

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review © TCG 2024

DICE Protection Environment

Version 1.0
Revision 0.13
January 17, 2024

Contact: admin@trustedcomputinggroup.org

Public Review

S
P
E
C
I
F
I
C
A
T
I
O
N

Work in Progress
This document is an intermediate draft
for comment only and is subject to
change without notice. Readers
should not design products based on
this document.

mailto:admin@trustedcomputinggroup.org

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 1 © TCG 2024

DISCLAIMERS, NOTICES, AND LICENSE TERMS
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY

WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use

of information in this specification and to the implementation of this specification, and TCG disclaims all liability for

cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,

consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any

way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted

herein other than as follows: You may not copy or reproduce the document or distribute it to others without written

permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG

specifications or (b) developing, testing, or promoting information technology standards and best practices, so long

as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing

through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 2 © TCG 2024

CHANGE HISTORY

REVISION DATE DESCRIPTION

1.00/0.1 December 15, 2021 Initial draft

1.00/0.2 June 23, 2022 Final draft – Technical content complete

1.00/0.3/0.4 September 22, 2022 Add session migration, changes in response to comments/feedback

1.00/0.5 January 9, 2023 Multipart cmd/rsp, cleanup based on WG discussions

1.00/0.6 January 26, 2023 Changes in response to TC feedback

1.00/0.7 May 25, 2023
Add localities and recursive destroy, removed session migration, various changes in
response to comments/feedback

1.00/0.8 August 17, 2023 Revisions based on feedback

1.00/0.9 August 25, 2023 Multipart/locality revisions

1.00/0.10 November 1, 2023 Resolve TC feedback

1.00/0.11 November 9, 2023 last minute corrections

1.00/0.12 December 16, 2023 Address feedback before review

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 3 © TCG 2024

CONTENTS
DISCLAIMERS, NOTICES, AND LICENSE TERMS ... 1

CHANGE HISTORY .. 2

CONTENTS ... 3

1 SCOPE .. 5

1.1 Key Words ... 5

1.2 Statement Type .. 5

2 REFERENCES .. 6

3 TERMS AND DEFINITIONS .. 8

3.1 Acronyms ... 8

3.2 Nomenclature ... 8

4 INTRODUCTION ... 9

5 CONCEPTS ... 10

5.1 DPE and DICE Layering .. 10

5.1.1 Example Flow ... 10

5.2 Use Cases ... 11

5.3 Clients .. 11

5.4 Configuration and Profiles .. 11

5.5 Version Compatibility ... 11

5.6 Contexts ... 12

5.6.1 Default Contexts ... 12

5.6.2 Simulation Contexts .. 13

5.6.3 Context Initialization .. 13

5.7 Sessions .. 13

5.7.1 Encrypted Sessions .. 14

5.8 Interface ... 15

5.9 Localities .. 15

5.10 Messages .. 16

5.10.1 Transport ... 16

5.10.2 Encoding .. 16

5.10.3 Session Message Format .. 16

5.10.4 Command and Response Headers .. 17

5.10.5 Multi Part Operations ... 18

5.10.6 Reserved Command ID Values.. 20

5.11 Errors .. 20

5.12 Summary ... 21

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 4 © TCG 2024

6 COMMANDS ... 22

6.1 GetProfile ... 22

6.2 OpenSession .. 22

6.3 CloseSession ... 23

6.4 SyncSession .. 23

6.5 InitializeContext .. 24

6.6 DeriveContext .. 25

6.7 GetCertificateChain .. 28

6.8 CertifyKey .. 29

6.9 Sign .. 31

6.10 Seal ... 32

6.11 Unseal ... 33

6.12 DeriveSealingPublicKey .. 34

6.13 RotateContextHandle .. 35

6.14 DestroyContext ... 36

7 PROFILES ... 37

7.1 Namespaces .. 37

7.2 Profile Attributes ... 37

7.3 Sample Profile .. 52

7.4 Profile Descriptors .. 59

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 5 © TCG 2024

1 SCOPE
This specification defines requirements for a DICE Protection Environment (DPE) and DPE Profiles.

1.1 Key Words
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document normative statements are to be interpreted as
described in RFC-2119, Key words for use in RFCs to Indicate Requirement Levels.

1.2 Statement Type
Please note a very important distinction between different sections of text throughout this document. There are two
distinctive kinds of text: informative comment and normative statements. Because most of the text in this specification
will be of the kind normative statements, the authors have informally defined it as the default and, as such, have
specifically called out text of the kind informative comment. They have done this by flagging the beginning and end of
each informative comment and highlighting its text in gray. This means that unless text is specifically marked as of
the kind informative comment, it can be considered a kind of normative statement.

EXAMPLE:

Start of informative comment

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of MUST does not require any
action).

End of informative comment

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 6 © TCG 2024

2 REFERENCES

[1] Trusted Computing Group, "Hardware Requirements for Device Identifier Composition Engine Level 00,

Revision 78," 22 March 2018. [Online]. Available: https://trustedcomputinggroup.org/wp-

content/uploads/Hardware-Requirements-for-Device-Identifier-Composition-Engine-r78_For-Publication.pdf.

[2] Trusted Computing Group, "DICE Layering Architecture Version 1.0 Revision 0.19," 23 July 2020. [Online].

Available: https://trustedcomputinggroup.org/resource/dice-layering-architecture/.

[3] Trusted Computing Group, "DICE Attestation Architecture Version 1.00 revision 0.23," 1 March 2021. [Online].

Available: https://trustedcomputinggroup.org/resource/dice-attestation-architecture/.

[4] Trusted Computing Group, "DICE Certificate Profiles Version 1.0 Revision 0.01," 23 July 2020. [Online].

Available: https://trustedcomputinggroup.org/resource/dice-certificate-profiles/.

[5] Trusted Computing Group, "TCG Glossary Version 1.1 Revision 1.0," 11 May 2017. [Online]. Available:

https://trustedcomputinggroup.org/resource/tcg-glossary/.

[6] National Institute of Standards and Technology, "SP 800-133 Recommendation for Cryptographic Key

Generation," 2020. [Online]. Available: https://csrc.nist.gov.

[7] National Institute of Standards and Technology, "SP 800-57 Part 1 Rev. 5 Recommendation for Key

Management: Part 1 – General," May 2020. [Online]. Available: https://csrc.nist.gov/publications/detail/sp/800-

57-part-1/rev-5/final.

[8] T. Perrin, "The Noise Protocol Framework," July 2018. [Online]. Available: https://noiseprotocol.org/noise.html.

[9] Internet Engineering Task Force, "Concise Binary Object Representation (CBOR)," December 2020. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc8949.

[10] Internet Engineering Task Force, "Concise Data Definition Language (CDDL) A Notational Convention to

Express Concise Binary Object Representation (CBOR) and JSON Data Structures," June 2019. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc8610.

[11] Internet Engineering Task Force, "Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile," May 2008. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc5280.

[12] Internet Engineering Task Force, "CBOR Object Signing and Encryption (COSE)," July 2017. [Online].

Available: https://datatracker.ietf.org/doc/rfc8152/.

[13] Internet Assigned Numbers Authority, "Named Information Hash Algorithm Registry," September 2016.

[Online]. Available: https://www.iana.org/assignments/named-information/named-information.txt.

[14] National Institute of Standards and Technology, "SP 800-160 Systems Security Engineering: Considerations

for a Multidisciplinary Approach in the Engineering of Trustworthy Secure Systems," 2020. [Online]. Available:

https://csrc.nist.gov.

[15] Internet Engineering Task Force, "Hybrid Public Key Encryption," February 2022. [Online]. Available:

https://datatracker.ietf.org/doc/rfc9180/.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 7 © TCG 2024

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 8 © TCG 2024

3 TERMS AND DEFINITIONS
For the purposes of this specification, the following terms and definitions apply. This specification assumes the

reader is familiar with the TCG DICE specifications [1] [2] [3] [4] and common Trusted Computing terminology, as

defined in [5].

3.1 Acronyms
ABBREVIATIONS DESCRIPTION

CDI Compound Device Identifier

DICE Device Identifier Composition Engine [1]

DPE DICE Protection Environment

ECA Embedded Certificate Authority

HKDF HMAC-based Key Derivation Function

IP Intellectual Property, e.g., IP Block

IPC InterProcess Communication

MCU Microcontroller Unit

RPC Remote Procedure Call

SPI Serial Peripheral Interface

SVN Security (-relevant) Version Number

TCB Trusted Computing Base, see also [5]

TCG Trusted Computing Group

3.2 Nomenclature
This specification uses the terms child and parent to describe the relationship between components in a DICE layered

architecture. A parent component invokes or spawns a child component. In some cases, a parent component can

have multiple child components, and a child may itself be a parent and spawn additional child components. In graph

theory terms, a DICE layered architecture can be viewed as an arborescence.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 9 © TCG 2024

4 INTRODUCTION
Start of informative comment

This document specifies the command interface, behavior, and profile requirements of a DICE Protection
Environment (DPE). A DICE Protection Environment protects DICE-related secrets and helps enforce DICE-related
policies. In a layered DICE architecture (see [2]) a component employs DICE without a DPE by directly handling
and processing Compound Device Identifier (CDI) values. CDI values are very sensitive and are as long-lived as
the components they represent. With a DPE, instead of handling DICE secrets directly, a component employs
DICE by issuing commands to the DPE. The DPE retains possession of secret values (e.g., CDIs and private keys)
and does not expose sensitive data to any component or client. Instead, the DPE provides each client with a context
handle that a client uses to refer to the data corresponding to the DICE operations initiated by that client.

Context handles are opaque to clients. The value of a context handle may be a simple index to a structure
containing CDI values and other data stored by the DPE, or it may be the actual CDI values and other data that are
encrypted so it can only be decrypted by the DPE. A context handle is less sensitive than a CDI itself because it is
ephemeral and useful only under limited conditions. A context handle corresponds to only one set of CDI values
for a specific component and, when a context handle is destroyed, the associated CDI values are also destroyed.
Communication between a client and a DPE occurs in a session that might be encrypted. Context handles are one-
time-use and bound to a single session. Commands that consume a context handle invalidate that handle and
generate a new handle for the subsequent command, if appropriate.

Use of a DPE may reduce the following risks:

• CDI exfiltration by exploiting hardware, firmware, or software vulnerabilities or side channels

• CDI leakage due to normal system memory management such as swap or hibernation

• implementation-specific issues, including cryptographic algorithm implementations, across heterogeneous
components

A DICE-based system may also be able to improve performance by offloading DICE computations to a DPE. A
DPE implementation may perform computations asynchronously or otherwise employ caching techniques, provided
the DPE complies with this specification. For example, a DICE-based system may have booted multiple
components before DICE computations have completed for the first component within the DPE.

DICE layering semantics and CDI derivations are the same, or can be the same, whether a DPE is used or not.
Using a DPE does allow for additional DICE features but a direct translation of any existing DICE-based system to
an equivalent system that uses a DPE should be possible. In addition to protecting DICE CDIs, a DPE also protects
keys derived from CDIs like private signing keys and sealing keys, as these are part of a client’s DPE context.
However, using a DPE does not fully compensate for potential vulnerabilities in device firmware.

A DPE is not stateless. It tracks all valid context handles, sessions, and the mappings between them. The number
of contexts supported by a DPE is implementation specific. In its simplest form, a DPE supports one context and
one plaintext session.

This specification does not define or limit how a DPE can be implemented. Examples of environments that could
be used for a DPE implementation are a secure coprocessor, discrete secure hardware, a Trusted Execution
Environment (TEE), a type-1 hypervisor, operating system kernel, or another type of environment isolated with a
hardware-backed mode switch. A DICE-based system could also transition to using a DPE at a particular layer.

Because of this flexibility of implementation, no specific hardware requirements are defined in this specification.
Some level of hardware-backed protection is required to isolate the DPE environment and make it useful, but the
nature or strength of that isolation is not defined or constrained here. For example, the hardware-backed protection
may be a Memory Management Unit (MMU) for an OS kernel, or a separate IP block or Microcontroller Unit (MCU).

Notably a DPE can be implemented without any persistent storage, true random number generator (TRNG), or a
real time clock. However, a DPE implementation may well have such capabilities.

End of informative comment

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 10 © TCG 2024

5 CONCEPTS
This section provides details on the core concepts of a DICE Protection Environment.

5.1 DPE and DICE Layering
Figure 1 illustrates the difference between a simple layered DICE flow with and without help from a DPE. The diagram

is simplified to illustrate the main goal of the DPE: to protect CDI values. The construction of Layer 0 from a UDS,

destruction of CDI values, certificates, and other aspects of layered DICE architecture are not shown. Destroyed

CDIs are illustrated with a surrounding dotted line.

Figure 1: DICE layering with and without a DPE

5.1.1 Example Flow
The following simplified pseudocode flow illustrates a system with two firmware components using a DPE to perform

basic attestation using a signature. Session handshake and encryption details are omitted.

// ROM code

session = dpe.OpenSession()

context = dpe.InitializeContext(uds)

context = dpe.DeriveContext(context, firmware1_hash)

Run(firmware1, session, context)

// Firmware1 code

context = dpe.DeriveContext(context, firmware2_hash, allow-new-context-to-derive=false)

Run(firmware2, session, context)

// Firmware2 code

Without DPE With DPE

Layer 0 CDI_0

Layer 1 CDI_1

Layer 2 CDI_2

Layer 0
Handle to CDI_0

Layer 1 Handle to CDI_1

Layer 2 Handle to CDI_2

DPE

CDI_0

CDI_1

CDI_2

DeriveContext

DeriveContext

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 11 © TCG 2024

context, cert_chain = dpe.GetCertificateChain(context)

context, leaf_cert = dpe.CertifyKey(context)

signature = dpe.Sign(context, attestation_challenge)

attestation_response = leaf_cert + cert_chain, signature

5.2 Use Cases
A DPE MUST support at least one of the following use cases (see [3] [5]):

• Signing – To wield signing keys derived and/or certified using a layered DICE architecture.

