
 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review    © TCG 2024 

  

TCG PC Client Platform Reset Attack 

Mitigation Specification 

 

 
Version 1.2 
Revision 10 
February 22, 2024 

 

Contact: admin@trustedcomputinggroup.org  

 

Public Review  

Work in Progress 
This document is an intermediate draft for 
comment only and is subject to change 
without notice. Readers should not 
design products based on this document.  
 

S
P
E
C
I
F
I
C
A
T
I
O
N 

mailto:admin@trustedcomputinggroup.org


TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 1  © TCG 2024 

DISCLAIMERS, NOTICES, AND LICENSE TERMS 
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY 
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR 
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. 

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to 
use of information in this specification and to the implementation of this specification, and TCG disclaims all liability 
for cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental, 
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in 
any way out of use or reliance upon this specification or any information herein. 

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted 
herein other than as follows:  You may not copy or reproduce the document or distribute it to others without written 
permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG 
specifications or (b) developing, testing, or promoting information technology standards and best practices, so long 
as you distribute the document with these disclaimers, notices, and license terms. 

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing 
through membership agreements. 

Any marks and brands contained herein are the property of their respective owners. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHANGE HISTORY  

REVISION DATE DESCRIPTION 

v1.10 revision 17 August 1, 2018 • Public release of v1.10 

v1.2 revision 8 September 21, 2023 
• Updated to new TCG template, significant cleanup, deleted deprecated sections 

for conventional BIOS and ACPI methods 
v1.2 revision 10 February 22, 2024 • Update based on technical committee feedback 

 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 3  © TCG 2024 

CONTENTS 
DISCLAIMERS, NOTICES, AND LICENSE TERMS ..................................................................................................... 1 

CHANGE HISTORY ....................................................................................................................................................... 2 

Table of Figures .............................................................................................................................................................. 4 

Table of Tables ............................................................................................................................................................... 5 

1 SCOPE ................................................................................................................................................................... 6 

1.1 Key Words ....................................................................................................................................................... 6 

1.2 Statement Type ............................................................................................................................................... 6 

2 Introduction and Concepts ...................................................................................................................................... 7 

3 Requirements ......................................................................................................................................................... 9 

3.1 General Requirements .................................................................................................................................... 9 

3.2 Memory Overwrite Request Optimizations ..................................................................................................... 9 

3.3 Auto Detection of Clean Static RTM Shutdown ............................................................................................ 10 

4 UEFI Interface ....................................................................................................................................................... 11 

4.1 MemoryOverwriteRequestControl Variable .................................................................................................. 11 

4.1.1 GUID .................................................................................................................................................... 11 

4.1.2 Description ........................................................................................................................................... 11 

4.1.3 Usage .................................................................................................................................................. 12 

4.2 MemoryOverwriteRequestControlLock Variable .......................................................................................... 12 

4.2.1 GUID .................................................................................................................................................... 12 

4.2.2 Description ........................................................................................................................................... 12 

4.2.3 Usage .................................................................................................................................................. 16 

 

 

  



 

 

Table of Figures 
Figure 1 UEFI Platform Boot Cycles: With Complete OS Shutdown ............................................................................. 8 
Figure 2 UEFI Platform Boot Cycles: Without Complete OS Shutdown ........................................................................ 8 
Figure 3 Initialization of MemoryOverwriteRequestControlLock Variable ................................................................... 16 
Figure 4 SetVariable (MemoryOverwriteRequestControlLock)................................................................................... 17 
Figure 5 SetVariable (MemoryOverwriteRequestControlLock) if state is Unlocked ................................................... 18 
Figure 6 SetVariable (MemoryOverwriteRequestControlLock) if state is Locked with key ........................................ 19 
Figure 7 GetVariable (MemoryOverwriteRequestControlLock) .................................................................................. 20 
 

  



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 5  © TCG 2024 

Table of Tables 
Table 1 Variable Layout................................................................................................................................................ 11 
Table 2 MemoryOverwriteRequestControlLock GetVariable Definition....................................................................... 13 
Table 3 MemoryOverwriteRequestControlLock SetVariable Definition ....................................................................... 14 
  



 

 

1 SCOPE 
This specification for platform firmware defines a mitigation against platform reset attacks, where an attacker forcibly 
resets a system in order to extract secrets that may be resident in memory. 

