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1 SCOPE 
This document provides just essential guidance for developers of TPM-based solutions to defend against passive 
attacks on CPU-TPM communications using parameter encryption capabilities defined in the TCG TPM 2.0 Library 
Specification Part 1 [2].  It explains and outlines how software developers should enable and use parameter encryption 
capabilities to provide a general defense against passive sniffing attacks that could take place on the communication 
path, including the hardware bus between a chipset and a discrete TPM.  Example code is presented to illustrate how 
the solution could be implemented by a calling application. 

  

1.1 Purpose 
This document is a practical guide for developers and system architects to understand how their calling code or entity 
can protect against passive attacks and choose reasonable solutions proportionate to the threat.  It does not aim to 
provide guidance on addressing active attacks, such as hardware man-in-the-middle (MITM) or more elaborate threats 
on TPM interactions, which would require a broader architectural approach.   

 

1.2 Introduction 
Developers frequently use a TPM to store, generate, and retrieve sensitive information such as keys and 
passwords.  A TPM provides a session-based parameter encryption mechanism to ensure the confidentiality of 
values in transit.  This is defined in TPM 2.0 Library specification Part 1 under the section, “Session-based 
encryption” [2]. Parameter encryption provides a good baseline defense against attackers that can passively 
intercept traffic between the calling code and the TPM, such as probing attacks on the CPU-TPM bus.  However, 
parameter encryption is often under-utilized, perhaps due to a lack of explicit guidance.  This guide provides a 
general overview of the feature, how to configure it, and examples of its use in different scenarios.   

Parameter encryption is not available for all commands and their contents. Only the first parameter of a command or 
response can be encrypted, and even then, only if that parameter has an explicit size parameter. The TPM 
architecture orders parameters in commands and responses so that the first parameters are always the parameters 
that might benefit from encryption. While session encryption is configured at session establishment, it must be 
enabled by setting an attribute on each eligible command.  Callers using higher level abstractions such as certain 
TPM Software Stack (TSS) APIs may not need to do this explicitly, as it is handled for them [3].  For lower-level 
interfaces, callers should be careful to set these attributes themselves. 

Parameter encryption is based on using a shared secret with either AES-based encryption or KDF-based XOR 
obfuscation. The TPM architecture offers XOR obfuscation because some callers might be so resource-restricted 
that they do not have encryption algorithms and obfuscation may be acceptable. Both AES and XOR modes are 
described in the TPM 2.0 Library Specification Part 1 in the sections “XOR Parameter Obfuscation” and “CFB Mode 
Parameter Encryption” [2]. If the caller is capable of encryption, then the caller should always use AES where 
possible. 

Performance is the same regardless of how the shared secret is established.  There are three ways to establish the 
shared secret based on the type of session. The following is a short description of each session type and their 
tradeoffs.   

1. Unbound Session:  The shared secret is derived from the authorization value of the TPM entity being 
authorized.  The key creation process has good performance since it is based on hashing.  It requires no other 
entity to establish the secret, but the secret’s strength is based on the entropy of the authorization value.  
Additionally, the caller must supply the authorization each time the session is used. 
 

2. Bound Session:  The secret is created from the authorization value of a bind entity that is “bound” to the 
session.  Unlike the unbound session, the TPM keeps track of the bind entity’s authorization value, so the caller 
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only needs to provide it once.  If the bind entity is different from the authorized entity, then the authorization 
value for the authorized entity can be weak provided the bind entity’s value is strong. A bound session also has 
good performance due to hashing based key generation.  The caller is required to have previously established 
a shared secret to use the bind entity. 
 

3. Salted Session: The secret is a salt encrypted to an asymmetric key loaded in the TPM. Since bound sessions 
require a pre-shared secret between the caller and the TPM, salted sessions are often used to establish such a 
shared secret because they do not require a shared secret.  However, the performance is slower than bound 
sessions as it requires asymmetric key operations. Callers that do not have asymmetric cryptography 
capabilities cannot use this type of session. Moreover, a trusted asymmetric key must be loaded before use.  

1.3 Guidance summary 
In addition to technical tutorial and examples, this document provides guidance on why, how, and when to use 
parameter encryption.  This subsection summarizes that guidance as follows: 

1) Enable parameter encryption whenever sensitive data is passed to or from the TPM.  This will provide 
confidentiality, integrity, and authentication for the data in transit. 