• Sealing – To wield decryption keys derived using a layered DICE architecture.

5.3 Clients
Clients of a DPE can be in any system that uses a layered DICE architecture for signing or sealing (see [2]). A client

owns a DPE session endpoint and owns DICE-related information that it delegates to the DPE for safekeeping. The

scope of a client is bounded by access to the DPE session endpoint and context handle. A client wields a session

endpoint and context handle to interact with the DPE. In most cases, a client corresponds directly to a DICE Trusted

Computing Base (TCB) component: see the DICE Layering Architecture specification [2]. However, this specification

does not define or constrain the nature of a client, how a client manages session endpoints and context handles, or

the communication path between it and a DPE. Calling a DPE may involve an IPC/RPC mechanism, a SPI interface,

or even just a simple function call.

If a DPE uses encrypted sessions, the client that opens the session is responsible for authenticating the DPE. This

may require the initial client to store static identity data (e.g., a public key) for the DPE in such a way that it is available

for authenticating the new session.

Start of informative comment

An initial client (usually the platform RTM) may be responsible for authenticating a DPE before subsequent
components are allowed to execute. For example, this authentication may be performed using a pre-provisioned
public key corresponding to the DPE identity. Authentication of the DPE only needs to be done once per session
(see OpenSession in section 6.2).

End of informative comment

5.4 Configuration and Profiles
This specification is flexible in order to accommodate a variety of possible implementations. In contrast, a DPE

implementation does not need to be flexible and is expected to have a fixed configuration and fixed capabilities. It is

expected that capabilities and configuration of a DPE will be determined during system design and/or integration

phases, not at runtime. However, a DPE implementation may offer configurability outside the scope of this

specification, for example, with vendor-specific commands.

To promote compatibility and interoperability, DPE implementations MUST conform to a profile. System integrators

need to ensure that a DPE and its clients use the same profile. A DPE profile is complete, that is, it specifies all

attributes that this specification leaves up to implementors. This specification lists all attributes that a DPE profile is

required to specify: see section 7.2.

5.5 Version Compatibility
The versions of this specification are mutually compatible across minor versions from the view of a client. Changes

that introduce incompatibility from the view of the client will be accompanied by a new major version. Minor version

changes introduce requirements on DPE implementations only if the contract with the client is unaffected. In other

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 12 © TCG 2024

words, there should be no reason for a client to differentiate between different minor versions if the major version is

the same.

5.6 Contexts
A DPE context comprises all the DICE-related information for a particular component, i.e., client. A DPE context

contains, at least, a CDI value, but in practice there is usually additional information. A DPE uses a context handle to

refer to (or to contain) DPE context for a given client. Context handles are opaque to DPE clients. Context handle

values may be a handle, an index into context data held internally by the DPE, or the context handle value may itself

contain the client’s context data encrypted in a way that only the DPE can decrypt it. While a DPE implementation

has flexibility in how it constructs context data and handles, it has the following constraints:

1) The context handle MUST be unguessable in practice. If the context handle value is an index to a client’s DPE

context data, it SHOULD be random and at least 16 bytes in length. The reason for this is that a context handle

authorizes operations on the associated context. So, for example, it’s possible for parent and child components

to share the same encrypted session, but the child should not be able to leverage that shared session to

impersonate the parent.

2) If the context handle value is encrypted data, it MUST use an algorithm with at least 128 bits of security strength

and it MUST be integrity protected. Security strength is used here as defined in NIST SP800-133 [6] and NIST

SP800-57 [7].

3) The context handle MUST comply with size limits imposed by the profile, if any.

4) The context handle MUST be bound to a specific session and a specific locality.

5) The context handle MUST NOT remain valid after it has been used by a command. In other words, context

handles are single use. New context handles are returned by a DPE within a response to a client so it can be

used on a subsequent command. Once a context handle is provided to the DPE by a client, the context handle

is invalidated by the DPE.

Multiple contexts can be bound to the same session by invoking InitializeContext multiple times or by invoking the

DeriveContext command with retain-parent-context set to true and the new-session-initiator-handshake

argument omitted.

5.6.1 Default Contexts
DPE client sessions may not require or benefit from multiple distinct DPE contexts. In these scenarios, the default

context may be used. The only distinguishing characteristic of a default context is that there is no client-visible context

handle associated with the default context. A default context is stored internally to the DPE and is indicated in a

command by omitting the context handle argument. The primary benefit of using the default context is that a client is

not required to keep track of or provide context handles.

A DPE SHOULD support default context(s) and may support only default context(s). If a DPE supports default

contexts, it MUST support one default context per session. A DPE MUST NOT allow simultaneous use of a default

context and context handles within the same session: these are mutually exclusive.

A default context can be destroyed like any other context. If a client wishes to transition from a single context session

to a multiple context session, the client can use the RotateContextHandle command to transition the default context

to a context handle. A DPE MUST return an invalid-argument error in response to any command that attempts to

use a default context after it has been destroyed (by calling DestroyContext) or rotated (by calling

RotateContextHandle) until the default context is explicitly initialized again by the client.

A default context can be initialized by setting the use-default-context argument to true for the InitializeContext

command. A DPE can support an automatic initialization procedure for default contexts. No initialize command is

required for an automatic initialization procedure and clients can proceed directly to other commands that require an

initialized context.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 13 © TCG 2024

5.6.2 Simulation Contexts
A DPE may support simulation contexts. A simulation context is used the same way as a normal context but the DPE

disallows operations that use private keys: this includes commands like CertifyKey or Unseal. Using a simulation

context allows a client to derive public keys and certificates associated with different inputs than were used to boot

the currently running system.

Start of informative comment

The primary use case for a simulation context is referred to as predictive sealing. For example, if a client component
anticipates an update or expects to make a change that would result in a new CDI value for a subsequent
component, that client can use a simulation context to seal data to the expected future measurement (i.e., the
predicted measurement) of the subsequent component. This works because a DPE will allow sealing and public
key derivation but will not allow unsealing for a simulation context.

End of informative comment

5.6.3 Context Initialization
A DPE profile specifies how the initial state of a context is derived. This derivation process is the same whether it is

executed as part of an InitializeContext command or automatically when a DPE starts. At the end of the

initialization process, the new context contains a UDS or CDI(s). The InitializeContext command has a seed

argument that allows the client to provide an input to the derivation.

The following list comprises examples of how a DPE profile might be initialized:

• The DPE might use the seed argument directly as a UDS or CDI value.

• The DPE might use a UDS it has access to internally, ignoring or mixing in the seed argument.

• The DPE might use its own internal CDI and certificate chain as the initial state, ignoring or mixing in the seed

argument.

• The DPE might expect the seed to be a structured type providing multiple CDI values and certificate data.

If an initialization process involves a DICE UDS, the DICE hardware requirements [1] SHALL apply.

A DPE that supports simulation contexts might retain the InitializeContext seed argument value in association with

the current session to enable the subsequent initialization of simulation contexts. A DPE MUST NOT use the seed

for any other purpose.

A DPE MUST prevent further access via DPE commands to UDS, CDI, or other seed value(s) used in initialization

until the next system reset. A DPE MAY retain the value(s) in association with the current session for initializing

simulation contexts. In these cases, a DPE MUST NOT use the retained value(s) for any other purpose. If a

subsequent InitializeContext operation attempts to use the internal value again to initialize a context that is not a

simulation context, a DPE MUST abort the operation and return an initialization-seed-locked error.

5.7 Sessions
A DPE client invokes commands within a session. A DPE keeps a record of all open sessions and each context

handle produced by a DPE is bound to a single session. The DPE maintains the bookkeeping for and enforces this

binding. For example, if a context handle received by a client in one session is used in another session, the DPE

MUST reject the context handle as invalid. In other words, sessions are independent from each other.

The command/response messages within a particular session are ordered and serialized, e.g., command1,

response1, then command2, response2, and so on. Across different sessions, commands may be interleaved or

concurrent. If a command or response message is not delivered, the session can be brought back in sync with the

SyncSession command.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 14 © TCG 2024

5.7.1 Encrypted Sessions
A session may be encrypted or plaintext. Encrypted sessions are designed for systems where communication

between a client and DPE passes outside of the client’s Trusted Computing Base (TCB). A DPE MUST support a

plaintext session with a session ID of zero and can support any number of encrypted sessions. A DPE MUST NOT

support more than one plaintext session per locality (see section 5.9 Localities). If encrypted sessions are supported

for a locality, a DPE MUST use an encrypted session for all commands on that locality except OpenSession,

GetProfile, and SyncSession. Encrypted sessions are created using the OpenSession command, or as part of a

DeriveContext command. A session can be closed using the CloseSession command and doing so destroys all

context data associated with the session.

If encrypted sessions are supported, the Noise_NK_25519_AESGCM_SHA256 protocol [8] SHOULD be supported.

Support for other protocols is allowed, but this specification anticipates this type of protocol. The number of encrypted

sessions supported and the session protocol, including the format of the handshake and encrypted messages, is

specified by a DPE profile. When using a protocol that specifies a maximum number of messages per session, say

due to key exhaustion concerns or counter maximums, etc., a DPE MUST fail all commands on an exhausted session

with a session-exhausted error code (see section 5.10.4).

Protocols used for DPE encrypted sessions MUST have the following security properties:

• Confidentiality: payload data is encrypted

• Integrity: payload data includes protection against tampering

• Authenticated: clients can authenticate the DPE against a known public key or pre-shared secret key. A DPE

is not expected to authenticate clients.

Protocols used by a DPE for encrypted sessions SHOULD have the following security properties:

• Key independence: forward and backward secrecy

• Privacy: neither client nor DPE can be identified by observing handshake and/or transport messages

A DPE that supports encrypted sessions has an identity associated with a public key that can be authenticated by

clients. The provisioning, rotation, and storage of the identity is implementation-dependent and out of scope for this

specification. For example, this may be a static identity that is provisioned in the factory and remains the same for a

DPE’s lifetime, or it may be randomly generated when a software DPE is instantiated and provisioned to clients via

an Operating System service. The DPE identity SHOULD be unique per DPE instance.

When using Noise_NK_25519_AESGCM_SHA256 [8] the following requirements apply:

1) A DPE SHALL be the responder for every negotiation and SHOULD NOT authenticate the initiator. In other

words, the DPE accepts commands from any client, regardless of the nature and identity of the client.

2) The client that invokes OpenSession is responsible for authenticating the DPE’s identity (see section 6.2).

Start of informative comment

Typically, the DPE identity (i.e., public key) is already known to the client by some other means.

End of informative comment

3) A DPE SHALL maintain ordering of messages in a session and MUST support the SyncSession command to

get back in sync if necessary.

4) New sessions created as part of a DeriveContext command use the current session’s binding token as a pre-

shared key in the new session negotiation. Noise_NNpsk0_25519_AESGCM_SHA256 SHOULD be

supported.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 15 © TCG 2024

Other protocols used by a DPE to implement encrypted sessions should also meet the requirements for

Noise_NK_25519_AESGCM_SHA256 where applicable.

5.8 Interface
There are two categories of interface for a DPE: (1) message-based, or (2) direct. A DPE implementation MUST

support at least one interface.

A message-based interface involves command and response message pairs, where each message is encoded as

described by this specification. Transport of the message is implementation-specific and not constrained. For

example, messages may traverse a network, a bus, or a pipe.

A direct interface involves implementation-specific direct invocation of commands: the nature of the interface is not

constrained. For example, a direct interface could be an API in any programming language.

Start of informative comment

Note that the required commands and functionality implemented by a DPE are not influenced by the interface
definition. The interface definition is simply the mechanism by which a client interacts with a DPE.

Further, it is strongly recommended that, for any direct DPE interface, there is a clear mapping between the
implementer-defined interface and the message-based interface defined in this specification. This mapping is
typically referred to as a translation layer.

The goal of providing a translation layer for any direct DPE interface is to promote interoperability and to allow a
message based DPE test harness to work with and validate any DPE implementation.

End of informative comment

Since a direct interface for a DPE is implementation-specific, the remainder of this specification discusses only the

message-based interface.

5.9 Localities
DPE clients are modeled as existing within a locality. A DPE implementation can support a single locality or many.

This specification does not constrain or define what a locality is or does beyond the scope of a few specific

requirements. For example, an implementation may use localities to distinguish between co-processors, execution

levels within a processor, or something else.

If a DPE supports multiple localities it is expected to be able to distinguish between them based on information not

available as part of the DPE command interface. Clients do not indicate their locality to a DPE as part of a command.

The locality of a client when a command is invoked is referred to as the current locality.

Context handles are bound to a locality and can only be used by a client in that locality. A DPE MUST reject handles

that do not match the current locality. New handles are bound to the current locality except in two ways:

• The target-locality argument for the DeriveContext command is used to assign a different locality to the

derived context. The returned new-context-handle will be bound to the locality specified by the target-

locality argument.

• A context is explicitly moved to another locality by using the RotateContextHandle command and providing

the target-locality argument.

