
CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft © TCG
2020

CPU TO TPM BUS PROTECTION
GUIDANCE – ACTIVE ATTACK
MITIGATIONS

 Version 1.0
Revision 30
May 8, 2023

Contact: admin@trustedcomputinggroup.org

Draft

R
E
F
E
R
E
N
C
E

mailto:admin@trustedcomputinggroup.org

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page ii
 © TCG 2020

DISCLAIMERS, NOTICES, AND LICENSE TERMS
THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, DOCUMENT OR SAMPLE.
Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use
of information in this document and to the implementation of this document, and TCG disclaims all liability for cost of
procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of use
or reliance upon this document or any information herein.
This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted
herein other than as follows: You may not copy or reproduce the document or distribute it to others without written
permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG
documents or (b) developing, testing, or promoting information technology standards and best practices, so long as
you distribute the document with these disclaimers, notices, and license terms.
Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on patent licensing through
membership agreements.

Any marks and brands contained herein are the property of their respective owners.

http://www.trustedcomputinggroup.org/

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page iii
 © TCG 2020

CHANGE HISTORY

REVISION DATE DESCRIPTION

V1.0 R30 May 8, 2023 Initial Publication

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page iv
 © TCG 2020

CONTENTS
DISCLAIMERS, NOTICES, AND LICENSE TERMS .. ii

CHANGE HISTORY ... iii
Contributors .. 0

1 SCOPE ... 2

2 Problem statement .. 3

3 Protecting a sealed secret using an NV Index ... 4

3.1 Goal ... 4

3.2 Assumptions.. 4

3.3 Design ... 4

3.4 Provisioning the NV Index .. 5

3.5 Sealing the application secret ... 6

3.6 Usage in Early Boot .. 6

3.7 Unsealing the application secret ... 6

3.8 Summary ... 7

3.9 References .. 7

3.10 Sample script .. 8

3.10.1 Sequence Diagrams for Sample Scripts using ibmtpm20tss ... 8

3.10.2 Implementation using ibmtpm20tss .. 11

3.10.3 Sequence diagrams using tpm2-software .. 20

3.10.4 Implementation using tpm2-software .. 24

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft © TCG
2020

Contributors
TCG would like to thank the following contributors to this document.

Robert Strong Advanced Micro Devices, Inc.
Alex Tzonkov Advanced Micro Devices, Inc.
Michael Zhang Advanced Micro Devices, Inc.
Jen Ye Advanced Micro Devices, Inc.
Frederick Otumfuor AMI
Stuart Yoder ARM Ltd.
Monty Wiseman Beyond Identity
Scott Phuong Cisco
Marc Beamon Dell, Inc.
Travis Gilbert Dell, Inc.
Amy C Nelson Dell, Inc.
Jason Kolodziej Dell, Inc.
Michael Eckel Fraunhofer Institute for Secure Information Technology (SIT)
Henk Birkholz Fraunhofer Institute for Secure Information Technology (SIT)
Jeff Anderson Google Inc.
Chris Fenner Google Inc.
Shiva Dasari Hewlett Packard Enterprise
Theo Koulouris Hewlett Packard Enterprise
Vali Ali HP Inc.
David Roderick HP Inc.
Adrian Shaw HP Inc.
Joshua Schiffman HP Inc.
Silviu Vlasceanu Huawei Technologies Co., Ltd.
Ken Goldman IBM
Joerg Borchert Infineon Technologies
Ga-Wai Chin Infineon Technologies
Andreas Fuchs Infineon Technologies
Guillaume Raimbault Infineon Technologies
Sven Schuch Infineon Technologies
Florian Schweiger Infineon Technologies
Imran Desai Intel Corporation
Ned Smith Intel Corporation
Liran Perez Intel Corporation
Jiewen Yao Intel Corporation
Robert Hart Johns Hopkins University Applied Physics Lab
Eric Sivertson Lattice Semiconductor Corp.
Bill Kweon Lenovo (United States) INC
Masoud Manoo Lenovo (United States) INC
Ronald Aigner Microsoft
Lonnie Harrell Microsoft
Brad Litterell Microsoft
Erich McMillan Microsoft
Dana Amsalem Cohen Nuvoton Technology Corporation
Dan Morav Nuvoton Technology Corporation
Ludovic Jacquin Nvidia Corporation
Joe Pennisi Nvidia Corporation
Dick Wilkins Phoenix Technologies

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 1
 © TCG 2020

Olivier Collart STMicroelectronics
Nourdine El Idrissi STMicroelectronics
Yves Magnaud STMicroelectronics
Charley Villette STMicroelectronics
Zachary Blum United States Government
Lawrence Reinert United States Government

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 2
 © TCG 2020

1 SCOPE
This reference document describes a method to protect communication between a CPU and a TPM connected by
an unprotected bus from active attacks. The transmission of an object to and from the TPM across the physical
interface can be done securely in many cases, but the means to do so may not be obvious from existing
specifications. The capabilities of the TPM can protect against passive attacks, but additional solutions are
necessary to protect against active attacks. This document describes one solution for protecting against active
attacks and is by no means exhaustive. The document includes prototype scripts to enable prototyping.

This document assumes knowledge of the TPM Library Specification [1].

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 3
 © TCG 2020

2 Problem statement
If a TPM device and an attacker-controlled device are connected to the same plain-text communication path, the
attacker can leverage active attacks to intercept and modify any traffic that is exchanged between the CPU and the
TPM device.