1.1 Key Words 
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,” 
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document normative statements are to be interpreted as 
described in RFC-2119, Key words for use in RFCs to Indicate Requirement Levels. 

1.2 Statement Type 
Please note a very important distinction between different sections of text throughout this document. There are two 
distinctive kinds of text: informative comment and normative statements. Because most of the text in this 
specification will be of the kind normative statements, the authors have informally defined it as the default and, as 
such, have specifically called out text of the kind informative comment. They have done this by flagging the 
beginning and end of each informative comment and highlighting its text in gray. This means that unless text is 
specifically marked as of the kind informative comment, it can be considered a kind of normative statement.   

 

EXAMPLE: Start of informative comment 

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ... 

This is the second paragraph of text of the kind informative comment ... 

This is the nth paragraph of text of the kind informative comment ... 

To understand the TCG specification the user must read the specification. (This use of MUST does not require any 
action). 

End of informative comment 

 

 

 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 7  © TCG 2024 

2 Introduction and Concepts 
Start of informative comment 

Theory of Operation 

When a platform reboots or shuts down, the contents of volatile memory (RAM) are not immediately lost. Without an 
electric charge to maintain the data in memory, the data will begin to decay. During this period, there is a short 
timeframe during which an attacker can turn the platform back on to boot into a program that dumps the contents of 
memory. Encryption keys and other secrets can be easily compromised through this method. 

Host Platform Reset threats to the S-CRTM can be mitigated by a platform firmware-initiated system memory 
operation that overwrites system memory on the next platform reboot. The platform firmware must overwrite 
memory with information unrelated to the secrets in memory that may be exposed to an attacker after a Host 
Platform reset: zeroing memory is one example of an effective memory overwrite operation. 

The platform firmware is only required to initiate and complete a memory overwrite operation when it is signaled to 
do so by firmware or the OS. This specification defines a mechanism to manage this signaling based on UEFI 
variables.  The MemoryOverwriteControl variable defines a bit called ClearMemory, also referred to as the Memory 
Overwrite Request (MOR) bit, that persists across all types of Host Platform Resets. Figure 1 and Figure 2, which 
are part of this informative comment, show how platform firmware, a UEFI Bootloader, and the OS use the MOR bit 
to communicate with each other across all types of Host Platform Reset events. 

The platform firmware must overwrite system memory following a Host Platform Reset event if the MOR bit has 
previously been set by a component such as the Bootloader or the OS. 

Figure 1 shows the sequence where platform firmware reads the MOR bit before platform firmware executes any 
Option ROM code, the Bootloader code sets the MOR bit before the Bootloader code puts any secrets in the clear in 
system memory, and the OS clears the MOR bit across a Host Platform Reset event that includes a controlled OS 
shutdown. In this case the platform firmware code does not initiate a memory overwrite operation during the next 
Host Platform boot operation. 

In Figure 2, a controlled OS shutdown is not part of the Host Platform Reset event, which is a potential attack. 
Comparing Figure 2 with Figure 1 shows that because the OS shutdown code was not executed, the OS did not 
clear the non-volatile MOR bit. When platform firmware code executes following a reset without OS shutdown or an 
incomplete shutdown, platform firmware code reads a ‘1’ from the MOR bit and initiates a vendor-specific method 
that overwrites all of system memory and the processor caches. When that memory clear operation completes 
successfully, platform firmware clears the MOR bit. It then continues the boot process as in the orderly shutdown 
case because all secrets have been cleared from memory. 

