

TCG

TCG Mobile Trusted Module
Specification

Specification version 1.0
Revision 6
26 June 2008

Contact: mobilewg@trustedcomputinggroup.org

TCGTCGTCGTCG PUBLISHEDPUBLISHEDPUBLISHEDPUBLISHED

Copyright © TCG 2008

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page ii of vii
 TCG PUBLISHED

Copyright © 2008 Trusted Computing Group, Incorporated.

Disclaimers, Notices and License Terms

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Without limitation, TCG disclaims
all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification and to the implementation of this specification, and TCG disclaims all liability for cost of
procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise,
arising in any way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is
granted herein other than as follows: You may not copy or reproduce the document or distribute it to others
without written permission from TCG, except that you may freely do so for the purposes of (a) examining or
implementing TCG specifications or (b) developing, testing, or promoting information technology standards
and best practices, so long as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page iii of vii
 TCG PUBLISHED

Revision History 1

1 First Revision of version 1.0

2 Correction of minor errata, and some clarifications

3 Update references to TPM 1.2 specs to Revision 103; Define how to set tick values for Transport Sessions in case tick commands are unsupported

4 Update lifecycle inconsistency by excluding TPM_OwnerClear; Specify lifecycle of verificationAuth for MRTM with ownerAuth; Fix typos

5 Correct further typos in Section 9.14 and add comment to TPM_SaveState in Section 9.1

6 Correct informative comment on TPM_AUTH_NEVER and clarify use of monotonic counters in Section 9.23

 2

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page v of vii
 TCG PUBLISHED

Table of Contents

1. Scope and Audience ...8

1.1 Key words ..8

1.2 Statement Type ..8

1.3 References..9

2. Basic Definitions ..10

2.1 Glossary...10

2.2 Representation of Information ..10

2.2.1 Endness of Structures..10

2.2.2 Byte Packing ..10

2.2.3 Lengths..10

2.3 Defines...11

2.3.1 Basic data types...11

2.3.2 Boolean types ..11

2.3.3 Structure Tags ...11

2.3.4 Return codes..12

2.3.5 Structures and Datatypes ..13

2.4 Strength of Cryptographic Hash Algorithms..14

3. Introduction ...15

4. Mobile Trusted Modules..16

5. Structures ..18

5.1 Counter References ..18

5.2 TPM_RIM_CERTIFICATE ..20

5.3 TPM_VERIFICATION_KEY...23

5.4 MTM Permanent Structures ...27

5.5 TPM_PERMANENT_DATA in a MTM..31

5.5.1 Secrets and Keys from TPM v1.2 ..31

5.5.2 TPM_PERMANENT_DATA in a MTM Summary....................................32

5.6 MTM_STANY_FLAGS ..34

6. Monotonic Counters ...35

6.1 CounterRIMProtect...36

6.2 CounterBootstrap...37

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page vi of vii
 TCG PUBLISHED

6.3 counterStorageProtect ..38

6.4 Strength-of-Function of Monotonic Counters ..39

7. MTM Commands for Local Verification..40

7.1 Overview ..40

7.2 MTM_InstallRIM...41

7.3 MTM_LoadVerificationKey ..43

7.4 MTM_LoadVerificationRootKeyDisable ..46

7.5 MTM_VerifyRIMCert ...48

7.6 MTM_VerifyRIMCertAndExtend ..50

7.7 MTM_IncrementBootstrapCounter..52

7.8 MTM_SetVerifiedPCRSelection ..54

7.9 MTM-specific Ordinals..56

8. Differences to a TPM V1.2...58

8.1 TPM_GetCapability ...59

8.2 TPM_Extend...60

8.3 TPM_Init ..61

8.4 TPM_PCR_Reset ...62

8.5 TPM_ResetLockValue..63

8.6 Physical Presence...64

8.7 Localities..65

8.8 Random Number Generation Requirements..66

8.9 MakeIdentity and ActivateIdentity ..67

8.10 TPM_FlushSpecific ..68

8.11 Timing Ticks and Transport Sessions ..69

8.12 Ownership in a MLTM...70

9. Subset of TPM V1.2 Commands Required for a MTM71

9.1 Admin Startup and State..72

9.2 Admin Testing ..73

9.3 Admin Opt-in ...74

9.4 Admin Ownership ..75

9.5 The GetCapability Commands ..76

9.6 Auditing ...77

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page vii of vii
 TCG PUBLISHED

9.7 Administrative Functions - Management ..78

9.8 Storage functions ...79

9.9 Migration ...80

9.10 Maintenance ...81

9.11 Cryptographic Functions...82

9.12 Endorsement Key Handling ...83

9.13 Identity Creation and Activation ..84

9.14 Integrity Collection and Reporting ...85

9.15 Changing AuthData ..86

9.16 Authorization Sessions..87

9.17 Delegation...88

9.18 Non-volatile Memory ...89

9.19 Session Management...90

9.20 Eviction...91

9.21 Timing Ticks ...92

9.22 Transport Sessions..93

9.23 Monotonic Counter ...94

9.24 Direct Anonymous Attestation...95

10. Example...97

10.1 Overview ...98

10.2 Secure Boot ..99

10.3 Remote Attestation and a Resource-Constrained Verifier 103

10.4 Re-sealing ... 104

10.5 Reactive Run-Time Responses ... 105

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 8 of 105
 TCG PUBLISHED

1. Scope and Audience 1

The TCG specifications [1][2][3] define a Trusted Platform Module (TPM) and its use. This document 2
is an industry specification that adapts existing TCG technology for use in a mobile phone taking 3
into account its embedded system nature. This specification also defines new commands and 4
structures for enabling applications [4] that the technology must enable in a mobile phone context. 5
New commands and structures have been defined only when necessary, and alignment with the 6
main TCG specifications has been a strong consideration. 7

1.1 Key words 8

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD 9
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in the chapters 2-8 normative statements are to 10
be interpreted as described in [RFC-2119]. 11

1.2 Statement Type 12

Please note a very important distinction between different sections of text throughout this 13
document. You will encounter two distinctive kinds of text: informative comment and normative 14
statements. Because most of the text in this specification will be of the kind normative statements, 15
the authors have informally defined it as the default and, as such, have specifically called out text 16
of the kind informative comment. They have done this by flagging the beginning and end of each 17
informative comment and highlighting its text in gray. This means that unless text is specifically 18
marked as of the kind informative comment, you can consider it of the kind normative statements. 19

For example: 20

Start of informative comment: 21

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment … 22

This is the second paragraph of text of the kind informative comment ... 23

This is the nth paragraph of text of the kind informative comment ... 24

To understand the TPM specification the user must read the specification. (This use of MUST does 25
not require any action). 26

End of informative comment. 27

This is the first paragraph of one or more paragraphs (and/or sections) containing the text of the 28
kind normative statements ... 29

To understand the TPM specification the user MUST read the specification. (This use of MUST 30
indicates a keyword usage and requires an action). 31

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 9 of 105
 TCG PUBLISHED

1.3 References 1
[1] Trusted Computing Group, TPM Main Part 1 Design Principles, Specification Version 1.2 Revision 103, July 2007

[2] Trusted Computing Group, TPM Main Part 2 TPM Structures, Specification Version 1.2 Revision 103, July 2007

[3] Trusted Computing Group, TPM Main Part 3 Commands, Specification Version 1.2 Revision 103, July 2007

[4] Trusted Computing Group, Mobile Phone Work Group Use Case Scenarios, Specification Version 2.7, 2005.

[5] Trusted Computing Group, TCG Mobile Reference Architecture, Version 1.0 Revision 5, June 2008

 2

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 10 of 105
 TCG PUBLISHED

2. Basic Definitions 1

2.1 Glossary 2

Abbrevation Description

AIK Attestation Identity Key. A key used to sign remote attestations.
Defined in [2] and [3].

CBC Cipher Block Chaining. A special mode for using a symmetric block cipher.

DES and 3DES Cryptographic symmetric encryption algorithms

DM Device Manufacturer.

EK Endorsement Key. A key using which one can enroll certificates for AIK
keys. Defined in [2] and [3].

MAC Message Authentication Code. A cryptographic code for authenticating
a message using a secret key.

MTM Mobile Trusted Module

MLTM Mobile Local-Owner Trusted Mobile

MRTM Mobile Remote-Owner Trusted Mobile

RSA An asymmetric cryptographic algorithm.

RTM Root-of-Trust for Measurement

RTR Root-of-Trust for Reporting

RTS Root-of-Trust for Storage

RTV Root-of-Trust for Verification

SHA1 A cryptographic hash algorithm.

TPM Trusted Platform Module

 3

 4

2.2 Representation of Information 5

Start of informative comment: 6

The following structures and formats describe the interoperable areas of the specification. There is 7
no requirement that internal storage or memory representations of data must follow these 8
structures. These requirements are in place only during the movement of data from an MRTM or 9
MLTM to some other entity. 10

End of informative comment. 11

2.2.1 Endness of Structures 12

Each structure MUST use big endian bit ordering, which follows the Internet standard and requires 13
that the low-order bit appear to the far right of a word, buffer, wire format, or other area and the 14
high-order bit appear to the far left. 15

2.2.2 Byte Packing 16

All structures MUST be packed on a byte boundary. 17

2.2.3 Lengths 18

The “Byte” is the unit of length when the length of a parameter is specified. 19

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 11 of 105
 TCG PUBLISHED

2.3 Defines 1

Start of informative comment: 2

These definitions are in use to make a consistent use of values throughout the structure 3
specifications. The types in sections 2.2.1 and 2.2.2 are reproduced here for the reader’s 4
convenience. This document fully re-uses the type definitions from [2]. Section 2.2.3 provides the 5
structure tags for structures defined in this specification. 6

End of informative comment. 7

2.3.1 Basic data types 8

Typedef Name Description

unsigned char BYTE Basic byte used to transmit all character fields.

unsigned char BOOL TRUE/FALSE field. TRUE = 0x01, FALSE = 0x00

unsigned short UINT16 16-bit field. The definition in different architectures may
need to specify 16 bits instead of the short definition

unsigned long UINT32 32-bit field. The definition in different architectures may
need to specify 32 bits instead of the long definition

2.3.2 Boolean types 9

Name Value Description

TRUE 0x01 Assertion

FALSE 0x00 Contradiction

2.3.3 Structure Tags 10

Start of informative comment: 11

This section defines TPM_STRUCTURE_TAG values for the structures defined in this specification. 12

End of informative comment. 13

Name Value Structure

TPM_TAG_VERIFICATION_KEY 0x0301 TPM_VERIFICATION_KEY

TPM_TAG_RIM_CERTIFICATE 0x0302 TPM_RIM_CERTIFICATE

MTM_TAG_PERMANENT_DATA 0x0303 MTM_PERMANENT_DATA

MTM_TAG_STANY_FLAGS 0x0304 MTM_STANY_FLAGS

 14

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 12 of 105
 TCG PUBLISHED

 1

2.3.4 Return codes 2

This specification extends the meaning of certain TPM error return codes to include new error 3
scenarios that arise in MTM specific commands defined in this specification. 4

These new meanings are described in the table below. 5

Name Description

TPM_BAD_COUNTER New conditions causing this error:

A TPM_VERIFICATION_KEY or TPM_RIM_CERTIFICATE had
counterReference->counterSelection set to a value greater than
MTM_COUNTER_SELECT_MAX.

A TPM_VERIFICATION_KEY or TPM_RIM_CERTIFICATE had a
counterReference->counterValue set and it was less than the
referenced counter.

TPM_ReadCounter failed to read the actual counter value from
MTM_PERMANENT_DATA->counterBootstrap or the counter
MTM_PERMANENT_DATA->counterRimProtectId.

TPM_AUTHFAIL New conditions causing this error:

TPM_VERIFICATION_KEY or TPM_RIM_CERTIFICATE has an
illegitimate parentId set (e.g. TPM_VERIFICATION_KEY_ID_NONE
when it is not allowed).

The integrityCheckData in a TPM_VERIFICATION_KEY or
TPM_RIM_CERTIFICATE is invalid when verifying using the defined
verification key.

The parentId of a TPM_VERIFICATION_KEY or
TPM_RIM_CERTIFICATE does not match the myId of the verifying
TPM_VERIFICATION_KEY.

TPM_INVALID_KEYUSAGE New condition causing this error:

The TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT,
TPM_VERIFICATION_KEY_USAGE_SIGN_RIMAUTH or
TPM_VERIFICATION_KEY_USAGE_INCREMENT_BOOTSTRAP bits are
not set as required in the usageFlags field in
TPM_VERIFICATION_KEY.

TPM_KEYNOTFOUND New condition causing this error:

A TPM_VERIFICATION_KEY_HANDLE key handle is not defined or
the key it points to is not present in the MTM.

TPM_WRONGPCRVAL New condition causing this error:

MTM_VerifyRIMCertAndExtend detected that
TPM_PERMANENT_DATA was not in the state required by
TPM_RIM_CERTIFICATE->state.

TPM_NOSPACE New condition causing this error:

There is insufficient room to load a verification key into an MTM.

TPM_BAD_PARAMETER This error code can be returned if the input is syntactically
incorrect.

TPM_BAD_LOCALITY This error code can be returned by TPM_Extend if a PCR that is
set to be a verified PCR (i.e. PCR index selection bit in
MTM_PERMANENT_DATA->verifiedPCRs is set) is being extended
using TPM_Extend.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 13 of 105
 TCG PUBLISHED

2.3.5 Structures and Datatypes 1

All other type and structure definitions used in this specification that are not defined in this 2
specification are defined in [2]. 3

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 14 of 105
 TCG PUBLISHED

2.4 Strength of Cryptographic Hash Algorithms 1

Start of informative comment: 2

There is a need to bind a configuration (e.g. a set of public keys) to a mobile phone platform. There 3
are many ways to do this, including placing the entire configuration into ROM on the platform. 4
Possible optimizations to this approach are to simply place a hash of the configuration, a public key 5
or a hash of a public key into the mobile phone platform. A configuration can then be validated by 6
comparing its hash against the on-platform hash or checking that it was signed by a key that has a 7
corresponding public key bound to the mobile phone platform. 8

The intent is to allow for these optimizations to be compliant with this specification and therefore 9
the following definition of an acceptable hash function is made in the context of this spec (and for 10
the above use). 11

Birthday-attack collisions are not relevant in the scenarios for which the minimal strength 12
requirements in this section are set. 13

End of informative comment. 14

This specification uses the term acceptable cryptographic hash function to refer to any 15
cryptographic hash function that meets the following criteria: 16

• The hash algorithm used has been standardized for use in a TPM in any version following the 17
specifications [1][2][3]. 18

 19

 20

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 15 of 105
 TCG PUBLISHED

3. Introduction 1

Start of informative comment: 2

This TCG Mobile Phone Specification, together with [5], abstracts a trusted mobile platform as a set 3
of trusted engines, meaning constructs that can manipulate data, provide evidence that they can be 4
trusted to report the current state of the engine, and provide evidence about the current state of 5
the engine. This abstraction enables designers to implement platforms using one or more 6
processors, each processor supporting one or more engines. 7

cellular

services

MRTM

device

services

Trusted

Services

MRTM

app

services

Trusted

Services

MRTM

user

services

Trusted

Services

MLTM

Trusted

Services

cellular

services

MRTMMRTM

device

services

Trusted

Services

MRTM

app

services

Trusted

Services

MRTM

user

services

Trusted

Services

MLTM

Trusted

Services

 8

Figure 1. Example of a Generalized Mobile Platform 9

A generalized trusted mobile platform, shown in Figure 1, contains multiple abstract engines, each 10
acting on behalf of a different stakeholder. The engines in Figure 1 provide services on behalf of the 11
entities that provide the device, cellular access, an application, and user services. The solid 12
rectangles indicate interfaces and the solid arrows indicate dependency (the arrow pointing away 13
from the dependant entity). 14

In this example, the device engine provides basic platform resources, which include a user 15
interface, debug connector, a radio transmitter and receiver, Random Number Generator, the IMEI, 16
and a SIM interface. The device engine provides its services to an engine that provides cellular 17
services. The cellular engine provides its services to an application engine, and the application 18
engine provides its services to the user. 19

In each engine, conventional services have access to Trusted Services, which make measurements of 20
the conventional services and store those measurements in a Mobile Trusted Module (MTM). The 21
device, cellular, and application engines have a Mobile Remote-owner Trusted Module (MRTM), 22
because those stakeholders do not have physical access to the phone and need a secure boot 23
process to ensure that their engines do what is needed. The user engine has a Mobile Local-owner 24
Trusted Module (MLTM), because the user does have physical access to the phone, and can load the 25
software he wishes to execute. The MTMs can be trusted to report the current state of their engine, 26
and provide evidence about the current state of the engine. The MRTM differs from the MLTM 27
primarily in that the MRTM contains additional Protected Capabilities to support a secure boot 28
process. 29

This specification defines the MRTM and the MLTM. 30

End of informative comment 31

 32

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 16 of 105
 TCG PUBLISHED

4. Mobile Trusted Modules 1

Start of informative comment: 2

The “TCG Glossary” defines the Trusted Platform Module (TPM) as “an implementation of the 3
functions defined in the TCG Trusted Platform Module Specification; the set of Roots of Trust with 4
Shielded Locations and Protected Capabilities. Normally includes just the RTS and the RTR”. The 5
fundamental concept is that a TPM is the collection of all Protected Capabilities that require access 6
to Shielded Locations (where sensitive information can be safely manipulated). 7

The TCG specifications “TPM Main Part 2 TPM Structures” [2] and “TPM Main Part 3 Commands” [3] 8
describe the Protected Capabilities that require Shielded Locations. The TCG specification “TPM 9
Main Part 1 Design Principles” [1] section #39 “Mandatory and Optional Functional Blocks” defines 10
the TPM functional blocks that are mandatory in all types of platform, and the TPM functional 11
blocks that are optional. Optional functional blocks may be declared as mandatory or forbidden in 12
platform-specific TCG specifications. 13

This specification provides definitions of a Mobile Local-Owner Trusted Module (MLTM) and a Mobile 14
Remote-Owner Trusted module (MRTM). These modules are defined in terms of the commands 15
(“Protected Capabilities”) they must implement. The majority of these commands are defined in 16
the TCG TPM specifications [2] and [3]. A set of new commands and associated structures required 17
for implementing some of the use cases in [4] are defined. 18