The attacker can use active techniques learn secrets that can then be used to reveal data on the disk or to gain
access to network resources.

Example 1: There is an embedded controller (EC) controlling the bus traffic on the SPI where the TPM is connected.
If the EC can be exploited by an attacker, the attacker can install software on the EC that sniffs the traffic to the
TPM. If the EC cannot be exploited, it could be replaced with an EC that is connected to both its own Chip Select
(CS) and the TPM CS. The EC can then either record a whole boot sequence or just the unsealed secret if the TPM
returns that in plain text.

Example 2: The attacker, with knowledge of the measurements extended to the TPM during boot via the TCG Event
Log, moves the TPM to a system the attacker controls and replays the extend operations to recreate PCR values
that will unseal the secret.

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 4
 © TCG 2020

3 Protecting a sealed secret using an NV Index
A common use case for the TPM involves protection of an object, e.g., a symmetric encryption key. This use case is
accomplished by encrypting the object with a key held only inside of the TPM’s protected boundary. Additionally, the
protected object can be associated with TPM capabilities such as enhanced authorization, e.g., a password policy or
evidence of the platform configuration as represented in the TPM’s Platform Configuration Registers, PCR.

The software layer of the host platform conveys the object to the TPM via the host CPU, where it is transferred via a
physical interface, such as an SPI bus, to the TPM from the chipset.

The design described in Section 3.3 is one example of using a secret, the Host Secret. The Host Secret is stored in
protected platform storage to enable the protected transfer of an object to and from the TPM. Depending on the
threat model, the protected platform storage might be in the CPU or some other component with non-volatile storage
that only the host firmware can access. This design also requires on use of an NV Index configured with the
TPM_NT_EXTEND attribute.

One possible implementation of this design involves platform firmware extending the Host Secret and application
software making use of the NV index to protect application secrets.

3.1 Goal
The objective of this design is to seal a secret to a TPM, such that the secret can only be recovered on the same
host platform under the exact same conditions that were present when sealing the secret.

This design protects against the following active attack:

1. An attacker with knowledge of the communication to the TPM moves the TPM to another platform, to
recover the secret.

a. The mitigation for this attack is to utilize a Host Secret known only to the original host.

3.2 Assumptions
This design assumes that the host platform has a unique Host Secret, e.g. provisioned in the CPU. The Host Secret
is unique to individual platforms. Further, the Host Secret is only accessible to trusted software. Trusted software
can be provisioning tools that run in a controlled environment or host platform firmware. The Host Secret cannot be
migrated to a different host platform.

This design requires an asymmetric key with a certificate and certificate chain. The diagrams, text, and code
samples in Section 3.103.9 use the Endorsement Key (EK), EK certificate [2], and respective certificate chain as the
asymmetric key and its certificate chain.

This design requires the platform to be provisioned with the entire certificate chain from the TPM vendor’s CA
certificate to the EK certificate and have the capability in host platform firmware and host software to validate the EK
certificate chain.

The examples in Section 3.10 are simplified to use a single Host Secret. Depending on the threat model, this might
be inadequate. In some cases, it might be necessary to have more than one Host Secret. The examples assume
different use cases, which results in different approaches to provisioning. The first example assumes a single
provisioner who provisions both the NV Index and the Sealed secret, e.g., a platform OEM sealing a platform secret
to the TPM. The second example assumes different provisioners for the NV Index, e.g., the Platform OEM, and the
Sealed Secret, e.g., the Host OS.

3.3 Design
This design uses the Host Secret in two ways:

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 5
 © TCG 2020

1. As a seed to encrypt traffic over the TPM bus.
2. As authorization to recover the sealed secret.

This design uses a verified EK to establish a Host Secret that is shared between the CPU and TPM.

The method by which a Host Secret is derived may vary between platforms. The TCG DICE Layering Architecture
Specification [3] defines one possible solution for the creation or derivation of a Host Secret in Section 6.2. Another
solution is to use a KDF.

Although the sample scripts in Section 3.10 use the Host Secret directly, host software should actually derive two
values from the Host Secret (see Section 3.6 Usage in Early Boot), one for use as the NV Index’s password,
another for use as the value extended into the NV Extend Index.

The implementation of the steps described below may vary between platforms.

3.4 Provisioning the NV Index
Trusted software, for instance platform firmware, can detect the absence of the NV Index and provision the NV
Index. This step can be done either in a secure manufacturing environment or by trusted software post
manufacturing.

1. Create an EK and a primary storage key if they are not already provisioned. It is unnecessary to persist the
keys. Validate the EK against the EK certificate chain to ensure that a MIM has not provided a counterfeit
EK. See Figure 1 Initial Provisioning of the Sealed Secret, Steps 1-3, and Figure 4 Initial Provisioning Steps
2-4.

2. Create a salted session with the TPM using the EK and use that salted session for all remaining steps in
Section 3.4. See Figure 1 Initial Provisioning of the Sealed Secret Step 4 and Figure 4 Initial Provisioning
Step 7.

The salted session HMAC ensures that the primary storage key Name is authentic. It also encrypts the primary
storage key password, although this is not essential.

Using the salted session created in Section 3.4 the NV Index is provisioned as part of the provisioning steps.

3. Create an NV Index with a TPM_NT_EXTEND attribute. See Figure 1 Initial Provisioning of the Sealed
Secret Steps 4 and 5 and Figure 4 Initial Provisioning Step 8.