In Figure 1, and in the part of Figure 2 that shows a controlled OS shutdown, the Bootloader code writes a ‘1’ to the 
MOR bit before it has any secrets in system memory to protect. Figure 1 also shows that subsequently, as part of 
the controlled OS shutdown, the OS writes a ‘0’ to the MOR bit when there are no more secrets in memory to 
protect. Between these two OS-initiated write events to the MOR bit, the OS protects the secrets in system memory. 

Because clearing memory may be required for reasons and platform functions not related to the MOR bit or 
purposes and threats associated with this specification or any other TCG operation, nothing in this specification 
prohibits any memory clear operation. 

Scope, Security and Trust Assumptions 

The scope of this specification applies only to the contents of memory under control of the OS within the Static RTM. 
However, it’s possible (and even likely) that memory under control of a D-RTM is also cleared as a result of the 
methods described in this specification. 

The attacks mitigated by the methods in this specification are limited to simple rebooting of the system. An example 
of an attack to be mitigated is a stolen platform which is in a suspended state. After several unsuccessful attempts 
to guess the OS lock password, the attacker forces the platform to reboot without shutting down the OS and reboots 



 

 

to a CD containing an attack OS from which the attacker expects to read the contents of memory. The methods in 
this specification are not intended to protect against active physical attacks beyond the scope of the above scenario. 

All secrets capable of being cleared by the methods in this specification are exposed to the hardware privilege level 
at which the OS runs. Therefore, the protections to invoke and control these methods are also exposed to any 
component at that privilege level. For this reason, this specification makes a fundamental assumption that the OS 
implements protections to defend itself, and any violation of those protections renders the methods discussed in this 
specification useless. 

Adding the functionality that is in this specification to the platform firmware does not open the platform firmware up 
to additional attacks. 

This specification assumes the Host Platform manufacturer tightly controls platform firmware update. The 
requirements for protecting the platform firmware update process are described in the TCG PC Client Platform 
Firmware Profile (PFP) Specification. 

During a platform firmware update initiated during runtime it is expected that any platform reset is controlled by the 
OS and the MOR bit is cleared by the OS prior to reset.  Following a reset, if platform firmware detects the MOR bit 
is set, the firmware will unconditionally clear memory. This means that any firmware update capsules resident in 
memory would also be cleared, resulting in any pending firmware updates being aborted.  

Functionality 

On a UEFI system the MOR bit is implemented using the ClearMemory bit in the UEFI variable 
MemoryOverwriteRequestControl. The EFI OS loader sets the MOR bit prior to the loader putting any secrets in the 
clear in system memory. This variable is defined in Section 4. 

On a UEFI system, the MemoryOverwriteRequestControl EFI variable described in Section 4 can be updated to 
clear the MOR bit after secrets have been removed from memory. 

0 01

Platform Reset 

event, 

including 

controlled OS 

shutdown

0 1 0
Memory 

Overwrite 

Request (MOR) 

bit

First Option 

ROM code 

execution

UEFI

loader

First Option 

ROM code 

execution

UEFI

loader

UEFI 

Variable

UEFI

Variable
UEFI

Variable

UEFI

Variable

UEFI InitializationS-CRTM OS OSUEFI InitializationS-CRTM

 

Figure 1 UEFI Platform Boot Cycles: With Complete OS Shutdown 

Platform Reset 
event, without 
controlled OS 
shutdown – 
potential attack

0 1 1

Memory 
Clear method

0 1 0

Memory 
Overwrite 

Request (MOR) 
bit

First Option 
ROM code 
execution

First Option 
ROM code 
execution

UEFI
loader

UEFI
loader

UEFI
Variable

UEFI
Variable

UEFI
Variable

UEFI InitializationS-CRTM OS S-CRTM

 

Figure 2 UEFI Platform Boot Cycles: Without Complete OS Shutdown 

 

End of informative comment 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 9  © TCG 2024 

3 Requirements 
Start of informative comment 

This section contains all the mandatory requirements of this specification for clearing memory upon unexpected 
resets and reboots. 