The length and format of the locality identifier, target-locality, is specified by a DPE profile.

If a DPE supports multiple localities, it MUST support a distinct plaintext session for each locality. As a result, each

locality also has a distinct default context. A DPE MAY simultaneously support localities that support encrypted

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 16 © TCG 2024

sessions and localities that do not support encrypted sessions. For example, commands from normal applications

might use encrypted sessions while commands from specialized hardware domains do not. When a context is moved

from a locality that supports encrypted sessions to a locality that does not support encrypted sessions, the session

binding is removed from the context. A context cannot be moved from a locality that does not support sessions to a

locality that does.

Start of Informative Comment

Implementers may ignore locality if there is no way for their DPE to differentiate between clients apart from session

IDs or context handles. In this case, the DPE would be considered a single-locality DPE.

Examples of existing technologies that might be used to implement localities include:

• CPU modes (e.g., kernel vs user mode) or protection rings

• ARM TrustZone secure vs non-secure world distinction

• Bus technology that differentiates multiple peripherals, e.g., Serial Peripheral Interface (SPI)

End of Informative Comment

5.10 Messages
This section provides requirements related to command and response messages that comprise the DPE message-

based interface.

5.10.1 Transport
Apart from the encrypted session considerations, message transport is not constrained in any way by this

specification: it is out of scope.

5.10.2 Encoding
All DPE command and response messages MUST be less than or equal to 65535 bytes in length including encryption

overhead. A DPE implementation SHOULD support messages of at least 4096 bytes. Messages are encoded using

a constrained subset of the RFC8949 CBOR format [9]. The following additional constraints exist to promote

implementation simplicity and correctness. The additional constraints are as follows:

1) Deterministically encoded CBOR is REQUIRED, as specified in RFC8949 section 4.2.1 [9]

2) Floating point numbers and tags MUST NOT be used

3) Map keys other than integers MUST NOT be used

A DPE MUST follow these rules when generating messages and SHOULD enforce these rules on incoming messages

by responding with an invalid-command or invalid-argument error.

Each command and response defines a CBOR map for arguments, with each field being optional. Optional fields

allow for future extensibility at the encoding level, but this does not indicate the fields are optional semantically. Each

command specifies whether an input argument field is required and, if not, a default value. Similarly, each response

specifies when an output argument will be omitted. A future version of this specification could make a previously

required argument optional as part of a deprecation process, for example.

Messages are described in this document using CDDL [10]. CDDL sockets are used for indicating where choice types

are expected to be extended in future versions of the specification or with vendor-defined extensions.

5.10.3 Session Message Format
Each command or response message is associated with a session and is encoded as a CBOR array, as illustrated in

the following CDDL snippet:

session-message = [

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 17 © TCG 2024

 session-id: uint,

 message: bytes, ; Ciphertext, unless using the plaintext session.

]

For an encrypted session, the entire message is encrypted except for session-id. The message format and encoding

are determined by the session protocol. When using the recommended Noise protocol, the message field is a Noise

transport message, which is simply an AEAD ciphertext.

5.10.4 Command and Response Headers
For every command message, the input fields described for the command are appended to a common header that

identifies the command. Response messages have a similar header with an error code. The format of command and

response messages, where input-args and output-args are command-specific maps, is illustrated in the following

CDDL snippet:

command-message = [

 command-id: $command-id,

 input-args: $input-args,

]

response-message = [

 error-code: $error-code,

 output-args: $output-args,

]

$command-id /= &(get-profile: 1)

$command-id /= &(open-session: 2)

$command-id /= &(close-session: 3)

$command-id /= &(sync-session: 4)

$command-id /= &(initialize-context: 7)

$command-id /= &(derive-context: 8)

$command-id /= &(certify-key: 9)

$command-id /= &(sign: 10)

$command-id /= &(seal: 11)

$command-id /= &(unseal: 12)

$command-id /= &(derive-sealing-public-key: 13)

$command-id /= &(rotate-context-handle: 14)

$command-id /= &(destroy-context: 15)

$command-id /= &(get-certificate-chain: 16)

$error-code /= &(no-error: 0)

$error-code /= &(internal-error: 1)

$error-code /= &(invalid-command: 2)

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 18 © TCG 2024

$error-code /= &(invalid-argument: 3)

$error-code /= &(session-exhausted: 4)

$error-code /= &(initialization-seed-locked: 5)

$error-code /= &(out-of-memory: 6)

$error-code /= &(cancelled-command: 7)

$input-args /= get-profile-input-args

$input-args /= open-session-input-args

$input-args /= close-session-input-args

$input-args /= sync-session-input-args

$input-args /= initialize-context-input-args

$input-args /= derive-context-input-args

$input-args /= get-certificate-chain-input-args

$input-args /= certify-key-input-args

$input-args /= sign-input-args

$input-args /= seal-input-args

$input-args /= unseal-input-args

$input-args /= derive-sealing-public-key-input-args

$input-args /= rotate-context-handle-input-args

$input-args /= destroy-context-input-args

$output-args /= get-profile-output-args

$output-args /= open-session-output-args

$output-args /= close-session-output-args

$output-args /= sync-session-output-args

$output-args /= initialize-context-output-args

$output-args /= derive-context-output-args

$output-args /= get-certificate-chain-output-args

$output-args /= certify-key-output-args

$output-args /= sign-output-args

$output-args /= seal-output-args

$output-args /= unseal-output-args

$output-args /= derive-sealing-public-key-output-args

$output-args /= rotate-context-handle-output-args

$output-args /= destroy-context-output-args

5.10.5 Multi Part Operations
If the transport between a DPE and client is constrained, some command or response arguments may not fit in a

single transport message. While message chunking can be solved entirely at the transport layer, leaving the

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 19 © TCG 2024

messages at the endpoints unaffected, this may be undesirable in some cases and a solution at the command layer

is preferred. For this reason, a DPE can support multi-part messages. Whether a DPE supports multi-part messages

is indicated in its DPE profile.

Multi-part messages are simply messages with additional arguments to facilitate the use of multiple command-

response pairs for a single operation that would otherwise comprise a single command and single response. The

behavioral requirements for all commands and responses are the same regardless of whether multi-part messages

are used.

A multi-part message flow consists of a series of command-response pairs. Each command in the series has the

same command ID, and each response has an error code indicating the status so far. The command-response pairs

continue until all inputs and all outputs have been fully transferred.

A DPE that supports multi-part messages might also support concurrent operations. An opaque operation handle is

used to resolve messages for concurrent operations. If a DPE does not support concurrent operations per its profile,

the operation handle can be omitted. If a DPE supports operation handles, each handle MUST be generated by the

DPE with the same security properties as required for a context handle, see section 5.6. When operation handles are

used, a DPE SHALL assign a handle to each multi-part operation and MAY rotate an operation handle during multi-

part operations. In each response during a multi-part operation, a DPE will provide the current operation handle to the

client. The client will include that operation handle in the next command in the multi-part operation.

A DPE has the following options for use of operation handles:

• One operation handle can be used per operation. The same operation handle is used for each message in

the multi-part operation. Or,

• A fresh operation handle can be used per response message, forcing a client to process the response

containing the current operation handle before submitting the next command.

For multi-part operations a DPE SHALL provide a response for each part of the operation. When all client data has

been received by the DPE, but the DPE has not provided all the output data, the client sends a command containing

more-data and operation-handle arguments but no other input. The DPE will respond with a message containing

the more-data argument, the current operation-handle, and the next chunk of output for the operation. Similarly,

when not all input has been received by a DPE, the DPE will respond to a command message with a response that

contains at least more-data and the current operation-handle.

Arguments in multi-part messages have the following constraints:

• Any argument of type bytes, except the operation-handle argument, can be split across messages as

necessary. For any given message the argument field contains a single chunk of the entire argument value.

Arguments of other types cannot be split and appear in any single message within the multi-part operation. If

an argument of a type other than byte appears in more than one message within the same multi-part operation,

a DPE MUST abort the operation with an invalid-argument error.

• The Boolean argument named more-data indicates whether more chunks are in any argument in a subsequent

message. The default for more-data is false. If a DPE receives a command message with an input argument

other than the operation-handle after it receives a command message with the more-data argument set to

false, it MUST abort the operation with an invalid-argument error.

• If operation handles are used, command messages have an operation-handle argument of type bytes that

contains the handle value returned by the most recent response message of the same operation. An

operation-handle argument cannot be split.

• To avoid conflicts, the CBOR map key values for more-data and operation-handle are always 100 and 101

respectively, regardless of which command these are being added to.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 20 © TCG 2024

A DPE MAY populate output arguments before input arguments have been fully received. For example, a DPE can

use multi-part messages to stream both input and output for sealing or unsealing.

Chunks of a split argument are sent in order. In other words, a recipient can append chunks in the order they are

received to form the full argument value. A DPE MUST interpret multiple chunks for an input argument as provided

in order by the client. Similarly, a DPE MUST send output argument chunks to a client in order.

A DPE MUST allow a client to send input arguments and input argument chunks in any command message within the

multi-part operation flow until the more-data input argument is set to false. For example, it is valid for a client to

interleave chunks of different split input arguments or to provide a non-split argument between or alongside chunks

of a split argument. A DPE implementation has similar flexibility with output arguments.

As an example, the following CDDL snippet demonstrates the addition of multi-part arguments to the unseal-input-

args defined for the Unseal command in section 6.

unseal-input-args = {

 ? &(more-data: 100) => bool,

 ? &(operation-handle: 101) => bytes,

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool,

 ? &(is-asymmetric: 3) => bool,

 ? &(label: 4) => bytes,

 ? &(data-to-unseal: 5) => bytes, ; Can be split with more-data set to true

 * &(tstr: uint) => any

}

5.10.6 Reserved Command ID Values
This specification reserves command ID values 0 through 127 for future use. Implementers can use other ID values

for custom commands.

5.11 Errors
A DPE MUST NOT become unresponsive as a result of input from a client. If a command cannot be completed

successfully, for any reason, a DPE MUST respond with an error code.

If an internal or environmental condition precludes continued operation, a DPE MUST NOT resume operation until it

is reset in a way that invalidates all internal state (e.g., sessions, handles, CDIs).

A DPE MUST NOT include any output arguments in an error response. DPE commands are considered transactional

with respect to DPE state. In the event of an error, a DPE MUST remain in the state it was in before the failed command

was received. This requirement does not apply to the transport or encrypted session-related state because the

transport and/or encrypted session protocol(s) are independent of the DPE state and are specified by a DPE profile.

Transport errors are out of scope for this specification but are expected to be reported using another mechanism or,

at least, error codes that differ from DPE errors. DPE errors are intended to be communicated to a client in response

to a command. It is strongly recommended that implementations of transport layers do not mask or modify DPE error

codes.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 21 © TCG 2024

The following error codes are defined:

CODE ERROR DESCRIPTION

0 No error Indicates no error has occurred

1 Internal Error An unexpected error has occurred which is not actionable by the client

2 Invalid Command The command could not be decrypted, parsed, or is not supported

3 Invalid Argument A command argument is malformed, invalid with respect to the current DPE
state, in conflict with other arguments, not allowed, not recognized, or
otherwise not supported

4 Session Exhausted Keys for an encrypted session have been exhausted

5 Initialization Seed Locked The command cannot be fulfilled because an internal seed component is no
longer available

6 Out of Memory A lack of internal resources prevented the DPE from fulfilling the command
as requested

7 Cancelled Command The command was cancelled

Table 1: DPE error codes

5.12 Summary
This section summarizes DPE requirements related to contexts, sessions, and localities. This is not an exhaustive

list of DPE requirements.

1) A DPE MUST support at least one locality and MAY support multiple localities.

Start of Informative Comment

DPEs that do not differentiate between localities are considered as supporting a single locality.

End of Informative Comment

2) A DPE MUST support at least one session.

3) A DPE MUST support exactly one plaintext session per locality.

4) A DPE SHOULD support (a) one or more encrypted sessions and/or, (b) multiple localities.

5) A DPE MUST ensure each context has exactly one valid context handle (or is a default context with no client-

visible handle) and is bound to exactly one session and one locality at any given time.

6) For each session, regardless of type, a DPE MUST support either: (a) a single default context, with no client-

visible handle, or (b) one or more contexts that are each allocated a context handle known to a client.

7) A DPE that supports encrypted sessions SHALL fail (by returning invalid-command) all commands sent via the

plaintext session except for OpenSession, GetProfile, and SyncSession.

Start of Informative Comment

A DPE that supports encrypted sessions will use the plaintext session only to establish an encrypted session.

End of informative Comment

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 22 © TCG 2024

6 COMMANDS
This section describes DPE commands, including the format of arguments in command and response messages. A

DPE MUST support the DeriveContext and DestroyContext commands, and at least one of Sign or Unseal. A DPE

supports other commands according to its profile. If a client attempts to invoke an unsupported command, a DPE

SHALL respond with the invalid-command error. If a client includes an unsupported argument, a DPE SHALL respond

with the invalid-argument error. If a client omits a required argument or provides conflicting arguments as specified

in the command descriptions in this specification, a DPE SHALL respond with the invalid-argument error.

6.1 GetProfile
This command queries a DPE’s profile. Information about a profile is returned as a profile descriptor.

Input Arguments

• None

Output Arguments:

• profile-descriptor: A CBOR-encoded description of the profile. See Section 7.4 for details on the format

and semantics of the descriptor.

