
 

TCG 

 
 

 

 

 
 
 
 
 
 
 

Guidance for Securing IoT Using 
TCG Technology 
 
Version 1.0 
Revision 21 
September 14, 2015 
Published 
 
 
 
 
Contact: admin@trustedcomputinggroup.org  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TCG Published 
Copyright © TCG 2015

mailto:admin@trustedcomputinggroup.org


Copyright ©2015 TCG Guidance for Securing IoT Using TCG Technology 
 Version 1.0 

Revision 21  2 September 14, 2015 
 TCG Published 

Disclaimers, Notices, and License Terms 1 

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING 2 
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY 3 
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, 4 
DOCUMENT OR SAMPLE.  5 

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary 6 
rights, relating to use of information in this document and to the implementation of this document, and 7 
TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of 8 
use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under 9 
contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this document or 10 
any information herein. 11 

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or 12 
implied, is granted herein other than as follows:  You may not copy or reproduce the document or 13 
distribute it to others without written permission from TCG, except that you may freely do so for the 14 
purposes of (a) examining or implementing TCG documents or (b) developing, testing, or promoting 15 
information technology standards and best practices, so long as you distribute the document with 16 
these disclaimers, notices, and license terms.   17 
 18 
Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on 19 
document licensing through membership agreements.  20 

Any marks and brands contained herein are the property of their respective owners. 21 

22 

http://www.trustedcomputinggroup.org/


Copyright ©2015 TCG Guidance for Securing IoT Using TCG Technology 
 Version 1.0 
  
 

Revision 21  3 September 14, 2015 
 TCG Published 

 
 

Acknowledgements 23 

The TCG wishes to thank all those who contributed to this specification. This document builds on 24 
considerable work done in the various work groups in the TCG.  25 

Special thanks to the members of the IoT-SG who participated in the development of this document: 26 

Tom Moulton Atmel 

Stacy Cannady (Editor, IoT-SG Co-
Chair) 

Cisco Systems 

Max Pritikin Cisco Systems 

Andreas Fuchs Fraunhofer Institute for Secure Information 
Technology (SIT) 

Lawrence Case Freescale Semiconductor 

Yoshitaka Hiyama Fujitsu Limited 

Seigo Kotani Fujitsu Limited 

Darren Krahn Google 

Tom Laffey Hewlett-Packard 

Jim Mann Hewlett-Packard 

Ira McDonald (Editor) High North 

Nicolai Kuntze Huawei 

Guerney Hunt IBM 

Sung Lee Intel Corporation 

Alan Tatourian Intel Corporation 

Steve Hanna (Editor, IoT-SG Co-Chair) Infineon Technologies 

Paul England (Editor) Microsoft 

Merzin Kapadia Microsoft 

David Wooten Microsoft 

Charles Schmidt The MITRE Corporation 

Hidekazu Segawa Ricoh Company LTD 

Graeme Proudler Self 

Tom Brostrom United States Government 

Jonathan Hersack United States Government 

Andrew Cathrow Verisign 

Andrew Tarbox Wave Systems 

 27 



Copyright ©2015 TCG Guidance for Securing IoT Using TCG Technology 
 Version 1.0 

Revision 21  4 September 14, 2015 
 TCG Published 

Additional thanks to those who provided comments on this document during review: 28 

Primrose Mbanefo, Accenture 29 

Dr. Dietmar Wippig, BSI 30 

Jesus Molina, Fujitsu 31 

Gerald Maunier, Gemalto 32 

Jack Ring, ontopilot.com 33 

Brian Witten, Symantec 34 

Maarten Bron, UL 35 

Arjan Geluk, UL 36 

Andrew Jamieson, UL 37 

38 



Copyright ©2015 TCG Guidance for Securing IoT Using TCG Technology 
 Version 1.0 
  
 

Revision 21  5 September 14, 2015 
 TCG Published 

 
 

Table of Contents 39 

1. Scope, Audience and Purpose ......................................................................................................................... 6 40 
1.1 Scope .................................................................................................................................................... 6 41 
1.2 Audience and Purpose .......................................................................................................................... 6 42 

2. Preface .............................................................................................................................................................. 7 43 
3. Use Cases ........................................................................................................................................................ 8 44 
4. IoT Framework ................................................................................................................................................ 11 45 

4.1 Establishing and Protecting Device Identity ........................................................................................ 11 46 
4.2 Protection Against Malware Infection .................................................................................................. 12 47 

4.2.1 Protecting Device Health ............................................................................................................. 12 48 
4.2.2 Detecting Malware Infections ....................................................................................................... 13 49 
4.2.3 Recovering from Infections .......................................................................................................... 13 50 
4.2.4 Maintaining Secrets while Infected .............................................................................................. 14 51 

4.3 Protecting Against Hardware Tampering ............................................................................................ 15 52 
4.3.1 Protecting the Confidentiality of Data .......................................................................................... 16 53 
4.3.2 Protecting the Integrity of Data .................................................................................................... 17 54 
4.3.3 Protecting Computation from Tampering ..................................................................................... 17 55 

4.4 Confidentiality, Integrity, and Availability of Data at Rest.................................................................... 18 56 
4.4.1 Availability .................................................................................................................................... 18 57 
4.4.2 Confidentiality and Integrity .......................................................................................................... 18 58 

4.5 Reselling or Decommissioning a Device ............................................................................................. 19 59 
4.6 Meeting Cryptographic Protocol Requirements .................................................................................. 19 60 
4.7 Supporting Multiple Models of Provisioning ........................................................................................ 20 61 
4.8 Maintaining Audit Logs ........................................................................................................................ 21 62 
4.9 Remote Manageability ........................................................................................................................ 21 63 
4.10 Securing Legacy Hardware ................................................................................................................. 22 64 

5. References ...................................................................................................................................................... 24 65 



Copyright ©2015 TCG Guidance for Securing IoT Using TCG Technology 
 Version 1.0 

Revision 21  6 September 14, 2015 
 TCG Published 

1. Scope, Audience and Purpose 66 

1.1 Scope 67 

This document describes typical IoT security use cases and provides guidance for applying 68 
TCG technology to those use cases.   69 

