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1 PREFACE 
This document, the TCG Guidance for Secure Update of Software and Firmware on Embedded Systems , is 
part of the Trusted Computing Group’s collection of Reference Documents, which are informative (non-normative) 
documents that provide advice and guidance. None of the text in this document is normative. 

Those who wish to jump to the final conclusion of the report should read section 6. 

1.1 Purpose 
The purpose of this document is to describe how secure software and firmware update for embedded systems can 
be done using Trusted Computing technologies. 

This document provides assessments of the benefits of employing TPM1, DICE2, and other Trusted Computing 
technologies in securing software and firmware update for embedded systems. 

1.2 Scope 
The scope of this document is: secure software and firmware update for embedded systems. The supporting 

infrastructure, such as code signing and update distribution services, are so critical to the secure and reliable update 

process that they cannot be excluded from consideration. Therefore, they are in scope for the purposes of this 

document. 

Repair of damaged or broken devices is explicitly out of scope for this document. Rather, this document focuses on 

the ability to securely update software and firmware as part of the normal operation of embedded systems. 

Recovery via firmware and software update is of increasing importance. Today’s attackers increasingly aim to 

replace firmware and software on devices with their own malicious code to establish a permanent foothold on the 

device. Therefore, embedded systems designers cannot assume that their firmware and software will remain 

pristine. They must plan for ways to detect and recover from firmware and software compromise. Best practices for 

doing so are presented in this document. 

Because each embedded system is different, this document cannot provide specific instructions suitable for all 

circumstances. The reader will need to evaluate their own situation and determine how to interpret the best 

practices described in this document. 

Even if the reader follows all the recommendations in this document, nothing is completely secure. The state of the 

art in information security is advancing rapidly, and this is even more true for embedded systems security. Still, 

following the best practices in this document will provide a strong foundation for secure software and firmware 

update throughout the lifetime of the products. 

1.3 Relationship with Other Standards 
Several other standards groups and consortia have issued documents on secure software and firmware update. 

This document complements the others by providing a Trusted Computing Group perspective on the topic. This 

document references existing standards in the area and may be referenced by other standards groups and 

consortia in the future. For a list of other standards and publications on this topic, see sections 9 and 10. 

 
1 https://trustedcomputinggroup.org/resource/tpm-library-specification  
2 https://trustedcomputinggroup.org/work-groups/dice-architectures  

https://trustedcomputinggroup.org/resource/tpm-library-specification
https://trustedcomputinggroup.org/work-groups/dice-architectures
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2 THREAT LANDSCAPE 
Network-enabled embedded systems (the Internet of Things) are found in an ever-widening number of smart 

applications and platforms, including automobiles, household appliances, industrial systems, and medical 

equipment.  This trend is driven primarily by factors like functionality, convenience, and profit.  Increasing network 

connectivity in such devices allows for advanced feature sets, increased awareness and response, and faster 

patching and updating of system firmware and software.  However, this network connectivity also results in new 

threats and potential issues that never previously existed in such platforms. 

2.1 Examples of Attacks 
Consider as an example the well-known Stuxnet3 virus from 2010 that compromised Programmable Logic 

Controllers (PLCs) used in the Iranian nuclear program.  A similar attack was successful against the Ukrainian4 

power grid in 2015 that resulted in a temporary loss of power for 225 thousand individuals. Both of these attacks 

exploited weak software update mechanisms to install malicious code onto embedded systems. 

Yet software updates are essential to preserving the security of IT and embedded systems.  The criticality of 

frequent and timely deployment of updates was illustrated by the recent ransomware attack known as “WannaCry5”. 

This ransomware attack locked out file and data access on unpatched systems until the owner made a ransom 

payment to the attacker.  Although a patch existed for many systems, the attack was possible for two primary 

reasons: first, systems were not updated in a timely manner, and second, older Operating System versions that no 

longer had available support were also susceptible to the attack.  Although this example was not specifically 

targeting embedded systems, a similar attack on embedded systems is certainly possible, and the ransom for 

unlocking critical infrastructure is likely to be substantially higher than for a common desktop system. 

These examples illustrate the importance of providing secure updates for embedded systems.  In order to properly 

design and implement secure updates, we must understand why and how attackers are targeting IoT devices. 

2.2 Attacker Motivations and Capabilities 
The use cases for embedded systems make them enticing targets for malicious attackers for a number of reasons.  

The market for embedded systems is large and rapidly growing, which in turn results in a significant number of 

manufacturers rushing to offer the best capabilities at the cheapest price.  Sometimes security takes a back seat.  

Equally appealing for an attacker is the number of deployed embedded systems.  The quantity provides an attacker 

with a large number of susceptible targets if they are able to find an associated vulnerability.  All of the traditional 

motivations for hackers still exist: notoriety, personal vendettas, “because I could”, criminal intent and monetary 

gain, and state-sponsored initiatives. Yet the two reasons previously listed (large quantity of connected products and 

inadequate security levels in those products) cause embedded systems environments to have greater concern and 

growing impact relative to traditional IT system attacks.  In short, attackers are likely to derive greater recognition 

and impact through successful attacks on embedded systems than other targets. 

Equally concerning is the placement of and lack of security insight for IoT devices.  Attackers are constantly trying to 

infiltrate corporate and government networks for a variety of reasons.  Doing so typically requires breaking one or 

more firewalls or other network security solutions, the security of which often relies upon the fact that the attacker is 

launching attacks from outside the network. With the growing connection of IoT devices directly to the cloud through 

wireless networks or tunnels that bypass corporate security protections, this assumption is less certain and therefore 

corporate security controls become less effective.  IoT devices and protocols are often not managed or supported or 

even identified by standard IT security teams and tools, thus making it easier for attackers to infect IoT devices and 

evade detection.  If an attacker is able to implant malicious code on a vulnerable embedded system that is widely 

 
3 http://www.bbc.com/news/technology-11388018  
4 https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf  
5 http://www.bbc.com/news/technology-39901382  

http://www.bbc.com/news/technology-11388018
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
http://www.bbc.com/news/technology-39901382
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deployed in the target network, they can create their own distributed botnet or command and control centers inside 

the target network and mount further attacks.  Similar attacks can take place in a smart home. 

IoT devices bridge the physical and the virtual, combining computation and communication resources with sensors 

and actuators that interact with the physical world. From an attacker’s standpoint, this provides a unique opportunity 

to sit in a safe location while interacting with the physical world at a remote target location. The possibilities are 

endless: watching and listening to people in their homes, causing an explosion by disabling safety systems in a 

pipeline or chemical plant, and many more attack scenarios. 

As we have seen, IoT devices give attackers special attack opportunities.  Detecting and mitigating these concerns 

are critical to the security and reliability of homes, businesses, organization, and even entire nations.  The first step 

in this process is to ensure that embedded systems have the means to securely and regularly perform updates that 

reduce vulnerabilities and attempt to validate the current execution state of the system.  This document provides 

insight and guidance for manufacturers on making this first step. 
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3 GUIDANCE ON SOFTWARE / FIRMWARE UPDATE 
As with many cybersecurity problems, no one solution can address the many attack techniques that attackers can 

employ. Rather, a “defense in depth” approach is needed. Devices must be capable of being updated, even when 

they are compromised6. Multiple countermeasures must be employed to ensure that attacks are prevented. 

Attackers try to find and exploit the weakest link, so all the steps in the update development and deployment 

process must be properly protected. The leftmost column in Figure 1 illustrates the main phases in the secure 

software and firmware update lifecycle, which are described in the subsequent sections of this document. The need 

for continuous updates and security reassessments is indicated by the Updates box on the right of the figure. 

