.3.3.1.4 AckType
	3.2.3.3.1.5 Acknowledgement
	3.2.3.3.1.6 Length

	3.2.3.3.2 Packet Payload Fields
	3.2.3.3.2.1 Data

	3.2.3.4 Subpacket Formats
	3.2.3.4.1 Data Subpacket Format
	3.2.3.4.1.1 Data Subpacket Header Fields
	3.2.3.4.1.1.1 Reserved
	3.2.3.4.1.1.2 Kind
	3.2.3.4.1.1.3 Length

	3.2.3.4.1.2 Data Subpacket Payload Fields
	3.2.3.4.1.2.1 Data
	3.2.3.4.1.2.2 Pad

	3.2.3.4.2 Credit Control Subpacket Format
	3.2.3.4.2.1 Credit Control Subpacket Header Fields
	3.2.3.4.2.1.1 Reserved
	3.2.3.4.2.1.2 Kind
	3.2.3.4.2.1.3 Length

	3.2.3.4.2.2 Credit Control Subpacket Payload Fields
	3.2.3.4.2.2.1 Credit

	3.2.3.5 Secure Messaging Packet Format
	3.2.3.5.1 Secure Messaging Packet Header Fields
	3.2.3.5.1.1 Session
	3.2.3.5.1.2 SeqNumber
	3.2.3.5.1.3 Reserved
	3.2.3.5.1.4 AckType
	3.2.3.5.1.5 Acknowledgement
	3.2.3.5.1.6 Length

	3.2.3.5.2 Secure Messaging Packet Payload Fields
	3.2.3.5.2.1 Initialization Vector (IV)
	3.2.3.5.2.2 SecureData
	3.2.3.5.2.2.1 DataLength
	3.2.3.5.2.2.2 Data
	3.2.3.5.2.2.3 Pad

	3.2.3.5.2.3 Message Authentication Code (MAC)

	3.2.4 Methods
	3.2.4.1 Method Syntax
	3.2.4.2 Method Encoding
	3.2.4.3 Method Result Retrieval Protocol

	3.2.5 Tables
	3.2.5.1 Kinds of Tables
	3.2.5.2 Objects
	3.2.5.3 Unique Identifiers (UIDs)
	3.2.5.4 Unique Column Value Combinations

	3.2.6 Templates

	3.3 Interface Communications
	3.3.1 Communicating With the TPer Through the Interface Protocol
	3.3.2 The ComID
	3.3.3 ComID Management
	3.3.3.1 Extended ComID
	3.3.3.2 IF-SEND to Inactive or Unsupported Reserved ComID
	3.3.3.3 IF-RECV to Inactive or Unsupported Reserved ComID

	3.3.4 Protocol Layers
	3.3.4.1 Transport Layer
	3.3.4.2 Interface Layer
	3.3.4.3 TPer Layer
	3.3.4.3.1 GET_COMID

	3.3.4.4 Communication Layer
	3.3.4.4.1 Communication Layer Protocol

	3.3.4.5 Management Layer
	3.3.4.6 Session Layer
	3.3.4.7 Communication Layer Commands
	3.3.4.7.1 HANDLE_COMID_REQUEST
	3.3.4.7.2 GET_COMID_RESPONSE
	3.3.4.7.3 No Response Available
	3.3.4.7.4 VERIFY_COMID_VALID
	3.3.4.7.5 STACK_RESET

	3.3.5 Capability Discovery
	3.3.6 Level 0 Discovery
	3.3.6.1 IF-SEND Command
	3.3.6.2 IF-RECV Command
	Bit
	3.3.6.2.1 Length of parameter data
	3.3.6.2.2 Data structure version number
	3.3.6.2.3 Vendor Unique

	3.3.6.3 Features - Overview
	Bit
	3.3.6.3.1.1 Feature Code
	3.3.6.3.1.2 Version
	3.3.6.3.1.3 Length

	3.3.6.4 TPer Feature
	Bit
	3.3.6.4.1 Sync Supported
	3.3.6.4.2 Async Supported
	3.3.6.4.3 ACK/NAK Supported
	3.3.6.4.4 BufferMgmt Supported
	3.3.6.4.5 Streaming Supported
	3.3.6.4.6 ComID Management Supported

	3.3.6.5 Locking Feature
	Bit
	3.3.6.5.1 LockingSupported
	3.3.6.5.2 LockingEnabled
	3.3.6.5.3 Locked
	3.3.6.5.4 MediaEncryption
	3.3.6.5.5 MBREnabled
	3.3.6.5.6 MBRDone

	3.3.6.6 Common SSC feature information
	Bit

	3.3.7 Sessions, Methods, and Transactions
	3.3.7.1 Sessions
	3.3.7.1.1 Regular Sessions
	3.3.7.1.2 Control Sessions
	3.3.7.1.3 Session Manager Protocol Layer
	3.3.7.1.4 Starting Sessions
	3.3.7.1.5 Ending Sessions
	3.3.7.1.6 Session Timeouts

	3.3.7.2 Methods
	3.3.7.3 Transactions
	3.3.7.3.1 Nested Transactions
	3.3.7.3.2 Authentication Within Transactions

	3.3.8 Stream Flow Control
	3.3.8.1 Introduction
	3.3.8.2 Buffer Management

	3.3.9 Session Reliability
	3.3.9.1 Introduction
	3.3.9.2 Transmission Acknowledgement
	3.3.9.3 Transmission Negative Acknowledgement
	3.3.9.4 Transmission Timeouts
	3.3.9.5 Closing a Session

	3.3.10 Synchronous Interface Communications
	3.3.10.1 Introduction
	3.3.10.2 Interface Commands
	3.3.10.2.1 Restrictions

	3.3.10.3 Synchronous Communications Restrictions
	3.3.10.4 State Transition Diagram
	3.3.10.5 State Descriptions
	3.3.10.6 State Transitions
	3.3.10.7 Error Handling

	3.4 SP Operation Descriptions
	3.4.1 General SP Guidelines
	3.4.1.1 Admin SP
	3.4.1.2 SPs

	3.4.2 Access Control
	3.4.2.1 Overview
	3.4.2.2 Authorities
	3.4.2.3 ACEs and ACLs

	3.4.3 SP Issuance, Personalization, and Operational State
	3.4.3.1 Issuing an SP

	4 Life Cycle of SPs
	4.1 Life Cycle of SPs Overview
	4.2 Life Cycle States
	4.3 Life Cycle State Transitions
	4.4 Default Authorities
	4.5 State Behaviors
	4.5.1 Issued
	4.5.2 Issued-Disabled
	4.5.3 Issued-Frozen
	4.5.4 Issued-Disabled-Frozen
	4.5.5 Failed