Use the Host Secret as the password for the NV Extend Index so the password can later be used for a bind session.
The password for the NV Extend Index is not used for authorization, only for the bind session. Set the following NV
Index attributes:

• Extend – because, by definition, this is an NV Extend index.
• Orderly – to prevent NV wear out.
• CLEAR_STCLEAR – to enforce reset of the NV Index on a TPM Reset or TPM Restart.
• Platform Create – to ensure the NV Index is preserved after a TPM2_Clear.
• Policy Write – to enable the use case.
• Policy Read – to enable the use case.
• noDA – this might be desired, depending on the policy, but is not used in this example.

The salted session, created in Step 2, provides confidentiality for the Host Secret as it is transmitted to the TPM to
create the NV Index. The salted session’s HMAC ensures that the NV Index Name is authentic.

The policy for the NV Index is the OR of elements A | B | C as follows:

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 6
 © TCG 2020

A - Command code NV Read - anyone can read the index.

B - Command code NV extend - anyone can extend the index.

C - Command code Policy NV - anyone can use the index in a TPM2_PolicyNV command.

3.5 Sealing the application secret
This step may be done as part of provisioning or may be done post provisioning.

Using the salted session created in Section 3.4 the application secret is sealed as part of the provisioning steps.

1. Generate any secret(s) that an application wishes to protect from interception on the bus between CPU and
TPM. See Figure 6 Sealing the Secret Step 5.

Use TPM2_Create to seal the secret to the primary storage key.

2. Run the TPM2_Create command in the salted session from Step 2 of Section 3.4 using the EK in a
parameter-decryption session to encrypt the sealed secret when it is transmitted over the bus. See Figure 6
Sealing the Secret Steps 6-9.

The policy for the sealed data is the AND of the following elements:

• D: TPM2_PolicyNV - where the data must be equal to the value in the NV Index, which resulted from
extending the Host Secret.

• E: TPM2_PolicyCommandCode with TPM_CC_Unseal – to only allow unsealing of the data.

To create the policy for the sealed data, first calculate the expected NV Index value (the result of the extend of the
Host Secret into the NV Index). Then, perform the calculation for the TPM2_PolicyNV command with the expected
NV index value as just calculated. The calculation can be done without using the TPM.

3.6 Usage in Early Boot
Early platform firmware needs to perform the following step on every boot when it has access to the Host Secret.

1. Start a new authorization session with the TPM, binding to the NV Index. See Figure 2 Extending the Host
Secret Step 4 and Figure 5 Fulfilling policy for the Seal/UnSeal process Step 4.

The bind permits parameter encryption based on the Host Secret. A salted session could be used, but salting
requires a slower asymmetric key operation, while bind uses a hash operation.

2. Using Policy component B, extend the Host Secret into the NV Index. Use command parameter encryption
based on the bind session to provide confidentiality for the Host Secret on the bus. See Figure 2 Extending
the Host Secret Steps 5-7 and Figure 5 Fulfilling policy for the Seal/UnSeal process Step 5.

As mentioned in Section 3.3 Design, the Host Secret is the basis for both the key used for parameter encryption (1.)
and the value extended into the NV Index (2.). A safer approach is to derive both from the same Host Secret but be
different values, using a KDF with two different hardcoded inputs, e.g., “extended secret string” and “bind secret
string”.

3.7 Unsealing the application secret
This step does not require access to the Host Secret and can be performed by any software on the platform.

If the storage parent was not persisted, recreate it. Then:

1. Load the sealed data. No authorization is required.

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 7
 © TCG 2020

2. Start one policy session for the NV Index Policy NV requirement.
3. Satisfy Policy component C using TPM2_PolicyCommandCode with TPM_CC_PolicyNV.
4. Start a second policy session for the unseal. This session must be a salted session using the EK for the

response parameter (the sealed secret) encryption.
5. Satisfy the second policy using TPM2_PolicyCommandCode with TPM_CC_Unseal AND TPM2_PolicyNV

equal to extending the Host Secret into the NV index.

The TPM2_PolicyNV command uses the first session for NV Index authorization. TPM2_PolicyNV requires the
correct value in the NV Index. That value is not secret and can in fact be read from the NV Index for debugging.
However, only the platform firmware on the platform that has access to the Host Secret can extend the NV Index to
create the correct value.

If the TPM is subsequently moved, the new platform does not know the Host Secret, and therefore cannot
reproduce the NV index data. That is, an attacker knows the correct digest that should be in the NV Index, but
cannot reproduce it.

6. Run the unseal using the second policy session for authorization. The salted session encrypts the response
parameter, which is the application secret in plain text. See Figure 3 Unsealing the Secret Steps 8-11 and
Figure 7 Unsealing the secret Steps 7-11.

3.8 Summary
The TPM traffic is confidentiality and integrity protected. If an attacker moves the TPM, it cannot unseal the
protected secret because it cannot recreate the NV extend index value without knowing the Host Secret.