 

Figure 1 - The Software and Firmware Update Lifecycle 

3.1 Secure Development 
To secure the firmware and software development process, one must start by establishing and agreeing on proven 

software development practices. Recommended practices include: 

• Building security into all steps in the development process 7 

 
6 The TCG’s Cyber Resilient Technology Work Group addresses these issues: 
   https://trustedcomputinggroup.org/work-groups/cyber-resilient-technologies  
7 https://safecode.org  

https://trustedcomputinggroup.org/work-groups/cyber-resilient-technologies
https://safecode.org/
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• Thorough threat analysis and countermeasure selection during design and maintenance 8, 9, 10 

• Applying best practices for security and improving them over time to address new and emerging threats 

• Agreeing on measurable security requirements that must be met before release 

• Securing the development environment 

• Using trustworthy tools, languages, and libraries 11 

• Careful input validation12 and error handling13 

• Training all participants on security 

• Establishing a robust incident response process14 

All of the practices in the preceding list should be adopted by any embedded system developer or teams. Additional 

practices for higher levels of security may include: 

• Establishing strict physical security (e.g., mantraps) and network security (e.g., air gaps) for the 

development machines 

• Independent security reviews of source code 

• Independent security audits and certifications of the product and the development process (e.g., Common 

Criteria15, FIPS 14016) 

• Setting up of an Information Security Management System (ISO 27000) 

• Independent security analysis of external dependencies (tools, libraries, etc.) 

• Penetration testing 

• Stress testing  

• Automated testing, including fuzzing, to find bugs and security vulnerabilities 

• Static analysis of binary or source code to find bugs and poor coding practices 

• Strong authentication for staff 

Fortunately, many solid references are available on secure software development.17 This section provides only a 

brief summary of the techniques described in those references. 

3.2 Secure Update Signing 
Creating a secure software update is more complex than creating software from scratch. In addition to the 

complexity that comes from updating an existing software installation (e.g., updating files created by an earlier 

version), the software update must be signed (known as “code signing”) so that the recipient can verify its origin and 

integrity before installing it. 

Code signing is one of the most important steps in the secure software update process but rarely does it receive the 

careful attention that it deserves. For this reason, attackers have repeatedly attacked the code signing step18 with 

tremendous success. A successful attack on this step permits the attacker to distribute malicious code signed with 

the proper key, either by exploiting defects in the signature validation process or by using the key itself. This slips 

the malicious code right under the nose of the defender without detection. 

 
8 Threat Modeling: Designing for Security by Adam Shostack  
9 Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis by Tony UcedaVélez 
10 Securing Systems: Applied Security Architecture and Threat Models  by Brook S. E. Schoenfield 
11 https://www.securecoding.cert.org  
12 https://owasp.org/www-project-cheat-sheets/cheatsheets/Input_Validation_Cheat_Sheet.html  
13 https://owasp.org/www-project-cheat-sheets/cheatsheets/Error_Handling_Cheat_Sheet.html  
14 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf  
15 https://www.iso.org/standard/72891.html  
16 https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf and https://csrc.nist.gov/publications/detail/fips/140/3/final  
17 https://www.microsoft.com/en-us/sdl  
18 https://krebsonsecurity.com/tag/bit9-breach/ 

https://www.securecoding.cert.org/
https://owasp.org/www-project-cheat-sheets/cheatsheets/Input_Validation_Cheat_Sheet.html
https://owasp.org/www-project-cheat-sheets/cheatsheets/Error_Handling_Cheat_Sheet.html
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://www.iso.org/standard/72891.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://csrc.nist.gov/publications/detail/fips/140/3/final
https://www.microsoft.com/en-us/sdl
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Rollback management is also a safety and security concern: an attacker can reuse a legitimate previous version 

with a known vulnerability. If there is no mechanism to prevent rollback, the vulnerability can be exploited and the 

attacker can potentially take control of the system. Updates should include a sequential version number to support 

rollback protection.  

When building a secure update signing system, recommended practices include: 

• Thorough threat analysis and countermeasure selection during design and maintenance 

• Applying best practices for security 

• Using separate keys and certificates for signing production code vs. development code 

• Using reliable, well-vetted cryptographic algorithms and tools 

• Selecting a signing key with adequate strength19 

• Ensuring that customer products only accept code signed with the production key 

• Applying extra security measures to the production code signing process 

• Carefully vetting any CAs and other parties trusted in the signing process 

• Using version information to prevent rollback 

• Designing in a revocation process for patches (in case they turn out to be bad) and keys (in case they are 

compromised) and checking that revocation information before the update 

• Planning for key expiration and rollover (because no key lasts forever) 

• Designing in cryptographic algorithm agility (because algorithms become weaker over time, e.g. with the 

transition to quantum-resistant cryptographic algorithms) 

All of the practices in the preceding list should be adopted by any embedded system developer. Additional practices 

for higher levels of security may include: 

• Placing the production signing key in a Hardware Security Module (HSM) to prevent extraction 

• Using a dedicated and air-gapped computer for production code signing 

• Strictly controlling physical and logical access to the production code signing system 

• Requiring multiple parties to authorize production code signing or to gain access to the production code 

signing system20 

• Carefully examining code for signs of compromise before signing it 

While these measures may seem extreme, any flaws in the security of code signing can give attackers free rein over 

the systems being updated, so these measures are justified. A best practices document is available at: 

https://www.thawte.com/code-signing/whitepaper/best-practices-for-code-signing-certificates.pdf 

3.3 Robust Distribution 
After a software update has been signed, it must be distributed to the machines that will be updated. If the 

distribution network is intermittent, devices may need to assemble updates from data received at irregular intervals 

whenever the communication link becomes available. If networks have restricted bandwidth and/or high latency, 

updates may need to be just the differences between the device’s current state and the upgraded state, instead of 

an entire upgraded state. In addition to the fundamental challenge of sending large files out to many endpoints, 

other essential challenges arise such as ensuring the identity and trustworthiness of the distribution service. 

Many organizations are concerned that updates may cause unexpected problems so they insist on performing their 

own testing before distributing updates. This adds an element of delay and another trusted party to the distribution 

system. If patching is delayed too long, endpoints may be placed at greater risk of compromise. 

 
19 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf  
20 Multi-party authorization for production code signing could be implemented with physical locks and keys, passwords, 
biometrics, electronic ledgers, or a variety of other mechanisms. 

https://www.thawte.com/code-signing/whitepaper/best-practices-for-code-signing-certificates.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
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Weaknesses in the distribution step can be exploited, even if all other security measures are properly implemented. 

For example, needed updates can be blocked or malicious commands injected into the update stream.21 

When building a robust update distribution system, recommended practices include: 

• Thorough threat analysis and countermeasure selection during design and maintenance 

• Applying best practices for security 

• Securing communications with thoroughly vetted security protocols 

• Establishing the identity and trustworthiness of the distribution service, generally through a trusted third party 

• Automating the distribution and installation of software updates to minimize the risk that updates are not 

widely distributed and installed, subject to administrative control for organizations that need to control and 

manage software updating 

• Designing software update distribution mechanisms in a manner that avoids overloading networks or servers 

• Securing administrative access to update servers to ensure that only authorized updates are distributed 

• Using established software update distribution mechanisms22 to reduce administrative workload 

• Permitting administrators to schedule updates on their organization’s systems 

• Detecting and stopping denial of service attacks on update servers or on the distribution mechanism 

All of the practices in the preceding list should be adopted by any embedded system developer. Additional practices 

for higher levels of security may include: 

• Placing the communications security keys in a Hardware Security Module (HSM) to prevent extraction 

• Authenticating endpoints to determine which updates they are authorized to receive 

• Tracking installation of updates to ensure that endpoints have been updated 

• Alerting administrators if updates cannot be installed on some endpoints 

• Permitting administrators to override user efforts to stop updates or to install updates without administrative 

approval 

• Assuming that the update servers may be compromised at some point. For this reason, endpoints should 

verify any updates downloaded from the servers and other mechanisms should be included to verify that 

updates are being properly downloaded and installed. 