	5 SP Reference
	5.1 Globally Applicable SP Values
	5.1.1 Column Types Overview
	5.1.2 Types Encoding
	5.1.3 Column Types
	5.1.3.1 AC_element
	5.1.3.2 ACE_columns
	5.1.3.3 ACE_expression
	5.1.3.4 ACE_object_ref
	5.1.3.5 ACL
	5.1.3.6 adv_key_mode
	5.1.3.7 attr_flags
	5.1.3.8 auth_method
	5.1.3.9 Authority_object_ref
	5.1.3.10 boolean
	5.1.3.11 boolean_ACE
	5.1.3.12 byte_row_ref
	5.1.3.13 byte_table_ref
	5.1.3.14 bytes
	5.1.3.15 bytes_12
	5.1.3.16 bytes_16
	5.1.3.17 bytes_20
	5.1.3.18 bytes_32
	5.1.3.19 bytes_48
	5.1.3.20 bytes_64
	5.1.3.21 Certificates_object_ref
	5.1.3.22 clock_kind
	5.1.3.23 clock_time
	5.1.3.24 Column_object _ref
	5.1.3.25 cred_object_uidref
	5.1.3.26 date
	5.1.3.27 Day
	5.1.3.28 day_enum
	5.1.3.29 enc_supported
	5.1.3.30 feedback_size
	5.1.3.31 Fraction
	5.1.3.32 fraction_enum
	5.1.3.33 gen_status
	5.1.3.34 hash_protocol
	5.1.3.35 Hour
	5.1.3.36 hour_enum
	5.1.3.37 integer
	5.1.3.38 integer_1
	5.1.3.39 integer_2
	5.1.3.40 key_128
	5.1.3.41 key_256
	5.1.3.42 keys_avail_conds
	5.1.3.43 lag
	5.1.3.44 last_reenc_stat
	5.1.3.45 life_cycle_state
	5.1.3.46 LogList_object_ref
	5.1.3.47 log_row_ref
	5.1.3.48 log_select
	5.1.3.49 max_bytes
	5.1.3.50 max_bytes_32
	5.1.3.51 max_bytes_64
	5.1.3.52 mediakey_obj_uidref
	5.1.3.53 MethodID_object _ref
	5.1.3.54 messaging_type
	5.1.3.55 Minute
	5.1.3.56 minute_enum
	5.1.3.57 Month
	5.1.3.58 month_enum
	5.1.3.59 name
	5.1.3.60 object_ref
	5.1.3.61 padding_type
	5.1.3.62 password
	5.1.3.63 protect_types
	5.1.3.64 reencrypt_request
	5.1.3.65 reencrypt_state
	5.1.3.66 reset_types
	5.1.3.67 Seconds
	5.1.3.68 seconds_enum
	5.1.3.69 SPTemplates_object _ref
	5.1.3.70 SSC
	5.1.3.71 symmetric_mode
	5.1.3.72 symmetric_mode_media
	5.1.3.73 table_kind
	5.1.3.74 table_or_object_ref
	5.1.3.75 Table_object _ref
	5.1.3.76 table_ref
	5.1.3.77 Template_object _ref
	5.1.3.78 type_def
	5.1.3.79 Type_object _ref
	5.1.3.80 uid
	5.1.3.81 uinteger
	5.1.3.82 uinteger_1
	5.1.3.83 uinteger_128
	5.1.3.84 uinteger_2
	5.1.3.85 uinteger_20
	5.1.3.86 uinteger_21
	5.1.3.87 uinteger_24
	5.1.3.88 uinteger_256
	5.1.3.89 uinteger_28
	5.1.3.90 uinteger_30
	5.1.3.91 uinteger_36
	5.1.3.92 uinteger_4
	5.1.3.93 uinteger_48
	5.1.3.94 uinteger_64
	5.1.3.95 uinteger_66
	5.1.3.96 uinteger_8
	5.1.3.97 verify_mode
	5.1.3.98 Year
	5.1.3.99 year_enum

	5.1.4 Abstract Types
	5.1.4.1 Name Representations in Abstract Type Named Value Components
	5.1.4.2 Abstract Type Definitions
	5.1.4.2.1 access_control_list
	5.1.4.2.2 boolean
	5.1.4.2.3 cell_block
	5.1.4.2.4 clock_kind
	5.1.4.2.5 clock_time
	5.1.4.2.6 columns
	5.1.4.2.7 date
	5.1.4.2.8 hash_protocol
	5.1.4.2.9 key_size
	5.1.4.2.10 lag
	5.1.4.2.11 name
	5.1.4.2.12 package
	5.1.4.2.13 package_purpose
	5.1.4.2.14 row_address
	5.1.4.2.15 row_data
	5.1.4.2.16 table_kind
	5.1.4.2.17 table_sizes
	5.1.4.2.18 uidref

	5.1.5 Method Status Codes
	5.1.5.1 SUCCESS
	5.1.5.2 NOT_AUTHORIZED
	5.1.5.3 SP_BUSY
	5.1.5.4 SP_FAILED
	5.1.5.5 SP_DISABLED
	5.1.5.6 SP_FROZEN
	5.1.5.7 NO_SESSIONS_AVAILABLE
	5.1.5.8 UNIQUENESS_CONFLICT
	5.1.5.9 INSUFFICIENT_SPACE
	5.1.5.10 INSUFFICIENT_ROWS
	5.1.5.11 INVALID_METHOD
	5.1.5.12 INVALID_PARAMETER
	5.1.5.13 TPER_MALFUNCTION
	5.1.5.14 TRANSACTION_FAILURE
	5.1.5.15 RESPONSE_OVERFLOW
	5.1.5.16 AUTHORITY_LOCKED_OUT
	5.1.5.17 FAIL

	5.2 Session Manager Methods
	5.2.1 Overview
	5.2.2 TPer Properties Method
	5.2.2.1 Properties (Method)
	5.2.2.1.1 HostProperties
	5.2.2.1.2 Properties Response
	5.2.2.1.2.1 Properties
	5.2.2.1.2.2 HostProperties

	5.2.2.2 Retrieving Properties
	5.2.2.3 Setting HostProperties
	5.2.2.4 Communications Minimums
	5.2.2.4.1 Communication Rules Based on TPer Properties and Host Properties
	5.2.2.4.1.1 MaxSubpackets
	5.2.2.4.1.2 MaxPacketSize
	5.2.2.4.1.3 MaxPackets
	5.2.2.4.1.4 MaxComPacketSize
	5.2.2.4.1.5 MaxIndTokenSize
	5.2.2.4.1.6 MaxAggTokenSize
	5.2.2.4.1.7 MaxMethods
	5.2.2.4.1.8 ContinuedTokens
	5.2.2.4.1.9 SequenceNumbers
	5.2.2.4.1.10 AckNak
	5.2.2.4.1.11 Asynchronous

	5.2.2.4.2 AckNak and SequenceNumbers Dependency
	5.2.2.4.3 TPer Response for Invalid Token/Atom
	5.2.2.4.4 Interaction with TCG Reset Events
	5.2.2.4.5 Interaction with TCG Protocol Stack Reset