2) Explicitly enable encryption on a per command and response basis, or use a TSS API that manages 
encryption on behalf of the caller, such as a FAPI compliant TSS [3]. 

3) Choose session parameters that create a strong sessionKey.   
a. If there already exists a session with a strong sessionKey, then reuse that session.  Even a policy 

session can be reused, and the session key persists through TPM2_PolicyRestart. 
b. Else if the authorized entity has a strong authValue, then use that entity in an authorization session. 
c. Else if the authorized entity has a weak authValue, use a bound session with a bind entity that has a 

strong authorization value. 
d. Else, choose a Salted session with a trusted asymmetric key loaded in the TPM (e.g., an 

Endorsement Key with a verified Endorsement Credential). Salted sessions can be used to provision 
shared secrets so the caller can use bound sessions in the future, which will lower overhead. 
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3 Problem statement 
Software often interacts with a TPM to send and receive sensitive data such as cryptographic keys or authorization 
values.  While the host OS and low-level firmware logically protect this communication from malicious software, 
physical attackers with access to the TPM bus may be able to capture these secrets by passively listening to the 
messages.  

1) Example 1: An attacker attaches a physical probe to the TPM’s bus to passively observe communication.  This 
is not necessarily a destructive attack, as some buses are easily accessed. 
 

2) Example 2: CPU-based confidential computing technologies can be used to execute software in an environment 
where code and data are encrypted to prevent malicious guest or supervisor code from introspecting code 
execution. However, host software still controls interactions with a TPM.  In this scenario, malicious software 
could perform passive snooping attacks to capture plaintext secrets sent to and from the TPM.   

Because passive attacks typically require less effort to mount than active attacks, they can be performed quickly or 
setup ahead of time to listen serendipitously for sensitive data such as application secrets, network access 
credentials, authentication keys, or content held in a TPM’s NV locations.  Such attacks are particularly serious 
when the attacker is able to obtain disk encryption secrets exchanged on early boot prior to user login, and can be 
performed while the user is absent.   

This document focuses specifically on protecting against passive sniffing attacks on the communication path 
between the caller and the TPM.  Implementing this guidance provides a strong baseline defense against attacks 
which could otherwise be stealthy and undetectable.  However, addressing bus snooping alone does not prevent 
more sophisticated attacks such as destructive, active MITM, or TPM desolder-and-move attacks.  More resources 
are required to defend against more sophisticated attacks.  
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4 Using parameter encryption to protect bus communication 
By default, communication between the caller and the TPM is not protected from snooping, as data are presented in 
plaintext.  TPM sessions support parameter encryption for some commands and their responses to protect sensitive 
data.  However, parameter encryption is not enabled by default and such settings are often ignored or not known by 
developers. This section clarifies how parameter encryption works and provides guidance for software developers to 
enable it in TPM communications where possible.  

A TPM can be used by different parts of the host software, each of which provides different abstractions to the 
caller. The higher up the software stack, the less effort and knowledge of TPM intricacies the caller needs to use the 
TPM. This can be summarized into a few distinct caller profiles: 

• Application developers typically use the high-level TCG Feature API (FAPI) [3]. A compliant TSS 
implementation of FAPI automatically encrypts commands and responses, and no work is required by 
application developers. 

• OS service developers typically use a lower-level API with more features, such as the TSS Enhanced System 
API (ESAPI) [4]. Developers using this API need to manually set the session properties to support parameter 
encryption. Some TSS implementations provide additional flags or features to increase convenience and reduce 
code repetition. Other implementations require explicit enablement of parameter encryption for each supported 
command. 

• Firmware developers may have access to a rich API, such as the TSS System API (SAPI) [5]. However, if this 
is not available then firmware developers may need to program the TPM command buffers directly or use an 
alternative low-level API. In this scenario, the developer may need to deal with every detail related to session 
setup, session key establishment, ciphering, and understand which commands are capable of parameter 
encryption.  This document provides guidance on the general steps. 

 

4.1 Parameter encryption background 
TPM 2.0 Library Specification Part 1 Sections 19 and 21 describe the TPM’s session-based parameter encryption 
feature [2].  Parameter encryption protects sensitive data such as authorization values and key material.  The first 
parameter in the parameter area of the command or response buffer is encrypted as long as the parameter has an 
explicit size field, i.e. the parameter is a TPM2B structure.   

TPM implementations support XOR obfuscation at a minimum, but AES-CFB encryption may be supported as well.  
Neither method requires data padding, so the plaintext and ciphertext are the same length.   