End of informative comment. 19

The two types of trusted modules defined by this specification are: 20

• Mobile Remote-Owner Trusted Module (MRTM) 21

• Mobile Local-Owner Trusted Module (MLTM) 22

The term Mobile Trusted Module (MTM) is used to refer to both MRTMs and MLTMs. 23

A MRTM MUST support a set of additional Mobile specific commands defined in this specification and 24
a subset of the TPM v1.2 commands. A MLTM is NOT REQUIRED to support any additional commands 25
defined in this specification, but MUST support a subset of TPM v1.2 commands. 26

This specification does NOT define or require any certain implementation method for instantiating a 27
MRTM or a MLTM. Both trusted modules are from the viewpoint of this specification an entity 28
exporting an interface consisting of a set of commands and associated data structures. 29

Start of informative comment: 30

The reason for having two separate types of trusted modules is their differing design objectives. A 31
MRTM is designed to be used to implement local verification for use cases such as IMEI protection 32
[4]. A MLTM is designed to be used to support remote verification for e.g. remote attestation. An 33
MLTM may also be used for providing local verification under the direction of a local owner. 34

End of informative comment. 35

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 17 of 105
 TCG PUBLISHED

MRTM

Subset of TPM v1.2

(RTS + RTR)

RTV + RTM

Measurement

and Verification

Agent
2. Measurement

of Verification Agent

4. Measurement of OS

1. MTM_VerifyRIMCertAndExtend

OS

5. MTM_VerifyRIMCertAndExtend

3. Execute

Verification Agent

6. Execute OS

Mobile Specific Commands

 1

Figure 2. Overview of MRTM 2

Start of informative comment: 3

Figure 2 shows a simple example of how a MRTM could be used. The MRTM would itself consist of a 4
subset of the TPM v1.2 plus a set of new Mobile-specific commands designed to support the 5
requirements set by [4]. Additionally a Root-of-Trust-for-Verification (RTV) and Root-of-Trust-for-6
Measurement (RTM) module would be the first executable running in the runtime environment. The 7
RTV+RTM module would first record a diagnostic measurement of its implementation. After the 8
diagnostic extend the RTV+RTM module would measure and verify a measurement and verification 9
agent executable using the MRTM before passing control to it. This measurement and verification 10
agent then again measures and verifies the OS image before passing control to the OS. 11

This structure allows a simple implementation of secure boot. See the examples in section 10 for 12
more detailed and concrete examples. Figure 2 is a functional diagram and shall not give any 13
implications on which elements are implemented in hardware or software, nor depict all new 14
functionalities of the MRTM. 15

End of informative comment. 16

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 18 of 105
 TCG PUBLISHED

5. Structures 1

5.1 Counter References 2

Start of informative comment: 3

A MTM implementing the commands in Section 7 MUST support 2 counters, the counterRIMProtect 4
and the counterBootstrap. See Section 6 for descriptions of each. The MTM_PERMANENT_DATA-5
>counterRimProtectId field contains a TPM_COUNT_ID for the counter labeled counterRIMProtect 6
from which the counter value can be read using TPM_ReadCounter. The MTM_PERMANENT_DATA-7
>counterBootstrap contains the actual counterBootstrap value. (Note that counterBootstrap is not 8
exposed for external party update as a TPM Counter with its own TPM_COUNT_ID.) 9

The validity of objects in a MTM can be bound to defined reference counter values. This validity 10
binding is done via a MTM_COUNTER_REFERENCE structure that is embedded into another host 11
structure such as TPM_RIM_CERTIFICATE. The embedded MTM_COUNTER_REFERENCE structure 12
describes the counter and reference value for the embedding object. 13

This structure omits the TPM_STRUCTURE_TAG field by design. This structure is intended to be 14
embedded in the TPM_RIM_CERTIFICATE structures and TPM_VERIFICATION_KEY structures. These 15
structures are never passed or manipulated in a stand-alone manner independent of the embedding 16
structure. 17

End of informative comment. 18

Definition 19

#define MTM_COUNTER_SELECT_NONE 0 20

#define MTM_COUNTER_SELECT_BOOTSTRAP 1 21

#define MTM_COUNTER_SELECT_RIMPROTECT 2 22

#define MTM_COUNTER_SELECT_MAX 2 23

typedef struct MTM_COUNTER_REFERENCE_STRUCT { 24

 BYTE counterSelection; 25

 TPM_ACTUAL_COUNT counterValue; 26

} MTM_COUNTER_REFERENCE; 27

Parameters 28

Type Name Description

BYTE

counterSelection IF counterSelection == MTM_COUNTER_SELECT_NONE
THEN the embedding object is valid independent of any
reference counter value.

IF counterSelection ==
MTM_COUNTER_SELECT_BOOTSTRAP THEN the
embedding object is valid ONLY if counterValue is
greater or equal to MTM_PERMANENT_DATA-
>counterBootstrap.

IF counterSelection ==
MTM_COUNTER_SELECT_RIMPROTECT THEN the
embedding object is valid ONLY if counterValue is
greater or equal to the counter instance identified by
MTM_PERMANENT_DATA->counterRimProtectId.

TPM_ACTUAL_COUNT counterValue The reference value that the embedding object is bound
to. This field only has relevance if counterSelection is
NOT set to MTM_COUNTER_SELECT_NONE.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 19 of 105
 TCG PUBLISHED

Descriptions 1

1. If counterSelection is set to MTM_COUNTER_SELECT_NONE THEN there is no reference counter 2
and the validity of the embedding object is not bound to any single counter value. 3

2. IF the MTM_PERMANENT_DATA->counterRimProtectId counter does not exist or cannot be read 4
THEN the embedding object is NOT VALID. 5

3. IF counterSelection is set to greater than 2 THEN the embedding object is NOT VALID. 6

 7

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 20 of 105
 TCG PUBLISHED

5.2 TPM_RIM_CERTIFICATE 1

Start of informative comment: 2

A standard method is defined to provide Reference Integrity Metrics (RIMs) for use by the MTM. A 3
RIM is a reference value to compare a measurement against. As an example, a RIM could be the 4
SHA1 hash of a software image. A RIM Certificate (“RIM Cert”) is an authenticated and integrity-5
protected structure containing a RIM and some auxiliary information. A RIM Cert can be a signed 6
structure containing a SHA1 hash and a definition of a pre-requisite state. However, a RIM Cert is 7
not a public key certificate. 8

There are two standardization requirements on RIM Certificates. One is a standard means for 9
passing them to and from a MTM and allowing it to (optionally) record the use of a RIM Certificate. 10
This must be done in such a manner that integrity is not compromised. A second standardization 11
requirement concerns how RIM Certificates are authenticated, authorized and bound to individual 12
MTMs. The parties creating authentic and authorized RIM Certificates are called RIM_Auths and the 13
keys used for verifying these RIM Certificates are called TPM Verification Keys (described in the next 14
section). 15

This specification describes “internal” and “external” RIM Certs. External RIM Certs are certificates 16
which are provided to the device from outside the MTM (and presumably outside the device) and 17
which are possibly valid in a variety of platforms. Internal RIM_Certs are certificates which could be 18
generated on the platform itself. Both internal and external RIM Certificates are authenticated 19
using digital signatures or message authentication codes. It is assumed (but not explicitly required) 20
that in practice only internal RIM certificates would be authenticated using message authentication 21
codes. 22

For each MTM one can set up a hierarchy of keys that can be used to authorize RIM certificates. 23
Generally the key at the root of that hierarchy is called the RVAI (Root Verification Authority 24
Identifier). The leaves of this hierarchy are the keys that authorize individual RIM Certs. These keys 25
belong to RIM_Auths. A key may be both an RVAI and a RIM_Auth key. The party holding the RVAI 26
private or secret key is ultimately responsible for providing RIM Certs to the MTM and thereby 27
authorizing programs to run on the device embedding it. This can be done directly or via separate 28
RIM_Auths. 29

The main benefit of using the MTM is that it allows to securely transform external RIM Certs of 30
various forms into internal RIM Certs which are unique to a specific platform/engine. And then to 31
use these transformed RIMs in an efficient way when verifying a normal boot process. These 32
processes are described in detail in [5]. 33

End of informative comment. 34

A RIM Certificate (“RIM Cert”) is a structure authorizing a measurement value that is extended using 35
MTM_VerifyRIMCertAndExtend [See Section 7] into a PCR defined in the RIM Cert. A RIM Cert consists 36
of a set of standard information and a proprietary authentication field. The actual RIM certificate 37
structure is defined using the notation and types in [2]. The type is named TPM_RIM_CERTIFICATE. 38

A RIM Cert can also be used to authorize measurements that do not result in “verify and extend” 39
commands. In this case the command MTM_VerifyRIMCert [See Section 7] is just used to verify the 40
integrity of the RIM Cert and the actual extend (if necessary) can be performed by an agent external 41
to the MTM. 42

Definition 43

typedef struct TPM_RIM_CERTIFICATE_STRUCT { 44

 TPM_STRUCTURE_TAG tag; 45

 BYTE label[8]; 46

 UINT32 rimVersion; 47

 MTM_COUNTER_REFERENCE referenceCounter; 48

 TPM_PCR_INFO_SHORT state; 49

 UINT32 measurementPcrIndex; 50

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 21 of 105
 TCG PUBLISHED

 TPM_PCRVALUE measurementValue; 1

 TPM_VERIFICATION_KEY_ID parentId; 2

 BYTE extensionDigestSize; 3
 [size_is(extensionDigestSize)] BYTE extensionDigestData[]; 4

 UINT32 integrityCheckSize; 5

 [size_is(integrityCheckSize)] BYTE integrityCheckData[]; 6

} TPM_RIM_CERTIFICATE; 7

Parameters 8

Type Name Description

TPM_STRUCTURE_TAG tag This MUST be set to
TPM_TAG_RIM_CERTIFICATE. It
identifies the type of this structure.

BYTE label[8] This a proprietary label. There are
no restrictions on the content of
this array.

UINT32 rimVersion This a proprietary version number
for the RIM Certificate.

MTM_COUNTER_REFERENCE referenceCounter This field defines the validity of
this structure in relation to a
reference counter as described in
Section 5.1.

TPM_PCR_INFO_SHORT state For MTM_VerifyRIMCertAndExtend
to accept this certificate this field
MUST contain the contents of the
TPM_PERMANENT_DATA->pcrAttrib
at the time of use.

UINT32 measurementPcrIndex This field MUST contain the PCR
index that is to be extended using
measurementValue by
MTM_VerifyRIMCertAndExtend.

TPM_PCRVALUE measurementValue This field MUST contain the
measurement value to be extended
into PCR index
measurementPcrIndex by
MTM_VerifyRIMCertAndExtend.

TPM_VERIFICATION_KEY_ID parentId This MUST be the key id of the
TPM_VERIFICATION_KEY used for
verifying this structure. These
fields are described in section 5.3

BYTE extensionDigestSize This is the length in bytes of the
embedded buffer extensionDigest.
This MUST be less than or equal to
64.

BYTE[] extensionDigest This is a buffer containing a hash of
proprietary extension data. See
below for more information.

UINT32 integrityCheckSize This MUST be the length of the
buffer integrityCheckData.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 22 of 105
 TCG PUBLISHED

BYTE[] integrityCheckData This field MUST contain an integrity
check of the
TPM_RIM_CERTIFICATE. This exact
manner in which to verify this is
defined in the object referenced by
parentId.

Descriptions 1

1. RIM Certificates created by a single RIM_Auth SHOULD be uniquely identifiable by a <label, 2
rimVersion>-pair. The rimVersion and label fields are not used by any of the commands defined 3
in this specification, but are expected to be used by the agents calling those commands in 4
lookup and management operations. The fields are integrity-protected by the 5
integrityCheckData. As an example, the label field can either be used to lookup the correct 6
TPM_RIM Certificate given a target object or identify the target object given a 7
TPM_RIM_CERTIFICATE. 8

2. The TPM_PCR_INFO_SHORT state defines the state of the system as a set of values of the PCRs. 9
These values are hashed into state as defined by [2] and [3]. The state is represented before 10
the measurement, which the RIM certificate authorizes has taken place. Only the PCRs that 11
must be matched exactly are to be included in state. TPM_PCR_INFO_SHORT is defined in [2]. 12
The TPM_PCR_SELECTION in state can be empty. In this case the TPM_RIM_CERTIFICATE 13
authorizes any measurement independently of the current PCR state. 14

3. The field measurementPcrIndex must denote the PCR index to be extended AND the 15
measurementValue field must denote the actual event to be extended. 16
MTM_VerifyRIMCertAndExtend will extend the value measurementValue into PCR index 17
measurementPcrIndex if the TPM_PERMANENT_DATA->pcrAttrib[] matches 18
TPM_RIM_CERTIFICATE->state and the RIM Certificate is authentic and authorized. 19

4. The fields extensionDigestSize and extensionDigestData define a digest of auxiliary proprietary 20
extension data that is attached to this RIM Certificate. This field will be integrity-protected by 21
the authorization data in IntegrityCheckData, but is not used in any other way. The intent is 22
that this field will contain a cryptographic hash of the actual extension data and not the actual 23
extension data itself. This is to keep the size of RIM Certificates manageable when they are 24
cached by MTM. The extensionDigestSize MUST NOT be greater than 64 bytes. 25

5. The integrityCheckSize field defines the length of the integrityCheckData field in bytes. The 26
integrityCheckData field protects the integrity and authenticity of the TPM_RIM_CERTIFICATE 27
type. The algorithm and scheme of the integrity check is defined the structure referenced via 28
parentId. 29

6. All compliant systems MUST be able to verify PKCS#1 v1.5 compliant signatures using SHA1 as 30
the hash function with integrityCheckAlgorithm == TPM_ALG_RSA and integrityCheckScheme == 31
TPM_SS_RSASSAPKCS1v15_SHA1. The integrityCheck is computed over the entire 32
TPM_RIM_CERTIFICATE structure with the exception of the integrityCheckData field at the end. 33
The TPM_RIM_CERTIFICATE structure MUST be considered as a bytestring while computing 34
integrityCheckData, with no special consideration for the contents of any fields. This means 35
that any ‘\0’-bytes in e.g. label MUST be included. 36

7. IF the integrityCheckData is NOT a PKCS#1 RSA signature with a 2048-bit key, it MUST have a 37
cryptographic strength at least as strong as a 2048-bit RSA signature or a 3DES CBC-MAC in the 38
case that the algorithm is keyed. IF an immutable cryptographic hash is used to bind a RIM Cert 39
to a device (e.g. a hash of the RIM Cert is burned into ROM) THEN that hash algorithm must be 40
acceptable as defined in Section 2.4. 41

8. The field parentId is used for looking up the correct key for verifying the integrityCheckData 42
field. See Section 5.3 for the definition of the TPM_VERIFICATION_KEY_ID type. If the parentId 43
field matches the myId field of TPM_VERIFICATION_KEY ‘k1’ then ‘k1’ is used to verify the RIM 44
certificate. IF this field is set to TPM_VERIFICATION_KEY_ID_INTERNAL THEN that denotes that 45
this RIM Certificate has no parent AND that it was created using MTM_InstallRIM using the key 46
MTM_PERMANENT_DATA->internalVerificationKey. 47

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 23 of 105
 TCG PUBLISHED

5.3 TPM_VERIFICATION_KEY 1

Start of informative comment: 2

The TPM_VERIFICATION_KEY structure is the syntax for representing keys in the authorization 3
hierarchy used to authorize RIM_Certs for a MTM. The TPM_VERIFICATION_KEYs can be used to 4
represent RVAI or RIM_Auth keys. The TPM_VERIFICATION_KEY instances are used to verify 5
TPM_RIM_CERTIFICATE structures or other TPM_VERIFICATION_KEYs. The specification also allows 6
other purposes to be defined later by leaving unassigned bits in the usageFlags field. 7

A TPM_VERIFICATION_KEY can be authenticated and integrity-protected in the following ways: 8

• It is signed by an authentic and authorized TPM_VERIFICATION_KEY 9

• It has been loaded into the MTM before integrity checks were enabled 10

• A cryptographic hash (or equivalent) of the key is embedded into the MTM: 11

Typically a TPM_VERIFICATION_KEY structure contains only public key information, and can only be 12
used by the MTM for verification purposes. The corresponding private key is held by the RIM_Auth 13
and not loaded into the MTM. If the RIM_Auth uses its private key to sign a TPM_RIM_CERTIFICATE 14
structure, the structure is therefore an instance of an external RIM_Cert, but constructed in a 15
format that can be recognized and processed by an MTM. Such a special form of external RIM_Cert is 16
needed in the case that the MTM has not created any internal RIM_Certs. This is discussed further in 17
[5], Section 6. 18

End of informative comment. 19

Definition 20

// Type for containing identifier for TPM_VERIFICATION_KEY nodes 21

typedef UINT32 TPM_VERIFICATION_KEY_ID; 22

 23

// Defined values for TPM_VERIFICATION_KEY_ID fields 24

#define TPM_VERIFICATION_KEY_ID_NONE 0xFFFFFFFF 25

#define TPM_VERIFICATION_KEY_ID_INTERNAL 0xFFFFFFFE 26

 27

// These bits are reserved for the MTM 28

#define TPM_VERIFICATION_KEY_USAGE_MTM_MASK 0x00ff 29

#define TPM_VERIFICATION_KEY_USAGE_AGENT_MASK 0x0f00 30

// These bits are reserved for proprietary vendor extensions 31

#define TPM_VERIFICATION_KEY_USAGE_VENDOR_MASK 0xf000 32

// This bit denotes authorization to sign TPM_RIM_CERTIFICATE structures 33

#define TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT 0x0001 34

// This bit denotes authorization to sign TPM_VERIFICATION_KEY structures 35

#define TPM_VERIFICATION_KEY_USAGE_SIGN_RIMAUTH 0x0002 36

// This bit denotes authorization to increment the bootstrap counter 37

#define TPM_VERIFICATION_KEY_USAGE_INCREMENT_BOOTSTRAP 0x0004 38

 39

// Handle used to refer to TPM_VERIFICATION_KEY structures 40

typedef UINT32 TPM_VERIFICATION_KEY_HANDLE; 41

 42

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 24 of 105
 TCG PUBLISHED

typedef struct TPM_VERIFICATION_KEY_STRUCT { 1

 TPM_STRUCTURE_TAG tag; 2

 UINT16 usageFlags; 3

 TPM_VERIFICATION_KEY_ID parentId; 4

 TPM_VERIFICATION_KEY_ID myId; 5

 MTM_COUNTER_REFERENCE referenceCounter; 6

 TPM_ALGORITHM_ID keyAlgorithm; 7

 TPM_SIG_SCHEME keyScheme; 8

 BYTE extensionDigestSize; 9
 [size_is(extensionDigestSize)] BYTE extensionDigestData[]; 10

 UINT32 keySize; 11

 [size_is(keySize)] BYTE keyData[]; 12

 UINT32 integrityCheckSize; 13

 [size_is(integrityCheckSize)] BYTE integrityCheckData[]; 14

} TPM_VERIFICATION_KEY; 15

Parameters 16

Type Name Description

TPM_STRUCTURE tag This field MUST contain the value
TPM_TAG_VERIFICATION_KEY. It is
used to identify the structure.