	5.2.3 Session Startup Methods
	5.2.3.1 StartSession Method
	5.2.3.1.1 HostSessionID
	5.2.3.1.2 SPID
	5.2.3.1.3 Write
	5.2.3.1.4 HostChallenge
	5.2.3.1.5 HostExchangeAuthority
	5.2.3.1.6 HostExchangeCert
	5.2.3.1.7 HostSigningAuthority
	5.2.3.1.8 HostSigningCert
	5.2.3.1.9 SessionTimeout
	5.2.3.1.10 TransTimeout
	5.2.3.1.11 InitialCredit
	5.2.3.1.12 SignedHash

	5.2.3.2 SyncSession Method
	5.2.3.2.1 HostSessionID
	5.2.3.2.2 SPSessionID
	5.2.3.2.3 SPChallenge
	5.2.3.2.4 SPExchangeCert
	5.2.3.2.5 SPSigningCert
	5.2.3.2.6 TransTimeout
	5.2.3.2.7 InitialCredit
	5.2.3.2.8 SignedHash

	5.2.3.3 StartTrustedSession Method
	5.2.3.3.1 HostSessionID
	5.2.3.3.2 SPSessionID
	5.2.3.3.3 HostResponse
	5.2.3.3.4 HostEncryptSessionKey
	5.2.3.3.5 HostIntegritySessionKey
	5.2.3.3.6 SignedHash

	5.2.3.4 SyncTrustedSession Method
	5.2.3.4.1 HostSessionID
	5.2.3.4.2 SPSessionID
	5.2.3.4.3 SPResponse
	5.2.3.4.4 SPEncryptSessionKey
	5.2.3.4.5 SPIntegritySessionKey
	5.2.3.4.6 SignedHash

	5.2.3.5 CloseSession Method
	5.2.3.5.1 RemoteSessionNumber
	5.2.3.5.2 LocalSessionNumber

	5.3 Base Template
	5.3.1 Overview
	5.3.1.1 Base Template Tables and Methods Overview

	5.3.2 Data Structures
	5.3.2.1 General Metadata Group - SPInfo (Object Table)
	5.3.2.1.1 UID
	5.3.2.1.2 SPID
	5.3.2.1.3 Name
	5.3.2.1.4 Size
	5.3.2.1.5 SizeInUse
	5.3.2.1.6 SPSessionTimeout
	5.3.2.1.7 Enabled

	5.3.2.2 General Metadata Group - SPTemplates (Object Table)
	5.3.2.2.1 UID
	5.3.2.2.2 TemplateID
	5.3.2.2.3 Name
	5.3.2.2.4 Version

	5.3.2.3 Table and Method Metadata Group - Table (Object Table)
	5.3.2.3.1 UID
	5.3.2.3.2 Name
	5.3.2.3.3 CommonName
	5.3.2.3.4 TemplateID
	5.3.2.3.5 Kind
	5.3.2.3.6 Column
	5.3.2.3.7 NumColumns
	5.3.2.3.8 Rows
	5.3.2.3.9 RowsFree
	5.3.2.3.10 RowBytes
	5.3.2.3.11 LastID
	5.3.2.3.12 MinSize
	5.3.2.3.13 MaxSize

	5.3.2.4 Table and Method Metadata Group - Column (Object Table)
	5.3.2.4.1 UID
	5.3.2.4.2 Name
	5.3.2.4.3 CommonName
	5.3.2.4.4 Type
	5.3.2.4.5 IsUnique
	5.3.2.4.6 ColumnNumber
	5.3.2.4.7 Transactional
	5.3.2.4.8 Next
	5.3.2.4.9 AttributeFlags

	5.3.2.5 Table and Method Metadata Group - Type (Object Table)
	5.3.2.5.1 UID
	5.3.2.5.2 Name
	5.3.2.5.3 CommonName
	5.3.2.5.4 Format
	5.3.2.5.5 Size

	5.3.2.6 Table and Method Metadata Group - MethodID (Object Table)
	5.3.2.6.1 UID
	5.3.2.6.2 Name
	5.3.2.6.3 CommonName
	5.3.2.6.4 TemplateID

	5.3.2.7 Table and Method Metadata Group - AccessControl (Object Table)
	5.3.2.7.1 UID
	5.3.2.7.2 InvokingID
	5.3.2.7.3 MethodID
	5.3.2.7.4 CommonName
	5.3.2.7.5 ACL
	5.3.2.7.6 Log
	5.3.2.7.7 AddACEACL
	5.3.2.7.8 RemoveACEACL
	5.3.2.7.9 GetACLACL
	5.3.2.7.10 DeleteMethodACL
	5.3.2.7.11 AddACELog
	5.3.2.7.12 RemoveACELog
	5.3.2.7.13 GetACLLog
	5.3.2.7.14 DeleteMethodLog
	5.3.2.7.15 LogTo

	5.3.2.8 Table and Method Metadata Group - SecretProtect (Object Table)
	5.3.2.8.1 UID
	5.3.2.8.2 Table
	5.3.2.8.3 ColumnNumber
	5.3.2.8.4 ProtectMechanisms

	5.3.2.9 Access Control Metadata Group - ACE (Object Table)
	5.3.2.9.1 UID
	5.3.2.9.2 Name
	5.3.2.9.3 CommonName
	5.3.2.9.4 BooleanExpr
	5.3.2.9.5 Columns

	5.3.2.10 Access Control Metadata Group - Authority (Object Table)
	5.3.2.10.1 UID
	5.3.2.10.2 Name
	5.3.2.10.3 CommonName
	5.3.2.10.4 IsClass
	5.3.2.10.5 Class
	5.3.2.10.6 Enabled
	5.3.2.10.7 Secure
	5.3.2.10.8 HashAndSign
	5.3.2.10.9 PresentCertificate
	5.3.2.10.10 Operation
	5.3.2.10.11 Credential
	5.3.2.10.12 ResponseSign
	5.3.2.10.13 ResponseExch
	5.3.2.10.14 ClockStart
	5.3.2.10.15 ClockEnd
	5.3.2.10.16 Limit
	5.3.2.10.17 Uses
	5.3.2.10.18 Log
	5.3.2.10.19 LogTo

	5.3.2.11 Access Control Metadata Group - Certificates (Object Table)
	5.3.2.11.1 UID
	5.3.2.11.2 Name
	5.3.2.11.3 CommonName
	5.3.2.11.4 CertData
	5.3.2.11.5 CertSize

	5.3.2.12 Credential Table Group - C_PIN (Object Table)
	5.3.2.12.1 UID
	5.3.2.12.2 Name
	5.3.2.12.3 CommonName
	5.3.2.12.4 PIN
	5.3.2.12.5 CharSet
	5.3.2.12.6 TryLimit
	5.3.2.12.7 Tries
	5.3.2.12.8 Persistence