3.9 References
[1] TCG TPM Library Specification Family 2.0, Revision 1.59 or later

[2] TCG EK Credential Profile for TPM Family 2.0, Version 2.4 or later

[3] DICE Layering Architecture Specification, Version 1.0, Revision 0.19 or later

[4] TCG TSS 2.0 Overview and Common Structures Specification, Version 0.90, Revision 03 or later

[5] IBM TSS and tools: https://sourceforge.net/projects/ibmtpm20tss/files/

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 8
 © TCG 2020

3.10 Sample script

3.10.1 Sequence Diagrams for Sample Scripts using ibmtpm20tss

CPU TPM

CPU TPM

CCreate the EK for the salted session
Read the EK Cert

Walk the certificate chain

Start a salted session with the EK for parameter encryption

Retrieve the CPU secret

Create the NV index in the encrypted session with policy to
allow NVRead||PolicyNV||NVExtend

Create the SRK in the encrypted session

Create the sealed data object in the encrypted session

Flush the EK, SRK and session

C

C

C

C

C

C

1

2

3

4

5

6

7

8

9

Figure 1 Initial Provisioning of the Sealed Secret

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 9
 © TCG 2020

CPU TPM

CPU TPM

C
Read the NV Index Name

Verify NV index properties

Retrieve the CPU secret and
derive Host-Secret

Start a bound policy session for NV authorization
Bind to Host-Secret for parameter encryption

Satisfy the policy branch that allows for Policy Command Code NV Extend

Extend the Host-Secret into the NV index using parameter encryption

Flush the session

C

C

C

C

1

2

3

4

5

6

7

Figure 2 Extending the Host Secret

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 10
 © TCG 2020

CPU TPM

CPU TPM

CCreate the SRK

Load the sealed data

Walk the EK certificate chain

Policy Command Code PolicyNV on session-1

Start policy session-2 salted with EK

Policy Command Code Unseal on session-2

Policy NV equals extend of secret on session-2 using session-1

Unseal using session-2 in an encrypt session

C

C

P

C

C

C

C
Start policy session-1

Policy Or on session-1

P
Create the EK

P

1

2

3

4

5

6

7

8

9

10

11

Figure 3 Unsealing the Secret

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 11
 © TCG 2020

3.10.2 Implementation using ibmtpm20tss

#!/bin/bash

This script requires the TSS and command line utilities provided by IBM at:

https://sourceforge.net/projects/ibmtpm20tss/files/

for rapid prototyping with scripts

export TPM_ENCRYPT_SESSIONS=0

export TPM_DATA_DIR=.

PREFIX=./

checkSuccess()

{

 if [$1 -ne 0]; then

 echo " ERROR:"

 cat run.out

 exit 255

 else

 echo " INFO:"

 fi

}

checkFailure()

{

 if [$1 -eq 0]; then

 echo " ERROR:"

 cat run.out

 exit 255

 else

 echo " INFO:"

 fi

}

Above here is boilerplate for all scripts

Temporary files

tmpnvapol.bin - NV Index policy A

tmpnvbpol.bin - NV Index policy B

tmpnvcpol.bin - NV Index policy C

tmpnvpol.bin - NV Index policy

tmpext.bin - extend of Host Secret

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 12
 © TCG 2020

tmpuspol.bin - Unseal data policy

tmpseal.txt - test sealed data in plaintext

tmppub.bin - sealed data public part

tmppriv.bin - sealed data private part

tmpunseal.txt - unsealed data in plaintext

Notation

DEMO: Actions that are just for the demo script, not for the actual application

PROVISION: Actions taken once during provisioning

RUNTIME: Actions taken at runtime

Policies

NV Extend Index

Policy OR of

Policy A - command code NV read

Policy B - command code NV extend

Policy C - command code Policy NV

Sealed Data

Policy command code unseal

AND

policynv equals the Host Secret extended into the NV Index

If this changes, the unseal policynv calculation must also change

CPU_SECRET=cpusecret

test sealed secret

echo "sealedsecret" > tmpseal.txt

basic TPM power up, startup, create primary key

clean up from previous run

${PREFIX}nvundefinespace -ha 01000000 -hi p > run.out

echo "DEMO: power cycle"

${PREFIX}powerup > run.out

checkSuccess $?

echo "DEMO: startup"

${PREFIX}startup > run.out

checkSuccess $?

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 13
 © TCG 2020

echo "DEMO: Create EK certificate for SW TPM"

${PREFIX}createekcert -rsa 2048 -cakey cakey.pem -capwd rrrr > run.out

checkSuccess $?

Provision the NV Extend Index

The NV index policy permits unauthorized read OR extend

Policy A - command code NV read

tmp.txt:

0000016c0000014e

> policymaker -if tmp.txt -ns -v -of tmpnvapol.bin

47ce3032d8bad1f3089cb0c09088de43501491d460402b90cd1b7fc0b68ca92f

Policy B - command code NV extend

0000016c00000136

> policymaker -if tmp.txt -ns -v -of tmpnvbpol.bin

b6a2e7142ee56fd978047488483daa5b42b8dc4cc7ddcceddfb91793cf1ff1b7

Policy C - command code Policy NV

0000016c00000149

> policymaker -if tmp.txt -ns -v -of tmpnvcpol.bin

203e4bd5d0448c9615cc13fa18e8d39222441cc40204d99a77262068dbd55a43

policyor

tmp.txt: policy OR command code | Policy A | Policy B | Policy C

0000017147ce3032d8bad1f3089cb0c09088de43501491d460402b90cd1b7fc0b68ca92fb6a2e7142ee56fd9780474884

83daa5b42b8dc4cc7ddcceddfb91793cf1ff1b7203e4bd5d0448c9615cc13fa18e8d39222441cc40204d99a77262068db

d55a43

> policymaker -if tmp.txt -ns -v -of tmpnvpol.bin

7f17937e206279a3f755fb60f40cf126b70e5b1d9bf202866d527613874a64ac

echo ""

echo "Provision NV Index and Create Sealed Blob"

echo ""

createek also validates the EK public key against the EK certificate and

walks the certificate chain. It leaves the EK loaded at 80000000

echo "PROVISION: Create the EK for the salted session 80000000"