3.4 Secure Update Installation 
Installing a software or firmware update on an embedded system may seem to be a simple and easy matter but 

actually there are many tricky operational and security aspects. 

Downtime is a primary concern for some embedded systems, especially those that control critical processes. 

Although steps can be taken to reduce downtime due to an update, some downtime is generally involved. For this 

reason (and to manage risks), device owners must be able to schedule updates, at least for critical devices. 

Alternatively, devices may need to accept upgrades whilst the devices are working. This typically requires 

redundancy in the device, so that part of the device can be upgraded while the rest of the device continues to 

operate, plus a way to determine when it is safe for the device to switch from existing functionality to upgraded 

functionality. Performing updates in the background may enable encrypted data to be immediately overwritten with 

updated encrypted data, avoiding the need to decrypt during the update. Yet another alternative is to employ one or 

more backup devices while the primary device is being updated. 

Software and firmware updates sometimes fail to complete successfully, for various reasons (power failure during 

update, inability to convert data or to reach external resources, etc.). Devices should be able to recover from such 

 
21 https://www.scmagazineuk.com/windows-server-update-services-open-to-attack/article/535511  
22 http://www.embedded-computing.com/dev-tools-and-os/identifying-secure-firmware-update-mechanisms-for-
embedded-linux-devices-and-open-source-options  

https://www.scmagazineuk.com/windows-server-update-services-open-to-attack/article/535511
http://www.embedded-computing.com/dev-tools-and-os/identifying-secure-firmware-update-mechanisms-for-embedded-linux-devices-and-open-source-options
http://www.embedded-computing.com/dev-tools-and-os/identifying-secure-firmware-update-mechanisms-for-embedded-linux-devices-and-open-source-options
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failures, if only by reverting to a recovery mode. Another way to do this is to use an A/B mechanism, as described in 

section 8. 

Infection of the update with malicious software and firmware is always a concern. Every possible step must be taken 

to prevent such infections, as they may result in device compromise or bricking. Mutable Roots of Trust23 must be 

especially well protected against compromise. 

Updates often require changes to data stored on the embedded system. For example, the format of a database or 

configuration file may need to change when a new version of software is installed. With restricted on-device storage 

or a desire to accommodate graceful recovery if an update fails, any complex data conversions may best be 

achieved by sending the data to the cloud or an external server for backup and conversion. 

Recommended practices for secure update installation include: 

• Thorough threat analysis and countermeasure selection during design and maintenance 

• Applying best practices for security24 

• Restricting update installation privileges and activities to a minimally sized, carefully coded, and tightly 

controlled First Update Engine (FUE, as defined in section 5.2), including protections for keys and code that 

are critical to the update process 

• Verifying updates before installation for: source authentication and authorization to make sure they come 

from a trusted update signer, integrity, appropriateness for this device, and any other necessary 

authorizations (e.g. device owner) 

• Avoiding TOCTTOU (Time Of Check To Time Of Use) attacks and similar race conditions, for example by 

ensuring that no other operations can take place while an update is occurring 

• Including a recovery process for detecting and recovering from failed or malicious updates of software and 

firmware 

• Permitting administrators to schedule updates on their organization’s systems 

All of the practices in the preceding list should be adopted by any embedded system developer. Additional practices 

for higher levels of security may include: 

• Using encrypted updates to increase the difficulty of reverse engineering updates to discover and exploit 

vulnerabilities in old code. In extreme cases (e.g., for secure processors), unencrypted code may only be 

present in tamper-resistant hardware. 

• Using physically tamper-resistant storage and/or execution for keys and code that are critical to the update 

process (e.g., the FUE and RTM) 

• Carefully designing, testing, and protecting the FUE to ensure that it can handle maliciously crafted inputs, 

thus preventing OS or other higher-level software compromise from escalating to firmware compromise 

• Countersigning updates, so even genuine updates (signed by a manufacturer) cannot be applied without 

permission from entities (such as a platform’s Administrator) with a legitimate interest in determining whether 

and when an update should be applied. 

• Ensuring that the recovery process cannot be used as a way to roll back to vulnerable firmware (e.g., by 

requiring installation of fresh firmware not just reverting to the factory configuration) 

 
23 https://trustedcomputinggroup.org/resource/tcg-glossary  
24 ETSI TS 103 645 Cyber Security for Consumer Internet of Things, 
https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_60/ts_103645v010101p.pdf  

https://trustedcomputinggroup.org/resource/tcg-glossary
https://www.etsi.org/deliver/etsi_ts/103600_103699/103645/01.01.01_60/ts_103645v010101p.pdf
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3.5 Post-Update Verification and Attestation 
Distribution systems need to determine whether an upgraded device has been properly upgraded, is functional, 

provides all its APIs, and can access networks. This verification process may include manual or automated testing 

of functionality and integrity. 

As part of this process or on an ongoing basis, device owners and manufacturers (and other parties) may wish to 

monitor the version and integrity of firmware and software installed on a device. Trusted Computing enables this 

securely through the remote attestation capability. This practice may be necessary for cases where device 

monitoring or management is needed. 

To enable attestation, a measured boot must be performed. During such a measured boot, native measurements 

(cryptographic hashes) of firmware and software are taken during the boot sequence, initially by a Root of Trust for 

Measurement (RTM), and sent to a Root of Trust for Storage (RTS). Alternatively, native measurements of firmware 

and software taken by the device are compared by the device with signed versions of measurements stored in the 

device: if they match, the device verifies the signatures using public keys stored in the device, and sends the public 

keys to the Root of Trust for Storage (instead of sending the native measurements). This option increases device 

complexity but simplifies attestation infrastructure. (See later in this section or [D-RTM].)  

After the measured boot, remote attestation can be performed. The measurements taken during boot can be 

securely sent to an attestation server via a cryptographic handshake with a Root of Trust for Reporting (RTR). The 

attestation server can compare the measurements against a set of “golden measurements” to determine which 

firmware or software is running on the device. Devices with old firmware or software can be isolated to protect them 

from infection and upgraded to the newest versions. Devices with malicious or unknown firmware or software can be 

isolated for forensic inspection. 

Golden native measurements of firmware and software are short-lived, because native measurements change 

whenever firmware or software changes. However, golden measurements are long-lived if they comprise public 

keys used by the device to verify signatures of native measurements: the public keys stay the same, irrespective of 

which version of firmware or software is installed on the device, if the same private key is always used to sign 

updates of the same firmware or software. Local policies can also be implemented (e.g., using TPM sealing or PCR-

based policies) to enable local detection of old or malicious firmware. Appropriate responses to local detection of 

such problems could include triggering a recovery mode and/or alerting the administrator via a display indication. 