Argument Format:

get-profile-input-args = {* &(tstr: uint) => any}

get-profile-output-args = {

 ? &(profile-descriptor: 1) => profile-descriptor,

 * &(tstr: uint) => any

}

6.2 OpenSession
This command establishes a new encrypted session. The initiator and responder messages are formatted according

to the session protocol and MAY be unencrypted or partially encrypted. The responder message of the session

protocol MUST contain the new session ID encoded as a CBOR uint. Protocols that require more than a single round

trip for session establishment are not supported by this command. When using the recommended session protocol,

each handshake message contains a payload field: the initiator payload is empty, and the responder payload contains

the session ID.

Input Arguments

• initiator-handshake: A handshake message from the initiator to responder. The format and semantics are

determined by the session protocol. This argument is REQUIRED.

Output Arguments

• responder-handshake: A handshake message from responder to initiator: the format and semantics are

determined by the session protocol. This message contains the new session ID as a payload.

Argument Format

open-session-input-args = {

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 23 © TCG 2024

 ? &(initiator-handshake: 1) => bytes,

 * &(tstr: uint) => any

}

open-session-output-args = {

 ? &(responder-handshake: 1) => bytes,

 * &(tstr: uint) => any

}

responder-handshake-payload = uint ; The new session ID

6.3 CloseSession
This command closes a session. All context handles and data that are bound to the session, regardless of type, are

destroyed and the session ID is invalidated. The session that is closed is the session used to send the command. As

a result, only a client of a given session can close that session. A DPE can reuse session IDs, so knowing or guessing

a session ID is insufficient to close the session.

When a plaintext session is closed, all contexts bound to it are destroyed as with any other session, but the plaintext

session will always remain valid. When a DPE supports encrypted sessions, calling CloseSession on the plaintext

session is not meaningful, since no contexts can be bound to it.

Input Arguments

• None

Output Arguments

• None

Argument Format

close-session-input-args = {* &(tstr: uint) => any}

close-session-output-args = {* &(tstr: uint) => any}

6.4 SyncSession
This command synchronizes an encrypted session and MUST be invoked using the plaintext session. This command

is useful for some session protocols if undelivered messages cause the client and DPE to fall out of sync. The

responder (DPE) updates its copy of the initiator (client) counter, and the initiator updates its copy of the responder

counter. In both cases, the counter is updated if and only if the new counter value is larger than the current value.

If a session protocol does not require message synchronization, or does not do so using counters, this command has

no effect.

Input Arguments

• session-id: The session ID of the session to be synchronized. This argument is REQUIRED.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 24 © TCG 2024

• initiator-counter: The initiator’s copy of the session counter for messages originating from the initiator. If

this value is larger than the DPE’s copy of initiator-counter, the DPE updates its copy. The DPE can

enforce other requirements on the counter’s value according to the session protocol. If omitted, the default

value is zero.

Output Arguments

• responder-counter: The DPE’s copy of the session counter for messages originating from the DPE. The

client updates its copy of this counter if the new value is larger than the client’s copy of responder-counter

and meets other requirements per the session protocol.

Argument Format

sync-session-input-args = {

 ? &(session-id: 1) => uint,

 ? &(initiator-counter: 2) => uint,

 * &(tstr: uint) => any

}

sync-session-output-args = {

 ? &(responder-counter: 1) => uint,

 * &(tstr: uint) => any

}

6.5 InitializeContext
This command initializes a new DPE context. See section 5.6 for details on DPE contexts.

Input Arguments

• simulation: Indicates whether to create a simulation context. If omitted, the default is false.

• use-default-context: Indicates whether to use the default context for the current session instead of returning

a context handle to the client. If omitted, the default is false.

• seed: This argument provides a seed value as an input to the initialization. A DPE profile specifies how this

seed is used and specifies requirements for secure operation, if any. For example, the seed might be used as

a UDS. This argument may be required by a DPE profile.

Output Arguments

• new-context-handle: A context handle for the new context. Omitted if the default context was used.

Argument Format

initialize-context-input-args = {

 ? &(simulation: 1) => bool, ; Default = false

 ? &(use-default-context: 2) => bool, ; Default = false

 ? &(seed: 3) => bytes,

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 25 © TCG 2024

 * &(tstr: uint) => any

}

initialize-context-output-args = {

 ? &(new-context-handle: 1) => bytes,

 * &(tstr: uint) => any

}

6.6 DeriveContext
This command performs the DICE computation [1] on a given set of inputs. The DeriveContext command is the

fundamental DICE operation. It is used to derive the CDI value for a child component given a set of inputs that

describe the component. Other DPE commands are either made possible by this command or exist to make this

command possible.

Many details of how this command behaves are specified by a DPE profile, including:

• The format of input data

• The mapping of input data to the derivation computations

• The mapping of input data to certificate fields

• The availability and semantics of internal inputs

• The algorithm to derive new CDIs, asymmetric keys, and other certificate data

• The format of the new certificate

Input Arguments

• context-handle: A context handle for the client’s current DPE context, see Section 5.6. This can be a

simulation context. If derivation is not allowed for this context (see the allow-new-context-to-derive

argument) a DPE MUST abort this operation and return an invalid-argument error. If omitted, the default

context is used. If retain-parent-context is true, this context will be retained in its current state for

subsequent operations and a new context handle for this context will be returned to the client. This is useful

if a parent program creates multiple child programs and computes CDI(s) for each. If the default context is

used and retain-parent-context is true, the derived context MUST use a different default context and the

following apply:

o At least one of new-session-initiator-handshake or target-locality is REQUIRED.

o If a new session is created, the derived context MUST become the default context of the new session.

o If a new session is not created, the target-locality argument MUST indicate a locality other than

the current locality and the derived context MUST become the default context of the target locality’s

plaintext session.

o The parent context is retained as the current session’s default context.

• retain-parent-context: Indicates whether the parent context is to be retained, as explained in the description

of the context-handle input argument. If omitted, the default value is false.

• allow-new-context-to-derive: Indicates whether the derived context is allowed to be used in a subsequent

invocation of DeriveContext. This is useful if the derived context is known to belong to a program that should

not derive additional DPE contexts, for example, an application. The allow-new-context-to-derive

argument is similar in meaning to, for example, a CA specifying pathLen=0 in X.509v3 basicConstraints. If a

DPE supports X.509 certificates, the DPE SHOULD set pathLen=0 in X.509v3 basicConstraints within the

corresponding certificate when this argument is false. If omitted, the default value is true.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 26 © TCG 2024

• create-certificate: Indicates whether to create an intermediate certificate for this component, which can be

an ECA certificate as defined by DICE Certificate Profiles. If omitted, the default is true. If this argument is

set to false, no certificate is generated for the component and any information that would normally have been

added to the certificate is accumulated as part of the context and will appear in the next certificate generated,

whether by a subsequent DeriveContext command or a CertifyKey command. The private key

corresponding to the most recent certificate generated MUST be retained, even if retain-parent-context is

set to false. A DPE MUST NOT permit the accumulated certificate information to be removed or modified until

it is represented in a certificate via a subsequent invocation of this command.

• new-session-initiator-handshake: This argument is used to create a new session for the derived context.

This is the initiator handshake message for the new session and the corresponding handshake response is

returned as an output argument. Session protocols can use binding information from the current session to

negotiate the new session, but the resulting new session MUST be independent of the current session. If

omitted, the derived context will be bound to the current session. See section 5.7.1.

• input-data: Input from a DICE component (i.e., client) that describes all security-relevant properties of the

child component. How this data is formatted, used in the DICE computation, mapped to certificate fields, etc.

is determined by a DPE profile. This value can be a TCB Component Identifier (TCI); see [2]. This argument

is REQUIRED: there is no default value.

• internal-inputs: An array of references to internal inputs to include in the DICE computation. This argument

does not contain the actual input values. If omitted, no internal inputs are used. This argument indicates which

inputs should be included in the computation: this argument does not contain internal inputs. The inputs

indicated by this argument are held internal to the DPE, and their availability and behavior is governed by a

DPE profile. A profile can define arbitrary internal inputs in addition to those defined here. Uses include

anything that needs protection or policy enforcement (e.g., monotonic counters, rotatable secrets, etc.).

Internal inputs indicated in this argument MUST be included in the DICE computation and can be included in

a certificate. The following internal inputs are defined:

o dpe-info: This contains basic information about the DPE: version, configuration, profile, etc.

o dpe-dice: This contains internal DICE state of the DPE, including CDI(s), certificate chain, etc.

• target-locality: Identifies the locality to which the derived context will be bound. If omitted, the derived

context will be bound to the current locality. If the target locality does not support encrypted sessions, the

derived context will be bound to the plaintext session of the target locality. If the target locality supports

encrypted sessions, the DPE MUST ensure the current locality also supports encrypted sessions and that the

derived context session binding is unaffected by the locality change. Otherwise, the DPE MUST return

invalid-argument. Except for requirements outlined in the context-handle argument description, this

argument is OPTIONAL.

• return-certificate: Indicates whether a DPE MUST return the generated certificate when create-

certificate is true. If true, the certificate is returned in the certificate output argument. If create-

certificate is false, this argument is ignored. If omitted, the default value of this argument is false.

• allow-new-context-to-export: Indicates whether the DPE permits export of the CDI from the newly derived

context. If false, a DPE MUST ensure subsequent DeriveContext operations using the derived context do not

allow export-cdi to be set to true. Once disabled, this attribute is inherited and cannot be re-enabled on

subsequent derivations from this context forward. A DPE MUST NOT allow export to be enabled for a derived

context when the parent context does not have export enabled. If omitted, the default value is false.

• export-cdi: Whether to export the derived CDI. The format and encoding of the exported CDI are specified

by a DPE profile. If true, a DPE MUST include an indication that the CDI is to be exported in the DICE

computation and certificate, if applicable. A DPE profile defines this indicator in the form of an internal input.

A DPE MUST NOT proceed with export and return an invalid-argument error when export is not allowed for

the parent context. Once a CDI is exported, the DPE MUST NOT retain the derived context and the DPE

MUST omit the new-context-handle output argument. If a DPE supports certificates, the DPE MUST require

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 27 © TCG 2024

that the create-certificate argument is true and return an invalid-argument error if it is false. The CDI

cannot be exported from a simulation context and a DPE MUST return an invalid-argument error if context-

handle refers to a simulation context. A DPE does not control the CDI upon successful completion of this

command. When this argument is true, a DPE MUST return an invalid-argument error if either allow-new-

context-to-derive or allow-new-context-to-export are false, or if a new-session-initiator-handshake

or target-locality is supplied. If this argument is omitted, the default is false.

• recursive: Indicates whether the derivation should recursively affect all contexts previously derived from the

given context in addition to affecting the given context. If omitted, the default value is false. If true, the changes

to each affected context MUST appropriately reflect the given input-data. A DPE profile defines whether

recursive derivation is supported and, if so, how contexts are affected and the way the change is applied to

each context. Recursive derivation is a feature that enables on-the-fly update of system components. It is

expected to be infrequent. It can be disruptive to the clients that use the recursively affected contexts since

state related to key derivation and unseal policy might change. For each affected context, the handle value is

unchanged and the parent context relation is unchanged (except that the parent is also affected by this

operation). The parent context cannot be retained for a recursive derivation, so if the recursive argument is

true then a DPE MUST return an invalid-argument error if retain-parent-context is set to true. Similarly,

a recursive derivation cannot export a CDI or return a certificate so, if the recursive argument is true then a

DPE MUST return an invalid-argument error if export-cdi or return-certificate is set to true. A DPE

MUST apply all other arguments recursively. For example, if new-session-initiator-handshake is supplied,

all affected contexts will be bound to the new session.

Output Arguments

• new-context-handle: A context handle for the derived context. This will be omitted if the default context is

used or if a CDI is exported.

• new-session-responder-handshake: If a new session was initiated by including the new-session-initiator-

handshake input argument, this is the corresponding handshake message from the protocol responder. The

new session is already fully operational on the DPE side, and the derived context is associated with the new

session.

• new-parent-context-handle: If the parent context was retained and the default context was not used, this

argument contains a new context handle for the parent context.

• new-certificate: If create-certificate and return-certificate are both true, this argument is the new

certificate generated for the new context.

• exported-cdi: If export-cdi is true, this argument is the exported CDI value.

Argument Format

derive-context-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-parent-context: 2) => bool, ; Default = false

 ? &(allow-new-context-to-derive: 3) => bool, ; Default = true

 ? &(create-certificate: 4) => bool, ; Default = true

 ? &(new-session-initiator-handshake: 5) => bytes,

 ? &(input-data: 6) => bytes,

 ? &(internal-inputs: 7) => [* $internal-input-type],

 ? &(target-locality: 8) => bytes,

 ? &(return-certificate: 9) => bool, ; Default = false

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 28 © TCG 2024

 ? &(allow-new-context-to-export: 10) => bool, ; Default = false

 ? &(export-cdi: 11) => bool, ; Default = false

 ? &(recursive: 12) => bool, ; Default = false

 * &(tstr: uint) => any

}

$internal-input-type /= &(

 dpe-info: 1,

 dpe-dice: 2,

)

derive-context-output-args = {

 ? &(new-context-handle: 1) => bytes,

 ? &(new-session-responder-handshake: 2) => bytes,

 ? &(parent-context-handle: 3) => bytes,

 ? &(new-certificate: 4) => bytes,

 ? &(exported-cdi: 5) => bytes,

 * &(tstr: uint) => any

}

6.7 GetCertificateChain
This command returns the certificate chain generated for a given DPE context. The order, format, and encoding of

the certificate chain are specified by a DPE profile. If the context contains accumulated certificate information that is

not yet part of a certificate, a DPE MUST abort the operation and return an invalid-argument error. The connection

of the certificate chain to external infrastructure like a manufacturer-issued certificate is also defined by a profile. A

profile can specify that additional certificates not generated by the DPE are included in the certificate chain returned

by this command. It is possible for a certificate chain to be empty, and it is valid for this command to succeed and

return no certificates.