	5.3.2.13 Credential Table Group - C_RSA_1024 (Object Table)
	5.3.2.13.1 UID
	5.3.2.13.2 Name
	5.3.2.13.3 CommonName
	5.3.2.13.4 Format
	5.3.2.13.5 Pu_Exp
	5.3.2.13.6 Mod
	5.3.2.13.7 Pr_Exp
	5.3.2.13.8 P
	5.3.2.13.9 Q
	5.3.2.13.10 Dmp1
	5.3.2.13.11 Dmq1
	5.3.2.13.12 Iqmp
	5.3.2.13.13 Hash
	5.3.2.13.14 ChainLimit
	5.3.2.13.15 Certificate

	5.3.2.14 Credential Table Group - C_RSA_2048 (Object Table)
	5.3.2.14.1 UID
	5.3.2.14.2 Name
	5.3.2.14.3 CommonName
	5.3.2.14.4 Format
	5.3.2.14.5 Pu_Exp
	5.3.2.14.6 Mod
	5.3.2.14.7 Pr_Exp
	5.3.2.14.8 P
	5.3.2.14.9 Q
	5.3.2.14.10 Dmp1
	5.3.2.14.11 Dmq1
	5.3.2.14.12 Iqmp
	5.3.2.14.13 Hash
	5.3.2.14.14 ChainLimit
	5.3.2.14.15 Certificate

	5.3.2.15 Credential Table Group - C_AES_128 (Object Table)
	5.3.2.15.1 UID
	5.3.2.15.2 Name
	5.3.2.15.3 CommonName
	5.3.2.15.4 Key
	5.3.2.15.5 Mode
	5.3.2.15.6 FeedbackSize
	5.3.2.15.7 ResidualData
	5.3.2.15.8 Hash

	5.3.2.16 Credential Table Group - C_AES_256 (Object Table)
	5.3.2.16.1 UID
	5.3.2.16.2 Name
	5.3.2.16.3 CommonName
	5.3.2.16.4 Key
	5.3.2.16.5 Mode
	5.3.2.16.6 FeedbackSize
	5.3.2.16.7 ResidualData
	5.3.2.16.8 Hash

	5.3.2.17 Credential Table Group - C_EC_160 (Object Table)
	5.3.2.17.1 UID
	5.3.2.17.2 Name
	5.3.2.17.3 CommonName
	5.3.2.17.4 p
	5.3.2.17.5 r
	5.3.2.17.6 b
	5.3.2.17.7 x
	5.3.2.17.8 y
	5.3.2.17.9 alpha
	5.3.2.17.10 u
	5.3.2.17.11 v
	5.3.2.17.12 Hash
	5.3.2.17.13 ChainLimit
	5.3.2.17.14 Certificate
	5.3.2.17.15 Values for C_EC_160

	5.3.2.18 Credential Table Group - C_EC_192 (Object Table)
	5.3.2.18.1 UID
	5.3.2.18.2 Name
	5.3.2.18.3 CommonName
	5.3.2.18.4 p
	5.3.2.18.5 r
	5.3.2.18.6 b
	5.3.2.18.7 x
	5.3.2.18.8 y
	5.3.2.18.9 alpha
	5.3.2.18.10 u
	5.3.2.18.11 v
	5.3.2.18.12 Hash
	5.3.2.18.13 ChainLimit
	5.3.2.18.14 Certificate
	5.3.2.18.15 Values for C_EC_192

	5.3.2.19 Credential Table Group - C_EC_224 (Object Table)
	5.3.2.19.1 UID
	5.3.2.19.2 Name
	5.3.2.19.3 CommonName
	5.3.2.19.4 p
	5.3.2.19.5 r
	5.3.2.19.6 b
	5.3.2.19.7 x
	5.3.2.19.8 y
	5.3.2.19.9 alpha
	5.3.2.19.10 u
	5.3.2.19.11 v
	5.3.2.19.12 Hash
	5.3.2.19.13 ChainLimit
	5.3.2.19.14 Certificate
	5.3.2.19.15 Values for C_EC_224

	5.3.2.20 Credential Table Group - C_EC_256 (Object Table)
	5.3.2.20.1 UID
	5.3.2.20.2 Name
	5.3.2.20.3 CommonName
	5.3.2.20.4 p
	5.3.2.20.5 r
	5.3.2.20.6 b
	5.3.2.20.7 x
	5.3.2.20.8 y
	5.3.2.20.9 alpha
	5.3.2.20.10 u
	5.3.2.20.11 v
	5.3.2.20.12 Hash
	5.3.2.20.13 ChainLimit
	5.3.2.20.14 Certificate
	5.3.2.20.15 Values for C_EC_256

	5.3.2.21 Credential Table Group - C_EC_384 (Object Table)
	5.3.2.21.1 UID
	5.3.2.21.2 Name
	5.3.2.21.3 CommonName
	5.3.2.21.4 p
	5.3.2.21.5 r
	5.3.2.21.6 b
	5.3.2.21.7 x
	5.3.2.21.8 y
	5.3.2.21.9 alpha
	5.3.2.21.10 u
	5.3.2.21.11 v
	5.3.2.21.12 Hash
	5.3.2.21.13 ChainLimit
	5.3.2.21.14 Certificate
	5.3.2.21.15 Values for C_EC_384

	5.3.2.22 Credential Table Group - C_EC_521 (Object Table)
	5.3.2.22.1 UID
	5.3.2.22.2 Name
	5.3.2.22.3 CommonName
	5.3.2.22.4 p
	5.3.2.22.5 r
	5.3.2.22.6 b
	5.3.2.22.7 x
	5.3.2.22.8 y
	5.3.2.22.9 alpha
	5.3.2.22.10 u
	5.3.2.22.11 v
	5.3.2.22.12 Hash
	5.3.2.22.13 ChainLimit
	5.3.2.22.14 Certificate
	5.3.2.22.15 Values for C_EC_521

	5.3.2.23 Credential Table Group - C_EC_163 (Object Table)
	5.3.2.23.1 UID
	5.3.2.23.2 Name
	5.3.2.23.3 CommonName
	5.3.2.23.4 k1
	5.3.2.23.5 k2
	5.3.2.23.6 k3
	5.3.2.23.7 r
	5.3.2.23.8 a
	5.3.2.23.9 b
	5.3.2.23.10 x
	5.3.2.23.11 y
	5.3.2.23.12 alpha
	5.3.2.23.13 u
	5.3.2.23.14 v
	5.3.2.23.15 Hash
	5.3.2.23.16 ChainLimit
	5.3.2.23.17 Certificate
	5.3.2.23.18 Values for C_EC_163

	5.3.2.24 Credential Table Group - C_EC_233 (Object Table)
	5.3.2.24.1 UID
	5.3.2.24.2 Name
	5.3.2.24.3 CommonName
	5.3.2.24.4 k
	5.3.2.24.5 r
	5.3.2.24.6 a
	5.3.2.24.7 b
	5.3.2.24.8 x
	5.3.2.24.9 y
	5.3.2.24.10 alpha
	5.3.2.24.11 u
	5.3.2.24.12 v
	5.3.2.24.13 Hash
	5.3.2.24.14 ChainLimit
	5.3.2.24.15 Certificate
	5.3.2.24.16 Values for C_EC_233