End of informative comment 

3.1 General Requirements 
Start of informative comment 

During a transition from S1 to S3, the OS does not rely on protections provided by the MOR bit. The platform 
firmware, therefore, takes no action entering or leaving any of these operational states. When entering S4 and S5, 
the OS depends on the protections provided by the MOR bit and therefore the platform firmware is expected to 
honor the MOR bit. platform firmware should detect and act on the MOR bit upon resuming from these operational 
states. 

Item 3.b below requires the platform firmware to attempt to detect any potential tampering with the MOR bit. 
Tampering of the MOR bit could cause the platform firmware, upon reset, to ignore a necessary memory clear 
operation.  

This specification defines platform behavior for scenarios where TPM protected secrets reside in memory. Examples 
for situations where clearing memory is not necessary are: the manufacturing floor, prior to OS installation, or if the 
OS does not make use of the TPM’s boot time data protection capabilities. 

End of informative comment 

1. Platform firmware MUST support reading and writing the Memory Overwrite Request (MOR) bit to and from 

non-volatile storage on the Host Platform 

2. To enable Bootloader code to communicate MOR bit settings to platform firmware, platform firmware MUST 

support the EFI Variables MemoryOverwriteRequestControl and MemoryOverwriteRequestControlLock. 

3. If there is a TPM present and any of the following conditions occur, the platform firmware MUST initiate the 

process that clears all system memory and the processor caches: 

a. The platform firmware detects the MOR bit is set, or 

b. The platform firmware detects any reliability or integrity issue with NVM on the Host Platform, or 

c. The platform firmware is unable to detect the MemoryOverwriteRequestControl variable. 

4. The MOR request (i.e. checking of MOR bit and memory clear operation) SHOULD be performed before 

control is transferred outside of the S-CRTM, and MUST be performed before Bootloader, option ROM, DXE 

driver or any other 3rd party code can be executed. 

5. The platform firmware MAY perform a memory clear operation for reasons unrelated to the MOR bit or for 

purposes and threats not associated with this specification. 

3.2 Memory Overwrite Request Optimizations 
Start of informative comment 

To ensure that the memory overwrite process is performed as efficiently as possible, system builders should be 
aware of additional design considerations. If the MOR request is performed too early in the boot process, the system 
may not be able to take advantage of the full speed of memory. This may greatly increase the time required to 
overwrite memory and can result in slower boot times and increased user confusion. Ideally, the MOR request 
should be performed as soon as memory has been initialized and can be overwritten with minimal clock cycles per 
byte. 

UEFI platform firmware can use known art to ensure that flash wear-leveling occurs in the UEFI variable store since 
this MemoryOverwriteRequestControl variable will be written twice per platform boot. 

End of informative comment 



 

 

3.3 Auto Detection of Clean Static RTM Shutdown 
Start of informative comment 

Some OSes may not clear the MOR bit prior to shutting down. This may cause the platform firmware to always 
perform a memory clear operation. While not a security concern, this will cause unnecessary delays in the platform’s 
boot process. OSes that do not clear the MOR bit upon a clean shutdown should provide an option to allow the 
platform owner to opt-out of the protections provided by the MOR. These OSes may also indicate this potential 
behavior by clearing the DisableAutoDetect bit in the MemoryOverwriteRequestControl variable. When this bit is 
zero (clear), the platform firmware can detect a clean shutdown of the OS and clear the flag itself. 

There are various target shutdown operational states and certain conventional steps an OS takes when transitioning 
to those states. If allowed by the DisableAutoDetect bit, the platform firmware may detect an orderly OS shutdown. 
Known operational state transitions and their notifications are identified in the normative sections below. The most 
common method for clearing the MOR upon detecting one of these notifications is the use of SMI but no particular 
method is mandated by this specification. 

OSes that always clear the MOR bit upon a clean shutdown (i.e., they will always call the MOR interface) will set the 
DisableAutoDetect bit to the value 1 indicating to the platform firmware that it should not automatically detect the 
OS’s shutdown. 