Input Arguments

• context-handle: A handle for the context from which to retrieve the certificate chain. If omitted, the default

context is used. The context MAY be a simulation context.

• retain-context: Indicates whether the DPE context is to be retained for subsequent commands. If false, the

context is destroyed (see DestroyContext). If true, a new context handle will be returned to the client as an

output argument unless the default context is used. If the default context is used and this argument is true,

the context will be retained as default. If omitted, the default is false.

• clear-from-context: Whether a DPE MUST clear the certificate chain from the context so subsequent

GetCertificateChain operations on the given context, or contexts derived from it, do not include the

certificates returned by this command. If retain-context is false, this argument is ignored. If omitted, the

default is false.

Output Arguments

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 29 © TCG 2024

• certificate-chain: The certificate chain. The content and format of the certificates depend on the DPE

profile.

• new-context-handle: A new handle for the DPE context if the retain-context argument was set to true.

Argument Format

get-certificate-chain-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool, ; Default = false

 ? &(clear-from-context: 3) => bool, ; Default = false

 * &(tstr: uint) => any

}

get-certificate-chain-output-args = {

 ? &(certificate-chain: 1) => [* bytes],

 ? &(new-context-handle: 2) => bytes,

 * &(tstr: uint) => any

}

6.8 CertifyKey
This command certifies a signing key using the given DPE context as the certification authority. If the public key to

certify is not provided as an input argument, a key pair is deterministically derived from the context and the label

argument. If the public key to certify is not provided, a DPE MUST use the same method for deriving the key as it

uses for the Sign command. This means the key derived by a DPE for CerifyKey will be the same key derived by the

DPE for a Sign command using the same label. The new public key is certified and returned separate from the

certificate in the response. If the context contains accumulated certificate information, that information MUST be

represented in the new leaf certificate. The accumulated certificate information MUST remain in the context

unmodified.

The content and format of certificates generated by the DPE and the type of asymmetric keys supported are specified

by a DPE profile. It is recommended that the leaf certificate follows the requirements specified by DICE Certificate

Profiles [4], and the policies argument can be used to indicate which policies to apply to the new leaf certificate.

Input Arguments

• context-handle: A handle for the context that will be used to issue a certificate for the signing key. If omitted,

the default context is used. A DPE MUST NOT allow a simulation context to be used when the public-key

argument is provided by the client, because the corresponding private key is not controlled by the DPE.

• retain-context: Indicates whether the DPE context is to be retained for subsequent commands. If false, the

context is destroyed (see DestroyContext). If true, a new context handle will be returned to the client as an

output argument unless the default context is used. If the default context is used and the retain-context

argument is true, the context will be retained as default. If omitted, the default is false.

• public-key: The public key to certify. The type and format of the public key is specified by a DPE profile. If

omitted, a key pair is deterministically derived from the context and the label argument.

• label: A label to use as additional input to the asymmetric key derivation from the context. If public-key is

provided, there is no derivation, and this argument is ignored. Using the same label with the same context

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 30 © TCG 2024

multiple times will yield the same key pair. If omitted, an empty label is used (i.e., a label of zero length). A

DPE profile may define a fixed set of supported labels.

• policies: A set of policy values that determine the construction of the certificate. When a DPE profile uses

the policies defined by DICE Certificate Profiles [4] this argument specifies which of the policies should apply

to the new leaf certificate. A DPE profile determines which of these policies are supported, if any, and may

define other policies. A DPE profile determines the behavior when this argument is omitted.

• additional-input: Additional input to be used when generating the leaf certificate. The format and semantics

of this input data are specified by a DPE profile. This argument is OPTIONAL.

Output Arguments

• certificate: The new leaf certificate. The content and format of the certificate depends on the DPE profile.

• derived-public-key: The public key of the derived key pair, if any. The type and format of the public key is

specified by a DPE profile. If the public-key input argument was provided, there is no derived key pair, and

this argument is omitted.

• new-context-handle: A new handle for the DPE context if the retain-context argument was set to true.

Argument Format

certify-key-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool, ; Default = false

 ? &(public-key: 3) => bytes,

 ? &(label: 4) => bytes,

 ? &(policies: 5) => [* $policy-type],

 ? &(additional-input: 6) => bytes,

 * &(tstr: uint) => any

}

$policy-type /= &(

 tcg-dice-kp-identityInit: 6, ; Matches the corresponding OID

 tcg-dice-kp-identityLoc: 7,

 tcg-dice-kp-attestInit: 8,

 tcg-dice-kp-attestLoc: 9,

 tcg-dice-kp-assertInit: 10,

 tcg-dice-kp-assertLoc: 11,

)

certify-key-output-args = {

 ? &(certificate: 1) => bytes,

 ? &(derived-public-key: 2) => bytes,

 ? &(new-context-handle: 3) => bytes,

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 31 © TCG 2024

 * &(tstr: uint) => any

}

6.9 Sign
This command signs a given message with a key derived from the given DPE context and label. The signature

algorithm is specified by a DPE profile. A DPE profile may support an asymmetric signature scheme and/or a

symmetric signature scheme (e.g., a MAC). For asymmetric signatures, the signing key will be the same key derived

by CertifyKey for the same label. The DPE context MUST NOT be a simulation context.

Input Arguments

• context-handle: A handle for the DPE context that will be used to derive a signing key. If omitted, the default

context is used. A DPE MUST NOT allow a simulation context to be used.

• retain-context: Indicates whether the DPE context is to be retained for subsequent commands. If false, the

context is destroyed (see DestroyContext). If true, a new context handle will be returned to the client as an

output argument unless the default context is used. If the default context is used and the retain-context

argument is true, the context will be retained as default. If omitted, the default is false.

• label: A label to use as additional input to the asymmetric key derivation from the DPE context. Using the

same label with the same DPE context multiple times will yield the same key pair. If omitted, an empty label

is used (i.e., a label of zero length). A DPE profile may define a fixed set of supported labels.

• is-symmetric: Indicates whether a symmetric signature scheme should be used. If omitted, the default

value is false.

• to-be-signed: The data to be signed. The format of this data is specified by a DPE profile. This argument is

REQUIRED.

Output Arguments

• signature: The signature over the data in the to-be-signed input argument. The format of the signature is

specified by a DPE profile.

• new-context-handle: A new handle for the DPE context if the retain-context argument was set to true.

Argument Format

sign-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool, ; Default = false

 ? &(label: 3) => bytes,

 ? &(is-symmetric: 4) => bool, ; Default = false

 ? &(to-be-signed: 5) => bytes,

 * &(tstr: uint) => any

}

sign-output-args = {

 ? &(signature: 1) => bytes,

 ? &(new-context-handle: 2) => bytes,

 * &(tstr: uint) => any

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 32 © TCG 2024

}

6.10 Seal
This command seals data to a given policy using a symmetric key deterministically derived from the given DPE

context. The sealed data can be unsealed only by calling the Unseal command with the same DPE context and is-

asymmetric set to false.

Start of Informative Comment

This command is not used for asymmetric sealing use cases. Asymmetric sealing allows a client to seal data
without the DPE by using a public key (see DeriveSealingPublicKey).

End of Informative Comment

Input Arguments

• context-handle: A handle for the DPE context that will be used to derive a sealing key. This can be a

simulation context. If omitted, the default context is used.

• retain-context: Indicates whether the DPE context is to be retained for subsequent commands. If false, the

context is destroyed (see DestroyContext). If true, a new context handle will be returned to the client as an

output argument unless the default context is used. If the default context is used and the retain-context

argument is true, the context will be retained as default. If omitted, the default is false.

• unseal-policy: This argument describes a policy that constrains the conditions under which the DPE will

allow the sealed-data output argument to be unsealed. The format and semantics of this policy value are

specified by a DPE profile. A DPE MUST include this value in the sealing key derivation to ensure the same

policy is required for a successful unseal. This argument may be required by a DPE profile.

• label: A label to be included in the sealing key derivation. If omitted, an empty label is used (i.e., a label of

zero length). A DPE profile may define a fixed set of supported labels.

• data-to-seal: The data to be sealed. A DPE profile can place constraints on the length, content, and format

of this data. This argument is REQUIRED.

Output Arguments

• sealed-data: The sealed data as opaque bytes. The format and content are implementation dependent.

• new-context-handle: A new handle for the DPE context if the retain-context argument was set to true.

Argument Format

seal-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool, ; Default = false

 ? &(unseal-policy: 3) => bytes,

 ? &(label: 4) => bytes,

 ? &(data-to-seal: 5) => bytes,

 * &(tstr: uint) => any

}

seal-output-args = {

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 33 © TCG 2024

 ? &(sealed-data: 1) => bytes,

 ? &(new-context-handle: 2) => bytes,

 * &(tstr: uint) => any

}

6.11 Unseal
This command unseals data previously sealed to a given policy with a symmetric or asymmetric key derived from the

given DPE context. With a symmetric key, data previously sealed using the Seal command can be unsealed. With

an asymmetric key, data previously sealed using the public key produced by the DeriveSealingPublicKey command

as specified by a DPE profile can be unsealed.

Input Arguments

• context-handle: A handle for the DPE context that will be used to derive a sealing key. If omitted, the default

context is used. A DPE MUST NOT allow a simulation context to be used.

• retain-context: Indicates whether the DPE context is to be retained for subsequent commands. If false, the

context is destroyed (see DestroyContext). If true, a new context handle will be returned to the client as an

output argument unless the default context is used. If the default context is used and the retain-context

argument is true, the context will be retained as default. If omitted, the default is false.

• is-asymmetric: Indicates whether to use a symmetric or asymmetric key to unseal. If omitted, the default

value is false.

• unseal-policy: This argument describes a policy that constrains the conditions under which the DPE will

allow the data-to-unseal output argument to be unsealed. The format and semantics of this policy value are

specified by a DPE profile. A DPE MUST NOT proceed with an unseal operation if the conditions of this policy

are not met, or if this policy does not match the policy value provided prior to sealing. For symmetric sealing,

the DPE MUST ensure this value matches the unseal-policy value provided to the Seal command that

produced the data-to-unseal argument value. For asymmetric sealing, the DPE MUST ensure this value

matches the unseal-policy value provided to the DeriveSealingPublicKey command that produced the

public key used to seal the data-to-unseal argument value. This argument is REQUIRED.

• label: A label to be included in the sealing key derivation. If omitted, an empty label is used (i.e., a label of

zero length). A DPE profile may define a fixed set of supported labels.

• data-to-unseal: The data to be unsealed. This argument is REQUIRED. For symmetric unseal, this is the

sealed-data returned by the Seal command. For asymmetric unseal, the seal algorithm and format of this

data are specified by a DPE profile.

Output Arguments

• unsealed-data: The original unsealed data. For symmetric unseal, this is the same data as the data-to-seal

argument for the Seal command.

• new-context-handle: A new handle for the DPE context if the retain-context argument was set to true.

Argument Format

unseal-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool, ; Default = false

 ? &(is-asymmetric: 3) => bool, ; Default = false

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 34 © TCG 2024

 ? &(label: 4) => bytes,

 ? &(data-to-unseal: 5) => bytes,

 * &(tstr: uint) => any

}

unseal-output-args = {

 ? &(unsealed-data: 1) => bytes,

 ? &(new-context-handle: 2) => bytes,

 * &(tstr: uint) => any

}

6.12 DeriveSealingPublicKey
This command provides a sealing public key derived from the given DPE context for a given policy and a label. Data

sealed with this key can only be unsealed by calling the Unseal command with the same context and is-asymmetric

set to true. A DPE MUST derive a different asymmetric key pair for sealing than it does for signing in CertifyKey and

Sign, even if the CDI is the same.

Input Arguments

• context-handle: A handle for the DPE context that will be used to derive a sealing key. This can be a

simulation context. If omitted, the default context is used.

• retain-context: Indicates whether the DPE context is to be retained for subsequent commands. If false, the

context is destroyed (see DestroyContext). If true, a new context handle will be returned to the client as an

output argument unless the default context is used. If the default context is used and the retain-context

argument is true, the context will be retained as default. If omitted, the default is false.

• unseal-policy: This argument describes a policy that constrains the conditions under which the DPE will

allow data sealed with the derived-public-key output argument to be unsealed. The format and semantics

of this policy value are specified by a DPE profile. A DPE MUST include this value in the sealing key derivation

to ensure the same policy is required for a successful unseal. This argument is REQUIRED.

• label: A label to be included in the sealing key derivation. If omitted, an empty label is used (i.e., a label of

zero length). A DPE profile may define a fixed set of supported labels.

Output Arguments

• derived-public-key: The public key of the asymmetric key pair for sealing. The type and format of the public

key are specified by a DPE profile. How this public key can be used to seal data is also specified by a DPE

profile.

• new-context-handle: A new handle for the DPE context if the retain-context argument was set to true.