	5.3.2.25 Credential Table Group - C_EC_283 (Object Table)
	5.3.2.25.1 UID
	5.3.2.25.2 Name
	5.3.2.25.3 CommonName
	5.3.2.25.4 k1
	5.3.2.25.5 k2
	5.3.2.25.6 k3
	5.3.2.25.7 r
	5.3.2.25.8 a
	5.3.2.25.9 b
	5.3.2.25.10 x
	5.3.2.25.11 y
	5.3.2.25.12 alpha
	5.3.2.25.13 u
	5.3.2.25.14 v
	5.3.2.25.15 Hash
	5.3.2.25.16 ChainLimit
	5.3.2.25.17 Certificate
	5.3.2.25.18 Values for C_EC_283

	5.3.2.26 Credential Table Group – C_HMAC_160 (Object Table)
	5.3.2.26.1 UID
	5.3.2.26.2 Name
	5.3.2.26.3 CommonName
	5.3.2.26.4 Key
	5.3.2.26.5 Hash

	5.3.2.27 Credential Table Group – C_HMAC_256 (Object Table)
	5.3.2.27.1 UID
	5.3.2.27.2 Name
	5.3.2.27.3 CommonName
	5.3.2.27.4 Key
	5.3.2.27.5 Hash

	5.3.2.28 Credential Table Group – C_HMAC_384 (Object Table)
	5.3.2.28.1 UID
	5.3.2.28.2 Name
	5.3.2.28.3 CommonName
	5.3.2.28.4 Key
	5.3.2.28.5 Hash

	5.3.2.29 Credential Table Group – C_HMAC_512 (Object Table)
	5.3.2.29.1 UID
	5.3.2.29.2 Name
	5.3.2.29.3 CommonName
	5.3.2.29.4 Key
	5.3.2.29.5 Hash

	5.3.3 Methods
	5.3.3.1 SP Method Group - DeleteSP (SP Method)
	5.3.3.1.1 DeleteSP Result
	5.3.3.1.1.1 Result

	5.3.3.2 Basic Table Method Group - CreateTable (SP Method)
	5.3.3.2.1 NewTableName
	5.3.3.2.2 Kind
	5.3.3.2.3 GetSetACL
	5.3.3.2.4 Columns
	5.3.3.2.5 MinSize
	5.3.3.2.6 MaxSize
	5.3.3.2.7 HintSize
	5.3.3.2.8 CommonName
	5.3.3.2.9 CreateTable Result
	5.3.3.2.9.1 UID
	5.3.3.2.9.2 Rows

	5.3.3.2.10 Fails

	5.3.3.3 Basic Table Method Group - Delete (Object Method)
	5.3.3.3.1 Delete Result
	5.3.3.3.1.1 Result

	5.3.3.3.2 Fails

	5.3.3.4 Basic Table Method Group - CreateRow (Table Method)
	5.3.3.4.1 Row
	5.3.3.4.2 CreateRow Result
	5.3.3.4.2.1 Result

	5.3.3.4.3 Fails

	5.3.3.5 Basic Table Method Group - DeleteRow (Table Method)
	5.3.3.5.1 Rows
	5.3.3.5.2 DeleteRow Result
	5.3.3.5.2.1 Result

	5.3.3.5.3 Fails

	5.3.3.6 Basic Table Method Group - Get (Table and Object Method)
	5.3.3.6.1 Cellblock
	5.3.3.6.2 Get Result
	5.3.3.6.2.1 Bytes
	5.3.3.6.2.2 RowValues

	5.3.3.6.3 Fails

	5.3.3.7 Basic Table Method Group - Set (Table and Object Method)
	5.3.3.7.1 Where
	5.3.3.7.1.1 UID
	5.3.3.7.1.2 Row

	5.3.3.7.2 Values
	5.3.3.7.2.1 Bytes
	5.3.3.7.2.2 RowValues

	5.3.3.7.3 Set Result
	5.3.3.7.4 Fails

	5.3.3.8 Basic Table Method Group - Next (Table Method)
	5.3.3.8.1 Where
	5.3.3.8.2 Count
	5.3.3.8.3 Next Result
	5.3.3.8.3.1 Result

	5.3.3.8.4 Fails

	5.3.3.9 Basic Table Method Group - GetFreeSpace (SP Method)
	5.3.3.9.1 GetFreeSpace Result
	5.3.3.9.1.1 FreeSpace
	5.3.3.9.1.2 TableRows

	5.3.3.10 Basic Table Method Group - GetFreeRows (Object Method)
	5.3.3.10.1 GetFreeRows Result
	5.3.3.10.1.1 FreeRows

	5.3.3.10.2 Fails

	5.3.3.11 Method Manipulation Group - DeleteMethod (Meta-Method)
	5.3.3.11.1 InvokingID
	5.3.3.11.2 MethodID
	5.3.3.11.3 DeleteMethod Result
	5.3.3.11.3.1 Result

	5.3.3.11.4 Fails

	5.3.3.12 Access Control Method Group - Authenticate (SP Method)
	5.3.3.12.1 Authority
	5.3.3.12.2 Proof
	5.3.3.12.3 Authenticate Result
	5.3.3.12.3.1 Success
	5.3.3.12.3.2 Challenge

	5.3.3.12.4 Fails

	5.3.3.13 Access Control Method Group - GetACL (Meta-Method)
	5.3.3.13.1 InvokingID
	5.3.3.13.2 MethodID
	5.3.3.13.3 GetACL Result
	5.3.3.13.3.1 Result

	5.3.3.13.4 Fails

	5.3.3.14 Access Control Method Group - AddACE (Meta-Method)
	5.3.3.14.1 InvokingID
	5.3.3.14.2 MethodID
	5.3.3.14.3 ACE
	5.3.3.14.4 AddACE Result
	5.3.3.14.4.1 Result

	5.3.3.14.5 Fails

	5.3.3.15 Access Control Method Group - RemoveACE (Meta-Method)
	5.3.3.15.1 InvokingID
	5.3.3.15.2 MethodID
	5.3.3.15.3 ACE
	5.3.3.15.4 RemoveACE Result
	5.3.3.15.4.1 Result

	5.3.3.15.5 Fails

	5.3.3.16 Key Related Method Group - GenKey (Object Method)
	5.3.3.16.1 PublicExponent
	5.3.3.16.2 PinLength
	5.3.3.16.3 GenKey Result
	5.3.3.16.3.1 Result

	5.3.3.16.4 Fails

	5.3.3.17 Key Related Method Group - GetPackage Method (Object Method)
	5.3.3.17.1 Purpose
	5.3.3.17.2 WrappingKey
	5.3.3.17.3 SigningKey
	5.3.3.17.4 Date
	5.3.3.17.5 Log
	5.3.3.17.6 GetPackage Result
	5.3.3.17.6.1 Result