 

4.1.1 Session key creation  
Session-based parameter encryption is enabled by the creation of a sessionKey during session setup.  This 
sessionKey is derived in a way that is dependent on the choice of encryption parameters and session type.   

When starting a session using TPM2_StartAuthSession(), two parameters, tpmKey and bind, determine the session 
type and derivation of the sessionKey. The tpmKey parameter takes a handle to a loaded TPM key used to encrypt 
a salt. The bind parameter takes a handle to a TPM entity with an authValue that is added to the sessionKey 
derivation process. Setting just the tpmKey parameter creates what is called a salted session. Setting just the bind 
parameter creates what is called a bound session.  Setting both tpmKey and bind to TPM_RH_NULL will result in 
an unbound session with no sessionKey. The TPM will only use the authValue of the object being accessed in the 
key generation. 

The caller should ensure a strong secret is used for encryption by using an authorized entity with a high entropy 
authValue, a bind entity with a high entropy authValue, or a salted session. 
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Table 1 Comparison of session types 

tpmKey Bind Session type Comments 
TPM_RH_NULL TPM_RH_NULL Unbound session The strength of protection is proportional to the 

entropy in the authValue of the object 
TPM_RH_NULL TPM entity 

(same as 
authorized 
entity) 

Bound session Advantages 
• Good performance, based on hashing. 
• Bind entity authValue need only be 

supplied once. 
TPM_RH_NULL TPM entity 

(different from 
authorized 
entity) 

Bound session Advantages 
• Good performance, based on hashing. 
• Bind entity authValue need only be 

supplied once. 
• Authorized entity can have weak 

authValue if bind entity’s authValue is 
strong. 

Disadvantages  
• Requires caller to have shared secret to 

use bind entity. 
• Another entity with a strong authorization 

value must be used.  
 

TPM key TPM_RH_NULL Salted session Advantages 
• Caller does not need shared secret for 

TPM key. 
• Can be used to establish first shared 

secret of a bind entity. 
Disadvantages 

• Slower setup due to the asymmetric key 
operation. 

• A trusted asymmetric key must be loaded. 
TPM key TPM entity Salted and bound 

session 
Not recommended because it has the advantages 
of neither and the disadvantages of both. 

 

4.1.2 Choosing a session type 
The choice of session type is a trade-off between resources and performance, but depends upon the level of 
confidence that is required: 

• In a salted session, the sessionKey is derived by encrypting a salt with an asymmetric key, preferably with 
the fixedTPM flag set, such as a key derived from one of the Primary Seeds (Endorsement, Null, etc).  This 
session type is particularly useful for provisioning secrets into the TPM when there are no prior shared 
secrets established between the caller and TPM.  The caller can simply use one of the trusted keys loaded 
and available to them, such as the Endorsement Key.  However, salted session creation is expensive 
relative to bound sessions due to the use of asymmetric cryptography on the salt.  Thus, it is more suitable 
for infrequent interactions with the TPM such as during provisioning or when unsealing a disk encryption 
secret during boot. The caller does not need secure access to a host secret to create a salted session.  
 

• A bound session by contrast derives the sessionKey from the authValue of the bind entity.  Bound sessions 
are preferable to salted sessions if performance is critical. For example, long running applications that 
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frequently use the TPM to sign, encrypt or decrypt data will have lower setup overhead with a bound session 
than a salted session. However, a bound session relies on having already provisioned an object with an 
authValue within the TPM. The caller also needs to have secure storage or access to the authValue.  Bound 
sessions also eliminate the need to provide the bind entity’s authValue multiple times.  If the bind entity is 
not the same as the authorized entity, the bind entity will increase the sessionKey’s strength if the authorized 
object has a weaker authValue than the bind entity. 

While outside the scope of this document, a caller concerned with which TPM is responding to the session should 
use a salted session with a tpmKey parameter that comes from a trusted source or that has been authenticated, 
such as a verified Endorsement Key (EK) or attestation key.  For more guidance on validating an EK, see TCG TPM 
v2.0 Provisioning Guidance [6].   

4.1.3 Enabling encryption and decryption on commands 
After session setup, the caller enables parameter encryption on eligible commands.  The caller does this by setting 
the sessionAttributes.decrypt and / or sessionAttributes.encrypt attributes to encrypt the first parameter of the 
command and response buffers respectively.  To be eligible, commands must have an explicit size field for the first 
parameter and then only the data portion will be encrypted. In other words, the parameter must have a TPM2B 
structure. 