Because IoT devices vary widely in their cost, usage, and capabilities, there is no one-size-70 
fits-all solution to IoT security. The practical security requirements for different devices and 71 
systems will vary. Therefore, this list of solutions should be regarded as a menu from which 72 
the implementer can pick the options most suitable for their product or service. 73 

This document is not a TCG Specification and therefore is not normative. Further, this 74 
document does not provide enough detail for a product or solution to be directly 75 
implemented by reviewing this document alone. Many other aspects and design issues must 76 
be weighed and requirements resolved to create a product or solution. 77 

1.2 Audience and Purpose 78 

The intended audience for this document is providers of IoT devices, software, and services.  79 
The document is a high-level introduction to how TCG technology can be applied to solve 80 
security problems in the Internet of Things market space.  As a high level document, it is 81 
suitable for both business and technical readers as an initial starting point for an 82 
investigation of whether TCG technology is suitable as a solution for the reader’s security 83 
requirements.  84 
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2. Preface 85 
Most computer security is implemented at high levels in the software stack: for example, 86 
operating systems use cryptography to secure data at rest and in motion, and operating 87 
systems and applications are crafted and configured to protect user-privacy and be robust 88 
to malicious inputs.   Although much progress has been made in the science and practice of 89 
building secure systems, it remains true that most non-trivial software systems will have 90 
exploitable bugs.   Traditional recovery of infected and exploited systems has been time 91 
consuming and expensive: for instance operating systems and applications need to be re-92 
installed, and passwords and machine credentials need to be changed.  This has usually 93 
meant physical access (e.g. to install from a DVD) and access to important credentials (for 94 
example to enroll a device with a corporation.)   95 

The next wave of IoT will bring orders of magnitude more devices: some with UI, some 96 
without; some physically accessible, and others not.  The scale and diversity of this new 97 
world of computing demands a radical re-think of how we identify and manage devices 98 
remotely and at-scale. 99 

Once more, most of the next wave of IoT software and service machinery will be 100 
implemented high in the software stack, but in the face of software bugs, some things will 101 
simply not be possible without some hardware support.  For instance, with software-only 102 
solutions attackers will probably be able to irrevocably brick devices.  Other attacks will 103 
steal device secrets that can never be securely re-provisioned, forever allowing attackers to 104 
impersonate a device or eavesdrop on its communications.  These problems are not new or 105 
unique to IoT systems but they are more troubling with IoT systems because IoT systems 106 
are numerous, minimal in their security features, impractical to administer manually, and 107 
sometimes dangerous when compromised.  In short - software-only solutions are fragile, 108 
and prone to irrevocable damage. 109 

Fragile software-only solutions represent risks to consumers and to device and service 110 
providers.  Device providers risk warranty returns for systems that cannot be repaired in 111 
the field.  Customers risk their data, their privacy, and their time.  In the very worst of 112 
cases, customer health and wealth may be put at risk. 113 

TCG technologies do not provide an immediate solution to all IoT device and service security 114 
needs, but they enable existing and new IoT solutions to be fundamentally far more robust 115 
than today’s state-of the art.  This document defines a set of security-related use cases, and 116 
describes how TCG technologies can be applied to the problems.  117 
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3. Use Cases 118 
In this section we describe a set of fundamental security capabilities that will be required of 119 
many IoT devices.  In the IoT Framework section (section 4), we describe how TCG 120 
technologies can solve these problems. 121 

The fundamental security capabilities are: 122 

• Establishing and Protecting Device Identity 123 

IoT devices should have the ability to perform mutual authentication with IoT 124 
services or with other IoT devices. All parties can then use the results of this 125 
authentication to determine authorization and/or to log the identity of other parties. 126 
This prevents unauthorized IoT devices from gaining access to IoT services and 127 
prevents unauthorized parties from masquerading as IoT services. Further, it 128 
promotes accountability and enables forensic analysis. 129 

• Protection  Against Malware Infection 130 

IoT devices should be able to resist malware infections, both volatile and persistent. 131 
If a malware infection takes place, these devices should minimize the impact and 132 
enable recovery. 133 

• Protecting Device Health 134 

IoT devices should include a mechanism for securely determining 135 
software/firmware versions and a secure software/firmware update mechanism. 136 
This helps devices stay one step ahead of malware by rapidly and securely 137 
installing updates to known vulnerabilities. 138 

• Detecting Malware Infections 139 

Malware detection enables a variety of responses such as mitigation and 140 
remediation. However, malware is often stealthy, employing a variety of ruses to 141 
avoid detection. Therefore, malware detection must be equally clever. 142 

• Recovering from Infections 143 

Inevitably, some IoT devices will become infected with malware. When this 144 
happens, safe recovery should be feasible. This includes the ability to detect an 145 
infected device, restore it to a healthy state, and resume proper functioning. This 146 
process should not require physical access to the device. Instead, the recovery 147 
process should take place over the network. 148 

• Maintaining Secrets while Infected 149 

If an IoT device is infected with malware, important secrets such as user data and 150 
long-term keys should be protected so that the malware cannot access them. 151 

• Protecting Against Hardware Tampering 152 

Some kinds of IoT devices need to protect themselves against hardware tampering. 153 
For example, electric meters typically give consumers unlimited physical access 154 
along with an incentive to hack the device and steal service. In such circumstances, 155 
complete protection against tampering is often not possible. However, it is possible to 156 
raise the cost of tampering so that it requires specialized equipment or to limit the 157 
scope of the damage caused by such tampering. 158 
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• Protecting the Confidentiality of Data 159 

Some data must be protected against disclosure. For example, an attacker that 160 
can copy secret cryptographic keys from an IoT device may be able to impersonate 161 
that device or obtain confidential user data. 162 

• Protecting the Integrity of Data 163 

Some data must be protected against unauthorized and undetected modification. 164 
For example, an attacker that can modify the readings on an electric meter may 165 
be able to steal power. 166 

• Protecting Computation from Tampering 167 

If computation can be interfered with, security checks can be skipped and the 168 
reliability of the IoT device can be compromised.    169 