	5.3.3.17.7 Fails

	5.3.3.18 Key Related Method Group - SetPackage Method (Object Method)
	5.3.3.18.1 Value
	5.3.3.18.2 WrappingKey
	5.3.3.18.3 SigningKey
	5.3.3.18.4 SetPackage Result
	5.3.3.18.5 Fails

	5.3.4 Description
	5.3.4.1 Authentication
	5.3.4.1.1 Credential Tables
	5.3.4.1.1.1 GenKey on C_PIN Objects
	5.3.4.1.1.2 Authentication Attempt Limits with C_PIN Objects

	5.3.4.1.2 Authorities
	5.3.4.1.2.1 Anybody
	5.3.4.1.2.2 Makers
	5.3.4.1.2.3 SID
	5.3.4.1.2.4 TPerSign and TPerExch
	5.3.4.1.2.5 AdminExch

	5.3.4.1.3 Authority Operations
	5.3.4.1.4 Session Startup
	5.3.4.1.5 Secure Messaging Control
	5.3.4.1.6 Hashing and Signing Method Parameters

	5.3.4.2 Signed Hashing During Session Startup
	5.3.4.2.1 Session Key Exchange
	5.3.4.2.2 Session Startup Authorities
	5.3.4.2.3 EC-MQV Session Startup
	5.3.4.2.4 EC-DH Session Startup
	5.3.4.2.5 Certificate Presentation
	5.3.4.2.6 Explicit Authentication with the Authenticate Method
	5.3.4.2.6.1 Authenticate Method Failures

	5.3.4.3 Table Management
	5.3.4.3.1 Creating Tables
	5.3.4.3.2 Retrieving Table Data
	5.3.4.3.3 Creating Table Rows
	5.3.4.3.4 Deleting Table Rows
	5.3.4.3.5 Deleting Tables
	5.3.4.3.6 Modifying Tables
	5.3.4.3.7 Iterating Through Tables

	5.3.4.4 Access Control
	5.3.4.4.1 Meta-ACLs

	5.3.4.5 Deleting the SP
	5.3.4.6 SetPackage Method Operation
	5.3.4.7 Default Logging Settings

	5.3.5 Life Cycle
	5.3.5.1 Base Template-Specific Life Cycle State Descriptions/Exceptions

	5.4 Admin Template
	5.4.1 Overview
	5.4.2 Data Structures
	5.4.2.1 TPer Metadata Group - TPerInfo (Object Table)
	5.4.2.1.1 UID
	5.4.2.1.2 Bytes
	5.4.2.1.3 GUDID
	5.4.2.1.4 Generation
	5.4.2.1.5 FirmwareVersion
	5.4.2.1.6 ProtocolVersion
	5.4.2.1.7 SpaceForIssuance
	5.4.2.1.8 SSC

	5.4.2.2 TPer Metadata Group - Serial Number Contents
	5.4.2.3 TPer Metadata Group - CryptoSuite (Object Table)
	5.4.2.3.1 UID
	5.4.2.3.2 CryptoCall
	5.4.2.3.3 CryptoLen
	5.4.2.3.4 CryptoOp
	5.4.2.3.5 Special
	5.4.2.3.6 Time
	5.4.2.3.7 Variance

	5.4.2.4 SPs on the TPer Group - Template (Object Table)
	5.4.2.4.1 UID
	5.4.2.4.2 Name
	5.4.2.4.3 RevisionNumber
	5.4.2.4.4 Instances
	5.4.2.4.5 MaxInstances

	5.4.2.5 SPs on the TPer Group - SP (Object Table)
	5.4.2.5.1 UID
	5.4.2.5.2 Name
	5.4.2.5.3 ORG
	5.4.2.5.4 EffectiveAuth
	5.4.2.5.5 DateofIssue
	5.4.2.5.6 Bytes
	5.4.2.5.7 LifeCycleState
	5.4.2.5.8 Frozen

	5.4.3 Methods
	5.4.3.1 IssueSP (SP Method)
	5.4.3.1.1 SPName
	5.4.3.1.2 Size
	5.4.3.1.3 Templates
	5.4.3.1.4 AdminExch
	5.4.3.1.5 Enabled
	5.4.3.1.6 IssueSP Result
	5.4.3.1.6.1 UID
	5.4.3.1.6.2 Size

	5.4.3.1.7 Fails

	5.4.4 Descriptions
	5.4.4.1 Templates and the Admin SP
	5.4.4.2 Deleting SPs via the Admin SP
	5.4.4.3 Admin SP Sessions
	5.4.4.3.1 Issuance Sessions

	5.4.4.4 Authorities
	5.4.4.5 Default Logging Settings

	5.4.5 Life Cycle
	5.4.5.1 Admin Template-Specific Life Cycle State Descriptions/Exceptions

	5.5 Clock Template
	5.5.1 Overview
	5.5.2 Terminology
	5.5.3 Data Structures
	5.5.3.1 ClockTime (Object Table)
	5.5.3.1.1 UID
	5.5.3.1.2 HaveHigh
	5.5.3.1.3 HighByWhom
	5.5.3.1.4 HighSetTime
	5.5.3.1.5 HighInitialTimer
	5.5.3.1.6 HighLag
	5.5.3.1.7 HaveLow
	5.5.3.1.8 LowByWhom
	5.5.3.1.9 LowSetTime
	5.5.3.1.10 LowInitialTimer
	5.5.3.1.11 LowLag
	5.5.3.1.12 MonotonicBase
	5.5.3.1.13 MonotonicReserve
	5.5.3.1.14 TrustMode

	5.5.4 Methods
	5.5.4.1 GetClock (Table Method)
	5.5.4.1.1 GetClock Result
	5.5.4.1.1.1 Kind
	5.5.4.1.1.2 ExactTime
	5.5.4.1.1.3 LagTime
	5.5.4.1.1.4 MonotonicTime

	5.5.4.1.2 Fails

	5.5.4.2 ResetClock (Table Method)
	5.5.4.2.1 ResetClock Result
	5.5.4.2.1.1 Result

	5.5.4.2.2 Fails

	5.5.4.3 SetClockHigh (Table Method)
	5.5.4.3.1 ExactTime
	5.5.4.3.2 SetClockHigh Result
	5.5.4.3.2.1 Result

	5.5.4.3.3 Fails

	5.5.4.4 SetLagHigh (Table Method)
	5.5.4.4.1 LagTime
	5.5.4.4.2 SetLagHigh Result
	5.5.4.4.2.1 LowPreserved

	5.5.4.5 SetClockLow (Table Method)
	5.5.4.5.1 ExactTime
	5.5.4.5.2 SetClockLow Result
	5.5.4.5.2.1 Result

	5.5.4.5.3 Fails

	5.5.4.6 SetLagLow (Table Method)
	5.5.4.6.1 LagTime
	5.5.4.6.2 SetLagLow Result
	5.5.4.6.2.1 Result

	5.5.4.7 IncrementCounter (Table Method)
	5.5.4.7.1 IncrementCounter Result
	5.5.4.7.1.1 MonotonicTime

	5.5.4.7.2 Fails

	5.5.5 Descriptions
	5.5.5.1 Setting the Time
	5.5.5.1.1 High Trust vs. Low Trust
	5.5.5.1.2 Setting High Trust Time
	5.5.5.1.3 Setting Low Trust TIme