Argument Format

derive-sealing-public-key-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(retain-context: 2) => bool, ; Default = false

 ? &(unseal-policy: 3) => bytes,

 ? &(label: 4) => bytes,

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 35 © TCG 2024

 * &(tstr: uint) => any

}

derive-sealing-public-key-output-args = {

 ? &(derived-public-key: 1) => bytes,

 ? &(new-context-handle: 2) => bytes,

 * &(tstr: uint) => any

}

6.13 RotateContextHandle
This command rotates a DPE context handle. The current handle is invalidated, and a new handle is returned. The

context itself is unaffected.

When operating upon a default context, this command assigns a new handle to the context so it is no longer the

default context. After this, the default context is invalid (unusable) until it is initialized again and there are no context

handles in the current session.

Input Arguments

• context-handle: The handle to invalidate. If omitted, the default context is used.

• to-default: Indicates whether the context should become the default context of its session. If true, the default

context MUST NOT already be valid, and no new handle is returned. If false, a new handle is returned for the

context. A DPE MUST return invalid-argument if a caller attempts to rotate a default context to itself. If

omitted, the default is false.

• target-locality: Identifies the locality to which the context will be bound. If omitted, the context will be bound

to the current locality. If the target locality does not support encrypted sessions, the context will be bound to

the plaintext session of the target locality. If the target locality supports encrypted sessions, the DPE MUST

ensure the current locality also supports encrypted sessions and that the context session binding is unaffected

by the locality change. Otherwise, the DPE MUST return invalid-argument. This argument is OPTIONAL.

Output Arguments

• new-context-handle: A new handle for the context. This argument is omitted on successful completion if to-

default was true.

Argument Format

rotate-context-handle-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(to-default: 2) => bool, ; Default = false

 ? &(target-locality: 3) => bytes,

 * &(tstr: uint) => any

}

rotate-context-handle-output-args = {

 ? &(new-context-handle: 1) => bytes,

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 36 © TCG 2024

 * &(tstr: uint) => any

}

6.14 DestroyContext
This command destroys a DPE context. After this command succeeds, the context handle is no longer usable. If the

default context is destroyed, it becomes invalid (unusable) until it is initialized again. If the destroy-recursively

argument is true, a DPE MUST destroy not only the indicated context but all contexts that have been derived from the

context, recursively.

Input Arguments

• context-handle: A handle for the context to be destroyed. If omitted, the default context is used.

• destroy-recursively: Indicates whether all derived contexts should also be destroyed, recursively. If omitted,

the default value is false.

Output Arguments

• None

Argument Format

destroy-context-input-args = {

 ? &(context-handle: 1) => bytes,

 ? &(destroy-recursively: 2) => bool, ; Default = false

 * &(tstr: uint) => any

}

destroy-context-output-args = {* &(tstr: uint) => any}

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 37 © TCG 2024

7 PROFILES
A DPE profile specifies details where a DPE has flexibility. A profile is complete in that if a DPE design decision

impacts interoperability between a client and a DPE, it MUST be specified by a profile. A profile includes attributes

such as which features are supported or not supported, limits such as maximum message size, and formats such as

inputs or public keys.

To define a profile, simply specify every attribute. This specification defines the attributes and provides a sample

value for each attribute. See sections 7.2 and 7.3.

7.1 Namespaces
Names identify profiles and profile attribute values. Names are represented as a text string, a sequence of Unicode

code points. Anyone can define a custom profile including various custom names without any kind of registration for

those names. Names MUST be prefixed with an appropriate namespace to avoid collisions. The namespace

SHOULD align with an internet domain owned by the defining entity. Namespaces prefixed with tcg are reserved for

use by TCG and MUST NOT be used for custom names.

7.2 Profile Attributes
Table 2 describes each profile attribute. Each attribute is denoted with a tag-style name that carries over to the CDDL

definition of a profile descriptor. Each attribute also has an expected type: Boolean, Number, or String. When

attributes are encoded as a descriptor, these types are mapped to the CBOR types bool, uint, and tstr respectively.

Custom string values MUST follow namespace requirements. Each custom name MUST reference one specific

immutable value for the attribute, however complex, which means names are unambiguous. When defining the value

associated with a name, any definition that meets the requirements of the attribute can be specified. Number fields

can use the value ‘Unlimited’ to denote that no explicit constraint is imposed. String fields can use the value ‘Empty’

to denote the empty string.

In some cases, the value of one attribute renders another attribute irrelevant. For example, if encrypted sessions are

not supported, defining a session protocol is not meaningful. In these cases, profiles SHOULD use the value ‘NA’ to

indicate an attribute is not applicable and SHOULD omit the irrelevant attributes from the descriptor. In some cases,

the value of one attribute places constraints on the value of another attribute. Both irrelevance and constraint

implications are indicated in Table 2 with an Implications section describing anything that a value for the current

attribute implies about other attributes. For convenience, an Affected By section lists attributes with implications that

affect the current attribute. These documented implications preclude profiles that are inconsistently defined, which

also means that self-consistency of a profile can be programmatically verified using these rules.

Some attributes are logically equivalent, like supports-signing and supports-sign, but they are still intentionally

included for semantic clarity since the relationship is not always obvious.

Attribute Type Description

General

name String The name of the current profile. A profile can be defined without a

name: this is indicated with the empty string. When a name is

provided (i.e., it is not the empty string), it MUST reference one

specific immutable profile. In other words, a non-empty profile

name is unambiguous in terms of the associated set of attribute

values.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 38 © TCG 2024

inherits String The name of a profile to inherit. When this value is not empty, all

attributes omitted from the current profile use the value from this

inherited profile. Any value specified for the current profile

overrides inherited values.

When this value is encoded in a descriptor, an encoded descriptor

of the inherited profile is included instead of just the name of the

inherited profile.

dpe-spec-version Number The supported DPE specification version. Only the major version

is used since minor versions and revisions are mutually

compatible.

max-message-size Number The maximum message size allowed at the transport layer. Note

that this applies to command and response messages when using

a message-based interface. When using a direct interface, this

value is not meaningful.

uses-multi-part-messages Boolean Indicates whether a DPE uses multi-part messages for commands

where these are defined.

Implications

● If false, supports-concurrent-operations is irrelevant

supports-concurrent-

operations
Boolean Indicates whether a DPE supports concurrent multi-part command

sequences.

Affected By

● uses-multi-part-messages

Sessions

supports-encrypted-sessions Boolean Indicates whether a DPE supports encrypted sessions. Note this

also implies whether multiple sessions are supported, since there

is only one plain-text session (session ID zero).

Implications

• When false, supports-derived-sessions and supports-

session-sync MUST be false

• When false, the following attributes are irrelevant and can

be omitted:
o max-sessions

o session-protocol

o session-sync-policy

• When true, supports-open-session and supports-close-

session MUST be true

• When false, supports-open-session, supports-close-

session, and supports-sync-session MUST be false

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 39 © TCG 2024

supports-derived-sessions Boolean Indicates whether a DPE supports the creation of new sessions

via the DeriveContext command.

Affected By
• supports-encrypted-sessions

max-sessions Number The maximum number of open sessions supported.

Affected By
• supports-encrypted-sessions

session-protocol String Names the session protocol for encrypted sessions. The protocol

MUST define these elements:

• The content and format of handshake messages, including

the session ID payload on response

• The content and format of transport messages

• The content and format of handshake messages for

derived sessions via the DeriveContext command

• The maximum number of ciphertext messages that can be

exchanged per session, or a rotation scheme to handle

key exhaustion if applicable

Affected By
• supports-encrypted-sessions

supports-session-sync Boolean Indicates whether a DPE supports session synchronization via the

SyncSession command.

Implications

• When false, session-sync-policy is irrelevant and can be

omitted

Affected By
• supports-encrypted-sessions

session-sync-policy String Names a policy enforced on the counters when synchronizing a

session. The policy MUST define all checks required before

accepting the new counter value.

Affected By
• supports-encrypted-sessions

• supports-session-sync

Contexts

supports-default-context Boolean Indicates whether a DPE supports default contexts.

Implications

• At least one of supports-default-context or supports-

context-handles MUST be true

• If false, supports-auto-init MUST be false

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 40 © TCG 2024

Affected By
• supports-context-handles

• supports-initialize-context

supports-context-handles Boolean Indicates whether a DPE supports context handles, as opposed to

only default contexts.

Implications

• At least one of supports-context-handles or supports-

default-context MUST be true

• If false, supports-simulation MUST be false

• If false, max-context-handle-size is irrelevant and can be

omitted

Affected By
• supports-default-context

max-contexts-per-session Number How many contexts can be associated with a single session.

max-context-handle-size Number The maximum size of context handles produced by a DPE. This is

always subject to the max-message-size in a particular message.

Affected By
• supports-context-handles

supports-auto-init Boolean Indicates whether a DPE supports automatic initialization of a

default context.

Affected By
• supports-default-context

• supports-initialize-context

supports-simulation Boolean Indicates whether a DPE supports simulation contexts.

Affected By
• supports-context-handles

supports-cdi-export Boolean Indicates whether a DPE supports CDI export as part of the

DeriveContext operation.

Implications

• If false, cdi-export-format is irrelevant and can be

omitted

supports-recursive-derivation Boolean Indicates whether a DPE supports recursive derivation.

Implications

• If false, recursive-derivation is irrelevant and can be

omitted

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 41 © TCG 2024

Use Cases

supports-signing Boolean Indicates whether a DPE supports signing use cases.

Implications

• If true, supports-sign MUST be true

• If false, supports-certify-key, supports-sign, and

supports-certificates MUST be false

• If false and supports-asymmetric-unseal is also false,

asymmetric-derivation is irrelevant and can be omitted

• If false and supports-symmetric-sign is also false,

symmetric-derivation is irrelevant and can be omitted

• At least one of supports-signing or supports-sealing

MUST be true

Affected By
• supports-sealing

• supports-certify-key

• supports-sign

supports-sealing Boolean Indicates whether a DPE supports sealing use cases.

Implications

• If true, supports-unseal MUST be true

• If false, the following MUST also be false:
o supports-seal

o supports-unseal

o supports-sealing-public

o supports-unseal-policy

o supports-asymmetric-unseal

• At least one of supports-sealing or supports-signing

MUST be true

Affected By
• supports-signing

• supports-seal

• supports-unseal

• supports-sealing-public

Commands1

supports-get-profile Boolean Indicates whether a DPE supports the GetProfile command.

supports-open-session Boolean Indicates whether a DPE supports the OpenSession command.

Implications

1 Note: mandatory commands not represented in this section.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 42 © TCG 2024

• If true, supports-encrypted-sessions MUST be true

Affected By
• supports-encrypted-sessions

supports-close-session Boolean Indicates whether a DPE supports the CloseSession command.

Implications

• If true, supports-encrypted-sessions MUST be true

Affected By
• supports-encrypted-sessions

supports-sync-session Boolean Indicates whether a DPE supports the SyncSession command.

Implications

• If true, supports-encrypted-sessions MUST be true

Affected By
• supports-encrypted-sessions

supports-initialize-context Boolean Indicates whether a DPE supports the InitializeContext

command.

Implications

• If false, supports-default-context and supports-auto-

init MUST be true

supports-get-certificate-

chain
Boolean Indicates whether a DPE supports the GetCertificateChain

command.

Implications

• If true, supports-certificates and supports-signing

MUST be true

Affected By
• supports-signing

• supports-certificates

supports-certify-key Boolean Indicates whether a DPE supports the CertifyKey command.

Implications

• If true, supports-certificates and supports-signing

MUST be true

Affected By
• supports-signing

• supports-certificates

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 43 © TCG 2024

supports-sign Boolean Indicates whether a DPE supports the Sign command.

Implications

• If true, supports-signing MUST be true

• If false, supports-signing MUST be false

• If false, the following are irrelevant and can be omitted:
o to-be-signed-format
o signature-format
o supports-symmetric-sign

Affected By
• supports-signing

supports-seal Boolean Indicates whether a DPE supports the Seal command.

Implications

• If true, supports-sealing MUST be true

Affected By
• supports-sealing

supports-unseal Boolean Indicates whether a DPE supports the Unseal command.

Implications

• If true, supports-sealing MUST be true

• If false, supports-asymmetric-unseal and supports-

sealing MUST be false

Affected By
• supports-sealing

supports-sealing-public Boolean Indicates whether a DPE supports the DeriveSealingPublicKey

command.

Implications

• If true, supports-sealing MUST be true

• If false, supports-asymmetric-unseal MUST be false

Affected By
• supports-sealing

• supports-asymmetric-unseal

supports-rotate-context-

handle
Boolean Indicates whether a DPE supports the RotateContextHandle

command.

Derivation

dice-derivation String Names a scheme for how input data is mixed with a UDS or CDI

to produce a new CDI. The scheme MUST define:

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 44 © TCG 2024

• Cryptographic algorithms

• A deterministic process from input to CDI

asymmetric-derivation String Names a scheme for how an asymmetric key pair is derived from

a CDI. The scheme MUST define:

• Cryptographic algorithms including:

o Key type, size, and domain parameters, for both

signing and sealing

o Signature scheme

o Asymmetric sealing scheme

• A deterministic derivation process from CDI to key pair for

all supported derivations. For example, ECA keys, signing

keys, and sealing keys.

Affected By
• supports-signing

• supports-asymmetric-unseal

symmetric-derivation String Names a scheme for how a symmetric key is derived from a CDI.

The scheme MUST define:

• Cryptographic algorithms including:

o Key type and size for both signing and sealing

o Signature scheme

o Sealing scheme

• A deterministic derivation process from CDI to key material

for all supported derivations. For example, MAC keys and

sealing keys.