• Confidentiality, Integrity, and Availability of Data at Rest 170 

Confidential data stored on an IoT device should be protected. 171 

• Reselling or Decommissioning a Device 172 

Resale and decommissioning are inevitable phases in the device lifecycle, especially 173 
for expensive devices which are likely to have a significant resale value. Before a 174 
device is resold or decommissioned, any sensitive data belonging to the previous 175 
owner should be securely erased. Then the device can be securely transferred to a 176 
new owner or prepared for disassembly and recycling. 177 

• Meeting Cryptographic Protocol Requirements 178 

All IoT devices are in some way connected to a network that may not be trustworthy. 179 
Cryptographic protocols ensure the security of communications over that network 180 
and should be supported. Good sources of entropy, secure key storage, and 181 
cryptographic acceleration may be needed. Because cryptographic algorithms 182 
eventually become weakened and then obsolete, cryptographic agility may also be 183 
needed, especially for long-lived IoT devices.  184 

• Supporting Multiple Models of Provisioning 185 

IoT technologies must support practical, common methods of provisioning 186 
credentials, policies, and anything else needed to make an IoT device functional for 187 
the customer. Some IoT devices will be provisioned during manufacture, others at 188 
first use.  Some devices will be provisioned under conditions of physical security, and 189 
others by end users.  In some cases, customers may wish to use anonymous remote 190 
attestation and other techniques to protect their privacy. 191 

• Maintaining Audit Logs 192 

Secure logging is essential to maintaining accountability and enabling forensic 193 
analysis. 194 

• Remote Manageability 195 

Most IoT devices need secure remote management capabilities. Requiring physical 196 
access to manage an IoT device won’t scale to a large number of devices. 197 
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• Securing Legacy Hardware 198 

The world is currently full of legacy devices that do not support these use cases. 199 
Fortunately, the security of these devices can be improved using gateway devices that 200 
handle the security for them. 201 

 202 

The contents of this document are intended to span these use cases but are not intended to 203 
be limited to these use cases. 204 
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4. IoT Framework 205 
This section provides general guidance but not implementation details on how to use the 206 
Trusted Computing Group’s technologies and standards to address the use cases defined in 207 
section 3. 208 

Because IoT devices vary widely in their cost, usage, and capabilities, there is no one-size-209 
fits-all solution to IoT security. The practical security requirements for different devices and 210 
systems will vary. Therefore, this list of solutions should be regarded as a menu from which 211 
the implementer can pick the options most suitable for their device or service. 212 

4.1 Establishing and Protecting Device Identity 213 
Almost all IoT scenarios require reliable authentication of the devices in use, but 214 
unfortunately the Internet does not provide reliable endpoint authentication so devices 215 
must identify themselves instead.  There are many types of device identifiers in common 216 
use: simplest, and probably least secure, is a public name or globally unique identifier 217 
(GUID). However, a public name or GUID by itself does not provide authenticated identity 218 
for an IoT device because adversaries that obtain the name or GUID can impersonate the 219 
device.  220 

A second common technique is to use a cryptographic identifier (e.g., 802.1AR device IDs 221 
[802.1AR]). However, even when cryptographic device identifiers are used, many devices 222 
manage secret keys with software alone.  Unfortunately, if software managing the secret key 223 
is vulnerable, then the key can leak and adversaries can impersonate the device.  If this 224 
occurs the device can probably only be safely re-provisioned under conditions of physical 225 
security, and this might require physical access to the device, or even return to the 226 
manufacturer.  This is costly, and may not even be possible.  Therefore IoT devices should 227 
be furnished with cryptographic identities that are robust to the sorts of attack that the 228 
device is likely to suffer. 229 

The TPM provides cryptographic device identities that are robust in the face of malware 230 
attack, and many TPMs also provide good key-protection against relatively sophisticated 231 
hardware attacks.  As such, the TPM is a highly resilient foundation to use for IoT device 232 
identity.  TPM capabilities that can be used to provide device identity include symmetric-key 233 
encryption, HMAC, and asymmetric cryptography (commonly RSA and ECC.) [TPM2][TPM-234 
IDENTITY] 235 

Device identities must be used in robust cryptographic protocols to thwart common attacks 236 
(replay, man-in-the-middle, etc.)  For example, a device identity might be used in mutual 237 
authentication of a Transport Layer Security (TLS) session and to digitally sign integrity 238 
information as proof of the source of that information. 239 

The TPM also supports a variety of provisioning flows, including provisioning of keys during 240 
chip manufacturing, device assembly, enrollment with an IoT management service, or 241 
owner-personalization.  During TPM provisioning, “key attestation” can be used to allow one 242 
TPM-based key to certify that another TPM-based key is hardware-protected, thus providing 243 
more confidence in the security of the key storage.   Alternatively, secure key-import can be 244 
used to install new identities over an untrusted network.  245 
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We note that there are privacy implications inherent in the use of cryptographic identities, 246 
and solution providers should carefully consider whether IoT-devices employing TCG 247 
technology are facilitating privacy hazards for their users.  For example, it would generally 248 
not be considered a privacy hazard to allow unambiguous cryptographic identification of a 249 
device providing a public service (say a traffic camera.)  In this case all users can rely upon 250 
the same device identity key – for example, a TPM Endorsement Key or other TPM key that 251 
is tied to the device.  On the other hand, a TPM-equipped personal device that uses third-252 
party web services (e.g. a weather feed, a traffic feed, etc.) should not reveal any long-lived 253 
keys that allow unwanted tracking.  If secure pseudonymous identities are required, the 254 
TPM-based Attestation Identity Keys or Direct Anonymous Attestation can be employed. 255 
[TPM2] 256 

Solution developers can use the TPM Software Stack (TSS) library to build libraries and 257 
tools to provision and use TPM-based IoT device identities.  Vendors offer various 258 
proprietary APIs built on top of TSS or as proprietary instances of a TSS.  These proprietary 259 
offerings might support features needed by the device manufacturer.[TSS] 260 

4.2  Protection Against Malware Infection 261 
Several TCG technologies provide protection against malware infection, as described in the 262 
subsections of this section. 263 

4.2.1 Protecting Device Health 264 

Many of the TCG standards provide strong building blocks that can be used to implement 265 
or supplement IoT system security. 266 