	5.5.5.2 Monotonic Counter
	5.5.5.3 Incremental Clock
	5.5.5.4 Timer Mode
	5.5.5.5 Storing Time
	5.5.5.6 Storing LagTime
	5.5.5.7 Reading the Time
	5.5.5.8 Resetting the Clock
	5.5.5.9 Default Logging Settings

	5.5.6 Life Cycle
	5.5.6.1 Clock Template-Specific Life Cycle State Descriptions/Exceptions

	5.6 Crypto Template
	5.6.1 Overview
	5.6.2 Terminology
	5.6.3 Data Structures
	5.6.3.1 Cryptographic Support Group - H_SHA_1 (Object Table)
	5.6.3.1.1 UID
	5.6.3.1.2 Name
	5.6.3.1.3 CommonName
	5.6.3.1.4 Proof
	5.6.3.1.5 Accumulator
	5.6.3.1.6 Signer

	5.6.3.2 Cryptographic Support Group - H_SHA_256 (Object Table)
	5.6.3.2.1 UID
	5.6.3.2.2 Name
	5.6.3.2.3 CommonName
	5.6.3.2.4 Proof
	5.6.3.2.5 Accumulator
	5.6.3.2.6 Signer

	5.6.3.3 Cryptographic Support Group - H_SHA_384 (Object Table)
	5.6.3.3.1 UID
	5.6.3.3.2 Name
	5.6.3.3.3 CommonName
	5.6.3.3.4 Proof
	5.6.3.3.5 Accumulator
	5.6.3.3.6 Signer

	5.6.3.4 Cryptographic Support Group - H_SHA_512 (Object Table)
	5.6.3.4.1 UID
	5.6.3.4.2 Name
	5.6.3.4.3 CommonName
	5.6.3.4.4 Proof
	5.6.3.4.5 Accumulator
	5.6.3.4.6 Signer

	5.6.4 Methods
	5.6.4.1 Random Number Related Method Group - Random (SP Method)
	5.6.4.1.1 Count
	5.6.4.1.2 BufferOut
	5.6.4.1.3 Random Result
	5.6.4.1.3.1 Result

	5.6.4.2 Random Number Related Method Group – Stir (SP Method)
	5.6.4.2.1 Value
	5.6.4.2.1.1 Input
	5.6.4.2.1.2 Internal

	5.6.4.2.2 Fails
	5.6.4.2.3 Stir Result
	5.6.4.2.3.1 Result

	5.6.4.3 Decryption Method Group – DecryptInit (Object Method)
	5.6.4.3.1 IV
	5.6.4.3.2 DecriptInit Result
	5.6.4.3.2.1 Result

	5.6.4.3.3 Fails

	5.6.4.4 Decryption Method Group - Decrypt (Object Method)
	5.6.4.4.1 Input
	5.6.4.4.1.1 Data
	5.6.4.4.1.2 Buffer

	5.6.4.4.2 BufferOut
	5.6.4.4.3 Decrypt Result
	5.6.4.4.3.1 Result

	5.6.4.4.4 Fails

	5.6.4.5 Decryption Method Group – DecryptFinalize (Object Method)
	5.6.4.5.1 DecryptFinalize Result
	5.6.4.5.1.1 Result

	5.6.4.5.2 Fails

	5.6.4.6 Encryption Method Group – EncryptInit (Object Method)
	5.6.4.6.1 IV
	5.6.4.6.2 EncryptInit Result
	5.6.4.6.2.1 Result

	5.6.4.6.3 Fails

	5.6.4.7 Encrytion Method Group - Encrypt (Object Method)
	5.6.4.7.1 Input
	5.6.4.7.1.1 Data
	5.6.4.7.1.2 Buffer

	5.6.4.7.2 BufferOut
	5.6.4.7.3 Encrypt Result
	5.6.4.7.3.1 Result

	5.6.4.7.4 Fails

	5.6.4.8 Encryption Method Group – EncryptFinalize (Object Method)
	5.6.4.8.1 EncryptFinalize Result
	5.6.4.8.1.1 Result

	5.6.4.8.2 Fails

	5.6.4.9 Sign (Object Method)
	5.6.4.9.1 Input
	5.6.4.9.1.1 Data
	5.6.4.9.1.2 Buffer

	5.6.4.9.2 BufferOut
	5.6.4.9.3 Sign Result
	5.6.4.9.3.1 Result

	5.6.4.9.4 Fails

	5.6.4.10 Verify (Object Method)
	5.6.4.10.1 Input
	5.6.4.10.1.1 Data
	5.6.4.10.1.2 Buffer

	5.6.4.10.2 Data
	5.6.4.10.2.1 Proof
	5.6.4.10.2.2 ProofBuffer

	5.6.4.10.3 Verify Result
	5.6.4.10.3.1 Result

	5.6.4.10.4 Fails

	5.6.4.11 Hash Method Group – HashInit (Object Method)
	5.6.4.11.1 BufferOut
	5.6.4.11.2 HashInit Result
	5.6.4.11.2.1 Result

	5.6.4.11.3 Fails

	5.6.4.12 Hash Method Group – Hash (Object Method)
	5.6.4.12.1 Input
	5.6.4.12.1.1 Data
	5.6.4.12.1.2 BufferIn

	5.6.4.12.2 Hash Result
	5.6.4.12.2.1 Result

	5.6.4.12.3 Fails

	5.6.4.13 Hash Method Group – HashFinalize (Object Method)
	5.6.4.13.1 HashFinalize Result
	5.6.4.13.1.1 Result

	5.6.4.13.2 Fails

	5.6.4.14 HMAC Method Group – HMACInit (Object Method)
	5.6.4.14.1 BufferOut
	5.6.4.14.2 HMACInit Result
	5.6.4.14.2.1 Result

	5.6.4.14.3 Fails

	5.6.4.15 HMAC Method Group – HMAC (Object Method)
	5.6.4.15.1 Input
	5.6.4.15.1.1 Data
	5.6.4.15.1.2 Buffer

	5.6.4.15.2 HMAC Result
	5.6.4.15.2.1 Result

	5.6.4.15.3 Fails

	5.6.4.16 HMAC Method Group – HMACFinalize (Object Method)
	5.6.4.16.1 HMACFinalize Result
	5.6.4.16.1.1 Result

	5.6.4.16.2 Fails

	5.6.4.17 XOR (SP Method)
	5.6.4.17.1 PatternInput
	5.6.4.17.2 DeletePattern
	5.6.4.17.3 Input
	5.6.4.17.3.1 Data
	5.6.4.17.3.2 BufferIn