When using low level APIs and commands, parameter encryption is not enabled by default. Care should be taken to 
enable it for each command. When using FAPI [3], all communication with the TPM is automatically performed in 
salted HMAC sessions and parameter encryption is enabled wherever applicable. When using ESAPI, the caller can 
choose to always set the flags since they are ignored by the TSS if the command does not support encryption.   

 

4.2 High level workflow description 
This section describes high-level flows for enabling parameter encryption on salted sessions and bound sessions. 

In the example of a salted session, illustrated in Figure 1, the TPM Endorsement Key is used as the tpmKey and 
created as a precondition of this flow. 

1. Retrieve the TPM’s Endorsement Key (EK) handle [7]. 
2. Start a session with the TPM using the TPM2_StartAuthSession command.  

2.1 Pass in the EK handle as the tpmKey and specify that the session should be a HMAC session.  
2.2 Specify the algorithm of parameter encryption/decryption symmetric-key to AES-CFB. On success, the 

command returns a handle for the session. 
3. Use the session handle with compatible commands, such as TPM2_Create, TPM2_NV_Read, 

TPM2_NV_Write, TPM2_NV_Extend, TPM2_Unseal and more.  
3.1 For each command, specify the use of parameter encryption. DRAFT
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Figure 1, High level example of a salted session. 

  

In the example of a bound session illustrated in Figure 2, an existing TPM key is used for bind and created as a 
precondition of this flow.  

1. Start a session with the TPM using the TPM2_StartAuthSession command. 
2. Pass in the handle of an existing TPM object (bind handle) and the authValue for that object (bind auth). 

a. Specify that the session should be an HMAC session. 
b. Specify the algorithm of parameter encryption/decryption symmetric-key to AES-CFB. 

3. Use the session handle with compatible commands, such as TPM2_Create, TPM2_NV_Read, 
TPM2_NV_Write, TPM2_NV_Extend, TPM2_Unseal and more.  

a. For each command, specify the use of parameter encryption. 

 

 

 
Figure 2, High level example of a bound session. 
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5 Example workflow – sample scripts 
This section describes examples that use parameter encryption, including nvwrite, nvread and key creation. Each 
example is shown using utilities from two different TSS stacks: 

• For the tpm2-sofware utilities, also known as tpm2-tools, parameter encryption is specified after a session is 
established using tpm2_sessionconfig with the –enable-encrypt and –enable-decrypt flags. Examples are 
shown in sections 5.1.1 and 5.2.1. 

• For the ibmtpm20tss utilities, parameter encryption must be specified in each command along with the 
handle to the authenticated session. The parameter 20 specifies command parameter decryption and the 
parameter 40 specifies response parameter encryption. Examples are shown in sections 5.1.2 and 5.2.2. 

 

5.1 Read/write NV index using an encrypted session (EK salted session) 
Figure 3 illustrates how to safely create, read and write to an NV index by establishing a salted session with the EK 
and using the shared session secret to encrypt the commands and responses. 

 

 
Figure 3, Salted session sequence diagram for example code. 

 

5.1.1 tpm2-software utilities example 
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#!/bin/bash 
set -xe # this prints each command to the console and terminates on error 
export TSS2_LOG=all+NONE # configurable log level 
  
# Retrieve public Endorsement Key and its handle/context 
tpm2_createek –-quiet –-key-algorithm rsa –-ek-context ek.ctx 
  
# Create salted session using the Endorsement Key and enable parameter encryption 
tpm2_startauthsession –-session salted_session.ctx –-hmac-session –-tpmkey-context ek.ctx 
tpm2_sessionconfig salted_session.ctx –-enable-decrypt –-enable-encrypt 
  
# Example: Store a secret in a TPM NV index using an encrypted session. ‘o’ is short for ‘owner’ 
echo mysecret > mysecret 
tpm2_nvundefine –quiet 0x1500016 || true # Make sure this NVRAM slot is not used  
 
tpm2_nvdefine 0x1500016 –-session=salted_session.ctx –-hierarchy=o –-size=32 -–index-auth=pwd1 
tpm2_nvwrite 0x1500016 –-input=mysecret –-auth=session:salted_session.ctx+pwd1 
  