One commonly used way of limiting how much damage malware can do is to prevent 267 
unauthorized writes to security-critical programs and data. TCG Self-Encrypting Drives, 268 
such as the commonly available “Opal” drives, include logic that firmware and operating 269 
systems can use to write-protect some or all of the IoT-device’s state. [OPAL] 270 

The Trusted Network Communications (TNC) standards [TNC-ARCH] include a standard 271 
way to check which software or firmware is running on a particular device, including the 272 
version number. They also provide a remediation mechanism that can be used to provide 273 
instructions for obtaining and applying software and firmware updates. 274 

To check which software or firmware is running on a particular device or perform other 275 
device health checks, use the IF-M protocol [IF-M] to query the endpoint. For IoT 276 
applications, this check will generally run over TLS using the IF-TNCCS  [IF-TNCCS] and IF-277 
T/TLS [IF-TTLS] specifications. 278 

To gain greater confidence in the veracity of a software or firmware version check, use the 279 
TPM’s Measured Boot and Remote Attestation capabilities, as described in TCG’s white 280 
paper “Trusted Network Connect: Open Standards for Integrity-based Network Access 281 
Control” [INTEGRITY].   282 

Traditionally, run time health verification has been handled by anti-malware products in 283 
larger systems. Whitelisting and only allowing binaries signed by the manufacturer are two 284 
good techniques for assuring only certain code is executed on the device. Use of TPM-285 
assisted software updates, static code analysis, runtime stack protections, data execution 286 
prevention, compliance verification, and policy updates are all options that the device 287 
manufacturer can consider for assuring the integrity of the run time environment. Some of 288 
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these techniques may not be practical on especially minimal devices. In that case, the only 289 
option may be to reboot periodically and use boot-time protections. 290 

If a device requires remediation, the Remediation Instructions attribute included in IF-M 291 
[IF-M] may be employed. This attribute is generally used for manual (human-assisted) 292 
remediation today, but automated remediation can be achieved using a Remediation URI or 293 
a vendor-specific Remediation Parameters Type. 294 

We note that practical security requires ongoing investments in software maintenance 295 
because patching is central to secure systems.  If a device vendor goes out of business, or 296 
limited time-period service contracts expire and updates are no longer available, then device 297 
security will start to degrade as vulnerabilities are discovered.  In light of this, some 298 
customers may wish to take full control over the IoT-client software and associated network 299 
services. 300 

4.2.2    Detecting Malware Infections 301 

In general the detection and remediation of malware is a hard problem because malware 302 
seeks equivalent or higher privilege than the systems that are seeking to detect and isolate 303 
it.  Secure boot mitigates this problem by examining each module before it is allowed to 304 
run.  However, secure-boot system policies tend to be relatively coarsely defined, potentially 305 
allowing bad or vulnerable software to load. 306 

If more fine-grained or run-time malware or security policies need to be enforced, TCG 307 
technologies offer an alternative model called attestation that is manageable even when 308 
large numbers of software modules are involved.  Attestation is a platform capability that 309 
allows authoritative reporting of the software or security configuration of a platform.  310 
Attestation can provide a very detailed report of security posture, and relying parties can 311 
choose whether to communicate further, quarantine or demand remediation.  Well-312 
implemented attestation-based systems drastically increase systemic security because 313 
known-bad or known-vulnerable systems can no longer communicate.  314 

This architecture is provided by the TPM’s Measured Boot and Remote Attestation 315 
capabilities, as described in TCG’s white paper “Trusted Network Connect: Open Standards 316 
for Integrity-based Network Access Control” [INTEGRITY]. This technique can even detect 317 
changes to BIOS or other firmware.  Some SoC (System on Chip) vendors also offer basic 318 
hardware capabilities that have attestation functions. 319 

4.2.3 Recovering from Infections 320 

Once malware has been detected as described in the previous section, the IF-PEP protocol 321 
[IF-PEP] can be used to isolate the infected machine to prevent the infection from spreading. 322 

There are a number of possibilities for remediation.  Examples in use today include:  323 

• Self validation and self remediation.  In this model, the device keeps a set of golden 324 
measurements in read-only protected storage and the golden measurements are 325 
compared to current measurements made during boot.  If there is a validation failure 326 
for a module, the device can delete the affected module and re-install a saved copy of 327 
that module from a local library of Last Known Good code.  The system then restarts 328 
in an iterative process until all modules validate.  329 
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• Remote validation.  In this model, the device measures its own integrity as part of 330 
boot, but does not validate those measurements.  When the device applies to join a 331 
network, part of joining involves sending an integrity report for remote validation.  If 332 
validation fails, the end point is diverted to a remediation network for action.   333 

• Runtime integrity.  Several commercial products are available that implement this 334 
model.  They all perform runtime checking of code in execution.  When a problem is 335 
found, the client code on the affected system handles the problem in different ways.  336 
It might replace infected code with a clean copy from storage, it might appeal to peers  337 
and request a clean copy from them, or it might announce to a remote PDP that it is 338 
now untrustworthy and wait on remediation.  339 

Infected devices may exhibit arbitrary behavior, so in general it is the responsibility of other 340 
devices and services to quarantine or reject communications from devices that are not able 341 
to prove themselves sound.  Devices that communicate with local or cloud-based hubs 342 
admit a single point of control for security assessment and quarantine.   If systems employ 343 
peer-to-peer communications then this function must be distributed across all devices 344 
(which itself is may be problematic if an infection is widespread.) 345 

In light of this complexity, system designers should consider employing a spectrum of 346 
protection and remediation technologies to increase system resilience. 347 

Architects should also consider the wider implications of quarantining: for instance it may 348 
be better to allow an infected IoT device to function if that device provides a service critical 349 
to life. 350 

Finally, system vendors should strive to build systems that can recover without loss of user 351 
data or important system configuration. 352 

4.2.4 Maintaining Secrets while Infected 353 

IoT devices often work unattended by humans and may operate unmanaged for extended 354 
periods of time.  These devices may store confidential or privacy-sensitive information such 355 
as consumer habits or manufacturing parameters.  This raises a concern about the ability 356 
of unattended devices to continue operating as designed, including maintaining the 357 
confidentiality of secrets used by the device, in the face of a successful infection by 358 
malware.   359 