OSes that allow the platform firmware to autodetect a clean shutdown must ensure that secrets are cleared from 
memory prior to any notification event listed below. 

It is permissible for platform firmware to be implemented such that it automatically clears MOR on detection of an 
orderly shutdown of the OS. Determination of an orderly shutdown of the OS is OS and firmware specific. 

End of informative comment 

 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 11  © TCG 2024 

4 UEFI Interface 
Start of informative comment 

UEFI uses variables to manage the MOR bit. The generic UEFI interfaces to set and get these variables are used. 
Familiarity with these UEFI APIs is assumed. 

End of informative comment 

4.1 MemoryOverwriteRequestControl Variable 
Start of informative comment 

The MemoryOverwriteRequestControl UEFI variable gives users (e.g., OS, loader) the ability to indicate to the 
platform that secrets are present in memory and that the platform firmware must clear memory upon a restart. 

The OS loader does not create the variable. Rather, the firmware is required to create it and support the semantics 
described here. 

To enable the MemoryOverwriteRequestControlLock variable to be accessed at runtime and ensure that the 
variable’s value will be preserved across reboots, the EFI_VARIABLE_NON_VOLATILE and  
EFI_VARIABLE_RUNTIME_ACCESS attributes are set in accordance with the UEFI specification. 

End of informative comment 

4.1.1 GUID 
#define MEMORY_ONLY_RESET_CONTROL_GUID \ 

{ 0xe20939be, 0x32d4, 0x41be, 0xa1, 0x50, 0x89, 0x7f, 0x85, 0xd4, 0x98, 0x29 } 

4.1.2 Description 
The name of the 1-byte unsigned UEFI variable MUST be “MemoryOverwriteRequestControl”. The variable’s 

attributes MUST be: 

EFI_VARIABLE_NON_VOLATILE | 

EFI_VARIABLE_BOOTSERVICE_ACCESS | 

EFI_VARIABLE_RUNTIME_ACCESS 

The structure of the variable is defined in Table 1. 

Table 1 Variable Layout 

Mnemonic Bit 
Offset 

Bit 
Length 

Description 

ClearMemory 0 1 0 = Firmware MUST NOT clear memory  

1 = Firmware MUST clear memory. 

 

See detailed requirements in section 4.1.3. 

Reserved 1 3 Reserved (currently unused).  Firmware 
MUST ignore these bits on a read and set to 
0 on a write. 

DisableAutoDetect 4 1 0 = Firmware MAY autodetect a clean 
shutdown of the Static RTM OS. See 
Section 3.3 for details. 

1 = Firmware MUST NOT autodetect a clean 
shutdown of the Static RTM OS 

Reserved 5 3 Reserved (currently unused).  Firmware 
MUST ignore these bits on a read and set to 

0 on a write. 

 



 

 

4.1.3 Usage 
Variable creation: Upon each reboot, the platform firmware MUST check for the existence and correct attributes of 

the MemoryOverwriteRequestControl variable. If the variable does not exist as defined in section 4.1.2, the platform 

firmware MUST create the variable as defined in section 4.1.2. Upon creation, the platform firmware SHOULD set 

the initial value of the MemoryOverwriteRequestControl variable to 0x00.  

Upon each reboot, the platform firmware MUST check the ClearMemory bit in the MemoryOverwriteRequestControl 

variable. If the ClearMemory bit is set, the platform firmware MUST overwrite all memory prior to continuing with the 

boot process. Once the memory is overwritten, the ClearMemory bit SHALL be cleared since any secrets have been 

removed.  

The MemoryOverwriteRequestControl variable is protected by the MemoryOverwriteRequestControlLock variable. 

The OS is expected to purge secrets from memory and set the MemoryOverwriteRequestControl variable to 0x00 in 

the event of a normal shutdown so that platform firmware will not normally be required to clear memory. 