UINT16 usageFlags This field defines the capabilities for
the key contained in keyData. This
field consists of 3 separate fields,
one 8-bit field for the MRTM, one 4-
bit field for Verification Agents and
one 4-bit field for proprietary vendor
extensions. This specification defines
meaning for the 8 least significant
bits in usageFlags. See below for
definitions of the bits.

TPM_VERIFICATION_KEY_ID parentId This is an arbitrary identifier that is
used to lookup the signing key. IF this
field is set to
TPM_VERIFICATION_KEY_ID_NONE
THEN that denotes that this key has
no parent. IF this field has the value
TPM_VERIFICATION_KEY_ID_INTERNAL
THEN this TPM_VERIFICATION_KEY is
invalid. IF the parentId field of
TPM_VERIFICATION_KEY key1
matches the myId field of a different
TPM_VERIFICATION_KEY key2 THEN
the key in key2->keyData is used to
verify key1.

TPM_VERIFICATION_KEY_ID myId The myId is an arbitrary identifier
that identifies this key structure. IF
this field has the value
TPM_KEY_ID_NONE THEN this key is
INVALID. IF this field has the value

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 25 of 105
 TCG PUBLISHED

TPM_KEY_ID_INTERNAL THEN this key
is INVALID.

MTM_REFERENCE_COUNTER referenceCounter This field defines the validity of this
structure in relation to a reference
counter as described in Section 5.1.

TPM_ALGORITHM_ID keyAlgorithm This MUST be the algorithm identifier
of the key in keyData.

TPM_SIG_SCHEME keyScheme This field MUST define exact manner
in which to verify integrityCheckData
fields using keyData.

BYTE extensionDigestSize This is the length in bytes of the
embedded buffer extensionDigest.
This MUST be less than or equal to
64.

BYTE[] extensionDigest This is a buffer containing a hash of
proprietary extension data. See
below for more information.

UINT32 keySize This MUST be the length of the buffer
keyData.

BYTE[] keyData This MUST contain a key for verifying
integrityCheckData fields in the
manner defined by keyAlgorithm and
keyScheme.

UINT32 integrityCheckSize This MUST be the length of the buffer
integrityCheckData.

BYTE[] integrityCheckData This field MUST contain an integrity
check of the TPM_VERIFICATION_KEY.
This exact manner in which to verify
this is defined in the object
referenced by parentId

Descriptions 1

1. IF the TPM_VERIFICATION_KEY_USAGE_SIGN_RIMAUTH bit in usageFlags is set THEN the key 2
is valid for signing other TPM_VERIFICATION_KEY structures. 3

2. IF the TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT bit in usageFlags is set THEN the key 4
is valid for signing TPM_RIM_CERTIFICATE structures. 5

3. IF the TPM_VERIFICATION_KEY_USAGE_INCREMENT_BOOTSTRAP bit is set THEN the RIM 6
Certs signed by this key can increment the MTM_PERMANENT_DATA->counterBootstrap field. 7

4. A TPM_VERIFICATION_KEY structure is not valid for a purpose, unless the appropriate 8
usageFlags bit is set. 9

5. IF the parentId is TPM_VERIFICATION_KEY_ID_NONE THEN this is considered to be a “root 10
key”. These keys may however STILL be cryptographically authenticated and integrity-11
protected. However, the mechanism to do that is outside the scope of this specification. An 12
acceptable solution would for example be to keep a cryptographic hash of a root key burned 13
into a MTM and have the MTM ALWAYS accept a TPM_VERIFICATION_KEY with this hash. 14

6. The extensionDigest and extensionDigestSize fields are ignored except for integrity 15
verification purposes. The intention is that extensionDigest can be used to store a 16
cryptographic hash of some proprietary extension data of size extensionDigestSize. The 17
extensionDigest could for example contain the hash of a unique device address that could 18
be used to limit the applicability of the structure to certain identified platforms. The 19
extensionDigestSize MUST NOT be greater than 64 bytes. 20

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 26 of 105
 TCG PUBLISHED

7. The keyData[] field MUST contain a cryptographic key for a cryptographic primitive of 1
strength comparable to at least 3DES CBC-MAC. The format of this key is implementation-2
dependant. IF this key is a symmetric key THEN the confidentiality AND integrity of the 3
structure MUST be protected. IF this key is a public key then only the integrity of this 4
structure must be protected. This can be done either by storing the structure in a shielded 5
location or binding this structure cryptographically to the MTM instance (e.g. by storing a 6
hash of this structure in a shielded location). Any required confidentiality protection must 7
be at least as strong as 3DES-CBC. 8

8. The keyAlgorithm and keyScheme define the exact manner in which to verify 9
integrityCheckData fields of objects (e.g. TPM_VERIFICATION_KEY or TPM_RIM_CERTIFICATE 10
structures) referring to this TPM_VERIFICATION_KEY via their parentId fields. 11

9. All compliant systems MUST be able to verify PKCS#1 v1.5 compliant signatures using SHA1 12
as the hash function with integrityCheckAlgorithm == TPM_ALG_RSA and 13
integrityCheckScheme == TPM_SS_RSASSAPKCS1v15_SHA1. The integrityCheck is computed 14
over the entire TPM_VERIFICATION_KEY structure with the exception of the 15
integrityCheckData field at the end. The TPM_VERIFICATION_KEY structure MUST be 16
considered as a bytestring while computing integrityCheckData, with no special 17
consideration for the contents of any fields. 18

10. IF the integrityCheckData is NOT a PKCS#1 RSA signature with a 2048-bit key, it MUST have a 19
cryptographic strength at least as strong as a 2048-bit RSA signature or a 3DES CBC-MAC in 20
the case that the algorithm is keyed. IF an immutable cryptographic hash is used to bind a 21
TPM_VERIFICATION_KEY to a device (e.g. a hash of the structure is burned into ROM) THEN 22
that hash algorithm must be acceptable as defined in Section 2.4. 23

11. The TPM_VERIFICATION_KEY structures are referenced via TPM_VERIFICATION_KEY_HANDLE 24
objects when they are loaded into a MTM. 25

 26

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 27 of 105
 TCG PUBLISHED

5.4 MTM Permanent Structures 1

 2

Start of informative comment: 3

The MTM_PERMANENT_DATA structure contains the permanent data associated with a MTM that are 4
used by the commands defined in Section 7. This structure contains both immutable and mutable 5
fields. There is no requirement to store this structure exactly as defined, but for convenience this 6
specification places all these fields into a single structure. 7

End of informative comment. 8

Definition 9

// Type for indicating supported methods to load a TPM_VERIFICATION_KEY 10

typedef BYTE TPM_VERIFICATION_KEY_LOAD_METHODS; 11

 12

typedef struct MTM_ PERMANENT_DATA_STRUCT { 13

 TPM_STRUCTURE_TAG tag; 14

 BYTE specMajor; 15

 BYTE specMinor; 16

 TPM_KEY aik; 17

 TPM_PCR_SELECTION verifiedPCRs; 18

 TPM_ACTUAL_COUNT counterBootstrap; 19

 TPM_COUNT_ID counterRimProtectId; 20

 TPM_COUNT_ID counterStorageProtectId; 21

 TPM_VERIFICATION_KEY_LOAD_METHODS loadVerificationKeyMethods; 22

 UINT32 integrityCheckRootSize; 23

 [size_is(integrityCheckRootSize)] BYTE integrityCheckRootData[]; 24

 TPM_SECRET internalVerificationKey[]; 25

 TPM_SECRET verificationAuth; 26

} MTM_PERMANENT_DATA; 27

 28

// The following bits are defined for the field loadVerificationKeyMethods. 29

#define TPM_VERIFICATION_KEY_ROOT_LOAD 0x01 30

#define TPM_VERIFICATION_KEY_INTEGRITY_CHECK_ROOT_DATA_LOAD 0x02 31

#define TPM_VERIFICATION_KEY_OWNER_AUTHORIZED_LOAD 0x04 32

#define TPM_VERIFICATION_KEY_CHAIN_AUTHORIZED_LOAD 0x08 33

// All remaining bits of this field are reserved. 34

Parameters 35

Type Name Description

TPM_STRUCTURE_TAG Tag This field MUST be
MTM_TAG_PERMANENT_DATA.

BYTE specMajor Major version of the MTM spec.
MUST be 0x01 for this spec version.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 28 of 105
 TCG PUBLISHED

BYTE specMinor Minor version of the MTM spec.
MUST be 0x00 for this spec version.

TPM_KEY Aik This MUST contain an identity key,
in the case no endorsement key
was provided.

TPM_PCR_SELECTION verifiedPCRs The field verifiedPCRs describes
which PCRs MUST NOT be extended
using TPM_Extend, but MUST be
extended with
MTM_VerifyRIMCertAndExtend.

In addition, these PCRs MUST NOT
be reset using TPM_PCR_Reset.

TPM_ACTUAL_COUNT counterBootstrap This is the value of an actual
monotonic counter specific to the
MTM. This counter is read and
updated using TPM_GetCapability
and the command
MTM_IncrementBootstrapCounter
defined in this specification.

TPM_COUNT_ID counterRimProtectId This is an id for a counter that is
used to certify the validity of RIM
certificates and verification keys.
The counter referenced via this
field is read by MTM_InstallRIM,
MTM_VerifyRIMCert and
MTM_VerifyRIMCertAndExtend.

BYTE loadVerificationKeyMethods This field contains a bit-map
indicating what methods are
supported by the MTM for loading
TPM_VERIFICATION_KEY structures.

UINT32 integrityCheckRootSize This field MUST contain the length
of the integrityCheckRootData in
bytes.

BYTE[] integrityCheckRootData This field is a proprietary field that
can be used to represent an
immutable cryptographic binding
of a single TPM_VERIFICATION KEY
or a set of
TPM_VERIFICATION_KEYs to this
MRTM instance. This field can also
be undefined.

This field MUST be undefined in a
MLTM.

TPM_SECRET internalVerificationKey This field SHALL contain a secret
unique to the MTM. The secret
SHALL be used as an HMAC key by
MTM_InstallRIM when creating new
internal RIM Certs and used by
MTM_VerifyRIMCertAndExtend
when checking internal RIM Certs.
The HMAC SHALL be based on an
acceptable hash function.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 29 of 105
 TCG PUBLISHED

TPM_SECRET verificationAuth This is used to authorize operations
of the MTM_InstallRIM command
and updates of the counter
counterRIMProtect.

In a MLTM this field MUST be a
mirror of the
TPM_PERMANENT_DATA-
>ownerAuth.

In a MRTM, one of the following
options MUST be used:

- verificationAuth is unchangeable

- verificationAuth is a mirror of the
ownerAuth

- verificationAuth is a delegate of
the ownerAuth

TPM_COUNT_ID counterStorageProtectId This is the id of a counter for
protecting storage by the user of a
MTM. This field MUST be defined.

Descriptions 1

1. There is only a single instance of this structure in a MTM. A member field of this structure 2
instance is referenced as MTM_PERMANENT_DATA->field in this specification. 3

2. The field aik contains an AIK in the case that the TPM_PERMANENT_DATA->endorsementKey is 4
not valid. This key is a pre-enrolled attestation identity key that MUST be provided to the 5
platform during manufacture IF an endorsementKey (TPM_KEY TPM_PERMANENT_DATA-6
>endorsementKey) is NOT provided. This key must be stored in this aik field in this case. In such 7
a case, it is not possible to take ownership, and the MTM MUST be an MRTM with a pre-installed 8
owner and SRK (see [5], Section 6). The corresponding attestation identity certificate MUST also 9
be provided, although this specification does not define HOW it must be provided. The aik key 10
data MUST be protected with the SRK of this MTM instance. 11

3. The field aik MAY NOT be stored in the context of a MTM. Its public part MUST be however 12
readable using the command TPM_GetCapability. The field aik is a part of the 13
MTM_PERMANENT_DATA for convenience of reading and writing the specification. 14

4. The bits of loadVerificationKeyMethods MUST be set as follows. All remaining bits are reserved 15
and MUST NOT be set. Set TPM_VERIFICATION_KEY_ROOT_LOAD if and only if TPM_Init initialises 16
the flag loadVerificationRootKeyEnabled to TRUE at MTM power-up. Set 17
TPM_VERIFICATION_KEY_INTEGRITY_CHECK_ROOT_DATA_LOAD if and only if the MTM’s 18
integrityCheckRootData is defined. Set TPM_VERIFICATION_KEY_OWNER_AUTHORIZED_LOAD if 19
and only if the MTM supports the load of verification keys using owner Auth data. Set 20
TPM_VERIFICATION_KEY_CHAIN_AUTHORIZED_LOAD if and only if the MTM can use an already 21
loaded verification key to authorize the load of further verification keys. 22

5. If the integrityCheckRootData field is defined THEN it MUST store an immutable value that 23
authorizes the loading of one or more TPM_VERIFICATION_KEY structures. If it is undefined for 24
an MRTM then MTM_STANY_FLAGS->loadVerificationRootKeyEnabled MUST be TRUE until 25
MTM_LoadVerificationRootKeyDisable has been called. 26

6. In a MLTM integrityCheckRootData MUST be undefined, e.g. it MUST NOT be used by 27
MTM_LoadVerificationKey to accept any keys. 28

7. The format of integrityCheckRootData is proprietary. For example it could be a SHA1 hash of a 29
known TPM_VERIFICATION_KEY structure. The strength of the cryptographic binding MUST be at 30
least as strong as a 2048 bit RSA signature or a 3DES CBC-MAC in the case that the algorithm is 31
keyed. IF a cryptographic hash is used to bind this structure to a device (e.g. a hash is burned 32
into ROM) THEN that hash algorithm must be acceptable as defined in Section 2.4. 33

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 30 of 105
 TCG PUBLISHED

8. The verificationAuth is NOT REQUIRED to be changeable. This specification does not define any 1
mechanism for changing this secret. This secret is expected to be created and embedded into a 2
MRTM during creation of that MRTM. 3

9. This counter identified by counterRimProtectId is incremented using the TPM_IncrementCounter 4
and the increment is authorized using verificationAuth. 5

10. The verificationAuth field in a MLTM is NOT REQUIRED if the commands using it are not 6
implemented. 7

11. If the TPM_RIM_Certficate or TPM_Verification_Key handling commands are implemented in a 8
MLTM THEN this field must be mirror of TPM_PERMANENT_DATA->ownerAuth, i.e. when 9
verificationAuth is used in this specification then ownerAuth must be used instead. If 10
ownerAuth is unset then this field must also be unset. 11

12. In a MLTM the verificationAuth field MUST NOT be directly changeable, rather all changes to 12
this value should be done by changing TPM_PERMANENT_DATA->ownerAuth instead. 13

13. In a MRTM the verificationAuth field MUST be managed in one of the following ways: 14

i) verificationAuth is created at manufacture of the MRTM and is not changeable (see 10) 15

ii) verificationAuth is not directly changeable, but is a mirror of the ownerAuth (see 12) 16

iii) verificationAuth is a delegate of the ownerAuth, managed through delegation commands 17

If option ii) is used, then TPM_TakeOwnership and TPM_ChangeAuthOwner MUST be supported. 18
If option iii) is used, then all the delegation commands in Section 9.17 MUST be supported. 19

14. The integrity of the MTM_PERMANENT_DATA structure MUST be protected. If the integrity 20
protection of this structure is cryptographic THEN it MUST have a cryptographic strength at least 21
as strong as a 2048-bit RSA signature (with SHA1) or a 3DES CBC-MAC in the case that the 22
algorithm is keyed. IF a cryptographic hash is used to bind this structure to a device (e.g. a hash 23
is burned into ROM) THEN that hash algorithm must be acceptable as defined in Section 2.4. 24

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 31 of 105
 TCG PUBLISHED

5.5 TPM_PERMANENT_DATA in a MTM 1

Start of informative comment: 2

This section describes authorization and authentication related secrets and keys in compliant 3
implementations of an MTM that are used by the commands defined in [3]. The definition of the 4
TPM_KEY, TPM_PERMANENT_DATA, TPM_SECRET and TPM_PUBKEY types used in this specification is 5
taken from the “TPM Structures” specification v1.2 revision 85 [2]. 6

End of informative comment. 7

5.5.1 Secrets and Keys from TPM v1.2 8

This specification does not require that a TPM v1.2 TPM_PERMANENT_DATA is used as defined in [2]. 9
Not all fields are required and in some cases some may even be excluded or undefined. This section 10
defines the fields in TPM_PERMANENT_DATA that this specification requires and how they are 11
expected to be used. If not otherwise stated in this section, a field is required and used as defined 12
in [2]. 13

Note that this specification does NOT REQUIRE a MTM to be able to provide secure non-volatile 14
storage that is secure against replay attacks. Secure NV storage MUST be supported. Security against 15
replay attacks is RECOMMENDED, but may in some implementations be uneconomical. This has the 16
implication that if a default usageAuth or ownerAuth is placed in a TPM_SECRET and the user is 17
expected to change this default THEN an adversary may be able to replay this well-known default 18
passphrase. As such, public defaults for TPM_SECRETs are NOT RECOMMENDED. 19

TPM_SECRET TPM_PERMANENT_DATA->ownerAuth; 20

This is the TPM owner authorization data. This specification does NOT require the ability to use the 21
TPM owner data during runtime and as such this value may be unreadable or not present. This 22
TPM_SECRET field MAY be immutable and hence it MAY NOT be possible to set or change it. 23