The ability to maintain the confidentiality of secrets as they are used in the presence of 360 
malware infection is a problem that requires a layered approach to solve.  The layered 361 
approach starts with good security engineering in the software architecture of the device 362 
and in the implementation of that architecture.   363 

This secure architecture will depend on technology artifacts to create the secure envelope 364 
within which device secrets are protected.  Some modern processors include execution 365 
modes designed to protect security-critical subsystems.  These subsystems permit high-366 
speed execution of application code but may be vulnerable to bugs in supporting software. 367 
TPM functions can be implemented using these subsystems. Dedicated TPM hardware can 368 
provide more secure cryptographic operations and integrity checks. When used together 369 
with these subsystems and execution modes, a dedicated TPM can attest to the integrity of 370 
application code and supporting software while providing strong security for cryptographic 371 
keys and operations. 372 
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4.3 Protecting Against Hardware Tampering 373 

Hardware tampering means that an attacker has physical control of the device for some 374 
period of time.  Broadly speaking, hardware tampering might occur at any of three different 375 
periods in the life cycle of a device: 376 

1. During manufacture.  In this model the attacker has access to the device as it is 377 
designed or during its manufacture.  The result is that the device is built to support 378 
features and capabilities that are unknown to the device manufacturer and to 379 
customers who buy the device.  This should also include that possibility that an 380 
attacker will compromise components built by a supplier of the device manufacturer 381 
in order to compromise a target device. 382 

2. Between shipping the device from thedevice manufacturer’s dock to receiving the 383 
device at the customer’s dock.  In this model, the attack intercepts the device as it 384 
passes through distribution on its way to a customer site.  The result is that the 385 
device may have new capabilities, expected capabilities may now act in an unknown 386 
way and secrets may have been added, changed or removed from the device.  387 

3. During deployment and usage, while serving the customer’s needs.  In this model, 388 
the attacker gains access to the device during the productive life of the device.  Once 389 
again, the result may be that the device no longer behaves as expected, and/or its 390 
secrets may be stolen or changed. 391 

With regard to compromise during design and manufacture, the customer should conduct 392 
serious conversations with their vendors on the topic of Secure Design Lifecycle and supply 393 
chain security as practiced by the vendor (and their suppliers).  With regard to compromise 394 
in transit, this is also a supply chain matter, but the customer will have to address the 395 
distribution chain between the device manufacturer and his dock.  With regard to 396 
compromise of a device in deployment within a customer network, it is the responsibility of 397 
the customer to have done the risk assessment required to understand what level of 398 
security capability is required to cost-effectively protect data processed through devices 399 
used to execute the business process.  Not all security measures are created equal.   Low 400 
risk assessments mandate security measures that can be less robust, but also less 401 
expensive. High risk assessments mandate security measures that are more robust and 402 
therefore more expensive.    403 

The issue of whether an appropriate risk assessment has been done is the foundation of the 404 
response for each of sections 4.3.1 through 4.3.3 below.  The mission of effective data 405 
security is to make it “more trouble than it is worth” for the attacker to be successful 406 
against his chosen target. 407 

A complicating factor to consider in this otherwise common sense approach is the lifetime of 408 
the device in deployment.  Industrial control systems can remain in service for 50 years or 409 
more.  Automobile manufacturers plan on 30 years for the lifetime of a car.  Network 410 
infrastructure equipment can remain in service for 15 years. From a security perspective, 411 
security measures that were impossible to breach years ago may be vulnerable today.  A 412 
best practice approach to lifetime security is to engineer security in a modular, upgradeable 413 
and replaceable manner.  This makes it possible for the device manufacturer to replace 414 
obsolete security components as time goes on.   415 
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OEMs should also keep in mind that security engineering best practices  416 

• Forbid the hard-coding of secrets in code or files in a device, 417 

• Forbid the deployment of back doors or admin accounts as part of released products, 418 

• Require removal of debug code from released products,   419 

• Forbids a security design that calls for the use of a secret that is shared by all 420 
products. 421 

The following general remarks apply to each of sections 4.3.1 to 4.3.3.  422 

Since we are focused on hardware tampering, that means that the customer should 423 
consider solutions that implement the security envelope inside security hardware that 424 
includes countermeasures against tampering.  Having said that, some security hardware is 425 
more robust than others.   426 

A risk analysis should provide the information necessary to define the size and capabilities 427 
of the HSM (Hardware Security Module).  It may be that the HSM is nothing more than 428 
shielded NVRAM that is used to protect one or more roots of trust for the platform.  It may 429 
be that the security envelope must be substantially larger and more capable.  This risk 430 
analysis costs time and resources to perform, but the payoff can be substantial in terms of 431 
not over-spending or under-spending on security while still protecting the brand from 432 
damage that comes as part of a failed security implementation. 433 

A hardware-based security envelope might be nothing more than a general purpose 434 
microprocessor that is isolated from other processing within the device.  The security 435 
envelope is created by isolation of the processing of confidential data from other processing 436 
on the device.  This is a low bar for an attacker with possession of the device. 437 

Beyond the use of a general purpose processor, there are processors that support a variety 438 
of hardware features that are designed to make it harder for an attacker who has physical 439 
possession to compromise the device.  Use of hardware countermeasures as the primary 440 
tool for defending against tampering places the HSM in a middle range of resistance to 441 
physical attack.  Most TPM chips fall in this category. 442 

At the high end of resistance to physical attack are HSMs that use hardware, firmware and 443 
software security mechanisms coordinated to resist physical attack.   This method of 444 
protection evolved to protect personal financial data stored and used on smart cards and to 445 
protect confidential information on set-top boxes.     446 

4.3.1 Protecting the Confidentiality of Data 447 

In this case, the objective of the security design is to  448 

• Protect confidential data at rest by encrypting that data and storing the encryption 449 
key within a security envelope.  450 

• Protect confidential data in process by decrypting and processing confidential data 451 
within a security envelope.  Once processing is complete, the confidential data must 452 
be re-encrypted before being written to storage.  453 