When remote attestation is employed, recommended practices include: 

• Thorough threat analysis and countermeasure selection during design and maintenance 

• Follow Secure Software Development Life Cycle (SSDLC)25 practices 

• Using measured boot and remote attestation to enable remote management servers to detect and manage 

device firmware and software versions 

All of the practices in the preceding list should be adopted by any embedded system developer who employs remote 

attestation. Additional practices for higher levels of security may include: 

• Implementing network access controls to isolate devices with old, malicious, or unknown firmware or 

software versions 

• Using local policies as described above to detect improper firmware and software versions and trigger 

device recovery or at least prevent harmful behavior 

 
25 https://safecode.org  

https://safecode.org/
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3.6 Threats and Countermeasures 
 Countermeasures 

Threats Secure 
Development 

Secure Update 
Signing 

Robust 
Distribution 

Secure Update 
Installation 

Remote 
Attestation 

Compromise of 
Supply Chain 
(e.g. Compiler) 

X     

Compromise of 
Signing Keys 

 X    

Obsolescence of 
Crypto Algorithm 

 X    

Denial of 
Service on 
Update 
Distribution 

  X   

Compromise of 
Update 
Distribution 

 X  X X 

Update without 
Local Approval 

   X X 

Failed Update 
Leaving Unsafe 
Device 

   X X 

Exploit 
Vulnerability in 
Update Process 

X   X  

Table 1 - Threats and Countermeasures 
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4 HANDLING CONSTRAINED DEVICES AND OTHER CONSTRAINTS 
Embedded systems are very diverse and impose different constraints that drive a need for different solutions to be 

chosen for the secure update of software and firmware. 

Examples of such constraints are enumerated below. Section 5 describes several solutions suitable for use in such 

constrained environments. 

4.1 Device Constraints 
Depending upon the application domain and the architectural choices, the devices can have reduced computing, 

isolation, Root-of-Trust, connectivity and/or energy resources. Examples of such resources include: 

• Separation/Isolation Mechanism 

o Separate memory for secure processing 

▪ Physically separate memory 

▪ MMU separation 

▪ Cryptographic separation 

o Separate execution environments 

▪ Processes – separated by kernel 

▪ Containers – separated by kernel 

▪ Sandboxes – separated by application code 

▪ Virtual machines – separated by hypervisor 

▪ Trusted execution environment – separated by processor security  

▪ Physically separate – separate chips or cores 

• Restricted Power 

o Battery power with long life needed 

o Scavenged power 

o Intermittent power 

• Different Communications protocols and media 

o Restricted bandwidth 

o High latency 

o Broadcast/multicast (satellite) 

o One-way 

o Multi-hop or mesh 

o Intermittent or poor connectivity 

o Small message length 

• Memory size 

o Restricted Non-Volatile Storage 

o Restricted Volatile Storage 

o Subject to wear-out 
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• Processor 

o Low speed 

o Low word length 

o Lack of cryptographic acceleration primitives (see the note at the end of this section) 

• Availability of Device Security Mechanisms 

o TPM 

o DICE 

o Firmware Update Latch 

o Crypto accelerator 

o Secure storage 

o FUE (First Update Engine) 

o RTM (Root of Trust for Measurement) 

The design process for these devices can also involve constraints: 

• OS and Language properties 

o Strong types 

o Automatic memory management 

o ASLR 

o Protection against buffer overflows 

The production process for the devices is a source of additional constraints: 

• Manufacturing and logistics constraints 

o Per-device customization 

o Per-device identity 

o Untrusted manufacturing line 

o Untrusted shipping and logistics 

o Untrusted component suppliers 

• Cost constraints 

o Restricted budget 

Note: In the specific context of Trusted Computing, the ability to perform computing-intensive asymmetric 

cryptography has a tremendous impact on the ability to deploy PKI and the use of X.509 certificates: 

- A device that cannot support asymmetric cryptography imposes the storage of secret keys in the managing 

entity (usually a server) and therefore the need to increase its security. 

- A device that supports asymmetric cryptography can lack the full support of X.509 certificate management. 

In such case, the managing entity will include some middleware to translate X.509 certificates into a simpler 

protocol supported by the embedded device. 

- A device that comprises the resources to fully support X.509 certificates will remove the need to offload PKI-

related functions. 

4.2 System Constraints 
The environment and the system can also set constraints on the secure update solution: 

• Environmental constraints 

o Subject to tampering 
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• Administrative issues 

o Ability to schedule downtime 

o Availability of skilled administrative staff 

o Availability of physical access to device 

o Need to retest or recertify after update 

• Lifecycle issues 

o Availability of manufacturer support 

4.3 Application Requirements 
Finally, the application domain can also involve specific constraints. 

• Long product lifetime 

o Implies need for high MTBF 

o Implies increased maintenance and obsolescence management 

• Real-time responsiveness 

o Need to respond to interrupts or events within a certain period of time 
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5 SOLUTIONS FOR CONSTRAINED DEVICES 
This section presents several solutions to support recommendations identified in section 3 for embedded devices 

that have some of the constraints enumerated in section 4. For further reading, section 7 evaluates these solutions 

and section 8 presents a few alternative solutions. 

5.1 Isolation 
Secure computing depends on engines (software and/or hardware components) that perform dedicated and critical 

functions. These engines are protected from interference by isolation. An engine may be isolated via any 

combination of physical and logical mechanisms that provide the necessary level of protection.  

Physical isolation operates all the time. The construction of a physically isolated engine, and the construction of the 

mechanisms that provide a logically isolated engine, must be sufficient to repel the physical attacks that the host 

platform is specified to resist. Physical isolation of an engine may also be sufficient to repel logical interference with 

that engine, provided the engine cannot be subverted via its interface. Depending on the degree of isolation that is 

required, physical isolation may entail physical constructs that hinder and detect interference, and/or physical 

protection provided by the platform’s environment (a guarded and locked room, say). Physical protection may 

include protection against side-channel attacks. 

Logical isolation operates only when the host platform is operating. Logical isolation relies upon physical isolation, 

because logical mechanisms are ultimately provided by a physical construct with a physical boundary. Logical 

isolation mechanisms must be properly implemented, and sufficient to repel the logical attacks that the host platform 

is specified to resist. Logical isolation mechanisms include (in no particular order) processor execution modes, micro 

kernels, hypervisors, virtualization, sandboxing, and trusted execution environments. 

5.2 Generic First Update Engine (FUE) 
This section describes properties of an Update Engine that affect the trustworthiness of a platform. 

An Update Engine is an engine26 in a platform that, because of the platform’s architecture, can modify the behavior 

of one or more engines in the platform. Typically, an Update Engine modifies behavior by modifying a stored image 

of the software that executes on a processing engine. 

If a platform has a hierarchy of Update Engines, a subordinate Update Engine can be updated by a superior Update 

Engine. The root of a hierarchy of Update Engines, or the only Update Engine in a platform that doesn’t have a 

hierarchy of Update Engines, is a First Update Engine. An updateable First Update Engine must be able to update 

itself, as well as updating other engines. 

There are three implementation scenarios and two classes of First Update Engine: 

1. If the host platform is not a Trusted Platform (one that does not use TCG’s Roots of Trust)27, the First 

Update Engine must be a Root-of-Trust (for update) because any misbehavior of the First Update Engine 

cannot be detected. This First Update Engine is a Root-of-Trust-for-Update. 

2. If the host platform is a Trusted Platform and a First Update Engine updates a TCG Root-of-Trust, the First 

Update Engine must be either an integral part of a TCG Root-of-Trust, or a TCG Root-of-Trust in its own 

right, because misbehavior of the First Update Engine cannot be detected. This First Update Engine is a 

Root-of-Trust-for-Update. 

 
26 An engine is a set of processing resources that performs an action. 
27 A Trusted Platform is “a platform that uses Roots of Trust to provide reliable reporting of the characteristics that 
determine its trustworthiness”. See TCG’s Glossary http://trustedcomputinggroup.org/resource/tcg-glossary  

http://trustedcomputinggroup.org/resource/tcg-glossary
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3. If the host platform is a Trusted Platform and a First Update Engine cannot update a TCG Root-of-Trust, the 

First Update Engine is not a Root-of-Trust, because misbehavior of that First Update Engine can be 

detected via PCRs, sealing and attestation. This First Update Engine is called a Trusted Updater. 