IF the commands requiring ownerAuth are not implemented OR these commands have delegation 24
setup at build time THEN this ownerAuth secret does not need to be defined. 25

TPM_SECRET TPM_PERMANENT_DATA->adminAuth; 26

This field is present in revision 62 of the TPM v1.2 specification, but not in the later 85 revision. As 27
such this field can be considered deprecated. 28

TPM_PUBKEY TPM_PERMANENT_DATA->manuMaintPub; 29

This field is required for the maintenance functionality, as specified in TPM specifications [2][3]. 30
These commands are OPTIONAL, and if they are not implemented, then this field is also OPTIONAL. 31
The keys used as manuMaintPub MAY be a key that is also contained in one of the 32
TPM_VERIFICATION_KEY structures that is loaded using MTM_LoadVerificationKey. 33

TPM_KEY TPM_PERMANENT_DATA->endorsementKey; 34

This key is the endorsement key. This key MUST be defined for a MLTM. This key is OPTIONAL for a 35
MRTM. IF this key is NOT defined or present in a compliant implementation THEN there must exist a 36
MTM_PERMANENT_DATA->aik. 37

TPM_KEY TPM_PERMANENT_DATA->srk 38

This is the storage root key. This field MUST be present on a compliant implementation. It is 39
RECOMMENDED that the usageAuth field is a public constant. The TPM_SECRET usageAuth field of 40
the SRK MAY be immutable and hence it MAY NOT be possible to set or change it. IF the 41
TPM_SECRET usageAuth field is a public-well known constant AND it is immutable THEN the 42
usageAuth secret MUST be a 160-bit integer with the value 0. 43

This field MAY be pre-installed on a MRTM and MAY be immutable. The TPM_TakeOwnership 44
command is NOT REQUIRED to be present on a MRTM. 45

Start of informative comment: 46

IF the SRK usageAuth TPM_SECRET is NOT a public value then the secure storage hierarchy cannot 47
generally be used without the knowledge of this secret. This would imply that in a general purpose 48

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 32 of 105
 TCG PUBLISHED

implementation the secret would have to be widely available and evaluating its confidentiality 1
could be difficult. This would also not add any security benefits, as the same security benefits could 2
be achieved by creating a child key under the SRK that has a secret usageAuth, and using that as the 3
parent key for all confidential data. As a possible alternative to a public value, the SRK’s 4
authDataUsage value could be set to TPM_AUTH_NEVER. 5

End of informative comment. 6

TPM_KEY TPM_PERMANENT_DATA->contextKey 7

This key is used by the TPM_SaveContext and TPM_LoadContext commands [3]. These commands are 8
OPTIONAL and hence this field is also OPTIONAL. 9

TPM_KEY TPM_PERMANENT_DATA->delegateKey 10

This key is used to store the delegation tables in insecure storage by a TPM. This field is required 11
ONLY if support for MANAGEMENT of delegation is needed. IF delegation tables have been 12
instantiated during manufacture THEN this field is NOT REQUIRED. In this case however the 13
delegation tables cannot be changed during run-time. 14

TPM_SECRET TPM_PERMANENT_DATA->operatorAuth; 15

This is an authorization secret that is required for the use of the TPM_SetTempDeactivated 16
command [3]. This command MUST NOT be supported in a compliant MRTM implementation. This 17
field is therefore also NOT required. In a MRTM this command MUST NOT be usable if it is not 18
intended that the MTM can be shutdown during runtime. This is the case for example if the MTM is 19
used to enable verification of loaded software. 20

The TPM_SetTempDeactivated command is required in a MLTM and therefore this field is also 21
required in a MLTM. 22

5.5.2 TPM_PERMANENT_DATA in a MTM Summary 23

This section provides a table summarizing the OPTIONAL/REQUIRED requirements for fields in the 24
TPM_PERMANENT_DATA structure from the one defined in [2]. This table is derived from section 25
4.4.1 and the REQUIRED/OPTIONAL requirements in this specification for implementing TPM 26
commands in a MTM. If this table and the REQUIRED/OPTIONAL requirements for a command imply 27
inconsistent REQUIRED/OPTIONAL requirements for a TPM_PERMANENT_DATA field then the 28
requirements implied by the REQUIRED/OPTIONAL classification of commands have precedence. 29

Type Name Description

TPM_STRUCTURE_TAG Tag REQUIRED for MRTM and MLTM.

BYTE revMajor REQUIRED for MRTM and MLTM. (Major version of theTPM Main or Library Spec)

BYTE revMinor REQUIRED for MRTM and MLTM. (Minor version of theTPM Main or Library Spec)

TPM_NONCE tpmProof REQUIRED for MRTM and MLTM.

TPM_SECRET ownerAuth The ownerAuth MAY be immutable in a MRTM.

The ownerAuth MAY be undefined or unreadable in a MRTM.

REQUIRED for a MLTM.

TPM_SECRET operatorAuth OPTIONAL for a MRTM and REQUIRED for MLTM.

TPM_PUBKEY manuMaintPub OPTIONAL for compliant implementations. MAY be the same as a key used in
TPM_VERIFICATION_KEY.

TPM_KEY endorsementKey OPTIONAL for MRTM IF a MTM_PERMANENT_DATA->aik is defined.

REQUIRED for MLTM.

TPM_KEY Srk REQUIRED for MRTMs and MLTMs.

TPM_KEY delegateKey Delegation is OPTIONAL for a MTM. Therefore this field is OPTIONAL.

TPM_KEY contextKey OPTIONAL for MRTMs and MLTMs.

TPM_COUNTER_VALUE auditMonotonicCounter OPTIONAL for MRTMs and MLTMs.

TPM_COUNTER_VALUE monotonicCounter OPTIONAL for MRTMs and MLTMs. The counterBootstrap may be implenented
independent of this field, if necessary.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 33 of 105
 TCG PUBLISHED

Type Name Description

TPM_PCR_ATTRIBUTES pcrAttrib REQUIRED for all MTMs.

This specification requires that pcrAttrib[] array at least has size 16 (has 16 entries).

Byte ordinalAuditStatus OPTIONAL for MRTMs and MLTMs.

TPM_DIRVALUE authDIR OPTIONAL for MRTMs and MLTMs.

BYTE* rngState This field however is REQUIRED to be internally present because a RNG is required to be
present. There is however no requirement for this field to be readable or writeable by any
commands.

TPM_FAMILY_TABLE familyTable OPTIONAL for MRTMs and MLTMs.

TPM_DELEGATE_TABLE delegateTable OPTIONAL for MRTMs and MLTMs.

TPM_NONCE ekReset OPTIONAL for MRTMs and MLTMs.

UINT32 maxNVBufSize OPTIONAL for MRTMs and MLTMs.

UINT32 lastFamilyID OPTIONAL for MRTMs and MLTMs.

UINT32 noOwnerNVWrite OPTIONAL for MRTMs and MLTMs.

TPM_CMK_DELEGATE restrictDelegate OPTIONAL for MRTMs and MLTMs.

TPM_DAA_TPM_SEED tpmDAASeed OPTIONAL for MRTMs and MLTMs.

Table 1. TPM_PERMANENT_DATA changes for a MTM 1

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 34 of 105
 TCG PUBLISHED

5.6 MTM_STANY_FLAGS 1

Start of informative comment: 2

The MTM_STANY_FLAGS structure houses additional flags that are initialized by TPM_Init when the 3
MTM boots. 4

End of informative comment. 5

Definition 6

typedef struct MTM_STANY_FLAGS_STRUCT { 7

 TPM_TAG tag; 8

 BOOL loadVerificationRootKeyEnabled; 9

} MTM_STANY_FLAGS; 10

Parameters 11

Type Name Description

TPM_TAG Tag This MUST be set to
MTM_STANY_FLAGS.

BOOL loadVerificationRootKeyEnabled If set to FALSE then all loaded
TPM_VERIFICATION_KEYs must be
verified against an integrity
check. If set to TRUE then
TPM_VERIFICATION_KEYs can be
loaded without integrity checks
being performed.

 12

Descriptions 13

1. There is only a single instance of this structure in a MTM. A member field of this structure 14
instance is referenced as MTM_STANY_FLAGS->field in this specification. 15

2. The loadVerificationRootKeyEnabled flag is set by TPM_Init. 16

3. The loadVerificationRootKeyEnabled flag can be set after TPM_Init by using 17
MTM_LoadVerificationRootKeyDisable. This flag is used by MTM_LoadVerificationKey and 18
MTM_SetVerifiedPCRs. 19

 20

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 35 of 105
 TCG PUBLISHED

6. Monotonic Counters 1

Start of informative comment: 2

This section describes the use of monotonic counters in the mobile phone platform. 3

End of informative comment. 4

The term monotonic counter or counter in this section refers to monotonic counters as defined in 5
the TCG Main Specifications [2][3] and to the special counterBootstrap counter which is defined in 6
this specification. 7

The following counters MUST be implemented if the MTM_VerifyRIMCert, MTM_InstallRIM, 8
MTM_LoadVerificationKey, MTM_IncrementBootStrapCounter or MTM_VerifyRIMCertAndExtend are 9
implemented: 10

• counterRIMProtect 11

• counterBootstrap 12

The MRTMs MUST therefore support the above counters. The MLTM must support them only if it 13
implements any of the commands that use them. 14

The counterRIMProtect is required for protecting internal RIM certificates against reflash attacks. 15

The MRTM must additionally provide a second counter for reflash protection of the firmware image 16
that is the initial image that is executed during the bootstrap process. This counter is called 17
counterBootstrap. 18

TPM_RIM_CERTIFICATE and TPM_VERIFICATION_KEY structures contain a field counterReference that 19
can be used to bind the RIM Certificate to a counter on the MTM. This counter may either be 20
compared against counterRIMProtect or counterBootstrap. 21

A third counter, counterStorageProtect, is defined to allow use by the user for protecting secure 22
storage. This counter is not used by any of the commands defined in this specification, but is 23
required to be present both on a MRTM and MLTM. 24

In this specification an MTM is not REQUIRED to implement the minimum amount of four monotonic 25
counters defined in [2] and [3] in addition to the counters defined in this section. This is because 26
there is no use case currently seen to require additional counters and this specification intends to 27
optimize for a constrained embedded systems style environment. 28

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 36 of 105
 TCG PUBLISHED

6.1 CounterRIMProtect 1

The counterRIMProtect is a counter that is implemented using regular TCG TPM counters and is used 2
to protect internal RIM certificates against reflash attacks. 3

The counterRIMProtect is not an explicitly reserved counter in the MTM. However, the 4
TPM_COUNT_ID of the counterRIMProtect is stored in MTM_PERMANENT_DATA-5
>counterRimProtectId. In a MRTM this field MUST be defined and it MUST reference a valid and 6
existing counter. This counter SHOULD NOT be releasable via TPM_ReleaseCounter or 7
TPM_ReleaseCounterOwner. 8

The TPM_SECRET used to control access to increase the counterRIMProtect counter MUST be equal 9
to the TPM_SECRET used to authorize MTM_InstallRIM operations. This is currently defined to be 10
verificationAuth. 11

This specification does NOT require that the counter counterRIMProtect be able to run up to 2^32-1 12
(as is required by the [2][3] for counters). Due to feasibility concerns this counter MAY have a 13
maximum value of 4095 (2^12 –1). This implies that the counter SHOULD NOT be incremented more 14
often than once per day and SHOULD NOT be incremented more than once per boot cycle. 15

In case some RIM certificates shall be revoked, the counter counterRIMProtect needs to be increased 16
after the new RIM certificate(s) are installed. This should be done after replacement RIM 17
certificate(s) are installed. All existing RIM certificates that will be required in the future must be 18
re-installed using MTM_InstallRIM. 19

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 37 of 105
 TCG PUBLISHED

6.2 CounterBootstrap 1

This counter is intended for verifying the validity of the first executable image. This counter is 2
synchronized directly to an external RIM Certificate. This way the counter can directly be 3
synchronized to a firmware image. In case a new firmware image is installed, this image would also 4
contain a RIM Certificate with an increased counter value (reflecting an increase in the version 5
number). 6

This counter is incremented via a special new command MTM_IncrementBootstrapCounter and read 7
via TPM_GetCapability. TPM_GetCapability does not require any authorization. 8
MTM_IncrementBootstrapCounter takes as input a RIM Certificate. The TPM_VERIFICATION_KEY used 9
to verify the RIM Certificate in MTM_IncrementBootstrapCounter MUST have the 10
incrementBootstrapCounter bit set to TRUE. IF the RIM Certificate is VALID and the 11
TPM_VERIFICATION_KEY has said bit set THEN the MTM_PERMANENT_DATA->counterBootstrap value 12
has its value incremented to the value in the TPM_RIM_CERTIFICATE->counterReference-13
>counterValue. If TPM_RIM_CERTIFICATE->counterReference->counterValue is less or equal to 14
MTM_PERMANENT_DATA->counterBootstrap OR the RIM certificate is not valid OR the verification 15
key does not have the incrementBootstrapCounter bit set THEN the 16
MTM_IncrementBootstrapCounter does nothing. 17

The MTM_PERMANENT_DATA->counterBootstrap counter MUST be able to increase to a value of at 18
least 31 (2^5 – 1). It is NOT REQUIRED that this field is able to have greater values, although it is 19
RECOMMENDED. Due to the low maximal value of this counter it should ONLY be increased when 20
absolutely necessary to prevent the ability to run or install outdated firmware images. The low 21
maximum value of the counter enables implementation using unary integers. This implies the ability 22
to implement using one-time-programmable bits in hardware. 23

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 38 of 105
 TCG PUBLISHED

6.3 counterStorageProtect 1

This specification defines an additional counter called counterStorageProtect that is REQUIRED for 2
both a MLTM and a MRTM. The usageAuth of this counter MUST be MTM_PERMANENT_DATA-3
>verificationAuth (which would equal ownerAuth for an MLTM). 4

This specification does NOT require that the counter counterStorageProtect be able to run up to 5
2^32-1 (as is required by the [2][3] for counters). Due to feasibility concerns this counter MAY have 6
a maximum value of 4095 (2^12 –1). This implies that the counter SHOULD NOT be incremented 7
more often than once per day and SHOULD NOT be incremented more than once per boot cycle. 8

This counter is not used by any commands defined in this specification. 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 39 of 105
 TCG PUBLISHED

6.4 Strength-of-Function of Monotonic Counters 1

Start of informative comment: 2

The TPM specifications [1][2][3] require that the counters (used via TPM_IncrementCounter, 3
TPM_ReadCounter, TPM_CreateCounter and TPM_ReleaseCounter) be stored in shielded locations 4
and that the only feasible way of manipulating the counter values is via the use of the 5
TPM_IncrementCounter or TPM_ReleaseCounter command. 6

End of informative comment. 7

This specification relaxes this requirement. After careful consideration of the currently available 8
implementation options, this specification currently does NOT REQUIRE compliant implementations 9
to store counter values in locations that are non-volatile and physically shielded (stored in tamper-10
resistant or tamper-evident hardware). The counter values SHOULD be stored in physically shielded 11
locations. The counter-values MUST be stored in non-volatile storage. The counter-values SHOULD 12
be stored in locations that are shielded from software executing outside the context of the MTM. 13

The above requirements also holds for the counterBootstrap and counterStorageProtect counter as 14
defined in this specification. 15

The TCG MPWG intends to tighten this requirement to the level of the TPM specifications 16
immediately when it becomes feasible to implement such counters in mobile phones. 17

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 40 of 105
 TCG PUBLISHED

7. MTM Commands for Local Verification 1

7.1 Overview 2

The commands defined in this specification are: 3

• MTM_InstallRIM 4

• MTM_LoadVerificationKey 5

• MTM_LoadVerificationRootKeyDisable 6

• MTM_VerifyRIMCert 7

• MTM_VerifyRIMCertAndExtend 8

• MTM_IncrementBootstrapCounter 9

• MTM_SetVerifiedPCRSelection 10

All of them are REQUIRED for a MRTM. 11

All of them are OPTIONAL for a MLTM. 12

This specification considers only the case that ALL of these commands are implemented or NONE of 13
them are implemented. This specification has not considered cases where only a subset of the 14
above commands is implemented. 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 41 of 105
 TCG PUBLISHED

7.2 MTM_InstallRIM 1

Start of informative comment: 2

This command generates internal RIM certificates. The assumption is that the common use case 3
would be to generate an internal RIM certificate from an external RIM certificate. The RIM 4
certificates are expected to be verified using MTM_VerifyRIMCert or MTM_VerifyRIMCertAndExtend. 5

When running MTM_InstallRIM, there is no requirement for the MTM to itself verify the integrityData 6
on the input rimCert (i.e. the integrity data accompanying the “external” RIM certificate). If the 7
command parameters verify successfully, the MTM can assume that the relevant RIM has already 8
been validated and authorized by the party that owns the verificationAuth data. 9

The internal RIM certificate can be thought of as a “ticket” i.e. a structure created by the MTM, 10
which the same MTM can identify later and use as evidence that the RIM was authorized. This 11
behaviour is comparable to the command TPM_CMK_CreateTicket used in certified migration [3]. 12

End of informative comment. 13

Incoming Operands and Sizes 14

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RQU_Auth1_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_InstallRIM

4 4 2S 4 UINT32 rimCertSize Size of rimCert data

5 <> 3S <> TPM_RIM_CERTIFICATE rimCertIn Data to be used for internal RIM certificate

6 4 TPM_AUTHHANDLE authHandle The authorization session handle used for authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by MTM to cover inputs

7 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

8 1 4H1 1 BOOL continueAuthSession The continue use flage for the authorization session handle.