The TPM is an example of an HSM designed to protect specific small secrets, such as keys 454 
and to protect a specific set of crypto operations using those keys, like digital signatures.  It 455 
is not designed to be for bulk data encryption.  Secure processor modes can be used to 456 
protect keys and ongoing computation, although practical security will be degraded if very 457 
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large subsystems are run in isolated containers because the software systems themselves 458 
may contain exploitable bugs. 459 

For protection of data at rest, the customer should consider the use of self-encrypting 460 
storage hardware or software based encryption.  Self-encrypting storage hardware features 461 
high speed bulk data encryption hardware integrated into the storage device controller.  462 
Data written to the storage media is encrypted as it passes through the hardware 463 
encryption engine.  Data read from the device is decrypted as it passes through the 464 
hardware encryption engine.  The encryption engine operates at bus speed (minimal 465 
performance impact) and the key used to encrypt and encrypt data (called the Media 466 
Encryption Key or MEK) is non-exportable from the storage device controller.   467 

4.3.2 Protecting the Integrity of Data 468 

There are a few ways to protect data against an attack intended to perform unauthorized 469 
change.  One is to use a Write Once or Read Only storage protection.  This approach can 470 
provide high assurance that the integrity of the data at rest can’t be changed (depending on 471 
the hardware mechanisms that enforce Write Once).  The TPM supports a small amount of 472 
non-volatile RAM that features a Write Once technique.  The available NVRAM within a TPM 473 
can vary from one chip maker to another.  It is usually small – around 10K bytes.  474 

Another mechanism is to restrict access to keys based on policy.  For example, it is possible 475 
to write policy for the protection of a secret (like an encryption key) that states that if the 476 
software on the device is not in a certain configuration or if the integrity of the software is 477 
not specifically a certain value, the TPM shall not release the secret. 478 

For larger volumes of data (e.g. executable code or archives of documents) another 479 
protection mechanism is to use standard cryptographic hash as a mechanism for validating 480 
the ongoing integrity of data of interest.  In this model, a set of files that are known to be 481 
good are hashed (it could be as a group, as sets or as single files) and hashes are protected 482 
as the golden measurements.  In the future, the files can be re-hashed at any time and the 483 
current hash measurements can be compared to the originals.  If they match, the integrity 484 
of the data has not changed.   485 

This mechanism can be used as a way to identify unauthorized change to executables and 486 
configuration files.   It can also be used to verify the integrity of documents and it is the 487 
basis of assuring the integrity of a digitally signed document.   488 

   489 

4.3.3 Protecting Computation from Tampering 490 

Malware frequently uses two techniques to insert itself into a target platform.  One is to 491 
modify code in memory.  This technique can only last until the system is rebooted.  To 492 
install in a fashion that can survive reboot, malware must use the second technique: 493 
modifying files.  As stated in section4.3.2, above, the TPM can be used to protect current 494 
hash measurements of important files and data and produce a digitally signed report (called 495 
an “integrity quote”) of those measurements at any time to any entity.  The digital signature 496 
on the integrity quote uses a key that cannot be exported from the TPM, thus providing 497 
evidence of which TPM (and therefore which device) produced the report.  An external entity 498 
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that has access to the original measurements can compare those measurements to the 499 
provided report and determine whether code on the device in question has changed or not.     500 

Another option available for detecting tampering against executable code in the device is to 501 
use the TPM as a way of creating an audit log of the integrity of software.  The way the log is 502 
built is that the code in question is measured or hashed on a periodic basis.  Each new 503 
measurement is extended into the log.  The value of this historical log can be predicted (if 504 
no changes were made or if authorized changes were made).  If the current value of the log 505 
does not match the expected value, the software has been tampered with.   506 

Finally, with regard to attack against computation done within the TPM, there are 507 
differences between TPM devices offered by different vendors.  Some vendors provide 508 
protection for the TPM as a matter of differentiation against their competition.  If protection 509 
against tampering with the computations done by a TPM is important, check with your TPM 510 
vendor to see what help they can provide with their product.  511 

4.4 Confidentiality, Integrity, and Availability of Data at Rest 512 

4.4.1 Availability 513 

IoT-devices will employ a mix of read-only and read-write memory technologies to store their 514 
computer programs and data critical to their operation.  Destructive malware will seek to 515 
corrupt or delete writable state, so protection measures must be employed.  Simplistic 516 
solutions to this requirement place all IoT device code in ROM, but this will obstruct device 517 
updates, and will generally not be acceptable.  518 

The TCG has defined a variety of technologies that seek to limit exposure to attacks on the 519 
availability of writable state.  One key concept is that of a Root of Trust for Update or RTU. 520 
The RTU is the minimal functionality needed to perform a secure update of a device.  521 
Although not explicitly described in TCG specifications, having an RTU check a certificate 522 
on a software upload is a common implementation for a secure minimal-RTU.  The NIST 523 
document [800-147] describes requirements for PC-platform firmware-updates that are also 524 
applicable to IoT-devices. 525 

Platforms must also implement protections that ensure that only the RTU can perform an 526 
update.  TCG has defined a family of storage controller technologies known as “Opal” that 527 
allow storage regions to be unlocked for write access by an entity that can provide proper 528 
authentication (such as a password). [OPAL].  One Opal-supported scheme permits write 529 
operations to a region early in boot but allows the RTU to write lock the storage region 530 
before passing control to (potentially) untrusted software.  It is outside the scope of TCG 531 
specifications to describe how these passwords may be managed, but one technique is to 532 
use the TPM to ensure that the password is only accessible to the properly authenticated 533 
RTU. 534 

4.4.2 Confidentiality and Integrity 535 

Many IoT devices will store confidential data.  Some of this data may be customer data, and 536 
some may be device data – for example, keys used to ensure updates are secure.  This data 537 
is also under threat from two sources: one is malware that manages to subvert the device, 538 
and the other is physical attack for devices that are lost, stolen, or operate under conditions 539 
of poor physical security. 540 
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TCG describes many technologies that allow a device manufacturer to build systems that 541 
provide robust protection for confidential data.  The Opal storage technologies described 542 
above allow storage regions to be not only write protected (as previously described), but also 543 
configured so that only authorized entities can unlock the storage region for read 544 
access.[OPAL]  A common use case is to provide a storage area that can only be accessed 545 
prior to OS boot (because early boot code is generally smaller, simpler and less prone to 546 
bugs than the final running system). 547 