If MemoryOverwriteRequestControl is locked, an attempt to delete MemoryOverwriteRequestControl by calling  

SetVariable with the parameters DataSize or Attributes set to 0, platform firmware MUST return 

EFI_ACCESS_DENIED without changing the state of the variable. 

Start of informative comment 

Note: If MemoryOverwriteRequestControl is not locked, platform firmware treats the deletion request as it would any 
normal EFI variable.  This means platform-firmware may process the deletion request without error or enforce 
firmware-specific policies around deletion of MemoryOverwriteRequestControl. EFI reference code implemented to 
an earlier version of this specification may return EFI_INVALID_PARAMETER. 

End of informative comment 

After receiving a call to SetVariable to modify MemoryOverwriteRequestControl with an unexpected DataSize, or 

unexpected Attributes, platform firmware MUST return EFI_INVALID_PARAMETER without changing the state of 

the variable. 

4.2 MemoryOverwriteRequestControlLock Variable 
Start of informative comment 

Previous versions of this specification defined system platform firmware security mitigations using the 
MemoryOverwriteRequestControl UEFI variable. To prevent and defend against advanced memory attacks, this 
specification augments MemoryOverwriteRequestControl to support locking with the 
MemoryOverwriteRequestControlLock variable. 

To enable the MemoryOverwriteRequestControlLock variable to be accessed at runtime the 
EFI_VARIABLE_NON_VOLATILE and EFI_VARIABLE_RUNTIME_ACCESS attributes are set in accordance with 
the UEFI specification. 

End of informative comment 

4.2.1 GUID 
#define MEMORY_OVERWRITE_REQUEST_CONTROL_LOCK_GUID \ 

{ 0xBB983CCF, 0x151D, 0x40E1, 0xA0, 0x7B, 0x4A, 0x17, 0xBE, 0x16, 0x82, 0x92 } 

4.2.2 Description 
The name of the UEFI variable MUST be “MemoryOverwriteRequestControlLock” and the unsigned value MUST 

be either 1 byte or 8 bytes. The variable’s attributes MUST be: 

EFI_VARIABLE_NON_VOLATILE | 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 13  © TCG 2024 

EFI_VARIABLE_BOOTSERVICE_ACCESS | 

EFI_VARIABLE_RUNTIME_ACCESS 

A call to GetVariable to read MemoryOverwriteRequestControlLock returns a value reflecting the current lock state. 

The definition of these values is in Table 2. Any other value is treated as undefined and MUST NOT be returned by 

platform firmware.  Figure 7 illustrates the behavior when a call to GetVariable is made for 

MemoryOverwriteRequestControlLock with different lock states and input parameters. 

Table 2 MemoryOverwriteRequestControlLock GetVariable Definition 

Lock State Size in 
Bytes 

Output 
Value 

Description 

Unlocked 1 0 MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl are 
unlocked. 

They can be updated. 

Locked without key 1 1 MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl are locked 

and read only. 

They cannot be updated until next boot. 

Locked with key 1 2 MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl are locked 

and read only. 

They can be unlocked with a key specified in 
SetVariable(). 

 

The definition of the value set by SetVariable is in Table 3. Any other value is treated as an invalid input and MUST 

be rejected.  Figure 4, Figure 5, and Figure 6 illustrate the behavior when a call to set SetVariable is made for 

MemoryOverwriteRequestControlLock with different lock states and input parameters. 

After receiving an attempt to delete MemoryOverwriteRequestControlLock by calling  SetVariable with the 

parameters DataSize or Attributes set to 0, platform firmware MUST return EFI_ACCESS_DENIED without changing 

the state of the variable (see Figure 4).   

After receiving a call to SetVariable to modify MemoryOverwriteRequestControlLock with an unexpected DataSize, 

or unexpected Attributes, platform firmware MUST return EFI_INVALID_PARAMETER without changing the state of 

the variable (see Figure 4). 