9 20 TPM_AUTHDATA authData
The authorization session digest for inputs. HMAC key:
verificationAuth

Outgoing Operands and Sizes 15

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG Tag TPM_TAG_RSP_Auth1_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_InstallRIM

4 4 2S 4 UINT32 rimCertSize Size of rimCert data

5 <> 4S <> TPM_RIM_CERTIFICATE rimCertOut An internal RIM certificate

6 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by MTM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

8 20 TPM_AUTHDATA resAuth
The authorization session digest for the returned parameters. HMAC
key: verificatioAuth

 16

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 42 of 105
 TCG PUBLISHED

Action 1

The MTM SHALL perform the following steps: 2

1. Check that the input parameter rimCertIn is syntactically correct. On error return 3
TPM_BAD_PARAMETER. 4

2. If the command parameters are not authenticated correctly using verificationAuth return 5
TPM_AUTHFAIL 6

3. Set TPM_ACTUAL_COUNT cntProtect to the result of TPM_ReadCounter for the counter id 7
MTM_PERMANENT_DATA->counterRimProtectId. 8

4. If the TPM_ReadCounter fails (e.g. counter does not exist) then return TPM_BAD_COUNTER 9

5. Set rimCertOut to rimCertIn 10

6. If rimCertIn->counterReference->counterSelection != MTM_COUNTER_SELECT_NONE 11

a. Set rimCertOut->counterReference->counterValue to the value cntProtect + 1. 12

b. Set rimCertOut->counterReference->counterSelection = 13
MTM_COUNTER_SELECT_RIMPROTECT 14

Start of informative comment: 15

Note there is no verification of rimCertIn before starting to create rimCertOut. 16

The reason for setting the counterValue in the rimCertOut to cntProtect + 1 is to facilitate the use-17
case of upgrading a complete set of RIM Certificates to a new counter value. For example, suppose 18
the current counter value is 2, but needs to be upgraded to 3. The MTM_InstallRIM command can be 19
used to re-create internal RIM certificates using the new counter value (i.e. 3). Then, only when a 20
full set are created is the counter incremented from 2 to 3 (using either TPM_IncrementCounter or 21
MTM_IncrementBootstrapCounter) thereby invalidating the old set of RIM Certificates. 22

It would be very risky to increment the counter before creating a new set of RIM Certificates. If the 23
creation process aborted for any reason (such as mobile battery running out of power), the device 24
might find it has no valid RIMs on next power-up, and so is unable to boot. 25

End of informative comment. 26

7. Else 27

a. Set rimCertOut->counterReference->counterValue to 0 28

8. Set rimCertOut->parentId = TPM_VERIFICATION_KEY_ID_INTERNAL 29

9. Set rimCertOut->integrityCheckSize to 0 30

10. Generate the integrityCheckData for rimCertOut using the HMAC key 31
MTM_PERMANENT_DATA->internalVerificationKey. 32

11. Set rimCertOut->integrityCheckData to the generated integrityCheckData 33

12. Set rimCertOut->integrityCheckSize to the size of the generated integrityCheckData 34

13. Return TPM_SUCCESS 35

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 43 of 105
 TCG PUBLISHED

7.3 MTM_LoadVerificationKey 1

Start of informative comment: 2

This command is used to load one Verification Key into the MTM. The command is complicated 3
because the load of a TPM_VERIFICATION_KEY structure can be authorized in any of the following 4
four ways: 5

• The key is loaded into the MTM before integrity checks have been enabled 6

• A cryptographic hash (or equivalent) of the key is embedded into the MTM 7

• The key loading is directly authorized by the MTM Owner 8

• The key to be loaded is signed by an authentic, authorized and already loaded 9
TPM_VERIFICATION_KEY 10

End of informative comment. 11

Incoming Operands and Sizes 12

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_LoadVerificationtKey

4 4 2S 4 TPM_VERIFICATION_KEY_HANDLE parentKey Parent key used to verify this key.

5 4 3S 4 UINT32 verificationKeySize Size of the verificationKey parameter in bytes.

6 <> 4S <> TPM_ VERIFICATION_KEY verificationKey The Verification Key to be loaded.

7 4 TPM_AUTHHANDLE authHandle The authorization session handle used for authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by MTM to cover inputs

8 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

9 1 4H1 1 BOOL continueAuthSession The continue use flage for the authorization session handle.

10 20 TPM_AUTHDATA authData
OPTINALLY the authorization session digest for inputs. HMAC
key: ownerAuth

Outgoing Operands and Sizes 13

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_LoadVerificationKey

4 4 3S 4 TPM_VERIFICATION_KEY_HANDLE
verificationKeyHa
ndle

Handle for the key that was loaded.

5 1 4S 1 BYTE loadMethod
If the return code is success, shows which method was used to load
this verification key

5 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by MTM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

6 1 4H1 1 BOOL
continueAuthSes
sion

Continue use flag, TRUE if handle is still active

7 20 TPM_AUTHDATA resAuth
OPTIONALLY The authorization session digest for the returned
parameters. HMAC key: ownerAuth

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 44 of 105
 TCG PUBLISHED

The TPM owner authentication passed to this command is OPTIONAL and it is only possible to 1
provide it if there is a valid owner authentication set. If it is the case that such a secret has been 2
set then it MUST be possible to authorize the loading of TPM_VERIFICATION_KEY objects with that 3
secret. 4

Action 5

The MTM SHALL perform the following steps: 6

1. Check that the input parameter verificationKey is syntactically correct. If verificationKey is 7
not syntactically correct then return TPM_BAD_PARAMETER. 8

2. Check that there is enough space to store verificationKey inside the MTM. If there is not 9
enough space then return TPM_NOSPACE. 10

3. If MTM_STANY_FLAGS -> loadVerificationRootKeyEnabled == TRUE 11

a. Associate a key handle K1 with the incoming key and store the key so that it can be 12
used by the MTM_VerifyRIMCertAndExtend command. MTM_VerifyRIMCertAndExtend 13
MUST be able to find and access this key until it is unloaded by TPM_FlushSpecific. A 14
key MUST NOT be usable by above-mentioned commands before it has been loaded 15
successfully with this command. 16

b. OPTIONAL: If the MTM_PERMANENT_DATA->integrityCheckRootData in undefined, 17
then set it now so that it will verify the integrity of the incoming key 18
(verificationKey) if this key is ever loaded again. 19

Start of informative comment: 20

The use-case here is to allow a verification root key to be loaded once without integrity checks but 21
only when the MTM is first manufactured or first customized for a particular engine. After this first 22
load, the flag loadVerificationRootKeyEnabled can be set to FALSE, and when the same root key is 23
loaded in future boot cycles, it will be verified using the integrityCheckRootData instead. 24

End of informative comment. 25

c. Set verificationKeyHandle to K1 26

d. Set loadMethod to TPM_VERIFICATION_KEY_ROOT_LOAD 27

e. Return TPM_SUCCESS 28

4. Else if MTM_PERMANENT_DATA->integrityCheckRootData is defined AND verifies the integrity 29
of verificationKey 30

a. Associate a key handle K1 with the incoming key and store the key so that it can be 31
used by the MTM_VerifyRIMCertAndExtend command. MTM_VerifyRIMCertAndExtend 32
MUST be able to find and access this key until it is unloaded by TPM_FlushSpecific. A 33
key MUST NOT be usable by above-mentioned commands before it has been loaded 34
successfully with this command. 35

b. Set verificationKeyHandle to K1 36

c. Set loadMethod to TPM_VERIFICATION_KEY_INTEGRITY_CHECK_ROOT_DATA_LOAD 37

d. Return TPM_ SUCCESS 38

5. Else attempt to validate the command and the parameters using TPM Owner Authentication. 39
If the command was owner authenticated 40

a. Associate a key handle K1 with the incoming key and store the key so that it can be 41
used by the MTM_VerifyRIMCertAndExtend command. MTM_VerifyRIMCertAndExtend 42
MUST be able to find and access this key until it is unloaded by TPM_FlushSpecific. A 43
key MUST NOT be usable by above-mentioned commands before it has been loaded 44
successfully with this command. 45

b. Set verificationKeyHandle to K1 46

c. Set loadMethod to TPM_VERIFICATION_KEY_OWNER_AUTHORIZED_LOAD 47

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 45 of 105
 TCG PUBLISHED

d. return TPM_ SUCCESS 1

6. Else if parentKey is NOT defined OR the parentKey is not loaded into the MTM 2

a. Return TPM_KEYNOTFOUND 3

7. Else // A Verifying Key is Found and Defined 4

a. Check that TPM_VERIFICATION_KEY_USAGE_SIGN_RIMAUTH is set in parentKey-5
>usageFlags. If not then return TPM_INVALID_KEYUSAGE. 6

b. Check that IF TPM_VERIFICATION_KEY_USAGE_INCREMENT_BOOTSTRAP is set in 7
verificationKey->usageFlags then TPM_VERIFICATION_KEY_USAGE_INCREMENT_ 8
BOOTSTRAP is also set in parentKey->usageFlags AND if not then return 9
TPM_INVALID_KEYUSAGE. 10

c. Check that parentKey->myId == verificationKey->parentId. If not then return 11
TPM_AUTHFAIL. 12

d. Check that parentKey does verify verificationKey->integrityCheckData. If not then 13
return TPM_AUTHFAIL. 14

e. Check that verificationKey->counterReference->counterSelection <= 15
MTM_COUNTER_SELECT_MAX. If not then return TPM_BAD_COUNTER. 16

f. If verificationKey->counterReference->counterSelection == 17
MTM_COUNTER_SELECT_BOOTSTRAP 18

i. Check that verificationKey->counterReference->counterValue >= 19
MTM_PERMANENT_DATA->counterBootstrap. If not then return 20
TPM_BAD_COUNTER. 21

g. If verificationKey->counterReference->counterSelection == 22
MTM_COUNTER_SELECT_RIMPROTECT 23

i. Set cntVal to the result of TPM_ReadCounter of counter 24
MTM_PERMANENT_DATA->counterRimProtectId. If TPM_ReadCounter did not 25
return TPM_SUCCESS then return TPM_BAD_COUNTER. 26

ii. Check that verificationKey->counterReference->counterValue >= cntVal. If 27
not then return TPM_BAD_COUNTER. 28

h. Associate a key handle K1 with the incoming key and store the key so that it can be 29
used by the MTM_VerifyRIMCertAndExtend command. MTM_VerifyRIMCertAndExtend 30
MUST be able to find and access this key until it is unloaded by TPM_FlushSpecific. A 31
key MUST NOT be usable by above-mentioned commands before it has been loaded 32
successfully with this command. 33

i. Set verificationKeyHandle to K1 34

j. Set loadMethod to TPM_VERIFICATION_KEY_CHAIN_AUTHORIZED_LOAD 35

k. Return TPM_SUCCESS. 36

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 46 of 105
 TCG PUBLISHED

7.4 MTM_LoadVerificationRootKeyDisable 1

Start of informative comment: 2

This command disables the functionality to load Verification Root Keys. After it has been called, a 3
MTM must validate integrity checks, parent key usage flags and so on for all 4
TPM_VERIFICATION_KEYs that are passed to MTM_LoadVerificationKey. 5

In all MLTMs, the flag loadVerificationRootKeyEnabled will always be set to FALSE at power-up, and 6
this command will have no effect. 7

For an MRTM this command is typically only needed at manufacture, or else when the MRTM is first 8
customized for a particular Engine. In both these cases, the safest course is to then set the 9
loadVerificationRootKeyEnabled flag to FALSE during all subsequent power-up cycles, thereby 10
ensuring that verification root keys cannot be loaded by unauthorized parties. 11

 12

*** SECURITY WARNING *** 13

Setting the flag loadVerificationRootKeyEnabled to TRUE on power-up can have a major impact on 14
the boot properties of the Engine in which the MTM is placed. A decision to use that setting, and 15
then use this command to set the flag to FALSE, must be made with great care. 16

An MRTM may be designed so that the loadVerificationRootKeyEnabled flag is set to TRUE on each 17
power-up, with the assumption that the RTV will load the necessary verification root key (or keys) 18
before calling this command. In that case, there is a security risk that some entity other than the 19
RTV is able to access the MTM immediately after power-up, in which case the whole boot process 20
could be subverted. 21

If by design only the RTV code is running at this early stage, and it is trusted, the attack would 22
generally need to involve some form of physical manipulation e.g. hijacking a bus between the RTV 23
and the MTM. Such a physical attack can be resisted in a number of ways: 24

• The RTV and MTM are implemented in a common unit, with no path between them that can 25
be attacked physically 26

• The path between the RTV and MTM is physically protected to make insertion/manipulation 27
of traffic extremely difficult, or else expensive (it results in the phone being destroyed) 28

• The path between the RTV and MTM is cryptographically protected. 29

End of informative comment. 30

Incoming Operands and Sizes 31

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_LoadVerificationRootKeyDisable

Outgoing Operands and Sizes 32

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

 33

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 47 of 105
 TCG PUBLISHED

Action 1

The MTM SHALL perform the following steps: 2

1. Set MTM_STANY_FLAGS -> loadVerificationRootKeyEnabled to FALSE 3

2. OPTIONAL: Set the TPM_VERIFICATION_KEY_ROOT_LOAD flag in MTM_PERMANENT_DATA -> 4
loadVerificationKeyMethods to zero, and ensure that loadVerificationRootKeyEnabled is set 5
to FALSE on all subsequent power-up cycles 6

3. Return TPM_SUCCESS. 7

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 48 of 105
 TCG PUBLISHED

7.5 MTM_VerifyRIMCert 1

Start of informative comment: 2

This command is used to verify an internal or external RIM certificate. Note that this command 3
does NOT check that the TPM_PERMANENT_DATA->pcrAttrib[] array is in a required state as defined 4
by TPM_RIM_CERTIFICATE->state. This function is intended for diagnostic and management 5
purposes, especially for internal RIM certificates. In these cases the caller can perform the check of 6
the required state if desired e.g. by using TPM_PCRRead. 7

End of informative comment. 8

Incoming Operands and Sizes 9

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_VerifyRIMCert

4 4 UINT32 rimCertSize The size of rimCert parameter in bytes.

5 <> TPM_RIM_CERTIFICATE rimCert An internal or external RIM certificate.

6 4 TPM_VERIFICATION_KEY_HANDLE rimKey
Key Handle for the verification key to be used. Use NULL if the
verification key for internal RIM Certs is to be used.

Outgoing Operands and Sizes 10

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action 11

The MTM SHALL perform the following steps: 12

1. Check that the input parameter rimCert is syntactically correct. If not then return 13
TPM_BAD_PARAMETER. 14

2. Check that rimCert->parentId does not equal TPM_VERIFICATION_KEY_ID_NONE. If it does then 15
return TPM_AUTHFAIL. 16

3. If rimCert->parentId = TPM_VERIFICATION_KEY_ID_INTERNAL 17

a. Check the rimCert->integrityCheckData using the HMAC key in MTM_PERMANENT_DATA-18
>internalVerificationKey 19

b. If this check fails return TPM_AUTHFAIL 20

4. Else 21

a. Check that rimKey is defined. If not then return TPM_KEYNOTFOUND. 22

b. Check that TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT is set in rimKey->usageFlags. 23
If not then return TPM_INVALID_KEYUSAGE. 24

c. Check that rimCert->parentId == rimKey->myId. If not then return TPM_AUTHFAIL. 25

d. Check that rimCert->integrityCheckData verifies using rimKey->keyData. If not then 26
return TPM_AUTHFAIL. 27

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 49 of 105
 TCG PUBLISHED

5. Check that rimCert->counterReference->counterSelection <= MTM_COUNTER_SELECT_MAX. If 1
not return TPM_BAD_COUNTER. 2

6. If rimCert->counterReference->counterSelection == MTM_COUNTER_SELECT_BOOTSTRAP 3

a. Check that rimCert->counterReference->counterValue >= MTM_PERMANENT_DATA-4
>counterBootstrap. If not return TPM_BAD_COUNTER. 5

7. If rimCert->counterReference->counterSelection == MTM_COUNTER_SELECT_RIMPROTECT 6

a. Set cntVal to the result of TPM_ReadCounter of counter MTM_PERMANENT_DATA-7
>counterRimProtectId. If TPM_ReadCounter DID NOT return TPM_SUCCESS then return 8
TPM_BAD_COUNTER. 9

b. Check that rimCert->counterReference->counterValue >= cntVal. If not then return 10
TPM_BAD_COUNTER. 11

8. Return TPM_SUCCESS. 12

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 50 of 105
 TCG PUBLISHED

7.6 MTM_VerifyRIMCertAndExtend 1

Start of informative comment: 2

This command is used to verify and to extend the RIM given in the RIM certificate in to a PCR given 3
in the RIM certificate. The command definition is optimized to avoid three separate commands 4
being called in close sequence: loading a RIM_Cert into a MTM; performing an extend while 5
comparing the extended value against the loaded RIM_Cert; flushing the loaded RIM_Cert. 6

End of informative comment. 7

Incoming Operands and Sizes 8

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_VerifyRIMCertAndExtend

4 4 UINT32 rimCertSize The size of the rimCert parameter in bytes.

5 <> TPM_RIM_CERTIFICATE rimCert RIM certificate to be verified.

6 4 TPM_VERIFICATION_KEY_HANDLE rimKey
Key Handle for the verification key to be used. Use NULL if the
verifivation key for internal RIM Certs is to be used.

Outgoing Operands and Sizes 9

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

4 20 TPM_PCRVALUE outDigest THE PCR value after the execution of the command.