The TPM is also a powerful device for the protection of device data.[TPM2]  One capability is 548 
a non-volatile storage feature: the TPM implements a sophisticated authorization model for 549 
the entities and circumstances under which data can be read or written.  Authorized 550 
entities can be identified by program hash, proof-of-knowledge of a second secret (possibly 551 
low entropy, like a PIN), time, software configuration, etc.  Unfortunately the NV-storage 552 
capacity of most TPMs is modest (perhaps kilobytes), but it is usually sufficient to protect 553 
authentication credentials (for self-encrypting drives) or encryption keys (for software FDE). 554 

4.5 Reselling or Decommissioning a Device 555 

Because resale or decommissioning are a natural part of the device lifecycle, the device 556 
manufacturer should include support for these use cases in the design of the device. 557 
Generally, two steps are necessary: securely erasing any sensitive user-data and resetting 558 
the device back to factory settings so that it can be configured by the new owner. With a 559 
TPM, this is performed by using the TPM2_Clear command  [TPM] to release ownership. If 560 
all sensitive data was encrypted with keys stored in the TPM, this data will no longer be 561 
accessible. All self-encrypting storage solutions in the market today support a command to 562 
delete the current MEK (Master Encryption Key) and generate a new one.  When this 563 
command is executed, all data on the storage device is permanently lost – a process called a 564 
“crypto erase”. The new owner of the device can verify that the proper software is loaded on 565 
the device using the techniques described in section 4.2.1 and can verify that the device has 566 
been reset using commands in this software. Then the new owner will need to take 567 
ownership of the TPM and personalize the device.   568 

In addition to sensitive user-data, many IoT-devices will be furnished with keys from the 569 
manufacturer or service provider.  Depending on the behavior of the device and service, 570 
these keys may need to survive a change in owner of the IoT device.  The TPM defines 571 
different families of data and associated control so that (say) a user is authorized to clear all 572 
user data, but only the device manufacturer can clear or re-provision keys representing 573 
fundamental device identity. 574 

4.6 Meeting Cryptographic Protocol Requirements 575 

If the device manufacturer intends to produce devices that are capable of encryption and 576 
the target market includes national governments, then it is likely that there will be a 577 
requirement from those governments to comply with guidelines about how encryption is to 578 
be done.  This includes how random numbers are generated, how keys are generated, what 579 
cryptographic algorithms are used, how keys are managed and protected and many other 580 
specifics with regard to encryption.  In many cases, failure to comply with these guidelines 581 
means that the device manufacturer’s product will not be purchased by national 582 
governments.  The TPM 2 specification [TPM2] includes support for true random number 583 
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generation, cryptographic key generation, secure key storage, cryptographic hashing, and 584 
both asymmetric and symmetric cryptography with a choice of cryptographic algorithms. 585 
Because TPM 2 is a library specification, each TPM platform profile specifies which of these 586 
features are required and optional for that platform.  The TPM 2 specification also supports 587 
some flexibility in terms of which algorithms can be run within a TPM.  Refer to the TPM 588 
Algorithm Registry [ALGREG] for the range of choices.  Interested OEMs are once again 589 
directed to the TPM vendor community to find out what security compliance testing the 590 
TPM vendors have already undertaken.  In general, the device manufacturer will still have 591 
to undertake compliance testing of the device, of which a compliant TPM is a part.  The 592 
presence of a TPM in a device does not necessarily make the device secure. 593 

4.7 Supporting Multiple Models of Provisioning 594 

IoT devices can flow through a variety of provisioning steps on their way to final operation.  595 
Steps may include silicon manufacture (including TPMs), assembly by the device 596 
manufacturer, (possibly) device personalization by the vendor, and final configuration by 597 
the end customer.  Some devices may also support de-provisioning for retirement or resale.  598 
Not all IoT devices will have local user interfaces, which can limit strategies for device 599 
enrollment and configuration. 600 

In this section we confine our discussion to the provisioning and management of device 601 
keys.  Generally, once one key has been provisioned, this key can be used to bootstrap 602 
arbitrarily complex configuration software and state.  The TPM can be a powerful device for 603 
secure enrollment of devices, even under poorly secured conditions like an outsourced 604 
device production line or even a remote physical location. 605 

TPMs incorporate long lived device identities called Endorsement Keys.  A TPM endorsement 606 
key will typically live for the life of the TPM, and can be used as the basis of identity for an 607 
IoT-device.   Endorsement Keys are usually public-private key pairs, and are usually 608 
certified by the TPM manufacturer.  Once a management authority knows the public key of 609 
a device it can securely perform a wide range of software deployment and configuration 610 
steps.  Association of TPM public keys to manufactured devices is typically the most 611 
challenging step, but securely managing a public key database (possibly with certificates to 612 
ensure key-veracity) is typically much easier than the secure deployment and management 613 
of secret keys. 614 

Often, OEMs want to add a device key into each IoT device during device manufacture, 615 
enabling authorized devices to be identified in the field.  Without a TPM, this can be a 616 
painful process requiring physical security on the production line for the key generation 617 
and insertion process. Using a TPM on each device, this process can be greatly simplified. 618 
Each TPM can generate the device key for its device and use the TPM’s EK to vouch for the 619 
device key’s security and validity. By using this mechanism in conjunction with controlled 620 
issuance of credentials and licenses to devices, overproduction and other forms of fraud on 621 
the production line can be prevented. More detailed guidance on this important but 622 
complex topic will be coming from TCG soon. 623 

The TPM can also be used to securely establish the initial (and later) firmware/software 624 
images.  If a device implements measured boot, then provisioning services can securely 625 
establish (a) the device being provisioned, and (b) the initial software load that the device 626 
will run. 627 