Figure 2 illustrates an instance of a First Update Engine, updating itself and updating software in a platform that is 

not a Trusted Platform. 

 

Figure 2 - Updating a platform that is not a Trusted Platform 

Figure 3 illustrates a typical instance of a Trusted Platform where a First Update Engine is updating itself and 

updating a Root-of-Trust, and another instance where a First Update Engine is updating itself and updating 

software. 
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Figure 3 - Updating a Trusted Platform 

It is essential that an Update Engine is sufficiently isolated from interference, so the Update Engine can always be 

relied upon to correctly update itself and update other engines. As such, it is often advantageous to perform updates 

as soon as a platform boots. This is because nothing can interfere logically with an Update Engine if updates are 

done before any other engine executes on the platform, provided the Update Engine finishes updating and is 

disabled before other engines start executing on the platform. 

An update to an engine must itself be signed by the manufacturer (or proxy) of the engine that is about to be 

updated. This is to ensure that an update is not an attack. Each engine that is capable of being updated should be 

provisioned with its manufacturer’s public key, or (more likely) a hash of the manufacturer’s public key, to minimize 

storage space. The manufacturer’s public key (or hash) must be protected from unauthorized modification to prevent 

subversion of the update process. If an engine cannot provide that protection, the Update Engine must protect the 

engine manufacturer’s public key (or hash) on behalf of the engine.  

During an update, the Update Engine is loaded with: 

• a manufacturer’s public key 

• an identifier of the engine to be updated 

• the update package 

• a signature over the identifier and update package that is signed with the manufacturer’s private key 

The Update Engine hashes the manufacturer’s public key and verifies that the hash of the manufacturer’s public 

key28 matches the hash stored in the engine that is about to be updated. Then the Update Engine uses the 

 
28 the public key supplied with the update 
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manufacturer’s public key to verify the signature on the update package. Finally, the Update Engine applies the 

update package to the engine that is being updated. 

Provisioning engines with their manufacturer’s public key eliminates the necessity for Update Engines to parse a list 

of certificates back to a root certificate. This is advantageous because certificate parsing is very complex and 

implementations can be vulnerable to maliciously crafted input data intended to trick an Update Engine into 

accepting a rogue public key and hence applying a rogue update package. 

The manufacturer’s public key (or hash) in an updateable engine must be replaced when a manufacturer’s private 

key is compromised. If a platform can be updated before rogues have the opportunity to exploit the compromise, it 

may be safe to use the compromised key to authorize installation of a replacement manufacturer’s public key (or 

hash). It is safer, however, to install an ordered list or hierarchy of public keys (or their hashes) in an engine, instead 

of just a single manufacturer’s public key (or hash): then a superior key can authorize replacement of compromised 

subordinate keys. One simple implementation of such a mechanism is a list of public keys (or their hashes) in an 

engine, where compromised keys are removed from the list when a subsequent key is used to sign an update 

package.  

An update to an engine may additionally be signed by entities such as the host platform’s Administrator. This 

enables an Administrator to control if and when a genuine update should be applied, i.e. the Update Engine must 

refuse to update an engine unless all signatures are present and valid. An alternative implementation may be 

preferred when a host platform has a Trusted Computing Base29 (TCB) that can gate access to engines. If a host 

platform can implement a secure wrapper (such as a TCB) around Update Engines, the wrapper could verify 

additional signatures on an update before submitting the update to the Update Engine, which verifies just the 

manufacturer’s signature on the update. 

While these previous descriptions of the update process assume asymmetric cryptographic signatures, other 

techniques can also be used to verify approved updates. All these techniques have their normal advantages and 

disadvantages, which are not specific to approving an update. Table 2 illustrates some of the usual advantages and 

disadvantages of some techniques for approving an update. 

Technique used to verify 
permission to apply an update 

Advantages Disadvantages 

Verify asymmetric signatures on the 
update 

Easy remote approval, because a 
signature doesn’t need to be 
protected in transit. 
Less complex infrastructure, 
because just one secret per signer 
must be protected. 

More resources are required 
because asymmetric cryptography 
engines are more complex than 
symmetric cryptographic engines 

Verify symmetric signatures 
(HMAC) on the update 

Easy remote approval because a 
signature doesn’t need to be 
protected in transit. 
Fewer resources are required 
because symmetric cryptography 
engines are less complex than 
asymmetric cryptographic engines 

More complex infrastructure 
because one secret per 
signer/verifier pair must be 
protected. 
Greater risk because all copies of 
the symmetric key must be 
protected. 

 
29 Lampson et. al [LAMPSON] define the TCB as “a small amount of software and hardware that security depends on and 
that we distinguish from a much larger amount that can misbehave without affecting security.” 
The Orange Book [ORANGE-BOOK] defines the TCB as “the totality of protection mechanisms within it, including 
hardware, firmware, and software, the combination of which is responsible for enforcing a computer security policy.” 
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Technique used to verify 
permission to apply an update 

Advantages Disadvantages 

Use Physical Presence to approve 
an update (verify that a switch has 
been operated, say) 

Minimal resources are required 
because no cryptographic engines 
are involved 

No remote approval because 
reliably verifying a distant action is 
usually impractical 
More complex infrastructure 
because each update must be 
protected in transit to the platform, 
to ensure that the applied update is 
genuine and relevant 

Table 2 - Assessment of Update Techniques 

Update packages should include a version number, in order to prevent engines being updated with genuine-but-old 

update packages that have known weaknesses. The version number of updated instructions must be greater than 

the version number of current instructions in an engine, so Update Engines should compare the version number of 

the updated instructions against the version number of the current instructions in an engine. If an update is found to 

cause problems, the update should be reversed by creating and applying a (remedial) update package that is the 

same as a prior update package, with the exception that this remedial update package has a version number 

greater than the problematic update. It is critical that version numbers for the update be included in a portion of the 

update package that is signed and not located in a header or some other potentially unverified location. 

Update Engines do not necessarily enforce increasing version numbers in updates to critical engines, and might be 

able to apply update packages with smaller version numbers to critical engines.  This exception to the general rule 

might be necessary for critical engines that cannot remain unavailable for the time required to create a remedial 

update package, even though allowing smaller version numbers exposes engines to rollback attacks. 

In some cases, an update should not be applied to an engine unless the host platform has obtained permission from 

the platform’s administrator. This is because the act of applying the update might cause problems: 

• unacceptable (albeit temporary) loss of service, which could cause danger if the platform performs a safety-

critical function 

• the functionality of the resultant updated platform might be unacceptable to the owner/administrator 

Also, the additional functionality or benefits of the update to the platform might be of no interest to the 

owner/administrator. If an administrator decides not to apply an update, the administrator may need to accept 

liability for the consequences. 

The method of obtaining permission for an update depends on individual circumstances. In some cases, but not in 

cases such as M2M (machine-to-machine) IoT, physical interaction with a platform may be practical and sufficient. 

In other cases, a platform with an existing ability to recognize administrator commands may require such a 

command before initiating an update, or may require update packages to be counter-signed by the administrator. 

Permission may also involve a legal agreement between the manufacturer and the platform’s owner/administrator.  