Action 10

The MTM SHALL perform the following steps: 11

1. Check that the input parameter rimCert is syntactically correct. If not then return 12
TPM_BAD_PARAMETER. 13

2. Check that rimCert->parentId does not equal TPM_VERIFICATION_KEY_ID_NONE. If not then 14
return TPM_AUTHFAIL 15

3. If rimCert->parentId = TPM_VERIFICATION_KEY_ID_INTERNAL 16

a. Check the rimCert->integrityCheckData using the HMAC key in 17
MTM_PERMANENT_DATA->internalVerificationKey. If not then return TPM_AUTHFAIL. 18

4. Else 19

a. Check that rimKey is defined. If not then return TPM_KEYNOTFOUND. 20

b. Check that TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT is set in rimKey-21
>usageFlags. If not then return TPM_INVALID_KEYUSAGE. 22

c. Check that rimCert->parentId = rimKey->myId. If not then return TPM_AUTHFAIL. 23

d. Check that rimCert->integrityCheckData verifies using rimKey->keyData. If not then 24
return TPM_AUTHFAIL. 25

5. Check that rimCert->counterReference->counterSelection <= MTM_COUNTER_SELECT_MAX. 26
If not then return TPM_BAD_COUNTER. 27

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 51 of 105
 TCG PUBLISHED

6. If rimCert->counterReference->counterSelection == MTM_COUNTER_SELECT_BOOTSTRAP 1

a. Check that rimCert->counterReference->counterValue >= MTM_PERMANENT_DATA-2
>counterBootstrap. If not then return TPM_BAD_COUNTER. 3

7. If rimCert->counterReference->counterSelection == MTM_COUNTER_SELECT_RIMPROTECT 4

a. Set cntVal to the result of TPM_ReadCounter of counter MTM_PERMANENT_DATA-5
>counterRimProtectId. If TPM_ReadCounter did not return TPM_SUCCESS then return 6
TPM_BAD_COUNTER. 7

b. Check that If rimCert->counterReference->counterValue >= cntVal. If not then 8
return TPM_BAD_COUNTER. 9

8. If rimCert->state->pcrSelection has at least one bit set 10

a. Let comp1 be the TPM_PCR_INFO_SHORT corresponding to the current PCR state in 11
TPM_PERMANENT_DATA->pcrAttrib[] for the PCRs selected in rimCert->state-12
>pcrSelection 13

b. Check that comp1 == rimCert->state. If not then return TPM_WRONGPCRVAL. 14

9. Extend PCR rimCert->measurementPcrIndex with the measurement rimCert-15
>measurementValue as defined by the TPM_Extend command [3]. 16

10. Set outDigest to the value of PCR index rimCert->measurementPcrIndex 17

11. Return TPM_ SUCCESS 18

 19

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 52 of 105
 TCG PUBLISHED

7.7 MTM_IncrementBootstrapCounter 1

Start of informative comment: 2

This command is used to increment the MTM_PERMANENT_DATA->counterBootstrap. 3

The counterBootstrap counter is distinguished from other monotonic counters, and can only be 4
incremented using the signed authorization of a privileged RIM_Auth. The RIM_Auth provides this 5
authorization by issuing a RIM_Cert containing the incremented counter value. If the command is 6
called using an irrelevant RIM_Cert (e.g. one containing a different counterSelection from 7
counterBootstrap, or a selection of counterBootstrap but with the existing counter value) then the 8
command terminates with no effect. 9

Once incremented in an MTM, RIM_Certs (and RIM_Auth TPM_Verification_Keys) signed with a lower 10
value of the bootstrap counter will no longer be accepted as valid by the MTM. Thus this counter 11
provides a means of revoking RIM_Certs that might be used when a device boots after a reflash. 12

End of informative comment. 13

Incoming Operands and Sizes 14

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_IncrementBootstrapCounter

4 4 UINT32 rimCertSize The size of the rimCert parameter in bytes.

5 <> TPM_RIM_CERTIFICATE rimCert A RIM certificate.

6 4 TPM_VERIFICATION_KEY_HANDLE rimKey Key Handle for the verification key to be used.

Outgoing Operands and Sizes 15

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 TPM_RESULT returnCode The return code of the operation.

Action 16

The MTM SHALL perform the following steps: 17

1. Check that the input parameter rimCert is syntactically correct. If not then return 18
TPM_BAD_PARAMETER. 19

2. Check that rimKey is a handle for a valid and defined TPM_VERIFICATION_KEY. If not then return 20
TPM_KEYNOTFOUND. 21

3. Check TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT is set in rimKey->usageFlags AND 22
TPM_VERIFICATION_KEY_USAGE_INCREMENT_BOOTSTRAP is set in rimKey->usageFlags. If not 23
then return TPM_INVALID_KEYUSAGE. 24

4. Check that rimKey->myId == rimCert->parentId. If not then return TPM_AUTHFAIL. 25

5. Check that rimCert->integrityCheckData verifies using rimKey->keyData. If not then return 26
TPM_AUTHFAIL. 27

6. Check that rimCert->counterReference->counterSelection <= MTM_COUNTER_SELECT_MAX. If 28
not then return TPM_BAD_COUNTER. 29

7. If rimCert->counterReference->counterSelection == MTM_COUNTER_SELECT_BOOTSTRAP 30

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 53 of 105
 TCG PUBLISHED

a. Check that rimCert->counterReference->counterValue >= MTM_PERMANENT_DATA-1
>counterBootstrap. If not then return TPM_BAD_COUNTER. 2

b. If rimCert->counterReference->counterValue > MTM_PERMANENT_DATA-3
>counterBootstrap 4

i. Set MTM_PERMANENT_DATA->counterBootstrap to rimCert->counterReference-5
>counterValue 6

8. Return TPM_SUCCESS 7

 8

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 54 of 105
 TCG PUBLISHED

7.8 MTM_SetVerifiedPCRSelection 1

Start of informative comment: 2

This command is used to set the MTM_PERMANENT_DATA->verifiedPCRs, either with owner 3
authorization, or in the case that the MTM_STANY_FLAGS.loadVerificationRootKeyEnabled is TRUE. 4

*** SECURITY WARNING *** 5

This command has a major impact on the boot properties of the Engine in which the MTM is placed, 6
and it must be used with great care. 7

For an MLTM, the command is typically called after a local user has first taken ownership; it cannot 8
be called again without the owner’s authorization. For an MRTM the command is typically called at 9
manufacture, or else when the MRTM is first customized for a particular Engine. In both cases, the 10
safest course is to then set the loadVerificationRootKeyEnabled flag permanently to FALSE, ensuring 11
that the command cannot be called again by unauthorized parties. 12

However, an MRTM may be designed so that the loadVerificationRootKeyEnabled flag is set to TRUE 13
on power-up, with the assumption that the RTV sets the selection of verifiedPCRs before then 14
calling the command MTM_LoadVerificationRootKeyDisable. The informative comment for 15
MTM_LoadVerificationRootKeyDisable describes some important security concerns that can arise 16
with this model, and the additional steps that must be taken to resolve them. 17

End of informative comment. 18

Incoming Operands and Sizes 19

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RQU_COMMAND

2 4 UINT32 paramSize Total number of input bytes including paramSize and tag

3 4 1S 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_SetVerifiedPCRSelection

4 <> 2S <> TPM_PCR_SELECTION VerifiedSelection
Set of PCRs that can only be extended with
MTM_VerifyRIMCertAndExtend

5 4 TPM_AUTHHANDLE authHandle The authorization session handle used for authorization

 2H1 20 TPM_NONCE authLastNonceEven Even nonce previously generated by MTM to cover inputs

6 20 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

7 1 4H1 1 BOOL continueAuthSession The continue use flage for the authorization session handle.

8 20 TPM_AUTHDATA authData The authorization session digest for inputs. HMAC key: ownerAuth

Outgoing Operands and Sizes 20

PARAM HMAC

SZ # SZ
Type Name Description

1 2 TPM_TAG tag TPM_TAG_RSP_COMMAND

2 4 UINT32 paramSize Total number of output bytes including paramSize and tag

3 4 1S 4 TPM_RESULT returnCode The return code of the operation.

 2S 4 TPM_COMMAND_CODE ordinal Command ordinal: MTM_ORD_SetVerifiedPCRSelection

4 20 2H1 20 TPM_NONCE nonceEven Even nonce newly generated by MTM to cover outputs

 3H1 20 TPM_NONCE nonceOdd Nonce generated by system associated with authHandle

5 1 4H1 1 BOOL continueAuthSession Continue use flag, TRUE if handle is still active

6 20 TPM_AUTHDATA resAuth
OPTIONALLY The authorization session digest for the returned
parameters. HMAC key: ownerAuth

 21

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 55 of 105
 TCG PUBLISHED

The TPM owner authentication passed to this command is OPTIONAL and it is only possible to 1
provide it if there is a valid owner authentication set. If it is the case that such a secret has been 2
set then it MUST be possible to authorize the setting of MTM_PERMANENT_DATA->verifiedPCRs with 3
that secret. 4

Action 5

The MTM SHALL perform the following steps: 6

1. Validate the command parameters using TPM Owner secret. If there is no valid ownerAuth then 7
assume this authorization has failed. 8

2. If MTM_STANY_FLAGS->loadVerificationRootKeyEnabled == FALSE AND the owner authorization 9
has failed 10

a. RETURN TPM_FAIL 11

3. Else if any of the PCRs in VerifiedSelection have a localityModifier set 12

a. Return TPM_FAIL 13

4. Else 14

a. Set MTM_PERMANENT_DATA->verifiedPCRs to VerifiedSelection 15

b. Return TPM_SUCCESS 16

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 56 of 105
 TCG PUBLISHED

7.9 MTM-specific Ordinals 1

Start of informative comment 2

The command ordinals provide the index value for each command. The following list contains the 3
index value and other information relative to the ordinal. 4

TPM commands are divided into three classes: Protected/Unprotected, Non-Connection/Connection 5
related, and TPM/Vendor. 6

This section contains only the MTM specific ordinals. 7

End of informative comment 8

Ordinals are 32 bit values. The upper byte contains values that serve as flag indicators, the next 9
byte contains values indicating what committee designated the ordinal, and the final two bytes 10
contain the Command Ordinal Index. 11

 3 2 1 12
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 13
 +-+ 14
 |P|C|V| Reserved| Purview | Command Ordinal Index | 15
 +-+ 16
Where: 17

P is Protected/Unprotected command. When 0 the command is a Protected command, when 1 the 18
command is an Unprotected command. 19

C is Non-Connection/Connection related command. When 0 this command passes through to either 20
the protected (TPM) or unprotected (TSS) components. 21

V is TPM/Vendor command. When 0 the command is TPM defined, when 1 the command is vendor 22
defined. 23

All reserved area bits are set to 0. 24

The following masks are created to allow for the quick definition of the commands 25

Value Event Name Comments

0x00000000 TPM_PROTECTED_COMMAND TPM protected command, specified in main specification

0x80000000 TPM_UNPROTECTED_COMMAND TSS command, specified in the TSS specification

0x40000000 TPM_CONNECTION_COMMAND TSC command, protected connection commands are specified in the main
specification. Unprotected connection commands are specified in the TSS.

0x20000000 TPM_VENDOR_COMMAND Command that is vendor specific for a given TPM or TSS.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 57 of 105
 TCG PUBLISHED

 If a command is tagged from the audit column the default state is that use of that command SHALL 1
be audited. Otherwise, the default state is that use of that command SHALL NOT be audited. 2

Column Column
Values

Comments and valid column entries

AUTH2 x Does the command support two authorization entities, normally two keys

AUTH1 x Does the commands support an single authorization session

RQU x Does the command execute without any authorization

Optional MRTM x Is the command optional for MRTM

Optional MLTM x Is the command optional for MLTM

No Owner x Is the command executable when no owner is present

PCR Use Enforced x Does the command enforce PCR restrictions when executed

Physical presence P, P*, O, T,
T*, A*

P = The command requires physical presence

P* = The command may require physical presence

O = The command requires physical presence or operator authorization

T = The command requires physical presence or TPM owner authorization

T* = The NV space may be configured to require physical presence in addition to TPM
owner authorization

A* = The NV space may be configured to require physical presence in addition to
other entity authorization

Audit X, N Is the default for auditing enabled

N = Never the ordinal is never audited

X = Auditing is enabled by default

Duration S, M, L What is the expected duration of the command,

S = Short implies no asymmetric cryptography

M = Medium implies an asymmetric operation

L = Long implies asymmetric key generation

 3

The following table is normative, and is the overriding authority in case of discrepancies in other 4
parts of this specification. 5

T
P
M
_
P
R
O
T
E
C
T
E
D
_

O
R
D
IN
A
L
 +

C
o
m
p
le
te
 o
rd
in
a
l

A
U
T
H
2

A
U
T
H
1

R
Q
U

O
p
ti
o
n
a
l
M
R
T
M

O
p
ti
o
n
a
l
M
L
T
M

 N
o
 O
w
n
e
r

P
h
y
s
ic
a
l
P
re
s
e
n
c
e

P
C
R
 U
s
e
 e
n
fo
rc
e
d

A
u
d
it

D
u
ra
ti
o
n

MTM_ORD_InstallRIM 66 0x00000042 X X X S or M

MTM_ORD_LoadVerificationKey 67 0x00000043 X X X X S or M

MTM_ORD_LoadVerificationRootKeyDis
able

68 0x00000044 X X X S

MTM_ORD_VerifyRIMCert 69 0x00000045 X X X S or M

MTM_ORD_VerifyRIMCertAndExtend 72 0x00000048 X X X S or M

MTM_ORD_IncrementBootstrapCounter 73 0x00000049 X X X S or M

MTM_ORD_SetVerifiedPCRSelection 74 0x0000004A X X X X S

RESERVED 75 0x0000004B

RESERVED 76 0x0000004C

RESERVED 77 0x0000004D

RESERVED 78 0x0000004E

RESERVED 79 0x0000004F

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 58 of 105
 TCG PUBLISHED

8. Differences to a TPM V1.2 1

Start of informative comment: 2

This section lists differences or extensions to commands or capabilities defined in [3] that are 3
required to be implemented by a MTM. 4

End of informative comment. 5

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 59 of 105
 TCG PUBLISHED

8.1 TPM_GetCapability 1

This specification requires an extension to TPM_GetCapability for MTMs. The following additional 2
TPM_CAPABILITY_AREA is defined: 3

 4

Value Capability Name Sub cap Comments

0x0000000A TPM_CAP_MTM_PERMANENT
_DATA

dataSelect parameter Returns public-readable portions of the MTM_PERMANENT_DATA.
Legitimate values of the dataSelect parameter are defined below.

 5

Action 6

If the capArea is TPM_CAP_MTM_PERMANENT_DATA, the MTM SHALL perform the following steps: 7

1. Check dataSelect to be a valid parameter (see Table below). If not then return 8
TPM_BAD_PARAMETER. 9

2. If dataSelect is 0x0000 0001 AND MTM_PERMANENT_DATA->aik is undefined 10

a. Return TPM_FAIL 11

3. Set resp to the appropriate value 12

4. Set respSize to the size of resp 13

5. Return TPM_SUCCESS 14

Otherwise the MTM SHALL execute TPM_GetCapability, as defined in [3]. In the case that a 15
capability area or subCap value is requested which is not supported by the MTM, the MTM SHALL 16
return the error code TPM_BAD_PARAMETER. 17

Defined values for dataSelect 18

Value of dataSelect parameter Data returned in resp parameter

0x0000 0001 MTM_PERMANENT_DATA->aik (public part)

0x0000 0002 MTM_PERMANENT_DATA->verifiedPCRs

0x0000 0003 MTM_PERMANENT_DATA->counterBootstrap

0x0000 0004 MTM_PERMANENT_DATA->counterRimProtectId

0x0000 0005 MTM_PERMANENT_DATA->counterStorageProtectId

0x0000 0006 MTM_PERMANENT_DATA->specMajor

0x0000 0007 MTM_PERMANENT_DATA->specMinor

0x0000 0008 MTM_PERMANENT_DATA->loadVerificationKeyMethods

 19

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 60 of 105
 TCG PUBLISHED

8.2 TPM_Extend 1

This specification requires a change to TPM_Extend for MTMs implementing 2
MTM_VerifyRIMCertAndExtend. The following pre-amble action MUST be executed before each 3
TPM_Extend. 4

ACTION 5

1. If the pcrNum parameter is set in MTM_PERMANENT_DATA->verifiedPCRs THEN 6

a. Return TPM_BAD_LOCALITY 7

2. Else 8

a. Execute TPM_Extend as defined in [3]. 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 61 of 105
 TCG PUBLISHED

8.3 TPM_Init 1

This specification requires that TPM_Init MUST also initialize the structure MTM_STANY_FLAGS. The 2
initialization of this structure is according to policy, but the policy MUST be reflected in the flag 3
TPM_VERIFICATION_KEY_ROOT_LOAD of MTM_PERMANENT_DATA->loadVerificationKeyMethods. 4

If the MTM is a MLTM with ownerAuth set, then MTM_STANY_FLAGS-5
>loadVerificationRootKeyEnabled MUST be set to FALSE by TPM_Init. 6

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 62 of 105
 TCG PUBLISHED

8.4 TPM_PCR_Reset 1

This specification requires a change to TPM_PCR_Reset. The following pre-amble action MUST be 2
executed before each TPM_PCR_Reset. 3

ACTION 4

1. If the pcrNum parameter is set in MTM_PERMANENT_DATA->verifiedPCRs THEN 5

a. Return TPM_FAIL 6

2. Else 7

a. Execute TPM_PCR_Reset as defined in [3]. 8

 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 63 of 105
 TCG PUBLISHED

8.5 TPM_ResetLockValue 1

The TPM_ResetLockValue command is OPTIONAL for the MRTM because this specification does not 2
assume that owner authorization data for the MRTM is present on the platform. Nevertheless, there 3
MUST be a mechanism to mitigate dictionary attacks AND a mechanism to reset this mitigation 4
mechanism. TPM_ResetLockValue is an acceptable mechanism for a MRTM, but implementations of a 5
MRTM compliant with this specification may also use vendor specific mechanisms instead of 6
TPM_ResetLockValue. These proprietary mechanisms can include time outs, reboots, and periodical 7
resets of the mitigation mechanism. 8

TPM_ResetLockValue is REQUIRED for a MLTM. 9

 10

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 64 of 105
 TCG PUBLISHED

8.6 Physical Presence 1

 2

The MRTM is designed for a scenario where the owner (as defined by TPM_TakeOwnership) is a 3
remote party. In this case physical presence authorization is contrary to what is desired and 4
therefore physical presence authorization MUST NOT be supported in the MRTM. 5

Physical presence authorization MUST be supported in a MLTM. An assertion of physical presence for 6
a MLTM MAY be provided via trusted software that has been verified against a configuration secured 7
using a MRTM. 8

 9

 10

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 65 of 105
 TCG PUBLISHED

8.7 Localities 1

Proofs of locality as specified in the TPM Main Specification [1] MAY be supported in MTMs. 2
Nevertheless, localities MUST NOT be used whenever verified PCRs are involved. A PCR may be a 3
verified PCR (have its index bit set in the MTM_PERMANENT_DATA->verifiedPCRs) OR that PCR may 4
have a localityModifier set. A PCR can of course also have no locality bits set and not be a verified 5
PCR. However, a PCR MUST NOT be a verified PCR AND have a localityModifier set. Especially, the 6
TPM_PCR_Reset command MUST NOT work for verified PCRs. 7

Verified Extends allow one to conclusively check from a verified PCR whether an event has been 8
recorded into the same or another verified PCR or not. Allowing TPM_PCR_Reset for verified PCRs 9
would prohibit this. 10

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 66 of 105
 TCG PUBLISHED

8.8 Random Number Generation Requirements 1

 2

Start of informative comment: 3

The TPM Design Principles specification [1] requires that the random number generation also save 4
state in a non-volatile shielded location over a power-down. 5