Affected By
• supports-sealing

• supports-symmetric-sign

supports-any-label Boolean Indicates whether a DPE allows arbitrary labels or a fixed set of

labels. If a DPE supports only a fixed set, the supported-labels

attribute defines that fixed set.

Implications

• If true, supported-labels is irrelevant and can be omitted

• If false, supported-labels MUST be provided

supported-labels String Names a fixed set of labels that are supported by the DPE. The

list MUST specify for each label the exact bytes supported as a

label argument. For example, if the list is described using text

strings, the encoding must be specified as well.

Affected By
• supports-any-label

initial-derivation String Names a scheme for deriving an initial state, for example a UDS

or CDI(s), when a context is initialized. This can incorporate the

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 45 © TCG 2024

seed argument to the InitializeContext command and/or values

available internally to the DPE. The scheme MUST cover:

• Cryptographic algorithms

• A deterministic process from seed(s) to UDS or CDI(s) and

certificates if applicable

• Whether the seed argument is used and, if so:

o The format of the seed argument

o Any requirements on the seed argument for secure

operation

recursive-derivation String Names a scheme for how contexts are affected as part of

recursive derivation. The scheme MUST cover:

• Any variation from the dice-derivation scheme, if any

• Any variation from the eca-certificate-format, if any

Affected By
• supports-recursive-derivation

Input

input-format String Names a scheme for how input data is formatted when passed to

the DeriveContext command. The scheme MUST define:

• Unambiguous definition of the structure of the data:

o As it appears in the DPE input argument

o As it is processed by the DICE derivation

• Canonical encoding(s) of the data:

o As it appears in the DPE input argument

o As it is processed by the DICE derivation

• For each field, whether the field is used for the signing

derivations and/or sealing derivations, where applicable

• Basic attributes of each field, if applicable, including

whether it is optional, repeatable, typed, or has value

constraints (e.g. max size)

How the input is presented in a certificate is defined by the

certificate format attributes.

supports-internal-inputs Boolean Indicates whether a DPE supports internal inputs.

Implications

• If false, supports-internal-dpe-info and supports-

internal-dpe-dice MUST be false

• If false, internal-inputs is irrelevant and can be omitted

supports-internal-dpe-info Boolean Indicates whether a DPE supports the dpe-info internal input.

Implications

• If false, internal-dpe-info-type is irrelevant and can be

omitted

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 46 © TCG 2024

Affected By
• supports-internal-inputs

supports-internal-dpe-dice Boolean Indicates whether a DPE supports the dpe-dice internal input

Implications

• If false, internal-dpe-dice-type is irrelevant and can be

omitted

Affected By
• supports-internal-inputs

internal-dpe-info-type String Names a type that defines properties of the dpe-info internal

input. The definition MUST define the same elements as other

internal input definitions. See the internal-inputs attribute.

Affected By
• supports-internal-dpe-info

internal-dpe-dice-type String Names a type that defines properties of the dpe-dice internal

input. The definition MUST define the same elements as other

internal input definitions. See the internal-inputs attribute.

Affected By
• supports-internal-dpe-dice

internal-inputs String A comma-separated list of internal inputs that are supported. The

pre-defined dpe-info and dpe-dice inputs are not in this list.

Each item in the list MUST name an internal input that is well

defined. An internal input definition MUST define:

• The semantics of the input, or the semantics of each field if

the input is composed of multiple fields

• The structure of the input

• The encoding of the input as it is processed by the DICE

derivation

• Basic attributes of each field, if applicable, including

whether it is optional, repeatable, typed, or has value

constraints (e.g. max size)

• Whether the input appears in certificates, per field if

applicable

As with all other inputs, how an internal input is presented in a

certificate is defined by the certificate format attributes.

Affected By
• supports-internal-inputs

Certificates

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 47 © TCG 2024

supports-certificates Boolean Indicates whether a DPE supports generating certificates.

Implications

● If false, the following MUST also be false:
○ supports-get-certificate-chain

○ supports-certify-key

○ supports-certificate-policies

○ supports-eca-certificates

○ supports-external-key

● If true, supports-certify-key MUST be true

● If false, the following attributes are irrelevant and can be

omitted:
○ max-certificate-size

○ max-certificate-chain-size

○ appends-more-certificates

○ leaf-certificate-format

● If false and supports-asymmetric-unseal is also false,

public-key-format is irrelevant and can be omitted

Affected By
● supports-signing

● supports-certify-key

max-certificate-size Number The maximum certificate size, in bytes.

Affected By
● supports-certificates

max-certificate-chain-size Number The maximum number of certificates in a chain, per context.

Affected By
● supports-certificates

appends-more-certificates Boolean Indicates whether a DPE appends more certificates to each chain

after those generated by the DPE. For example, whether a static

manufacturer certificate chain is appended that anchors the chain

to a self-signed root.

Affected By
● supports-certificates

supports-certificate-policies Boolean Indicates whether a DPE supports any certificate policies via the

policies argument to the CertifyKey command.

Implications

● If false, the following MUST also be false:
○ supports-policy-identity-init

○ supports-policy-identity-loc

○ supports-policy-attest-init

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 48 © TCG 2024

○ supports-policy-attest-loc

○ supports-policy-assert-init

○ supports-policy-assert-loc

● If false, certificate-policies is irrelevant and can be

omitted

Affected By
● supports-certificates

supports-policy-identity-init Boolean Indicates whether a DPE supports the tcg-dice-kp-identityInit

policy.

Affected By
● supports-certificate-policies

supports-policy-identity-loc Boolean Indicates whether a DPE supports the tcg-dice-kp-identityLoc

policy.

Affected By
● supports-certificate-policies

supports-policy-attest-init Boolean Indicates whether a DPE supports the tcg-dice-kp-attestInit

policy.

Affected By
● supports-certificate-policies

supports-policy-attest-loc Boolean Indicates whether a DPE supports the tcg-dice-kp-attestLoc

policy.

Affected By
● supports-certificate-policies

supports-policy-assert-init Boolean Indicates whether a DPE supports the tcg-dice-kp-assertInit

policy.

Affected By
● supports-certificate-policies

supports-policy-assert-loc Boolean Indicates whether a DPE supports the tcg-dice-kp-assertLoc

policy.

Affected By
● supports-certificate-policies

certificate-policies String A comma-separated list of policies that are supported. The pre-

defined tcg-* policies are not in this list. Each item in the list

MUST name a policy that is well defined. A policy definition

MUST define:

● The semantics of the policy: what it authorizes

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 49 © TCG 2024

● The identifier of the policy (e.g. ASN.1 OID)

● Any changes to how a certificate is generated when this

policy is specified

● Any implications to other policies or options

Affected By
● supports-certificate-policies

supports-eca-certificates Boolean Indicates whether the DeriveContext command supports the

create-certificate argument set to true, causing an ECA

certificate to be created.

Implications

● If false, eca-certificate-format is irrelevant and can be

omitted

Affected By
● supports-certificates

eca-certificate-format String Names a certificate format that describes how an intermediate

certificate is generated in association with a CDI that represents a

particular DICE component. This is the certificate that is

generated by DeriveContext when the create-certificate

argument is true. The certificate format MUST define:

● Certificate structure (e.g. X.509, CWT)

● Certificate encoding (e.g. ASN.1 DER, CBOR)

● Certificate content (e.g. subject, issuer, policies)

● How input data maps to certificate fields

● How accumulated certificate information from multiple

components is combined and mapped to certificate fields

● How, if a CDI was exported from a DPE, this is indicated in

a certificate.

● How multiple certificates are ordered when represented as

a chain, as returned by GetCertificateChain

Affected By
● supports-eca-certificates

leaf-certificate-format String Names a certificate format that describes how a leaf certificate is

generated in association with a CDI that represents a particular

DICE component. This is the certificate that is generated by the

CertifyKey command. The certificate format MUST define:

● Certificate structure (e.g. X.509, CWT)

● Certificate encoding (e.g. ASN.1 DER, CBOR)

● Certificate content (e.g. subject, issuer, policies)

● How accumulated certificate information from multiple

components is combined and mapped to certificate fields

● For each supported policy for the CertifyKey policies

argument, how the certificate changes when the policy is

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 50 © TCG 2024

specified or omitted, and whether the policy has

implications on other policies

● Behavior when no policies are specified, e.g. the policies

argument is omitted when invoking CertifyKey

● Whether and how the label argument is used in the

certificate

Affected By
● supports-certificates

Signatures

public-key-format String Names a format that describes how public keys are formatted in

DPE arguments. The format MUST define:

● Public key structure and encoding

● Algorithm identification

Affected By
● supports-certificates

● supports-asymmetric-unseal

supports-external-key Boolean Indicates whether a DPE supports certifying external public keys.

If supported, a DPE MUST support certification of any type of

public key that can be represented by the public key format.

The key type used by a DPE when deriving asymmetric keys

internally and the corresponding signature and encryption

algorithms are described by the asymmetric-derivation attribute.

This does not change based on the external key type, so the

issuer and subject of the certificate may have different key types.

Affected By
● supports-certificates

to-be-signed-format String Names a format for the Sign command to-be-signed argument.

The format MUST define:

● The structure and encoding of the data

● Any processing of the data by the DPE

Affected By
● supports-sign

signature-format String Names a format for the signature returned by the Sign command.

The format MUST define the structure and encoding of the data

for all types of supported signatures (i.e., symmetric and

asymmetric).

Affected By
● supports-sign

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 51 © TCG 2024

supports-symmetric-sign Boolean Whether a DPE supports generating symmetric signatures, e.g.,

MACs.

Affected By
• supports-sign

Sealing

supports-asymmetric-unseal Boolean Indicates whether a DPE supports asymmetric unsealing via the

Unseal command and the derivation of public keys for asymmetric

sealing.

Implications

● If false, supports-sealing-public MUST be false

● If true, supports-sealing-public MUST be true

● If false and supports-signing is also false, asymmetric-

derivation is irrelevant and can be omitted

● If false and supports-certificates is also false, public-

key-format is irrelevant and can be omitted

Affected By
● supports-sealing

● supports-unseal

● supports-sealing-public

supports-unseal-policy Boolean Indicates whether a DPE supports an unseal policy.

Implications

● If false, unseal-policy-format is irrelevant

Affected By
● supports-sealing

unseal-policy-format String Names a format for the unseal-policy argument for the Seal or

DeriveSealingPublicKey command. The format MUST cover:

• The structure and canonical encoding of the data

• The semantics of the data in terms of how a DPE enforces

the policy

Affected By
● supports-unseal-policy

Localities

supports-multiple-localities Boolean Indicates whether a DPE supports multiple localities.

Implications

● If false, locality-id-format is irrelevant and can be

omitted

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 52 © TCG 2024

locality-id-format String Names a format for specifying a target locality. The format MUST

cover:

• The structure and encoding of the identifier, including a

fixed length if applicable

• The semantics of the id in terms of how it maps to the

underlying platform notion of locality

Affected By
● supports-multiple-localities

Export

export-cdi-format String Names a format for the exported-cdi output argument of the

DeriveContext command. The format MUST cover:

• The structure and encoding of the value

Affected By
• supports-export-cdi

Table 2: DPE profile attributes

7.3 Sample Profile
Table 3 is an example of a profile. For convenience the definition of named values are provided inline in the table.

The cryptographic algorithms chosen target at least 128 bits of strength. Other profiles can use the names defined in

this section, provided the definition remains as specified here.

Attribute Description

General

name tcg.sample.1

inherits Empty

dpe-spec-version 1

max-message-size 65535

uses-multi-part-messages False

supports-concurrent-

operations
NA

Sessions

supports-encrypted-sessions True

supports-derived-sessions True

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 53 © TCG 2024

max-sessions Unlimited

session-protocol tcg.protocol.noise-nk

The protocol tcg.protocol.noise-nk is defined as follows:

● Noise_NK_25519_AESGCM_SHA256 for initial handshake and

transport

● Noise_NNpsk0_25519_AESGCM_SHA256 for derived handshake

● The PSK for the derived handshake is the channel binding token of

the existing session

● In both handshakes, the session ID is contained in the responder

payload field

● Each session can send up to 2^64 ciphertext messages

supports-session-sync True

session-sync-policy tcg.monotonic-sync

The policy tcg.monotonic-sync is defined as requiring only that the new value

of the counter is greater than or equal to the existing value of the counter.

Contexts

supports-default-context True

supports-context-handles True

max-contexts-per-session Unlimited

max-context-handle-size Unlimited

supports-auto-init False

supports-simulation True

supports-cdi-export True

supports-recursive-derivation True

Use Cases

supports-signing True

supports-sealing True

Commands2

supports-get-profile True

2 Note: mandatory commands not represented in this section.

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 54 © TCG 2024

supports-open-session True

supports-close-session True

supports-sync-session True

supports-initialize-context True

supports-get-certificate-

chain
True

supports-certify-key True

supports-sign True

supports-seal True

supports-unseal True

supports-sealing-public True

supports-rotate-context-

handle
True

Derivation

dice-derivation tcg.derive.hkdf-sha256

The scheme tcg.derive.hkdf-sha256 is defined as follows:

● The algorithm is HKDF with SHA256 as the Hash option

● The scheme produces a CDI using HKDF with these arguments:

○ length (L): 32

○ input key material (IKM): the DICE secret (UDS or CDI)

○ information: the input, encoded for derivation

○ salt: ASCII encoded string of “CDI_Sign” for a signing CDI or

“CDI_Seal” for a sealing CDI

asymmetric-derivation tcg.derive.hkdf-sha256-curve25519

The scheme tcg.derive.hkdf-sha256-curve25519 is defined as follows:

● The derivation algorithm is HKDF with SHA256 as the Hash option

● The asymmetric key type is curve25519

● Signature scheme is Ed25519

● Sealing scheme is hybrid encryption using DHKEM(X25519, HKDF-

SHA256) + HKDF-SHA256 + AES-256-GCM

● The HKDF information argument is a SHA256 hash of the label

argument, if applicable, even if the label is empty. When there is no

notion of label, leave the information empty (zero bytes).