It may be important for the host platform to be able to prove that it contains a First Update Engine. For example, to 

know whether a platform can be reliably updated and what entity is able to update a platform. If a First Update 

Engine is part of an existing Root-of-Trust and updates that RoT, the First Update Engine is implicitly included in 

and endorsed by the RoT’s endorsement, whatever that might be. Otherwise, a First Update Engine could be 

endorsed via its own Endorsement Certificate, or a First Update Engine in a Trusted Platform could be measured 

and reported via a RTM and TPM. A First Update Engine never needs to parse its own Endorsement Certificate: 

only third parties need to parse a First Update Engine’s Endorsement Certificate to decide whether the First Update 

Engine can be trusted. 
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Update Engines provide several of the platform capabilities that are recommended in this reference document. As 

explained in this section, Update Engines verify updates before applying updates and prevent rollback attacks. In 

addition, Update Engines may also help by decrypting update packages, detecting failed updates, and initiating 

recovery from failed updates. Update Engines therefore can implement many of the recommended practices 

described in section 3.4, such as restricting update installation privileges and activities to a minimally sized, carefully 

coded, and tightly controlled Engine, verifying updates before installation, permitting administrators to schedule 

updates, using encrypted updates, and ensuring that the recovery process cannot be used as a way to roll back to 

vulnerable firmware. Update Engines can also address the threat “Update without Local Approval” described in 

section 3.6. 

Update Engines in conjunction with other technological building blocks can implement recommended practices. 

Some such aspects are described in section 5.3, section 5.4, and section 5.5. The merits of these combinations are 

summarized in section 7. 

5.3 Firmware Update Latch with First Update Engine 
The firmware update latch is a mechanism that prevents the firmware from being modified outside the FUE, thus 

minimizing the risk of unauthorized changes to firmware. Such a mechanism is described in section 3.1 of 

[NISTSP800-147]. Figure 4 is a diagram illustrating a typical FUE and firmware update latch: 

 

Figure 4 - Firmware Update Latch with FUE 

While there are many ways to implement a firmware update latch, a simple method is to have the FUE run early in 

the boot sequence. When the FUE has completed its work, it write-protects the firmware, typically by flipping a write-

protection bit in a manner that cannot be reversed without a reboot. This mechanism ensures that only the FUE or 

firmware that runs earlier in the boot sequence can modify the firmware. Software and firmware that runs after the 

FUE may be able to request updates to the firmware by placing the updates into some special location and 
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rebooting so that the FUE will find, verify, and install the updates. But code that runs after the FUE cannot directly 

update the firmware. 

More sophisticated implementation methods may involve an FUE that can be invoked without needing to reboot, 

perhaps involving entry into a trusted execution mode. Those methods require a more sophisticated method of 

unlocking the firmware update latch so that the FUE can perform a firmware update while minimizing the risk of 

interference from attackers who want to inject malicious updates. At this time, several proprietary mechanisms exist 

that can be used for this purpose. 

Following sections will evaluate the Firmware Update Latch with FUE relative to the capabilities recommended in 

sections 3.4 and 3.5. 

5.3.1 Capability “Restrict updates to minimal FUE” 
By definition, the firmware update latch provides this capability. However, it’s a simple tool that must be used 

properly by the system designer. The system designer must ensure that the FUE is carefully coded and minimized 

to prevent attackers from exploiting bugs and vulnerabilities in the FUE to maliciously modify firmware. 

In order to protect keys and code that are critical to the update process from unauthorized modification, those keys 

and code will need to be included in the memory that is protected by the firmware update latch. 

5.3.2 Other Capabilities 
Most of the other capabilities listed in sections 3.4 and 3.5 will depend on the capabilities provided by the FUE and 

can be implemented by a carefully written FUE with supporting services. For example, the FUE may or may not 

include the ability to decrypt updates. 

However, several of the capabilities listed will require more than just a well-written piece of FUE code. In particular, 

specialized hardware support will generally be required to implement physically tamper-resistant storage or 

execution for critical keys and code or to implement remote attestation. 

5.4 Device Identifier Composition Engine with First Update Engine 
The goal of DICE technology, specified by the TCG, is to develop approaches to enhancing security and privacy 

with minimal silicon requirements. It combines simple silicon capabilities and software techniques to establish a 

cryptographically strong device identity, attest software and security policy, and assist in safely deploying and 

verifying software updates. A DICE is an engine that is relied upon to HMAC or hash a device’s secret (the Unique 

Device Secret) with the measurement of the first mutable code that executes on the device when the device boots. 

The resultant signature or digest is called a Compound Device Identifier (CDI). The measured first mutable code can 

use the CDI to create cryptographic keys via a Key Derivation Function. As long as the first mutable code properly 

restricts access to the CDI, one such cryptographic key (statistically) uniquely identifies both the specific device and 

the first mutable code that booted on the device. Another cryptographic key derived with the CDI can unseal data 

belonging to the first mutable code on that particular device. 

Usually, the FUE associated with a DICE is mutable software that is measured by the DICE and incorporated into 

the CDI. A DICE alone cannot provide a full secure update mechanism, but rather the DICE can provide 

fundamental primitives that an FUE can leverage to implement secure update. 

5.4.1 Capability “Verify updates” 
The measurement and identity provided by DICE can be used in several ways to enhance the security of the FUE. 

First, if the manufacturer’s public key is part of the FUE, the CDI derived from measuring the FUE will include and 

reflect the correctness of that public key. Second, the CDI can be used to derive a secret used to calculate an 

HMAC across the update package. This can be used for online verification of the update package and the device 

identity. 
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5.4.2 Capabilities “Failed update detection” and “Recovery from failed update” 
If an update of the first mutable software fails, the resultant CDI will not match the expected value. This CDI 

mismatch can provide evidence that the update has failed. This CDI mismatch can be detected locally via sealed 

values (which can no longer be unsealed) or detected remotely via failed authentication. Recovery from failed 

update can be aided by the detection mechanisms just described, but it will be dependent on other mechanisms to 

trigger recovery. 

5.4.3 Capability “Decrypt updates” 
The DICE engine provides several fundamental capabilities that can be used to implement update decryption. For 

example, the key used to decrypt the update can be derived from the CDI. 

5.4.4 Capability “Measure and attest” 
The DICE supports the capabilities needed to measure and attest to the integrity of the software and firmware on 

the platform. Measurements are performed during the boot sequence, and the device’s CDI and secret keys are 

derived. 

Attestation may be performed in several ways. The document “Implicit Identity Based Device Attestation”30 

describes one mechanism, whereby an extension within an X.509 certificate provides verification of device integrity. 

Because this mechanism uses X.509 certificates, it’s highly compatible and interoperable with existing infrastructure. 

5.5 Trusted Platform Module with First Update Engine 
The Trusted Platform Module (TPM) includes a set of Roots of Trust specified by the TCG. This section presents the 

benefits of using a TPM to achieve some capabilities identified in sections 3.4 and 3.5, as well as the main TPM 

commands involved. Some capabilities presented herein, such as the decryption of a payload, cannot be handled by 

a TPM prior to the 2.0 family. 

Software TPMs support the TPM 2.0 library of commands [TPM2L] like hardware TPMs. Software TPMs are 

presumed to be executed on the same processor as the device main functionality. The security features presented 

below assume that TPM sensitive elements, like secret and private keys, are not accessible by the main software 

running on the processor. This implies that the TPM is isolated as presented in section 5.1. 

Hardware TPMs assure such isolation by design as they are physically distinct from the main processor. They also 

typically include crypto-accelerators and hardware random number generators. The acceleration factor may 

however be decreased by the transfers between the TPM and the main processor. 

A TCG Software Stack (TSS)31, some of which are open-source, makes it easier to develop an application that 

includes a TPM. 

5.5.1 Capabilities “Decrypt updates” and “Tamper protect critical code & keys” 
These capabilities can be achieved by leveraging the TPM’s ability to safeguard cryptographic keys and decrypt 

payloads. The update images are symmetrically encrypted for their transport between the update distribution server 

and the device. The symmetric encryption key is asymmetrically encrypted for its distribution to the TPM. The critical 

keys are protected by the TPM and are not available as plaintext in the processor memory space. 