Final steps of device configuration may include the establishment of user/customer-specific 628 
keys.  Examples of keys that might be provisioned by the final customer might include 629 
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encryption keys that are used to secure customer data, or shared keys allowing all of a 630 
customer’s IoT devices and coordination-hubs to identify each other and communicate 631 
securely.  The TPM distinguishes user and platform keys by the authority that controls their 632 
lifetime.  Platform key lifetime is controlled by the platform manufacturer, and the 633 
manufacturer may choose to make their keys everlasting.   The TPM provides additional 634 
capabilities to create keys for the device owner that only the owner can delete.  If IoT devices 635 
enable this behavior, then the TPM supports user-controlled secure de-personalization of a 636 
device so that it can be safely sold or retired. [TPM2] 637 

 638 

4.8 Maintaining Audit Logs 639 

IoT devices will see increasing utilization as data sensors and we will find ourselves 640 
increasingly reliant on the data that they will produce.  Since IoT devices communicate over 641 
the (untrusted) Internet, cryptography must be used to protect the reports and statements 642 
made by the devices. 643 

The TPM can be used to sign device statements or can be used to create secure channels 644 
like SSL on which a stream of statements can be made.  The TPM also incorporates a 645 
variety of more sophisticated secure signature technologies that can guard against other 646 
attacks on the network or the device itself.  For example, TPMs include monotonic counters.  647 
A monotonic counter – as its name implies – counts up, but not down.  An IoT device can 648 
incorporate a monotonic count-value into its reports to guard against both the replay and 649 
deletion of device statements. 650 

TPMs also include a secure-clock: While there are some common implementation 651 
limitations on the behavior of the clock (for instance, whether it is always powered), 652 
including a TPM-clock measurement in a signed data report still protects against many 653 
attacks on the device or data stream. 654 

Finally, the TPM in a device implementing measured boot also allows the identity of the 655 
software making a report to be included in a signed report.  This capability is called 656 
attestation, and can be used to guard against old and buggy software operating under the 657 
control of an adversary imitating the reports made by new and bug-free versions. 658 

In addition to online data reporting the TPM supports secure local logging of data and 659 
information: once more, the clock/timer and monotonic counters can be used to protect 660 
these reports. 661 

4.9 Remote Manageability 662 

A focus of the TPM specification is to define capabilities for the protection of secrets.  In 663 
principle, any small unit of data can be protected using a TPM.  In practice, the secrets we 664 
are talking about are usually keys, either symmetric or asymmetric.  Institutions that deal 665 
with keys already have a management infrastructure in place for the management of these 666 
keys.  There are many ways to perform key management.  Often, these tools are centrally 667 
based.  By the time key management reaches an end point, we are usually talking about a 668 
client of some sort and that client depends on some sort of protective mechanism to ensure 669 
the confidentiality of that secret while it is stored at rest on the device.   670 
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There are a few common methods for the key management client or user to access this 671 
protective mechanism.   672 

• RSA’s PKCS #11 standard is commonly used in the Linux world as a standard 673 
method for accessing services offered by an HSM for the protection of private keys 674 
tied to digital certificates.  PKCS is also supported under Windows. 675 

• Microsoft’s Cryptographic API (CAPI) and successors do the same in Windows 676 
environments. 677 

• Java’s crypto library includes support for Cryptographic Service Providers (CSPs).  678 
These CSPs can provide access to HSMs for key protection.      679 

That covers the problem of key management as it comes down the stack from the 680 
application that uses keys.   681 

Coming up from the HSM (in this case a TPM), we have the following stack: 682 

• The TPM specification defines an API that can be used to request protective services 683 
from the TPM.  An entity can use this API to define a passphrase and access control 684 
rules that restrict access to a secret the TPM protects.   685 

• TCG defines the TPM Software Stack, a middleware that abstracts the complexity of 686 
the TPM API.  In the Windows world, a number of ISVs provide proprietary 687 
implementations of TSS, including a bridge that makes the TPM accessible through 688 
Windows CAPI. In Linux, IBM open-sourced an implementation of TSS for Linux 689 
called Trousers. 690 

• For PKCS #11 users, the Open Source community includes several modules that 691 
bridge PKCS #11 to Trousers.   692 

Using a bridge to either CAPI or PKCS #11, it is possible for app developers who know one 693 
or both of these interfaces to begin using a TPM to protect keys without actually knowing 694 
anything about how TPMs work. There are a number of CAPI bridges available in the 695 
market either for free (from PC vendors) or for fee.  They are implemented as Cryptographic 696 
Service Providers (CSPs) for use with CAPI.  For the Linux PKCS #11 world, there are 697 
several Open Source PKCS #11 to TSS bridges.   698 

If the customer already has a Key Management System (KMS) that supports use of CAPI or 699 
PKCS #11 on end points, transition to using a TPM to provide hardware-based protection 700 
can be done by  701 

• Installing a TPM-aware extension into Windows CAPI 702 

• Installing Trousers and an open source PKCS #11 bridge module under Linux.    703 

4.10 Securing Legacy Hardware 704 

The Trusted Network Connect (TNC) architecture includes a specification designed to 705 
improve the security of legacy Industrial Control Systems (ICS): IF-MAP Metadata for ICS 706 
Security [MAP-ICS]. This specification is designed to work as part of the ISA 100 707 
architecture designed by the International Society for Automation (ISA) for ICS security. 708 

In this architecture, legacy ICS devices are organized into local enclaves called 709 
Characterized Control Domains (CCDs). CCDs are interconnected over an untrusted 710 
Backhaul Network using security gateways known as Backhaul Interfaces (BHIs). The BHIs 711 
establish a secure (encrypted and authenticated) Overlay Network on top of the Backhaul 712 
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Network. The BHIs further restrict which ICS devices can communicate with each other, 713 
based on configured policies. And the IF-MAP Metadata for ICS Security specification 714 
describes how BHIs are provisioned with the credentials and policies needed to make this 715 
system work smoothly and easily. 716 

Of course, this architecture is not perfect. If attackers can compromise one ICS device, they 717 
may be able to spread their control to others. But the BHIs can prevent attackers on the 718 
untrusted Backhaul Network from accessing ICS devices in a CCD and they can monitor 719 
traffic between the ICS devices for suspicious behavior. 720 

This gateway architecture need not be restricted to only ICS devices. It can have broader 721 
applicability in environments where vulnerable devices are collected into enclaves and 722 
protected by gateways, like in automotive, home automation and healthcare applications. 723 
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