	5.6.4.17.4 BufferOut
	5.6.4.17.5 XOR Result
	5.6.4.17.5.1 Result

	5.6.4.17.6 Fails

	5.6.5 Descriptions
	5.6.5.1 Cellblocks
	5.6.5.2 Hashing
	5.6.5.3 HMAC
	5.6.5.4 XOR
	5.6.5.5 Signing
	5.6.5.5.1 Invocation of Sign on a Public Key Credential
	5.6.5.5.2 Invocation of Sign on a Hash Object

	5.6.5.6 Verifying
	5.6.5.6.1 Invocation of Verify on a Public Key Credential
	5.6.5.6.2 Invocation of Verify on a Hash Object

	5.6.5.7 Encrypting
	5.6.5.8 Decrypting
	5.6.5.9 Default Logging Settings

	5.6.6 Life Cycle
	5.6.6.1 Crypto Template-Specific Life Cycle State Descriptions/Exceptions

	5.7 Locking Template
	5.7.1 Overview
	5.7.1.1 Terminology

	5.7.2 Data Structures
	5.7.2.1 LockingInfo (Object Table)
	5.7.2.1.1 UID
	5.7.2.1.2 Name
	5.7.2.1.3 Version
	5.7.2.1.4 EncryptSupport
	5.7.2.1.5 MaxRanges
	5.7.2.1.6 MaxReEncryptions
	5.7.2.1.7 KeysAvailableCfg

	5.7.2.2 Locking (Object Table)
	5.7.2.2.1 UID
	5.7.2.2.2 Name
	5.7.2.2.3 CommonName
	5.7.2.2.4 RangeStart
	5.7.2.2.5 RangeLength
	5.7.2.2.6 ReadLockEnabled
	5.7.2.2.7 WriteLockEnabled
	5.7.2.2.8 ReadLocked
	5.7.2.2.9 WriteLocked
	5.7.2.2.10 LockOnReset
	5.7.2.2.11 ActiveKey
	5.7.2.2.12 NextKey
	5.7.2.2.13 ReEncryptState
	5.7.2.2.14 ReEncryptRequest
	5.7.2.2.15 AdvKeyMode
	5.7.2.2.16 VerifyMode
	5.7.2.2.17 ContOnReset
	5.7.2.2.18 LastReEncryptLBA
	5.7.2.2.19 LastReEncStat
	5.7.2.2.20 GeneralStatus

	5.7.2.3 Media Encryption Key Table Group - K_AES_128 (Object Table)
	5.7.2.3.1 UID
	5.7.2.3.2 Name
	5.7.2.3.3 CommonName
	5.7.2.3.4 Key
	5.7.2.3.5 Mode

	5.7.2.4 Media Encryption Key Table Group - K_AES_256 (Object Table)
	5.7.2.4.1 UID
	5.7.2.4.2 Name
	5.7.2.4.3 CommonName
	5.7.2.4.4 Key
	5.7.2.4.5 Mode

	5.7.2.5 MBRControl (Object Table)
	5.7.2.5.1 UID
	5.7.2.5.2 Enable
	5.7.2.5.3 Done
	5.7.2.5.4 MBRDoneOnReset

	5.7.2.6 MBR (Byte Table)

	5.7.3 Description
	5.7.3.1 Locking State Descriptions
	5.7.3.1.1 State Descriptions
	5.7.3.1.2 State Change Descriptions

	5.7.3.2 Reading/Writing User Data
	5.7.3.2.1 User Data Read/Write Access Handling – Summary

	5.7.3.3 Creating Locking Ranges
	5.7.3.4 Zero Length Locking Ranges
	5.7.3.5 MBR Table
	5.7.3.6 Re-encryption
	5.7.3.6.1 Re-encryption State Descriptions
	5.7.3.6.2 ActiveKey Column Modifications
	5.7.3.6.3 ReEncryptState Column Values
	5.7.3.6.4 ReEncryption Request Attempts
	5.7.3.6.5 AdvKeyMode Column Values

	5.7.3.7 Default Logging Settings

	5.7.4 Life Cycle
	5.7.4.1 Locking Template-Specific Life Cycle State Descriptions/Exceptions

	5.8 Log Template
	5.8.1 Overview
	5.8.1.1 Terminology

	5.8.2 Data Structures
	5.8.2.1 Log (Object Table)
	5.8.2.1.1 UID
	5.8.2.1.2 Prev
	5.8.2.1.3 Next
	5.8.2.1.4 Session
	5.8.2.1.5 SigningAuthority
	5.8.2.1.6 SigningAuthName
	5.8.2.1.7 ExchangeAuthority
	5.8.2.1.8 ExchangeAuthName
	5.8.2.1.9 MonotonicTime
	5.8.2.1.10 ExactTime
	5.8.2.1.11 TimeKind
	5.8.2.1.12 LogKind
	5.8.2.1.13 Name
	5.8.2.1.14 Data

	5.8.2.2 LogList (Object Table)
	5.8.2.2.1 UID
	5.8.2.2.2 Name
	5.8.2.2.3 CommonName
	5.8.2.2.4 Log
	5.8.2.2.5 Serial
	5.8.2.2.6 HighSecurity

	5.8.3 Methods
	5.8.3.1 AddLog (Table Method)
	5.8.3.1.1 LogEntryName
	5.8.3.1.2 Data
	5.8.3.1.3 AddLog Result
	5.8.3.1.3.1 Result

	5.8.3.1.4 Fails

	5.8.3.2 CreateLog (Table Method)
	5.8.3.2.1 NewLogTableName
	5.8.3.2.2 HighSecurity
	5.8.3.2.3 MinSize
	5.8.3.2.4 MaxSize
	5.8.3.2.5 HintSize
	5.8.3.2.6 CommonName
	5.8.3.2.7 CreateLog Result
	5.8.3.2.7.1 LogListUID
	5.8.3.2.7.2 LogTableUID
	5.8.3.2.7.3 Rows

	5.8.3.2.8 Fails

	5.8.3.3 ClearLog (Table Method)
	5.8.3.3.1 ClearLog Result
	5.8.3.3.1.1 Result

	5.8.3.3.2 Fails

	5.8.3.4 FlushLog (Table Method)
	5.8.3.4.1 FlushLog Result
	5.8.3.4.1.1 Result

	5.8.3.4.2 Fails

	5.8.4 Descriptions
	5.8.4.1 Types of Logging
	5.8.4.2 Log Entries
	5.8.4.3 Log Table Operation
	5.8.4.4 Deleting a Log Table
	5.8.4.5 Specifying a Log Table
	5.8.4.6 Default Logging Settings

	5.8.5 Life Cycle
	5.8.5.1 Log Template-Specific Life Cycle State Descriptions/Exceptions

	6 Appendix 1 – Required UID Assignments
	6.1 Required UID Assignments Overview
	6.2 Reserved UIDs
	6.3 Assigned UIDs