For the avoidance of doubt, the TPM does not protect the confidentiality or integrity of the application code at rest in 

the device memory. Firmware update latches (cf. section 5.3) can be used in addition to protect this integrity. Such 

protection can optionally be controlled by the use of PCRs (Platform Configuration Registers) that record the 

measurements of previously loaded configurations and firmware. 

 
30 https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation  
31 https://trustedcomputinggroup.org/work-groups/software-stack  

https://trustedcomputinggroup.org/resource/implicit-identity-based-device-attestation
https://trustedcomputinggroup.org/work-groups/software-stack
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The main steps here are: 

• The genuine TPM is first enrolled with the distribution server (refer to section “13.8.1 Taking Ownership” of 

[TPM2L] part 1). 

• The symmetric decryption key (i.e. a symmetric key that can only be used for decryption by a TPM) is sent 

encrypted to the TPM and recorded in its protected storage with the TPM2_Load() command. It can later be 

updated the same way. 

• The payload can then be decrypted with the symmetric key using the TPM2_EncryptDecrypt() command. 

• Additionally, a policy based on a PCR can disable the use of the symmetric key if the measurement of 

previously loaded firmware, such as the FUE, does not match the expected value. Such a policy is defined 

using the TPM2_PolicyPCR() command. 

• Several PCR values can be declared via the TPM2_PolicyOR() command that allows the combination of 

policies. 

The level of tamper protection of the keys loaded in a software TPM will be directly bound to the assurance level of 

the isolation of the software TPM. The level of tamper protection of the keys loaded in a hardware TPM will 

generally be attested by a Common Criteria certificate32. 

5.5.2 Capability “Verify updates” 
The TPM can verify signatures using the TPM2_VerifySignature() command. Both asymmetric signatures and 

symmetric authentication codes (HMAC) can be verified via this command. 

The transport of the secret key used for HMAC verification can be encrypted all along its transfer from the update 

server to the TPM and be loaded using the TPM2_Load() command into the TPM. The secret key will never appear 

in cleartext in the main processor address space. 

In the case of asymmetric signature verification, the TPM does not need to provide additional security as public keys 

are used. However, hardware TPMs can provide acceleration for this operation. 

5.5.3 Capabilities “Measure and attest” and “Detect failed updates” 
The TPM natively supports the measurement and attestation capabilities, provided the platform includes the 

supporting infrastructure, such as a CRTM (code root-of-trust for measurement). The DICE technology (cf. section 

5.4) can offer such a service. 

To perform measurements, the object to be measured is hashed (either by the main processor or via the 

TPM2_Hash() command). This hash and subsequent hashes are then extended into a PCR (Platform Configuration 

Register) using the TPM2_PCR_Extend() command. 

The use of TPM objects can be bound to a specific PCR value with a policy using the TPM2_PolicyPCR() 

command. Several PCR values, representing several authorized versions, can be declared via the 

TPM2_PolicyOR() command. 

The remote attestation capability based on PCR is achieved using the TPM2_Quote() command. The attestation 

can be used to detect failed updates. 

Software TPMs can support this provided they have been loaded and activated before the objects that they need to 

measure. As an illustration, this will presumably be applicable to applicative firmware/software but not to the boot 

loader. 

 
32 The protection profiles of PC Client and Automotive-Thin hardware TPMs target the EAL4+ evaluation assurance level. 
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5.5.4 Capability “Restrict updates to minimal FUE” 
This section mostly applies to hardware TPMs. 

In this capability, the intention is to ensure that only the genuine and trusted FUE can write a new image into the 

processor memory. This is achieved by disabling write access at start up, and then enabling write access when the 

FUE has been measured and is in its expected state. Write access is then disabled in the final stages of the FUE 

before passing the control to the application. 

To achieve this write control, a GPIO line controlled by the TPM can be used to enable or disable write accesses to 

the areas of the external memory that contains the firmware or software. External hardware support is required. 

GPIO lines are controlled by the TPM as NV indices. The primary command is TPM2_NV_Write(). To perform the 

desired functionality, a policy based on the PCR that measures the FUE is asserted via the TPM2_PolicyPCR() 

command. Several PCR values, representing several authorized versions, can be declared using the 

TPM2_PolicyOR() command that allows the combination of policies. 

After the FUE has written the image to its memory space, the write access is deactivated. Further activation of this 

write access is prevented via the TPM2_NV_WriteLock() command. Proper attributes should be set so that this lock 

persists only until the new start up. 

Software TPMs are not expected to manage GPIOs. Alternative solutions using isolation techniques described in 

section 5.1 are usually preferred. 
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6 CONCLUSION 
The designer of each embedded system must assess the attacks that they must resist and the consequences of a 

successful attack. This assessment will help them to weigh the costs and benefits of the various secure update 

approaches, finding one that provides adequate protection for their system. 

A system is only as secure as its weakest link. 

A firmware update latch with FUE provides a large amount of value while adding only a small amount of complexity. 

Adding a DICE provides additional benefits for secure updates, such as local and remote attestation. And using a 

TPM goes beyond the benefits of DICE, adding secured storage, random number generation, etc. The protections 

provided by a hardware TPM considerably exceed those that can be provided by a software TPM due to the lack of 

tamper-resistance and generally late start time for the software TPM. 
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7 SOLUTION EVALUATION 
This section illustrates the degrees to which building blocks described in section 5 satisfy the constraints and 

requirements of section 4. These assessments are subjective, not definitive, so individual readers’ own 

assessments may differ from these assessments. 

7.1 Capabilities 

7.1.1 Critical capabilities for platform updates 
The capabilities in Table 3 are critical capabilities for platform software and firmware updates. 

Critical Capability FW Update Latch 
with FUE 

DICE with FUE SW TPM with FUE HW TPM with FUE 

Restrict updates to 
small FUE 

Yes No, unless another 
mechanism is 
provided 

No, unless another 
mechanism is 
provided 

Yes, can create 
latch w GPIO & 
policy based on 
PCRs 

Verify updates Depends on FUE Depends on FUE Depends on FUE Yes, can use TPM 
to verify signature 

Detect failed update Depends on FUE Yes FUE may detect 
failed update but 
SW TPM can't help 
because not 
available early in 
boot 

Yes, with attestation 

Recover from failed 
update 

Depends on FUE Depends on FUE FUE may recover 
from failed update 
but SW TPM can't 
help because not 
available early in 
boot 

Depends on FUE 

Table 3 - Critical Capabilities for Updates 

7.1.2 Desirable capabilities for platform updates 
The capabilities in Table 4 are desirable for platform software and firmware updates. 

Desirable 
Capability 

FW Update Latch 
with FUE 

DICE with FUE SW TPM with FUE HW TPM with FUE 

Decrypt updates Depends on FUE Depends on FUE Yes, with 
TPM2_EncryptDecrypt 

Yes, with 
TPM2_EncryptDecrypt. 
Also, TPM can protect 
symmetric decryption 
key. 

Tamper protect 
critical code & keys 

No Can't prevent 
tamper but may 
detect 

Depends on the 
isolation solution 

Yes, for keys. Code 
(FUE) protection 
depends on external 
mechanism such as a 
latch. 

Prevent rollback 
attacks 

Depends on FUE Depends on FUE Depends on FUE Depends on FUE 

Measure & attest No Yes, a particular 
strength 

Yes, but depends on 
security of isolation 
solution and 
underlying code 

Yes, assuming the 
supporting 
infrastructure (RTM, 
etc.) is in place 
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Table 4 - Desirable Capabilities for Updates 
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8 OTHER SOLUTIONS 
This section describes and evaluates some other software and firmware update mechanisms that are popular in 

embedded systems. Further, it describes how these mechanisms can be used with TCG technologies. 