● The derivation scheme produces a 32-byte private key using HKDF

with these arguments:

○ length (L): 32

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 55 © TCG 2024

○ input key material (IKM): the CDI

○ information: the label-based information value

○ salt: SHA256 hash of one of the following ASCII encoded

strings, without a null terminator:

■ “Key_Pair_25519_Sign” for signing

■ “Key_Pair_25519_Seal” for sealing

■ “Key_Pair_25519_ECA” for an embedded CA key

symmetric-derivation tcg.derive.hkdf-sha256-aes256-gcm-siv-hmac-sha256

The scheme tcg.derive.hkdf-sha256-aes256-gcm-hmac-sha256 is defined as

follows:

• The derivation algorithm is HKDF with SHA256 as the Hash option

• The HKDF information argument is a SHA256 hash of the label

argument, if applicable, even if the label is empty. When there is no

notion of label, information SHALL be empty (zero bytes).

• For sealing, the encryption scheme is AEAD_AES_256_GCM_SIV as

defined in RFC 8452. The 96-bit nonce is randomly generated and

prepended to the ciphertext.

• For signing, the scheme is HMAC-SHA256 with a 256-bit key

• The sealing and signing keys are derived using these HKDF

arguments:

o length (L): 32

o input key material (IKM): the CDI

o information: the label-based information value

o salt: SHA256 hash of one of the following ASCII encoded

strings, without a null terminator:

▪ “Key_HMAC_Sign” for the signing

▪ “Key_AES_Seal” for the sealing

supports-any-label True

supported-labels Ignored (supports-any-label, true)

initial-derivation tcg.init.combined-uds.hkdf-sha256

The scheme tcg.init.combined-uds.hkdf-sha256 is defined as follows:

● The DPE combines an internal seed with the seed argument from the

client to derive a UDS that comprises the initial context state

● HKDF-SHA256 is used with these arguments:

○ length (L): 32

○ input key material (IKM): the internal seed value

○ information: the seed argument value

○ salt: none

● The internal seed meets all requirements for a UDS in terms of

entropy and availability

● The seed argument:

○ is a raw value: it is not interpreted

○ is expected to be no more than 32 bytes in length

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 56 © TCG 2024

○ has no security requirements: it can be empty

recursive-derivation tcg.derive.recursive.default

The scheme tcg.derive.recursive.default is defined as follows:

• No changes to the CDI derivation or certificate format

• Original input is retained for each context and CDIs are recursively

recomputed from scratch from the new parent CDI and the original

input

• Only the context given to the DeriveContext command directly

incorporates the given input

Input

input-format tcg.format.tcb-info

The scheme “tcg.format.tcb-info” is defined as follows:

● The input is a DiceTcbInfo ASN.1 structure as defined by [3]

● The input is encoded using ASN.1 DER for DPE input, derivation, and

certificates

● All fields are used for a signing derivation

● All fields except FWIDs are used for a sealing derivation

supports-internal-inputs True

supports-internal-dpe-info True

supports-internal-dpe-dice True

internal-dpe-info-type tcg.basic-dpe-info

The tcg.basic-dpe-info type is defined as follows:

● The information is a profile descriptor, exactly as it would be returned

by the GetProfile command in terms of semantics, structure, and

encoding

● The information appears in its entirety in certificates

internal-dpe-dice-type tcg.basic-dpe-dice

The tcg.basic-dpe-dice type is defined as follows:

● There are two elements: (1) a CDI and (2) a certificate chain that

represent the current identity of the DPE

● The CDI is an input for a signing derivation, but does not appear in the

certificate

● The certificate chain is not included in a derivation, but appears in the

certificate, if applicable

● The semantics, structure, and encoding of the certificate chain are

entirely implementation-dependent and help from the DPE vendor is

necessary to parse/verify it

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 57 © TCG 2024

internal-inputs Empty

Certificates

supports-certificates True

max-certificate-size Unlimited

max-certificate-chain-size Unlimited

appends-more-certificates False

supports-certificate-policies True

supports-policy-identity-init True

supports-policy-identity-loc True

supports-policy-attest-init True

supports-policy-attest-loc True

supports-policy-assert-init False

supports-policy-assert-loc False

certificate-policies Empty

supports-eca-certificates True

eca-certificate-format tcg.certificate.basic-eca

The profile tcg.certificate.basic-eca is designed to work with the

tcg.format.tcb-info input format and is defined as follows:

● An X.509 ECA certificate as defined by [4]

● The key usage field MUST contain only keyCertSign

● The basic constraints path length should be set to zero if the allow-

new-context-to-derive argument to DeriveContext is false,

otherwise omitted

● The tcg-dice-kp-eca policy MUST be the only tcg-* policy

● One tcg-dice-TcbInfo extension MUST be added using the TcbInfo

from the input-data argument, and one additional tcg-dice-TcbInfo

extension MUST be added for each accumulated TcbInfo from

previous invocations of DeriveContext with create-certificate set

to false, if any

● If internal inputs were indicated in the internal-inputs argument to

DeriveContext, a tcg-dice-DpeInternal extension (OID value

2.23.133.5.4.200.1) MUST be added whose content is a CBOR map

with each key being an internal-input-type value (e.g., dpe-info =

1) and each value being the corresponding data as bytes

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 58 © TCG 2024

● If internal inputs have been accumulated, one additional tcg-dice-

DpeInternal extension MUST be added for each set, i.e., for each

time DeriveContext was called with internal inputs selected and

create-certificate set to false.

● When in a chain, certificates are ordered leaf to root.

leaf-certificate-format tcg.certificate.basic-leaf

The profile tcg.certificate.basic-leaf is designed to work with the

tcg.format.tcb-info input format and is defined as follows:

● An X.509 certificate meeting the requirements of [4] according to the

CertifyKey policies argument

● If multiple policies are specified, the certificate contains the policy OID

for each and MUST meet the requirements for each corresponding

certificate type, e.g. if the tcg-dice-kp-attestLoc policy is set, an

attestation certificate is generated

● If no policies are selected, the tcg-dice-kp-attestLoc policy is used

as a default

● The key usage field MUST contain only digitalSignature

● The certificate MUST NOT contain basic constraints

● The tcg-dice-kp-eca policy MUST NOT be included

● One tcg-dice-TcbInfo extension MUST be added for each

accumulated TcbInfo from previous invocations of DeriveContext with

create-certificate set to false, if any

● One tcg-dice-DpeInternal extension MUST be added for each

accumulated set of internal inputs

● The label is not used in the certificate

Signatures

public-key-format tcg.key-format.x509

The format tcg.key-format.x509 uses the X.509 SubjectPublicKeyInfo ASN.1

sequence as defined by [11]. It is encoded using ASN.1 DER.

supports-external-key True

to-be-signed-format tcg.tbs-format.raw

The format tcg.tbs-format.raw is defined as opaque raw bytes that will be

signed directly using the signing scheme with no additional processing.

signature-format tcg.signature.raw

The format tcg.signature.raw uses raw signature bytes as defined by the

signature scheme.

supports-symmetric-sign True

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 59 © TCG 2024

Sealing

supports-asymmetric-unseal True

supports-unseal-policy True

unseal-policy-format tcg.unseal-policy.tcb-info-layer-svn-clamp

This policy is used to limit which component versions are allowed to unseal.

The policy format is a CBOR map where the keys each identify a component

and the value is an integer value indicating the minimum version of that

component. At the time of unseal, if and only if, for each component that

appears in the map, the current version of the component is greater than or

equal to the minimum version that appears in the policy, the unseal will be

allowed.

The values of the component identifiers correspond to the ‘layer’ field of the

DiceTcbInfo structure and the value of the versions correspond to the ‘svn’

field of the DiceTcbInfo structure. Note, this type of policy is limited to systems

where a single component per layer participates in the policy.

Localities

supports-multiple-localities False

locality-id-format Ignored (supports-multiple-localities, false)

Export

cdi-export-format tcg.cdi-export.raw

The tcg.cdi-export.raw format exports the CDI as a single, raw, fixed size

value.

Table 3: Sample DPE profile attributes

7.4 Profile Descriptors
A profile descriptor describes all attributes of a profile. Like a profile, a profile descriptor is complete. A profile

descriptor can describe a profile by name or by full attribute list. A profile descriptor MUST include the full attribute

list when a profile has no name. A profile descriptor SHOULD include the full attribute list when a profile name is not

well known to all potential clients.

A profile descriptor is encoded as a CBOR map with each attribute assigned a key. If a profile is described by name,

the name MUST be the only item in the map. A profile descriptor MAY be tagged using the CBOR tag 1146111423.

When returned by a GetProfile command a DPE MUST NOT tag the descriptor.

The descriptor format is as follows:

profile-descriptor = {

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 60 © TCG 2024

 * $attribute-bool => bool,

 * $attribute-number => uint,

 * $attribute-string => tstr,

 ? &(inherits: 0) => bytes,

 * tstr => any

}

$attribute-string /= &(name: 1)

$attribute-number /= &(dpe-spec-version: 2)

$attribute-number /= &(max-message-size: 3)

$attribute-bool /= &(uses-multi-part-messages: 4)

$attribute-bool /= &(supports-concurrent-operations: 5)

$attribute-bool /= &(supports-encrypted-sessions: 6)

$attribute-bool /= &(supports-derived-sessions: 7)

$attribute-number /= &(max-sessions: 8)

$attribute-string /= &(session-protocol: 9)

$attribute-bool /= &(supports-session-sync: 10)

$attribute-string /= &(session-sync-policy: 11)

$attribute-bool /= &(supports-default-context: 14)

$attribute-bool /= &(supports-context-handles: 15)

$attribute-number /= &(max-contexts-per-session: 16)

$attribute-number /= &(max-context-handle-size: 17)

$attribute-bool /= &(supports-auto-init: 18)

$attribute-bool /= &(supports-simulation: 19)

$attribute-bool /= &(supports-signing: 20)

$attribute-bool /= &(supports-sealing: 21)

$attribute-bool /= &(supports-get-profile: 22)

$attribute-bool /= &(supports-open-session: 23)

$attribute-bool /= &(supports-close-session: 24)

$attribute-bool /= &(supports-sync-session: 25)

$attribute-bool /= &(supports-init-context: 28)

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 61 © TCG 2024

$attribute-bool /= &(supports-certify-key: 29)

$attribute-bool /= &(supports-sign: 30)

$attribute-bool /= &(supports-seal: 31)

$attribute-bool /= &(supports-unseal: 32)

$attribute-bool /= &(supports-sealing-public: 33)

$attribute-bool /= &(supports-rotate-context-handle: 34)

$attribute-string /= &(dice-derivation: 35)

$attribute-string /= &(asymmetric-derivation: 36)

$attribute-string /= &(symmetric-derivation: 37)

$attribute-bool /= &(supports-any-label: 38)

$attribute-string /= &(supported-labels: 39)

$attribute-string /= &(initial-derivation: 40)

$attribute-string /= &(input-format: 41)

$attribute-bool /= &(supports-internal-inputs: 42)

$attribute-bool /= &(supports-internal-dpe-info: 43)

$attribute-bool /= &(supports-internal-dpe-dice: 44)

$attribute-string /= &(internal-dpe-info-type: 45)

$attribute-string /= &(internal-dpe-dice-type: 46)

$attribute-string /= &(internal-inputs: 47)

$attribute-bool /= &(supports-certificates: 48)

$attribute-number /= &(max-certificate-size: 49)

$attribute-number /= &(max-certificate-chain-size: 50)

$attribute-bool /= &(appends-more-certificates: 51)

$attribute-bool /= &(supports-certificate-policies: 52)

$attribute-bool /= &(supports-policy-identity-init: 53)

$attribute-bool /= &(supports-policy-identity-loc: 54)

$attribute-bool /= &(supports-policy-attest-init: 55)

$attribute-bool /= &(supports-policy-attest-loc: 56)

$attribute-bool /= &(supports-policy-assert-init: 57)

$attribute-bool /= &(supports-policy-assert-loc: 58)

DICE Protection Environment

DICE Protection Environment | Version 1.0 | Revision 0.13 | 1/17/2024 | Public Review Page 62 © TCG 2024

$attribute-string /= &(certificate-policies: 59)

$attribute-bool /= &(supports-eca-certificates: 60)

$attribute-string /= &(eca-certificate-format: 61)

$attribute-string /= &(leaf-certificate-format: 62)

$attribute-string /= &(public-key-format: 63)

$attribute-bool /= &(supports-external-key: 64)

$attribute-string /= &(to-be-signed-format: 65)

$attribute-string /= &(signature-format: 66)

$attribute-bool /= &(supports-symmetric-sign: 67)

$attribute-bool /= &(supports-asymmetric-unseal: 68)

$attribute-bool /= &(supports-unseal-policy: 69)

$attribute-string /= &(unseal-policy-format: 70)

$attribute-bool /= &(supports-multiple-localities: 71)

$attribute-string /= &(locality-id-format: 72)

$attribute-bool /= &(supports-get-certificate-chain: 73)