 



 

 

Table 3 MemoryOverwriteRequestControlLock SetVariable Definition 

Lock action Size in 
Bytes 

Input 
Value 

Description 

Unlock 1 0 Try to unlock 
MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl. 

 

SetVariable MUST return one of the 
following: 

If current lock state is Unlocked then the lock 
state is unchanged and SetVariable returns 
EFI_SUCCESS. 

If current lock state is Locked without key or 
Locked with key then the lock state is 
unchanged and SetVariable returns 
EFI_ACCESS_DENIED. 

 

Note: An attempt to unlock a locked state 
will always fail and is listed for completeness 
in this table. The locked state is reset on 
reboot. 

Lock without key 1 1 Try to lock 
MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl. 

 

SetVariable MUST return one of the 
following: 

If current lock state is unlocked then the lock 
state is updated to Locked without key and 
SetVariable returns EFI_SUCCESS. 

If current lock state is Locked without key or 
Locked with key then the lock state is 
unchanged and SetVariable returns 
EFI_ACCESS_DENIED. 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 15  © TCG 2024 

Lock/Unlock with key 8 8-byte 
value that 
represents 
a shared 
secret key 

Try to lock 
MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl with key, if 

the current lock state is Unlocked. 

Try to unlock 
MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl with key, if 
the current lock state is Locked with key. 

 

SetVariable MUST return one of the 
following: 

If current lock state is Unlocked then the lock 
state is updated to Locked with key and 
SetVariable returns EFI_SUCCESS. 

If current lock state is Locked with key and 
the input 8-byte shared secret key matches 
the 8-byte shared secret key in the previous 
SetVariable() lock with key action then the 
lock state is updated to Unlocked and 
SetVariable returns EFI_SUCCESS. 

If current lock state is Locked without key 
then the lock state is unchanged and 
SetVariable returns EFI_ACCESS_DENIED. 

If current lock state is Locked with key and 
the input 8-byte shared secret key does not 
match the 8-byte shared secret key in the 
previous SetVariable() lock with key action 
then the lock state is updated to Locked 
without key to prevent dictionary attack and 
SetVariable returns EFI_ACCESS_DENIED. 

 

 

  



 

 

4.2.3 Usage 
Start of informative comment 

 

 

 

 

 

 

 

 

 

On every boot, platform firmware initializes MemoryOverwriteRequestControlLock to a single-byte value of 0x00 
(indicating a status of Unlocked) before the Boot Device Selection (BDS) phase (see Figure 3). Platform firmware is 
responsible for preventing deletion of the MemoryOverwriteRequestControlLock and 
MemoryOverwriteRequestControl variables and the modification of their attributes. 

When SetVariable for MemoryOverwriteRequestControlLock is first called with a valid non-zero value in Data, the 
access mode for both MemoryOverwriteRequestControlLock and MemoryOverwriteRequestControl is changed to 
read-only, indicating that they are locked. 

If SetVariable (MemoryOverwriteRequestControlLock) is passed a single byte value of 0x01 the lock state is 
changed to Locked without key. 

SetVariable (MemoryOverwriteRequestControlLock) also accepts an 8-byte value that represents a shared secret 
key and results in a lock state of Locked with key. To generate that key, use a high-quality entropy source such as 
the Trusted Platform Module or a hardware random number generator. After setting a key, both the caller and 
firmware should save copies of this key in a read-protected location. 

If any other value is specified in SetVariable (MemoryOverwriteRequestControlLock), the call fails with status 
EFI_INVALID_PARAMETER.  

SetVariable (MemoryOverwriteRequestControlLock) does not commit the Data parameter passed in to non-volatile 
memory (just changes the lock state). GetVariable (MemoryOverwriteRequestControlLock) returns the lock state 
and never exposes the key. 