The criteria for the PRNG state register in [1] are as follows: 6

A) The state register MUST be non-volatile 7

B) The update function to the state register is a TPM protected-capability 8

C) The primary input to the update function SHOULD be the entropy collector. 9

End of informative comment. 10

This specification aims to avoid requiring non-volatile shielded storage that can be written to at 11
run-time and therefore the requirement “A” above is not applicable. Implementations compliant 12
with this specification may use the following three criteria instead of the above three for the PRNG 13
state register. 14

a. The state register MUST be non-volatile OR the state register MUST be initialized at 15
power-on by the entropy collector to contain at least 128 random bits. 16

b. The update function to the state register is a TPM protected-capability. 17

c. The primary input to the update function SHOULD be the entropy collector. 18

 19

 20

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 67 of 105
 TCG PUBLISHED

8.9 MakeIdentity and ActivateIdentity 1

A MRTM Implementation MUST support using the MTM_PERMANENT_DATA->verificationAuth as the 2
authorization secret in place of the owner secret. Concretely, this implies that the HMAC secret 3
used to create the input “ownerAuth” to both MakeIdentity and ActivateIdentity can be the 4
verificationAuth secret. The HMAC secret used to create the authentication of the outputs 5
TPM_MakeIdentity and TPM_ActivateIdentity commands (the resAuth field) MUST be the same that 6
was used to authorize the inputs. 7

A MRTM is NOT REQUIRED to accept the owner secret for authorizing TPM_MakeIdentity nor 8
TPM_ActivateIdentity commands in the case that it accepts verificationAuth. For example the 9
owner secret might be undefined in the MRTM. 10

In the case where a MTM could accept both secrets, then the following rules SHALL be used to 11
distinguish which secret is to be used to verify the authorization on the command. 12

• If TPM_ActivateIdentity is called using an OIAP session, then the ownerAuth secret MUST be 13
used. 14

• If TPM_MakeIdentity or TPM_ActivateIdentity is called using an OSAP session, then the 15
secret is defined via the entityType input to the TPM_OSAP command. The following entity-16
type field shall be used to define use of the verificationAuth secret: 17

 18

Value Entity Name Key Handle Comments

0x000D TPM_ET_VERIFICATION_AUTH The entity is the MTM_PERMANENT_DATA->verificationAuth

 19

 20

 21

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 68 of 105
 TCG PUBLISHED

8.10 TPM_FlushSpecific 1

The TPM_FlushSpecific command MUST be able to flush TPM_VERIFICATION_KEY structures from a 2
MRTM that have been loaded with MTM_LoadVerificationKey. The TPM_RESOURCE_TYPE value to use 3
when unloading TPM_VERIFICATION_KEY structures from a MTM is TPM_RT_KEY. 4

A MTM must be able to distinguish TPM_VERIFICATION_KEY_HANDLE-type handles from 5
TPM_KEY_HANDLE-type handles internally. This implies that an implementation of 6
TPM_FlushSpecific (when given a TPM_RT_KEY resourceType and a TPM_VERIFICATION_KEY_HANDLE 7
OR a TPM_KEY_HANDLE) MUST be able to recognize which type of key to flush based on just the 8
handle value. 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 69 of 105
 TCG PUBLISHED

8.11 Timing Ticks and Transport Sessions 1

 2

In the case where an MTM does not support Timing Ticks commands (TPM_GetTicks, 3
TPM_TickStampBlob) then the timing tick values that are used in Transport Session commands 4
(TPM_EstablishTransport, TPM_ExecuteTransport, and – optionally – TPM_ReleaseTransportSigned) 5
SHALL all be set to zero. 6

More formally, wherever a command attempts to use TPM_STANY_DATA -> currentTicks, it SHALL 7
instead use a TPM_CURRENT_TICKS structure in which all sub-components apart from the tag 8
(respectively the number of ticks, the tick rate and the tick nonce) are set to the value 0. 9

 10

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 70 of 105
 TCG PUBLISHED

8.12 Ownership in a MLTM 1

Start of informative comment: 2

This specification considers the case of implementing the commands in Section 7 in a MLTM with a 3
local owner. This section describes practices for taking and clearing ownership in this case. The 4
intention is that IF ownership is set in this case then the ownerAuth must be usable for controlling 5
which TPM_VERIFICATION_KEY are loadable, which internal RIM Certificates are generated and 6
which PCRs require MTM_VerifyRIMCertAndExtend for extends. 7

The following practices are recommended in this scenario: 8

• IF TPM_TakeOwnership is called THEN the TPM counterRIMProtect (monotonic counter 9
identified by MTM_PERMANENT_DATA->counterRimProtectid) SHOULD be incremented to 10
invalidate any previously installed internal RIM certificates. 11

• IF TPM_TakeOwnership is called THEN MTM_LoadVerificatioRootKeyDisable SHOULD be 12
called. 13

• IF TPM_OwnerClear is called or any TPM command that executes the steps in 14
TPM_OwnerClear is called THEN the TPM counterRIMProtect (monotonic counter identified 15
by MTM_PERMANENT_DATA->counterRimProtectid) SHOULD be incremented to invalidate 16
any previously installed internal RIM certificates. 17

• IF the TPM_PERMANENT_DATA->ownerAuth is not valid (defined) and local verification is 18
required THEN there should be external RIM certificates that allow for a “pristine boot” into 19
a state where ownership can be taken. 20

End of informative comment. 21

 22

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 71 of 105
 TCG PUBLISHED

9. Subset of TPM V1.2 Commands Required for a MTM 1

Start of informative comment: 2

This section defines the requirements for implementing commands from a TPM v1.2. Commands are 3
either classified as REQUIRED (the MTM MUST implement), OPTIONAL (the MTM MAY implement) or 4
EXCLUDED (the MTM MUST NOT implement). 5

This specification defines two types of trusted modules. They are respectively referred to as a 6
MRTM and a MLTM. 7
The first type is intended to be used in a setting with a remote owner and mandatory security on 8
the host platform. The second type is intended for use in a setting with a local owner and either 9
discretionary security or mandatory security under control of the local owner on the host platform. 10

For this first type, the MTM must have an owner installed, and cannot be de-activated, disabled, or 11
have its owner removed. 12
 13
The second type is more like a PC TPM: it is intended to be used in a setting that aims to provide 14
opt-in security functionality for the Device. For this second type, the MTM may have an owner or 15
may not. Like a PC TPM, it can be activated, de-activated, enabled or disabled and have an owner 16
installed, removed etc. 17
 18
The assignment of Required and Optional commands to each type of MTM has been based on the 19
above intended usage. The assignment assumes the MRTM is a valid component for building 20
mandatory security, and the MLTM is a valid component for building discretionary or mandatory 21
security under control of a local owner. This assignment may be revised in future versions of the 22
specification: for instance to make finer distinctions between different classes of MTMs. 23

End of informative comment. 24

 25

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 72 of 105
 TCG PUBLISHED

9.1 Admin Startup and State 1

The Admin Startup and State command group of groups defines the initialization and startup of the 2
MTM. Note, that a deactivated start must not be allowed for the MRTM since the MRTM is a 3
mandatory security function. 4

 5

Command – TPM Main Spec MRTM MLTM

Remark

TPM_Init Required Required This is not an actual command. This
is just a name for the action
performed at power-on

TPM_Startup Required Required ‘Deactivated’ start must not be
allowed for a MRTM . ‘Save’ start
may be optionally supported.

One possible implementation would
be to call TPM_Startup at power-on.

TPM_SaveState Optional Optional Tyoical mobile phones don’t have
state-saving modes like “suspend”
or “hibernate”. But some have
“sleep modes” to save power and
these might pose a risk to volatile
data in the MTM. If the back-up of
such volatile data is expected to be
required, but not expected to occur
automatically, then TPM_SaveState
should be supported and used.

 6

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 73 of 105
 TCG PUBLISHED

9.2 Admin Testing 1

The Admin Testing command group is required for all MTMs. 2

As stated in the TPM Main Specification Part 1 [1], a TPM MUST perform a limited self-test after 3
initialization, i.e., it checks a selected subset of TPM commands (TPM_SHA1xxx, TPM_Extend, 4
TPM_Startup, TPM_ContinueSelfTest, TPM_SelfTestFull and TPM_GetCapability). Note, that the Main 5
Specification Part 1 states, that a platform specific specification MUST define the maximum startup 6
self-test time. 7

 8

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_SelfTestFull Required Required After initialisation, the TPM performs
a limited self-test, anyhow. This
command triggers a full self test

TPM_ContinueSelfTest Required Required This command triggers the
completion of the self test, which is
started automatically at power-on.
The command needs to be
performed before most other TPM
commands can be executed.

TPM_GetTestResult Required Required The TPM_ContinueSelfTest does
not return the result of the self-test,
so in order to get the result, this
command must be used.

 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 74 of 105
 TCG PUBLISHED

9.3 Admin Opt-in 1

The Admin Opt-in command group manages the different states of a MTM. It is assumed that a MRTM 2
will always be in the enabled and activated state and that it will not support all the different states 3
given in TPM main spec v1.2. After manufacturing it will be in state S5 (Enabled - Active - 4
Unowned). By using TPM_TakeOwnership the MTM will become owned by the Device Manufacturer. 5
It will then be in state S1 (Enabled - Active - Owned). No further state transitions will then be 6
possible. Therefore, these commands must not be offered by the MRTM. 7

The MLTM must offer this set of commands. 8

 9

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_SetOwnerInstall Excluded Required Is only applicable if the TPM is
unowned.

TPM_OwnerSetDisable Excluded Required This command requires owner
authorization and can be used to
transition in either enabled or
disabled states.

TPM_PhysicalEnable Excluded, since Physical
Presence must not be
implemented

Required

TPM_PhysicalDisable Excluded Required

TPM_PhysicalSetDeactivated Excluded, since Physical
Presence must not be
implemented

Required

TPM_SetTempDeactivated Excluded Required

TPM_SetOperatorAuth Excluded Optional

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 75 of 105
 TCG PUBLISHED

9.4 Admin Ownership 1

The Admin Ownership command group manages the ownership of a TPM. It is assumed that the 2
owner of the Device Manufacturer’s MTM is never changed during its lifetime. This is not only a 3
reasonable assumption but it is also necessary for security reasons. Hence, the Disable-commands 4
are OPTIONAL or excluded for the MTM of the Device Manufacturer. 5

For MLTMs the owner must be changeable. Hence, the administrative commands for ownership are 6
required. 7

 8

Command – TPM Main Spec MRTM

MLTM Remark

TPM_TakeOwnership Optional Required Command might not be necessary if
an AIK and SRK are pre-installed.

TPM_OwnerClear Excluded Required See text on “Admin Opt-in” section
9.3: no state transitions are allowed
after manufacture.

TPM_ForceClear Excluded Required

TPM_DisableOwnerClear Optional Required

TPM_DisableForceClear Excluded Required

TSC_PhysicalPresence Excluded, since Physical
Presence must not be
implemented

Optional

TSC_ResetEstablishmentBit Optional Optional

 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 76 of 105
 TCG PUBLISHED

9.5 The GetCapability Commands 1

The GetCapability command group manages the capabilities of a TPM. Every MTM must be able to 2
present details about its capabilities and may optionally offer the feature of setting them. 3

 4

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_GetCapability Required Required E.g. for locally verified boot, it
makes sense to check whether the
TPM has enough non-volatile
memory.

Note the additional capability and
dataSelect parameters defined in
Section 8.1

TPM_SetCapability Optional Optional

 5

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 77 of 105
 TCG PUBLISHED

9.6 Auditing 1

Audit, in general, is optional for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_GetAuditDigest Optional Optional

TPM_GetAuditDigestSigned Optional Optional

TPM_SetOrdinalAuditStatus Optional Optional

 4

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 78 of 105
 TCG PUBLISHED

9.7 Administrative Functions - Management 1

The administrative management functions are optional for all MTMs. The TPM_ResetLockValue 2
command MAY be replaced with a proprietary mechanism in a MRTM. 3

 4

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_FieldUpgrade Optional Optional Note, that without knowledge of the
owner authorization data no field
upgrade of the MTM is possible.

TPM_SetRedirection Optional Optional

TPM_ResetLockValue Optional Required See section 8.5

TPM_GetCapabilityOwner Excluded Excluded

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 79 of 105
 TCG PUBLISHED

9.8 Storage functions 1

The Storage functions of a TPM are part of the core functionality. Though not necessarily needed for 2
locally verified boot, they are considered to be required for all MTMs. 3

 4

Command – TPM Main Spec MRTM

MLTM Remark

TPM_Seal Required Required Necessary for the secure storage
use case

TPM_Unseal Required Required Necessary for the secure storage
use case

TPM_UnBind Required Required Necessary for the secure storage
use case

TPM_CreateWrapKey Required Required Necessary for the secure storage
use case – for storage key
generation

TPM_LoadKey2 Required Required Necessary for the secure storage
use case – for storage key
management

TPM_GetPubKey Required Required Necessary for the secure storage
use case – especially for binding
data.

TPM_Sealx Required Required Necessary for the secure storage
use case

 5

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 80 of 105
 TCG PUBLISHED

9.9 Migration 1

Migration, in general, is optional for MRTMs and required for MLTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM Remark

TPM_CreateMigrationBlob Optional Required

TPM_ConvertMigrationBlob Optional Required

TPM_AuthorizeMigrationKey Optional Required

TPM_MigrateKey Optional Required

TPM_CMK_SetRestrictions Optional Optional

TPM_CMK_ApproveMA Optional Optional

TPM_CMK_CreateKey Optional Optional

TPM_CMK_CreateTicket Optional Optional

TPM_CMK_CreateBlob Optional Optional

TPM_CMK_ConvertMigration Optional Optional

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 81 of 105
 TCG PUBLISHED

9.10 Maintenance 1

Maintenance functions are optional (also optional in TPM Main Spec 1.2). 2

 3

Command – TPM Main Spec MRTM

MLTM Remark

TPM_CreateMaintenanceArchive Optional Optional

TPM_LoadMaintenanceArchive Optional Optional

TPM_KillMaintenanceFeature Optional Optional

TPM_LoadManuMaintPub Optional Optional

TPM_ReadManuMaintPub Optional Optional

 4

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 82 of 105
 TCG PUBLISHED

9.11 Cryptographic Functions 1

The cryptographic functions of a TPM offer a range of cryptographic functionality. The SHA-1 2
algorithm has to be present within every MTM anyhow since every MTM must be able to compute 3
HMAC for authentication purposes. The exposure of this interface is optional as key certification is, 4
while signing and the provision of random numbers is required for all MTMs. 5

 6

Command – TPM Main Spec MRTM

MLTM Remark

TPM_SHA1Start Optional Optional The SHA1 when used without a key
is not a security sensitive operation.

TPM_SHA1Update Optional Optional

TPM_SHA1Complete Optional Optional

TPM_SHA1CompleteExtend Optional Optional

TPM_Sign Required Required The user may want to strongly
protect his signing keys.

TPM_GetRandom Required Required

TPM_StirRandom Required Required

TPM_CertifyKey Required Required

TPM_CertifyKey2 Optional Optional

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 83 of 105
 TCG PUBLISHED

9.12 Endorsement Key Handling 1

The Endorsement Key Handling command group manages the endorsement key. Since the 2
endorsement key might be generated outside the MTM, the creation command is optional. The same 3
holds for the revocation commands. 4

 5

Command – TPM Main Spec MRTM

MLTM Remark

TPM_CreateEndorsementKeyPair Optional Required

TPM_CreateRevocableEK Optional Optional

TPM_RevokeTrust Optional Optional

TPM_ReadPubek If the MRTM has an EK
THEN this command MUST
be available on the host
platform, however it MAY
NOT be implemented by a
MTM. It could for example
just be a simple stub function
in a software library.

If a MRTM does NOT have
an EK THEN this function is
unnecessary and hence
Optional.

Required EK may not be available, hence this
command might not be applicable at
all.

TPM_OwnerReadInternalPub Optional Required EK may not be available and the
SRK can be symmetric, hence this
command might not be applicable at
all.

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 84 of 105
 TCG PUBLISHED

9.13 Identity Creation and Activation 1

These two commands are Optional for the MRTM. The MRTM may accept both the 2
MTM_PERMANENT_DATA->verificationAuth as an authorization secret in addition to the owner secret 3
for authorizing TPM_MakeIdentity and TPM_ActivateIdentity commands. 4

If neither field is defined, desirable or available for identity enrollment in a MRTM then the MTM 5
must support delegation. The minimum support is a static delegation table built into the MTM at 6
manufacture that allows the use of these commands. In this case TPM_DSAP needs to be supported 7
during operation of these commands. 8

Note that the TPM_ReadPubEK is OPTIONAL for the MRTM. This does not directly impact these 9
commands, but if a MRTM must be able to interoperate with a Privacy CA for identity enrollment, 10
then access to the public part of the EK is necessary. 11

 12

Command – TPM Main Spec MRTM MLTM Remark

TPM_MakeIdentity If MRTM has an EK and
MTM_PERMANENT_DATA-
>aik is undefined: Required

If MRTM has
MTM_PERMANENT_DATA-
>aik defined: Optional.

If the MRTM has no EK
THEN
MTM_PERMANENT_DATA-
>aik MUST be defined.

Required

TPM_ActivateIdentity If MRTM has an EK and
MTM_PERMANENT_DATA-
>aik is undefined: Required

If MRTM has
MTM_PERMANENT_DATA-
>aik defined: Optional.

If the MRTM has no EK
THEN
MTM_PERMANENT_DATA-
>aik MUST be defined.

Required

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 85 of 105
 TCG PUBLISHED

9.14 Integrity Collection and Reporting 1

The Integrity Collection and Reporting command group is required for all MTMs, but with some 2
exceptional treatment for so-called verified PCRs. 3

 4

Command – TPM Main Spec MRTM

MLTM Remark

TPM_Extend Required

However, a TPM_Extend
implementation MUST
exclude extending verified
PCRs.

Required

However, a TPM_Extend
implementation MUST
exclude extending verified
PCRs.

See section 8.2

TPM_PCRRead Required Required

TPM_Quote Required Required

TPM_PCR_Reset Optional.

However, a
TPM_PCR_Reset
implementation MUST
exclude resetting verified
PCRs.

Optional

However, a
TPM_PCR_Reset
implementation MUST
exclude resetting verified
PCRs.