${PREFIX}createek -rsa 2048 -cp -noflush -root certificates/rootcerts.txt > run.out

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 14
 © TCG 2020

checkSuccess $?

echo "PROVISION: Start the EK salted session 02000000 for an authenticated channel"

${PREFIX}startauthsession -se h -hs 80000000 > run.out

checkSuccess $?

the salted session HMAC ensures that the storge key Name is authentic

echo "PROVISION: Create the primary parent for the unseal data 80000001"

${PREFIX}createprimary -hi p -pwdk sto -se0 02000000 21 > run.out

checkSuccess $?

the salted session encrypts the NV Index password, the Host Secret,

and ensures that the NV Index Name is authentic

echo "PROVISION: Define the NV Index, use an encrypt session to encrypt the password"

${PREFIX}nvdefinespace -ha 01000000 -hi p -pwdn ${CPU_SECRET} -ty e +at ody +at stc -pol

tmpnvpol.bin -se0 02000000 21 > run.out

checkSuccess $?

echo "DEMO: NV Extend to set the written bit, needed for the NV Index Name"

${PREFIX}nvextend -ha 01000000 -ic 0 -pwdn ${CPU_SECRET} > run.out

checkSuccess $?

echo "DEMO: Read the NV Index Name"

${PREFIX}nvreadpublic -ha 01000000 -ns > run.out

checkSuccess $?

NV Index Name 000bbc2784f51dda6d27b92784068c6b8c7c94a4cc530b434e16ef95222fe68e6c92

Calculate the hash of the Host Secret for the unseal. Use

policymaker to calculate the eventual NV extend result in software.

'cpusecret' in hexascii

tmp.txt:

637075736563726574

> policymaker -if tmp.txt -ns -of tmpext.bin

policy digest:

0ad80f8e4450587760d9137df41c9374f657bafa621fe37d4d5c8cecf0bcce5e

Calculate the sealed object policy

Policy command code unseal AND policynv equals

AND term 1 command code unseal

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 15
 © TCG 2020

0000016c0000015e

AND term 2 policynv

args = Hash of operandB.buffer || offset || operation)

tmp.txt is args input in hexascii

0ad80f8e4450587760d9137df41c9374f657bafa621fe37d4d5c8cecf0bcce5e00000000

Use policymaker with -nz to do a hash of hexascii

> policymaker -nz -if tmp.txt -v -ns

args is a hash of the above input:

19936a82d9b3fabcc3794b1b9c1dbb71a7de7f6e360cb01f6a6f082f7e66dc60

CC_PolicyNV || args || Name

0000014919936a82d9b3fabcc3794b1b9c1dbb71a7de7f6e360cb01f6a6f082f7e66dc60000bbc2784f51dda6d27b9278

4068c6b8c7c94a4cc530b434e16ef95222fe68e6c92

Combine the two AND terms to calculate the policy

tmp.txt

0000016c0000015e

0000014919936a82d9b3fabcc3794b1b9c1dbb71a7de7f6e360cb01f6a6f082f7e66dc60000bbc2784f51dda6d27b9278

4068c6b8c7c94a4cc530b434e16ef95222fe68e6c92

> policymaker -if tmp.txt -ns -v -of tmpuspol.bin

intermediate policy digest length 32

e6 13 13 70 76 52 4b de 48 75 33 86 58 84 e9 73

2e be e3 aa cb 09 5d 94 a6 de 49 2e c0 6c 46 fa

intermediate policy digest length 32

b2 f6 13 21 27 36 b6 f1 c2 84 07 a3 fb a2 7e 14

c1 84 c8 21 34 3a 8c 3b fe 23 cd 5f 2e 76 d0 51

policy digest:

b2f613212736b6f1c28407a3fba27e14c184c821343a8c3bfe23cd5f2e76d051

echo "PROVISION: Create the sealed data object under the primary key 80000000, encrypt session"

${PREFIX}create -hp 80000001 -pwdp sto -bl -if tmpseal.txt -kt f -kt p -pol tmpuspol.bin -uwa -

opu tmppub.bin -opr tmppriv.bin -se0 02000000 20 > run.out

checkSuccess $?

echo "PROVISION: Flush the EK"

${PREFIX}flushcontext -ha 80000000 > run.out

checkSuccess $?

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 16
 © TCG 2020

Simulate a power cycle to clear the NV extend index

echo "DEMO: Power cycle"

${PREFIX}powerup > run.out

checkSuccess $?

echo "DEMO: Startup"

${PREFIX}startup > run.out

checkSuccess $?

echo ""

echo "Usage - Extend the Host Secret unto the NV Index"

echo ""

Usage - Extend the Host Secret unto the NV Index

Real code would read the NV Index Name at reboot and validate the

value, to ensure that the NV Index has not been undefined and then

defined differently.

echo "RUNTIME: Read the NV Index Name"

${PREFIX}nvreadpublic -ha 01000000 -ns > run.out

checkSuccess $?

echo "RUNTIME: Start policy session 03000000 for NV authorization, bind to Host Secret for

parameter encryption"

${PREFIX}startauthsession -se p -bi 01000000 -pwdb ${CPU_SECRET} > run.out

checkSuccess $?

echo "RUNTIME: Policy command code NV extend"

${PREFIX}policycommandcode -ha 03000000 -cc 00000136 > run.out

checkSuccess $?

echo "DEMO: Should be policy B first intermediate value b6a2 ..."