When the MemoryOverwriteRequestControlLock and MemoryOverwriteRequestControl variables are locked, 
invocations of SetVariable (MemoryOverwriteRequestControlLock) should be checked against the registered key 
using a constant-time algorithm, ensuring that the check takes the same time independent of optimizations in the 
implementation. This prevents time-based side-channel attacks. If there is a registered key, the input is a key, and 
both keys match, the variables transition back to an unlocked state. After an unsuccessful first attempt or if no key is 
registered, subsequent attempts to set this variable fail with EFI_ACCESS_DENIED to prevent brute force attacks. In 

that case, system reboot is the only way to unlock the variables (see Figure 6). 

The OS detects the presence of MemoryOverwriteRequestControlLock and its state by calling GetVariable. The OS 
can then lock the current value of MemoryOverwriteRequestControl by setting the 
MemoryOverwriteRequestControlLock value to 0x1. Alternatively, the OS may specify a key to enable unlocking in 
the future after secret data has been securely purged from memory. 

See Table 2 for the detailed return values of GetVariable for MemoryOverwriteRequestControlLock. See Table 3 for 
detailed return status and action of SetVariable for MemoryOverwriteRequestControlLock. 

End of informative comment 

Perform Boot Device 

Selection 

Set MemoryOverwriteRequestControlLock to unlocked 

Figure 3 Initialization of MemoryOverwriteRequestControlLock Variable 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 17  © TCG 2024 

The following figures portray the normative requirements from the perspective of the workflow.  If there is any 

conflict between the workflow described in the figures and the normative text, the normative text takes precedence. 

 In Figure 5, Figure 6, and Figure 7 the “MOR key” is the shared secret key described in Table 3. 

  

Start 

Attributes = 0 OR 

DataSize = 0 OR 
Return 

EFI_WRITE_PROTECTED 

yes 

no 

Attributes != 7 OR 

(DataSize != 1 AND 

DataSize != 8) 

Return 

EFI_INVALID_PARAMETER 

yes 

Lock state = Unlocked 

no 

Unlocked yes 

Locked 

no 

Figure 4 SetVariable (MemoryOverwriteRequestControlLock) 



 

 

 

Unlocked 

DataSize = 1 
yes First byte of 

Data has 

value zero 

First byte of 

Data has 

value one 

Set lock state  

to Locked without 

key 

yes 

yes 

no 

no 

no 

Return 

EFI_SUCCESS 

Return 

EFI_INVALID_PARAMETER 

DataSize = 8 

Return 

EFI_INVALID_PARAMETER 

no 

Set lock state to Locked with 

key 

Set MOR key to Data 

yes 

Figure 5 SetVariable (MemoryOverwriteRequestControlLock) if state is Unlocked 



TCG PC Client Platform Reset Attack Mitigation Specification 

 

TCG PC Client Platform Reset Attack Mitigation Specification  |  Version 1.2  |  Revision 10  |  2/22/2024  |  Public Review Page 19  © TCG 2024 

 

 

  

Locked 

MOR key = empty 

OR  

DataSize != 8 

yes 

no 

Return EFI_ACCESS_DENIED 

MOR key matches 

key in Data 
Set MOR key to empty 

Set lock state to Unlocked 

Return EFI_SUCCESS 

Set MOR Key to empty 

Return EFI_ACCESS_DENIED 

yes 

no 

Prevent Dictionary Attack: 

On next try, function returns error 

because key is empty, but lock is set. 

Figure 6 SetVariable (MemoryOverwriteRequestControlLock) if state is Locked with key 



 

 

 

 

Figure 7 GetVariable (MemoryOverwriteRequestControlLock) 

Start 

DataSize = NULL 
Return 

EFI_INVALID_PARAMETER 

Lock state = 

unlocked 

Return EFI_SUCCESS 

Set output Data to  

byte array of size 1 byte with 

value of zero 

MOR key = empty 
Set output Data to  

byte array of size 1 byte with 

value of one 

Set output Data to  

byte array of size 1 byte with 

value of two 

yes 

yes 

yes 

no 

no 

no 

*DataSize < 1 

 

*DataSize = 1 and return 

EFI_BUFFER_TOO_SMALL 

 

yes 

no 