8.1 A/B Updates 
A/B updates (e.g., [Android A/B]) use two sets of partitions to store the software in non-volatile storage, referred to 

as slots A and B. At any point in time, the system is only running code from one of these slots: the “current” slot, as 

illustrated in Figure 5. This approach makes updates more fault resistant. If an update fails, the older code is 

available in the other slot as a fallback. This is especially attractive when the code being updated is so fundamental 

that no underlying component can reinstall it if the update fails. 

 

Figure 5 - A/B Updates 

Updates can run either in full or streamed fashion. Full updates must be completely downloaded into another 

storage area (e.g., a data directory). Then they can be run and will write a new system image to the unused slot. 

Streaming updates write blocks directly to the unused slot as they are downloaded, without having to store the 

blocks in the data directory. Thus, streaming A/B updates only need a small amount of temporary storage for 

metadata. 

One of the primary advantages of A/B updates, also known as seamless updates, is that they ensure a workable 

booting system remains on the disk during an over-the-air (OTA) update. This approach reduces the likelihood of a 

bricked device after an update. A second advantage is that OTA updates can occur while the system is running and 

functioning. In cases where the update operation fails, the system will fall back to the current slot. 

One of the primary disadvantages of A/B updates is that they require enough storage to hold two copies of the 

system image. The storage used by the inactive image is “wasted” most of the time. Another disadvantage of this 

technique is that rebooting after an update may take longer than normal if special validation procedures must be 

performed on the new image. Optimizations may reduce this slowdown, for example by performing the validation 

steps before the reboot. A repeatedly failed A/B update may cause a system to stick at a vulnerable version, 

necessitating some remediation mechanism. 
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Using TPM and DICE with A/B updates can provide several additional benefits. TPM can be used to protect the 

keys used to decrypt or verify updates and to verify signatures. TPMs are an excellent source of random numbers. 

DICE can be used to measure boot code and to restrict access to data to certain software if that data was encrypted 

with a derived key. A TPM can do this also using sealing. 

8.1.1 Capability “Verify updates” 
Verification of updates is commonly done in A/B update systems. However, if this verification is done by application 

or operating system code instead of by the FUE or some other highly trusted code, the verification checks may be 

bypassed by malware that infects the OS or update application. To relieve these substantial security issues, update 

verification should be done by highly trusted code. This can happen after the update has been installed and a reboot 

triggered but this will slow down boot time after an update. Alternatively, some systems may be built to perform 

update verification using highly trusted and protected mechanisms but in parallel with normal operation before the 

update code is activated. 

8.1.2 Capabilities “Failed update detection” and “Recovery from failed update” 
A/B updates excel at recovery from failed updates because fallback to the inactive system image is relatively simple 

compared to in-place updates. 

Detecting failed updates can be done via a variety of mechanisms such as post-update checks of integrity or 

functionality. If the updated system fails these checks, recovery can be triggered. 

8.1.3 Capability “Decrypt updates” 
For A/B updates, the advantages and challenges of decrypting updates are not substantially different from other 

update mechanisms. 

8.1.4 Capability “Measure and attest” 
With A/B updates, the advantages and challenges of update measurement and attestation are not substantially 

different from other update mechanisms. 

8.2 Verified Boot 
Verified Boot (e.g., [Android AVB]) strives to ensure all executed code comes from a trusted source, rather than 

from an attacker or corruption. It establishes a full chain of trust, starting from a hardware-protected root of trust to 

the bootloader, to the boot partition and other verified partitions including system, vendor, and optionally OEM 

custom partitions. During the device bootstrap sequence, each stage verifies the integrity and authenticity of the 

next stage before it hands off execution and control to that stage. Verified boot may also include anti roll-back 

protection mechanisms. 

While verified boot is not an update mechanism per se, it is a technique that can be used in conjunction with many 

update mechanisms. As noted in section 3.4, update verification is an essential step in the update process. Even if 

the update was verified before installation, there is great value in verifying the integrity and authenticity of the 

system image during every boot sequence. This mechanism can detect unauthorized changes to firmware or 

software and also as a way to verify that an update was successful and resulted in authorized code. 

In some cases, device manufacturers can use verified boot to restrict which software can run on a particular device. 

However, this is not the only way that it can be used. If the device owner controls the policies and trust anchor 

certificates used to verify the software and firmware, they can use verified boot to ensure that their own preferences 

are complied with. 



 TCG Guidance for Secure Update of Software and Firmware on Embedded Systems 

 

TCG Guidance for Secure Update of Software and Firmware on Embedded Systems  |  Version 1.0  |  Revision 72  |  2/10/2020  |  Published  Page 33    © TCG 2020 

9 RELATED DOCUMENTS AND STANDARDS 
Several standards and guidelines have been published in recent years pertaining to secure software and firmware 

update for embedded systems and more are in development. NISTIR 8200 provides a good summary of relevant 

standards in this area. 

9.1 NIST SP 800-147 
NIST SP 800-147 BIOS Protection Guidelines focused on PCs whereas this document focuses on embedded 

systems. Some of the differences between PCs and embedded systems are: 

• Limits on power consumption in some embedded systems 

• Lower compute and storage capabilities in some embedded systems 

• Stricter uptime requirements in some embedded systems 

• Stricter real-time requirements in some embedded systems 

• Strictly controlled software stack on most embedded systems 

• Strict controls on boot time (which applies to both PCs and embedded systems) 

9.2 SOG-IS 
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-note-on-security-requirements-on-code-loading-

v1.0.pdf  

SOG-IS is the European recognition agreement for CC certification. SOG-IS is publishing mandatory or guidance 

documents in order to support CC evaluation; some of them are adopted at CCRA level which is the international 

recognition agreement (not this reference). This reference is CC oriented but it starts from general security 

principles that could be a good source of inspiration. 

https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-note-on-security-requirements-on-code-loading-v1.0.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-note-on-security-requirements-on-code-loading-v1.0.pdf
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11 TERMINOLOGY 
Here is a list of acronyms and terminology used in this document. See the TCG Glossary [GLOSSARY] for 

definitions of TCG terms. 

ASLR Address Space Layout Randomization 

CA Certificate Authority 

CDI Compound Device Identifier 

CVE Common Vulnerabilities and Exposures 

DDoS Distributed Denial of Service 

DoS Denial of Service 

DICE Device Identifier Composition Engine 

D-RTM Dynamic Root of Trust for Measurement 

FUE First Update Engine 

GPIO General Purpose Input Output 

HMAC Hash-based Message Authentication Code 

MMU Memory Management Unit 

MTBF Mean Time Between Failure 

PCR Platform Configuration Register 

PKI Public Key Infrastructure 

PLC Programmable Logic Controller 

RoT Root of Trust 

RTM Root of Trust for Measurement 

RTR Root of Trust for Reporting 

RTS Root of Trust for Storage 

SSDLC Secure Software Development Life Cycle 

TPM Trusted Platform Module 

TOCTTOU Time Of Check To Time of Use 

Trusted Computing Base Lampson et. al [LAMPSON] define the TCB as “a small 
amount of software and hardware that security 
depends on and that we distinguish from a much larger 
amount that can misbehave without affecting security.” 
The Orange Book [ORANGE-BOOK] defines the TCB 
as “the totality of protection mechanisms within it, 
including hardware, firmware, and software, the 
combination of which is responsible for enforcing a 
computer security policy.” 

Trusted Platform See TCG’s Glossary [GLOSSARY] 

Update Engine An engine in a platform that can modify the behavior of 
one or more engines in the platform 
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