${PREFIX}policygetdigest -ha 03000000 > run.out

checkSuccess $?

echo "RUNTIME: Policy OR the NV Policies A, B, C"

${PREFIX}policyor -ha 03000000 -if tmpnvapol.bin -if tmpnvbpol.bin -if tmpnvcpol.bin > run.out

checkSuccess $?

echo "DEMO: Should be policy OR 7f17 ..."

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 17
 © TCG 2020

${PREFIX}policygetdigest -ha 03000000 > run.out

checkSuccess $?

echo "RUNTIME: Extend the Host Secret into the NV Index, use parameter encryption"

${PREFIX}nvextend -ha 01000000 -ic ${CPU_SECRET} -se0 03000000 21 > run.out

checkSuccess $?

echo "DEMO: Policy restart, set back to zero"

${PREFIX}policyrestart -ha 03000000 > run.out

checkSuccess $?

echo "DEMO: Policy command code NV read"

${PREFIX}policycommandcode -ha 03000000 -cc 0000014e > run.out

checkSuccess $?

echo "DEMO: Policy OR"

${PREFIX}policyor -ha 03000000 -if tmpnvapol.bin -if tmpnvbpol.bin -if tmpnvcpol.bin > run.out

checkSuccess $?

echo "DEMO: Read NV Index, should be extend of Host Secret 0ad8 ..."

${PREFIX}nvread -ha 01000000 -se0 03000000 0 > run.out

checkSuccess $?

echo ""

echo "Usage - Unseal"

echo ""

echo "RUNTIME: Create the primary parent for the unseal data 80000000"

${PREFIX}createprimary -hi p -pwdk sto > run.out

checkSuccess $?

echo "RUNTIME: Load the sealed data 80000001"

${PREFIX}load -hp 80000000 -pwdp sto -ipu tmppub.bin -ipr tmppriv.bin > run.out

checkSuccess $?

echo "RUNTIME: Start a PolicyNV authorization policy session 03000000"

${PREFIX}startauthsession -se p > run.out

checkSuccess $?

echo "RUNTIME: Policy command code PolicyNV"

${PREFIX}policycommandcode -ha 03000000 -cc 00000149 > run.out

checkSuccess $?

echo "RUNTIME: Policy OR the NV Policies A, B, C"

${PREFIX}policyor -ha 03000000 -if tmpnvapol.bin -if tmpnvbpol.bin -if tmpnvcpol.bin > run.out

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 18
 © TCG 2020

checkSuccess $?

echo "RUNTIME: Create the EK for the salted session 80000002"

${PREFIX}createek -rsa 2048 -cp -noflush -root certificates/rootcerts.txt > run.out

checkSuccess $?

echo "RUNTIME: Start a unseal policy session 03000001, salt for response parameter encryption"

${PREFIX}startauthsession -se p -hs 80000002 -pwdb ${CPU_SECRET} > run.out

checkSuccess $?

echo "RUNTIME: Policy command code Unseal"

${PREFIX}policycommandcode -ha 03000001 -cc 0000015e > run.out

checkSuccess $?

echo "DEMO: Should be policy Unseal first intermediate value e6 13 13 70 ..."

${PREFIX}policygetdigest -ha 03000001 > run.out

checkSuccess $?

echo "RUNTIME: Policy NV, operation equals extend of Host Secret"

${PREFIX}policynv -ha 01000000 -hs 03000001 -op 0 -if tmpext.bin -se0 03000000 0 > run.out

checkSuccess $?

echo "DEMO: Should be policy Unseal second intermediate value b2 f6 13 21 ..."

${PREFIX}policygetdigest -ha 03000001 > run.out

checkSuccess $?

echo "RUNTIME: Unseal, use the bind encrypt session"

${PREFIX}unseal -ha 80000001 -of tmpunseal.txt -se0 03000001 40

checkSuccess $?

echo "DEMO: Verify the unseal result"

diff tmpseal.txt tmpunseal.txt > run.out

checkSuccess $?

cleanup

echo "DEMO: Undefine the NV Index"

${PREFIX}nvundefinespace -ha 01000000 -hi p > run.out

checkSuccess $?

echo "DEMO: Flush sealed data"

${PREFIX}flushcontext -ha 80000001 > run.out

checkSuccess $?

echo "DEMO: Flush primary storage key"

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 19
 © TCG 2020

${PREFIX}flushcontext -ha 80000000 > run.out

checkSuccess $?

rm -f tmpseal.txt

rm -f tmpunseal.txt

rm -f run.out

rm -f tmppriv.bin

rm -f tmppub.bin

exit

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 20
 © TCG 2020

3.10.3 Sequence diagrams using tpm2-software

Figure 4 Initial Provisioning

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 21
 © TCG 2020

CPU-RTM TPM

CPU_RTM TPM

C

[TPM2_NVReadPublic]
Check NV-index provisioning status

AND
Check NV-index name to verify attributes and the index

Derive [HOST-SECRET]
From CPU-SECRET-SEED

[TPM2_StartAuthSession]
Start a bound-policy-session with NV index as the bind-object

[TPM2_PolicyCommandCode]
[TPM2_PolicyOr]

[TPM2_NV_Extend]

Using [SESSION]
Encrypt and authorize extending the [NV-SECRET]C

P

Derive [NV-SECRET]
From CPU-SECRET-SEED

[SESSION]