# Example: Read a secret from a TPM NV index using an encrypted session 
SECRET=$(tpm2_nvread 0x1500016 -–auth=session:salted_session.ctx+pwd1) 
echo “Reading secret: $SECRET” 
  
 

5.1.2 ibmtpm20tss utilities example 
 

#!/bin/bash 
set -xe # this prints each command to the console and terminates on error 
export TPM_ENCRYPT_SESSIONS=0 # Session state is locally saved in plaintext 
  
# Retrieve public Endorsement Key and its handle/context 
tsscreateek -cp -noflush -rsa 2048 # Retrieve public Endorsement Key and get handle 80000000 
  
# Create salted session using the Endorsement Key 
tssstartauthsession -se h -hs 80000000 # this returns handle to salted HMAC session at 02000000 
  
# Example: Store a secret in a TPM NV index using the encrypted session.  
echo mysecret > mysecret 
tssnvundefinespace -hi o -ha 0x1500016 || true # Remove existing NV index 
tssnvdefinespace -hi o -ha 0x1500016 -sz 128 # Create NV index. ‘o’ is short for ‘owner’ 
tssnvwrite -ic mysecret -ha 0x1500016 -se0 02000000 20 # Write index using command parameter encryption (20)   
  
# Example: Read a secret from a TPM NV index using the encrypted session 
tssstartauthsession -se h -hs 80000000 # this returns handle to salted session at 02000000 
tssnvread -ha 0x1500016 -sz 8 -se0 02000000 40 # Read index using response parameter encryption (40) 
  

 

5.2 Create password protected key using an encrypted session (bound session) 
The example illustrated in Figure 4 starts with a provisioning phase where the caller creates a primary object in the 
TPM (with a password) using an EK salted session. Then, the example illustrates a bound session using the object 
whereby the session secret used for parameter encryption is derived from the password. 

The salted session is used to encrypt pwd1, the primary key’s password. Afterwards, the bind session is used to 
encrypt pwd2. 
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Figure 4, Bound session sequence diagram for example code. 

 

5.2.1 tpm2-software utilities example 
It should be noted that, as of writing, this tpm2_createprimary utility does not yet support sessions or parameter 
encryption. 

 

#!/bin/bash 
set -xe # this prints each command to the console and terminates on error 
export TSS2_LOG=all+NONE # configurable log level 
  
# Beforehand: Provision a primary key into the TPM using an EK salted HMAC session 
tpm2_createek --quiet --key-algorithm rsa --ek-context ek.ctx 
tpm2_startauthsession --session salted_session.ctx --hmac-session --tpmkey-context ek.ctx 
tpm2_sessionconfig salted_session.ctx  --enable-decrypt --enable-encrypt 
tpm2_createprimary --key-algorithm=ecc --key-context=primary.ctx --key-auth=pwd1 
tpm2_flushcontext salted_session.ctx 
  
# At runtime: Start a bind auth session against the provisioned primary key handle 
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tpm2_startauthsession --session bind_session.ctx --bind-context=primary.ctx --bind-auth=pwd1 --hmac-session  
tpm2_sessionconfig bind_session.ctx --enable-decrypt --enable-encrypt # enable parameter encryption 
  
# Example: Create a key using the bind session 02000000  
# and encrypt passwords using parameter encryption 
tpm2_create --session=bind_session.ctx --key-algorithm=ecc256 --key-auth=pwd2 -C primary.ctx --parent-auth=pwd1 
  

 

5.2.2 ibmtpm20tss utilities example 
 

#!/bin/bash 
set -xe # this prints each command to the console and terminates on error 
export TPM_ENCRYPT_SESSIONS=0 # Session state is locally saved in plaintext 
  
# Beforehand: Provision a primary key into the TPM using an EK salted session 
tsscreateek -cp -noflush -rsa 2048 > /dev/null 2>&1 
tssstartauthsession -se h -hs 80000000 # this returns a handle to the salted session at 02000000 
tsscreateprimary -st -ecc nistp256 -pwdk pwd1 -se0 02000000 20 # create key and use parameter encryption 
  
# At runtime: Start a bind auth session against primary key handle 80000001 with password “pwd1” 
tssstartauthsession -se h -bi 80000001 -pwdb pwd1  
  
# Example: Create a new key using the bind session 02000000  
# and encrypt its password “pwd2” using parameter encryption (20) 
tsscreateprimary -si -ecc nistp256 -pwdk pwd2 -se0 02000000 20 
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