See section 8.4

TPM_Quote2 Optional

Optional

 5

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 86 of 105
 TCG PUBLISHED

9.15 Changing AuthData 1

The Changing AuthData command group is required for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM Remark

TPM_ChangeAuth Required Required TPM_ChangeAuth MAY fail for the
SRK usageSecret.

Data stored under the SRK in a
MRTM might be owned by
somebody else who should be able
to change his auth data

TPM_ChangeAuthOwner Optional Required TPM_ChangeAuthOwner may fail
for a MRTM.

At least, the user should be able to
change authorization passwords, for
a MRTM this is not required.

 4

 5

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 87 of 105
 TCG PUBLISHED

9.16 Authorization Sessions 1

Among the authorization sessions only the OIAP and the OSAP commands are required for all MTMs 2
in order to allow for authorized access to protected objects like cryptographic keys. 3

The DSAP and the SetOwnerPointer command is optional for all MTMs since delegation itself is 4
optional. 5

 6

Command – TPM Main Spec MRTM

MLTM Remark

TPM_OIAP Required Required

TPM_OSAP Required Required

TPM_DSAP Optional Optional Delegation is optional.

TPM_SetOwnerPointer Optional Optional

 7

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 88 of 105
 TCG PUBLISHED

9.17 Delegation 1

Delegation, in general, is optional for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM Remark

TPM_Delegate_Manage Optional Optional

TPM_Delegate_CreateKeyDelegation Optional Optional

TPM_Delegate_CreateOwnerDelegation Optional Optional

TPM_Delegate_LoadOwnerDelegation Optional Optional

TPM_Delegate_ReadTable Optional Optional

TPM_Delegate_UpdateVerification Optional Optional

TPM_Delegate_VerifyDelegation Optional Optional

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 89 of 105
 TCG PUBLISHED

9.18 Non-volatile Memory 1

The command group managing the direct access to non-volatile memory is optional for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM Remark

TPM_NV_DefineSpace Optional Optional

TPM_NV_WriteValue Optional Optional

TPM_NV_WriteValueAuth Optional Optional

TPM_NV_ReadValue Optional Optional

TPM_NV_ReadValueAuth Optional Optional

 4

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 90 of 105
 TCG PUBLISHED

9.19 Session Management 1

The Session Management command group is optional for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM Remark

TPM_KeyControlOwner Optional Optional

TPM_SaveContext Optional Optional

TPM_LoadContext Optional Optional

 4

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 91 of 105
 TCG PUBLISHED

9.20 Eviction 1

The FlushSpecific command is essential for resource and key management within the TPM, hence it is 2
required for all MTMs. 3

 4

Command – TPM Main Spec MRTM MLTM Remark

TPM_FlushSpecific Required Required

 5

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 92 of 105
 TCG PUBLISHED

9.21 Timing Ticks 1

The Timing Ticks command group is optional for all MTMs. 2

Command – TPM Main Spec MRTM

MLTM Remark

TPM_GetTicks Optional Optional

TPM_TickStampBlob Optional Optional

 3

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 93 of 105
 TCG PUBLISHED

9.22 Transport Sessions 1

The establishment of transport sessions is essential for confidential message exchange, hence the commands 2
of this group are required for all MTMs, except for the ReleaseTransportSigned command which is optional. 3
The ability to implement a secure channel between a MTM and another entity is required to protect the 4
integrity for non-OSAP/OIAP/DSAP commands (e.g. MTM_VerifiedRIMCertAndExtend does provide integrity 5
protection for the RIM certificate, but not for the choice of RIM Certificate) and also the confidentiality for 6
e.g. TPM_Unseal results. See also Section 8.11. 7

 8

Command – TPM Main Spec MRTM

MLTM Remark

TPM_EstablishTransport If there is no inherent
confidential channel between
the MTM and its RTM or RTV
(or verification agents) THEN:
Required

Else: Optional

If there is no inherent
confidential channel
between the MTM and its
RTM or RTV (or
verification agents) THEN:
Required

Else: Optional

TPM_ExecuteTransport If there is no inherent
confidential channel between
the MTM and its RTM or RTV
(or verification agents) THEN:
Required

Else: Optional

If there is no inherent
confidential channel
between the MTM and its
RTM or RTV (or
verification agents) THEN:
Required

Else: Optional

TPM_ReleaseTransportSigned Optional Optional

 9

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 94 of 105
 TCG PUBLISHED

9.23 Monotonic Counter 1

The Monotonic Counter command group is optional for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_CreateCounter Optional Optional

TPM_IncrementCounter Required for the counters
that are mandatory as
defined in Section 6.
Optional for other counters.

Required for the counters
that are mandatory as
defined in Section
6l.Required for
counterStorageProtect.
Required for
counterRIMProtect if
verification commands
supported by MLTM.
Optional for other
counters.

TPM_ReadCounter Required for the counters
that are mandatory as
defined in Section 6
Optional for other counters.

Required for the counters
that are mandatory as
defined in Section
6l.Required for
counterStorageProtect.
Required for
counterRIMProtect if
verification commands
supported by MLTM.
Optional for other
counters.

TPM_ReleaseCounter Optional Optional

TPM_ReleaseCounterOwner Optional Optional

 4

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 95 of 105
 TCG PUBLISHED

9.24 Direct Anonymous Attestation 1

The Direct Anonymous Attestation command group is optional for all MTMs. 2

 3

Command – TPM Main Spec MRTM

MLTM

Remark

TPM_DAA_Join Optional Optional

TPM_DAA_Sign Optional Optional

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 96 of 105
 TCG PUBLISHED

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 97 of 105
 TCG PUBLISHED

10. Example 1

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 98 of 105
 TCG PUBLISHED

10.1 Overview 1

Start of informative comment: 2

This section describes an example that intends to demonstrate how the MTM_VerifyRIMCertAndExtend and the 3
associated methods may be used. 4

The following notation is used in these examples: 5

• Let state = [(i, v1), (j, v2),...] denote a set of PCRs such that PCR w/ index i holds the value v1 and 6
PCR w/ index j holds the value v2 and so on. 7

• Let RIM_Cert{K}(state, index, event) denote a TPM_RIM_CERTIFICATE instance signed by key K 8
authorizing an extend of event into PCR index when the PCRs already contain the values represented 9
by state. 10

• An event can be for example the loading of a software image and that event can be represented by a 11
SHA1 hash of that image. 12

• Let Verification_Key{K}(V, usage) denote a TPM_VERIFICATION_KEY instance signed by key K and 13
authorizing the public key V with the usageFlags field usage 14

• Denote by img_OS an operating system image. 15

• Denote by SHA1(x) the SHA1 hash over the byte-string x, e.g. SHA1(img_OS) is the SHA1 hash of the 16
operating system img_OS. 17

• Denote by TPM_Extend(state, index, x) the result of extending state (a set of PCRs as described 18
above) with the event x into PCR index as defined by TPM_Extend[3]. 19

• The 160-bit string of all zeros is denoted by 00..00. 20

End of informative comment. 21

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 99 of 105
 TCG PUBLISHED

10.2 Secure Boot 1

Start of informative comment: 2

This sub-section shows an overview on how to implement a managed secure boot mechanism using the 3
primitives in the specification. Let us assume the boot sequence consists of two software executables that 4
must be loaded and executed in a defined order, before the img_OS can be loaded and executed. Denote 5
these images img1 and img2. These are provided by independent developers who do NOT have access to each 6
others images. As an additional requirement we require that an update to img1 must not require any 7
additional actions by the supplier of img2. 8

The system has at least the following states: 9

• state_0 = [(0, diag_hw), (1, diag_rots), (2, 0), (3, 0),] 10

• state_1 = TPM_Extend(state_0, 2, SHA1(“RTV done”)) 11

• state_2 = TPM_Extend(state_1, 3, SHA1(img1)) 12

• state_3 = TPM_Extend(state_2, 2, SHA1(“img1 loaded”)) 13

• state_4 = TPM_Extend(state_3, 4, SHA1(img2)) 14

• state_5 = TPM_Extend(state_4, 2, SHA1(“img2 loaded”)) 15

• state_6 = TPM_Extend(state_5, 7, SHA1(img_OS)) 16

• state_7 = TPM_Extend(state_6, 2, SHA1(“OS ready”)) 17

The state state_0 represents the initialization of all PCRs from 2 upwards to zero, while PCRs 0 and 1 contain 18
diagnostic information about the Hardware Platform and Roots of Trust themselves. 19

For simplicity this example has only one verification key Root = Verification_Key(.)(K, 20
TPM_VERIFICATION_KEY_USAGE_SIGN_RIMCERT | TPM_VERIFICATION_KEY_USAGE_SIGN_RIMAUTH | 21
TPM_VERIFICATION_KEY_USAGE_INCREMENT_BOOTSTRAP). For each of the states i > 0, we have a 22
corresponding RIM_Cert_i = RIM_Cert{Root}(state_i, ...) that authorizes the extend into state_i from the 23
preceding state. It is also assumed that PCRs 0 to 7 are verified PCRs, i.e. they can only be extended using 24
MTM_VerifyRIMCertAndExtend. To reduce the number of RIM_Certs required, the verifiedPCR selection is set 25
after state_0 has been reached. 26

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 100 of 105
 TCG PUBLISHED

RIM_Cert_6RIM_Cert_5RIM_Cert_4

RIM_Cert_1

PCR2: 00..00

PCR3: 00..00

PCR4: 00..00

PCR7: 00..00

RIM_Cert_2

PCR2: pcr_2_1 = SHA1(00..00 || SHA1(“RTV done”))

PCR3: 00..00

PCR4: 00..00

PCR7: 00..00

RIM_Cert_3

PCR2: pcr_2_1

PCR3: pcr_3_2 = SHA1(00..00 || SHA1(img1))

PCR4: 00..00

PCR7: 00..00

PCR2: pcr_2_3 = SHA1(pcr_2_1 || SHA1(“img1 loaded”))

PCR4: 00..00

PCR7: 00..00

PCR2: pcr_2_3

PCR4: pcr_4_4 = SHA1(00..00|| SHA1(img2))

PCR7: 00..00

PCR2: pcr_2_5 = SHA1(pcr_2_3 || SHA1(“img2 loaded”))

PCR7: 00..00

measurement_pcr_index = 2

measurement_pcr_value = SHA1(“RTV done”)

measurement_pcr_index = 3

measurement_pcr_value = SHA1(img1)

measurement_pcr_index = 2

measurement_pcr_value = SHA1(“img1 loaded”)

measurement_pcr_index = 4

measurement_pcr_value = SHA1(img2)

measurement_pcr_index = 2

measurement_pcr_value = SHA1(“img2 loaded”)

measurement_pcr_index = 7

measurement_pcr_value = SHA1(img_OS)

RIM_Cert_7

PCR2: pcr_2_5

PCR7: pcr_7_6 = SHA1(img_OS)

measurement_pcr_index = 2

measurement_pcr_value = SHA1(“OS ready”)

 1

Figure 3. RIM Certificates for the boot process 2

Figure 3 shows the actual RIM Certificates generated for the boot process. The grayed out PCRs represent 3
“Don’t Care” in the PCR selection inside the TPM_RIM_CERTIFICATE. 4

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 101 of 105
 TCG PUBLISHED

 1

Figure 4. Example sequence during boot 2

Figure 4 shows the sequence how the boot would proceed through the above-mentioned states. The example 3
is not the only way to create a secure boot mechanism using the primitives defined in this specification, 4
rather it is constructed to show the utility of the MTM_VerifyRIMCertAndExtend and associated functionality. 5

The example boot is as follows: 6

• The MRTM starts up by having TPM_Init and TPM_Startup being called. 7

• All PCRs are initialized with the value 00..00. 8

• The RTV records diagnostic information about the Hardware Platform and Roots Of Trust into PCRs 0 9
and 1. The RTV calls MTM_SetVerifiedPCRSelection to set PCRs 0 to 7 as verifiedPCRs, and calls 10
MTM_LoadVerificationRootKeyDisable. 11

• The RTV records into PCR 2 a SHA1 hash of the string (“RTV done”) using 12
MTM_VerifyRIMCertAndExtend and RIM_Cert_1. 13

• Next the RTV measures img1 and looks up a RIM Cert for it. It should find RIM_Cert_2 for it. 14

• The RTV calls MTM_VerifyRIMCertAndExtend for RIM_Cert_2. 15

• Control is then passed to img1. 16

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 102 of 105
 TCG PUBLISHED

• img1 extends into PCR 0 a SHA1 hash of the string (“img1 loaded”) using RIM_Cert_3. 1

• img1 then measures img2 and looks up RIM_Cert_4. 2

• img1 calls MTM_VerifyRIMCertAndExtend for RIM_Cert_4 3

• Control is then passed to img2. 4

• img2 repeats the same steps as img1 for RIM_Cert_5 and RIM_Cert 6. 5

• Control is then passed to the OS 6

• OS extends finally a SHA1 hash of the string (“OS ready”) into PCR 2 7

If any of the MTM_VerifyRIMCertAndExtend calls return an error or the appropriate 8
MTM_VerifyRIMCertAndExtend certificate is not found then the boot is aborted. 9

The above example provides the following advantages: 10

• The secure boot configuration is protected against tampering. 11

• Any component (img1 or img2) of the secure boot chain can be updated, without updating the RIM 12
certificates of the following components. This is due to the ability of using PCR 2 as a pre-requisite in 13
the MTM_VerifyRIMCertAndExtend calls. 14

• Multiple execution paths of the secure boot are possible. 15

• RIM certificates for img1, img2 and the OS can be produced independently of each other, as long as 16
the platform integrator has fixed and published the strings being extended into PCR 2. 17

• Boot configuration can be managed remotely, by adding new RIM certificates. 18

• Entire boot configuration (with the exception of the recognition of the Verification Key Root) can be 19
loaded onto volatile storage while the device is offline. 20

End of informative comment. 21

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 103 of 105
 TCG PUBLISHED

10.3 Remote Attestation and a Resource-Constrained Verifier 1

Start of informative comment: 2

The above mechanism also allows performing remote attestation to a resource-constrained verifier. This can 3
be relevant for example in a case where a mobile phone is attempting to provide remote attestation to a 4
smart card. 5

In addition to the above, the AIK credentials are associated either implicitly or explicitly with an RVAI. This 6
RVAI is the root verification key loaded using MTM_LoadVerificationKey that is used to (directly or indirectly) 7
authorize all TPM_RIM_Certificate instances accepted by MTM_VerifyRIMCertAndExtend extending PCR 2. If a 8
remote verifier is provided with the public part of the RVAI key then the remote verifier can merely check 9
the AIK signature, the AIK credentials, whether it trusts the key RVAI and then in this example case, the 10
contents of PCR 2. The reason why PCR 2 is the only PCR necessary to check is that all extends to PCR 2 have 11
been authorized by the RVAI and the events recorded into PCR 2 translate the events (e.g. extensions of the 12
SHA1(img1) etc..) in the other PCRs into well-known bit-strings (e.g. SHA1(“img1 loaded”). 13

The remote verifier would NOT need to be aware of all the multitudes of configurations that are legitimate, 14
it can instead trust a list of verification keys that are used to authorize MTM_VerifyRIMCertAndExtend 15
operations. 16

Note that this will work well even if the bootchain is not required to be verified and any software image 17
could be loaded as the initial image. In this case OS image (and other boot sequence components) would be 18
measured using TPM_Extend. MTM_VerifyRIMCertAndExtend would only be used to record a statement of the 19
validity (based on the RIM_Certs signer) about the boot-sequence which has been measured into e.g. PCR 2. 20

End of informative comment. 21

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 104 of 105
 TCG PUBLISHED

10.4 Re-sealing 1

Start of informative comment: 2

Relying on just TPM_Extend for restricting access to sealed data to identified programs causes the problem 3
that if some program in the preceding state needs to be updated, all sealed data must be decrypted and re-4
encrypted (this is often referred to as re-sealing). 5

This specification attempts to minimize the amount of redundant management functionality and has chosen a 6
mechanism that allows the re-sealing problem to be minimized. The ability to use PCRs for recording 7
statements about the system state (as reflected in the PCRs) allows one to seal to these verified PCRs. In the 8
above example, sealing for example to PCR0 would not require any re-sealing, if the SHA1 digest of img1, 9
img2 or img_OS changed, as long as RIM_Cert_3, RIM_Cert_5 and/or RIM_Cert_7 is updated. 10

This follows from the fact that sealing is merely done to a value in PCR 2 which consists of the extensions of 11
digests of “RTV done”, “img1 loaded”, “img2 loaded” and “OS ready”. These digests can only have been 12
extended, if the corresponding RIM_Certs (3, 5, 7) authorized the extend. The pre-requisite for authorizing 13
the extend was that img1, img2 or the OS had certain digests defined (as contained in RIM_Certs 2, 4 and 6) 14
by the RIM_Cert signer. 15

End of informative comment. 16

TCG Mobile Trusted Module Specification TCG Copyright
Specification version 1.0

Revision 6 26 June 2008 Page 105 of 105
 TCG PUBLISHED

10.5 Reactive Run-Time Responses 1

Start of informative comment: 2

Finally the ability to use MTM_VerifyRIMCertAndExtend allows to hold configuration data for a watchdog that 3
attempts to detect during run-time whether e.g. a Trusted Computing Base (TCB) has been corrupted. A set 4
of PCRs can be allocated for the watchdog and configured as verified. 5

Assume now that the TCB image has been extended into PCR 7 and that PCRs 8, 9 and 10 have been allocated 6
for the watchdog. Assume that the TCB image that resides in memory is different from the image that resides 7
on disk (due to dynamic linking etc...). Assume further that for performance reasons we wish to cycle through 8
the TCB image in memory in three steps. Partition the TCB address-space into three parts, and allocate the 9
first part to PCR 8, second part to PCR 9 and the third part to PCR 10. Generate three RIM_Certs that have as 10
a pre-requisite state the value in PCR 7 and each authorize the extension of the expected digest of the 11
memory-range corresponding to its PCR. 12

The watchdog can now compute a digest of a partition ‘x’ of the TCB , compute SHA1(00..00 || SHA1(x)) and 13
compare it to the value in a PCR. If the watchdog is running in a separate context from the TCB this may 14
provide some additional capability towards attacks that attempt to modify the TCB in-memory. 15

End of informative comment. 16

 17

[End of document] 18