1

2

3

4

5

Figure 5 Fulfilling policy for the Seal/UnSeal process

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 22
 © TCG 2020

Figure 6 Sealing the Secret

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 23
 © TCG 2020

Figure 7 Unsealing the secret

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 24
 © TCG 2020

3.10.4 Implementation using tpm2-software

#!/bin/bash

This sample requires the TSS and tools available at https://github.com/tpm2-software

set -E

tpm-secret-protection-demo-help() {

 echo "

 #

 # Flows:

 #

 # RTM checks for the NVIndex and its properties and triggers either:

 #

 # (1) cpu_secret_provisioning : Creates NVIndex with required auths & attributes

 # OR

 # (2) runtime_provisioning : Extends NVIndex with data only known to the CPU

 #

 # Applications can now reference the NVIndex in a PolicyNV and perform either:

 #

 # (1) seal_data : Create a sealing object and seal data

 #

 # (2) unseal_data : Load the sealing object and unseal data

 #

 # NOTE: Source this script to avail all the functions

 "

}

Globals

The NV index should ideally be created as a platform hierarchy object

NVIndex=0x1500018

This is one of the two secrets derived from a seed value ideally accessible

only to the CPU. This serves as the NV index auth that can be used as bind obj

HOST_SECRET="host-secret"

This is the second secret derived from a seed value ideally accessible

only to the CPU. When extended to the NV index, a hash of this value can be

used in PolicyNV to authorize unsealing of application secret. Only a CPU with

access to the HOST_SECRET will be able to extend the required value.

NV_SECRET="nv-secret"

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 25
 © TCG 2020

The application secret to be sealed to the TPM. So long as the CPU extends the

required NV_SECRET value to the TPM, the unsealing operation is allowed.

SEALBLOB="app-secret"

cleanup() {

 tpm2_clear -Q

 tpm2_nvreadpublic | grep -q $NVIndex

 if [$? == 0]; then

 tpm2_nvundefine -Q -C p $NVIndex

 fi

 rm -f ek.ctx salted_session.ctx policycc_nv_session.ctx A.policy B.policy \

 C.policy nvaccess_policy_generation_session.ctx nvaccess.policy \

 bounded_policy_session.ctx unseal_policy_generate_session.ctx \

 unseal.policy oprim.ctx seal_obj.ctx nvread_session.ctx

}

trap cleanup EXIT

Salted session for encrypting sensitive information when:

1. Creating the NV index

2. Creating the sealing object

3. Unsealing the application secret

setup_salted_param_encrypt_session_with_ek() {

 tpm2_createek -Q --key-algorithm rsa --ek-context ek.ctx

 tpm2_startauthsession -Q --session salted_session.ctx $1 \

 --tpmkey-context ek.ctx

 rm -f ek.ctx

 tpm2_sessionconfig -Q salted_session.ctx --enable-decrypt

}

Starting the PolicyNV policy session required when:

1. Generating the policy for the sealing object at creation

2. Unsealing the application secret

nvaccess_policycc_policynv() {

 tpm2_startauthsession -Q --session policycc_nv_session.ctx --policy-session

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 26
 © TCG 2020

 tpm2_policycommandcode -Q --session policycc_nv_session.ctx TPM2_CC_PolicyNV

 tpm2_policyor -Q --session policycc_nv_session.ctx \

 --policy-list sha256:A.policy,B.policy,C.policy

}

Generate the policy paths for accessing read/ write operations on NV index

A.policy ==> PolicyCommandCode = TPM2_CC_NV_Read

B.policy ==> PolicyCommandCode = TPM2_CC_NV_Extend

C.policy ==> PolicyCommandCode = TPM2_CC_PolicyNV

Access-Policy = A||B||C

generate_nv_access_policy() {

 tpm2_startauthsession -Q --session nvaccess_policy_generation_session.ctx

 tpm2_policycommandcode -Q TPM2_CC_NV_Read --policy A.policy \

 --session nvaccess_policy_generation_session.ctx

 tpm2_flushcontext -Q nvaccess_policy_generation_session.ctx

 tpm2_startauthsession -Q --session nvaccess_policy_generation_session.ctx

 tpm2_policycommandcode -Q TPM2_CC_NV_Extend --policy B.policy \

 --session nvaccess_policy_generation_session.ctx

 tpm2_flushcontext -Q nvaccess_policy_generation_session.ctx

 tpm2_startauthsession -Q --session nvaccess_policy_generation_session.ctx

 tpm2_policycommandcode -Q TPM2_CC_PolicyNV --policy C.policy \

 --session nvaccess_policy_generation_session.ctx

 tpm2_flushcontext -Q nvaccess_policy_generation_session.ctx

 tpm2_startauthsession -Q --session nvaccess_policy_generation_session.ctx

 tpm2_policyor -Q --session nvaccess_policy_generation_session.ctx \

 --policy-list sha256:A.policy,B.policy,C.policy --policy nvaccess.policy

 tpm2_flushcontext -Q nvaccess_policy_generation_session.ctx

 rm -f nvaccess_policy_generation_session.ctx

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 27
 © TCG 2020

}

This provisioning step is done once under RTM control

cpu_secret_provisioning() {

 generate_nv_access_policy

 setup_salted_param_encrypt_session_with_ek --hmac-session

 tpm2_nvdefine -Q --session salted_session.ctx -C p -p $HOST_SECRET $NVIndex \

 -a

"orderly|clear_stclear|platformcreate|no_da|nt=extend|policyread|policywrite|authread|authwrite"

\

 --policy nvaccess.policy

 tpm2_flushcontext -Q salted_session.ctx

 rm -f salted_session.ctx nvaccess.policy

}

This step is done once at every TPM restart under RTM control

Satisfy policy to be able to extend the NV index in bound policy session

Note: Auth specified in the bound session generation is used to

calculate the sessionvalue by ESAPI. The auth is not exposed on

TPM interface.

runtime_provisioning() {

 tpm2_startauthsession -Q --session bounded_policy_session.ctx \
 --policy-session --bind-context $NVIndex --bind-auth $HOST_SECRET

 tpm2_sessionconfig -Q bounded_policy_session.ctx \
 --enable-decrypt --enable-encrypt

 tpm2_policycommandcode -Q --session bounded_policy_session.ctx \
 TPM2_CC_NV_Extend

 tpm2_policyor -Q --session bounded_policy_session.ctx \
 --policy-list sha256:A.policy,B.policy,C.policy

 echo -n $NV_SECRET|tpm2_nvextend -Q -C $NVIndex -i- $NVIndex \

 -P session:bounded_policy_session.ctx

 tpm2_flushcontext -Q bounded_policy_session.ctx
 rm -f bounded_policy_session.ctx

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 28
 © TCG 2020

}

Satisfy policy to be able to read the NV Index

nvread_session_setup() {

 tpm2_startauthsession -Q --session nvread_session.ctx --policy-session

 tpm2_policycommandcode -Q --session nvread_session.ctx TPM2_CC_NV_Read

 tpm2_policyor -Q --session nvread_session.ctx \

 --policy-list sha256:A.policy,B.policy,C.policy

}

Sealing-object-policy:

PolicyCommandCode == (TPM2_CC_PolicyNV && TPM2_CC_Unseal)

seal_data() {

 nvaccess_policycc_policynv

 tpm2_startauthsession -Q --session unseal_policy_generate_session.ctx

 nvread_session_setup

 tpm2_nvread $NVIndex -P session:nvread_session.ctx | tpm2_policynv -Q -i- \

 $NVIndex eq --session unseal_policy_generate_session.ctx \

 -P session:policycc_nv_session.ctx --policy unseal.policy

 tpm2_flushcontext -Q policycc_nv_session.ctx

 tpm2_flushcontext -Q nvread_session.ctx

 rm -f policycc_nv_session.ctx

 rm -f nvread_session.ctx

 tpm2_policycommandcode -Q --session unseal_policy_generate_session.ctx \

 --policy unseal.policy TPM2_CC_Unseal

 tpm2_flushcontext -Q unseal_policy_generate_session.ctx

 rm -f unseal_policy_generate_session.ctx

 setup_salted_param_encrypt_session_with_ek --hmac-session

 tpm2_createprimary -Q -C o -c oprim.ctx

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 29
 © TCG 2020

 echo -n $SEALBLOB | tpm2_create -Q -C oprim.ctx --policy unseal.policy \

 -u seal_obj.pub -r seal_obj.priv --session salted_session.ctx -i-

 rm -f oprim.ctx

 rm -f unseal.policy

 tpm2_flushcontext -Q salted_session.ctx

 rm -f salted_session.ctx

}

load_sealing_object() {

 tpm2_createprimary -Q -C o -c oprim.ctx

 tpm2_load -Q -C oprim.ctx -c seal_obj.ctx -u seal_obj.pub -r seal_obj.priv

 rm -f oprim.ctx

}

1. Read NV index <non secret data>

2. Satisfy PolicyNV

3. Unseal

unseal_data() {

 nvaccess_policycc_policynv

 setup_salted_param_encrypt_session_with_ek --policy-session

 nvread_session_setup

 tpm2_nvread -C $NVIndex -P session:nvread_session.ctx $NVIndex | \

 tpm2_policynv -Q -i- $NVIndex eq --session salted_session.ctx \

 -P session:policycc_nv_session.ctx

 tpm2_flushcontext -Q policycc_nv_session.ctx

 tpm2_flushcontext -Q nvread_session.ctx

 rm -f policycc_nv_session.ctx

 rm -f nvread_session.ctx

 tpm2_policycommandcode -Q --session salted_session.ctx TPM2_CC_Unseal

 load_sealing_object

 UNSEALBLOB=$(tpm2_unseal -Q -c seal_obj.ctx -p session:salted_session.ctx)

 echo "UNSEALBLOB=$UNSEALBLOB"

 CPU to TPM Bus Protection Guidance – Active Attack Mitigations

CPU to TPM Bus Protection Guidance – Active Attack Mitigations | Version 1.0 | Revision 30 | 5/8/2023Revision 305/8/2023 | Draft Page 30
 © TCG 2020

 tpm2_flushcontext -Q salted_session.ctx

 rm -f seal_obj.ctx

}

tpm-secret-protection-demo-help

	DISCLAIMERS, NOTICES, AND LICENSE TERMS
	CHANGE HISTORY
	Contributors
	1 SCOPE
	2 Problem statement
	3 Protecting a sealed secret using an NV Index
	3.1 Goal
	3.2 Assumptions
	3.3 Design
	3.4 Provisioning the NV Index
	3.5 Sealing the application secret
	3.6 Usage in Early Boot
	3.7 Unsealing the application secret
	3.8 Summary
	3.9 References
	3.10 Sample script
	3.10.1 Sequence Diagrams for Sample Scripts using ibmtpm20tss
	3.10.2 Implementation using ibmtpm20tss
	3.10.3 Sequence diagrams using tpm2-software
	3.10.4 Implementation using tpm2-software

