

TCG

TCG EK Credential Profile
For TPM Family 2.0; Level 0

Version 2.4
Revision 3

16 July 2021

Contact: admin@trustedcomputinggroup.org

PUBLISHED
Copyright © TCG 2021

mailto:admin@trustedcomputinggroup.org

TCG EK Credential Profile TCG Copyright 2021 Version 2.4

Revision 3 16 July 2021 PUBLISHED Page ii of 60

Copyright © 2021 Trusted Computing Group, Incorporated.

Disclaimers, Notices, and License Terms

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in this specification and to the implementation of this specification, and TCG
disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of
data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort,
warranty or otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is
granted herein other than as follows: You may not copy or reproduce the document or distribute it to others
without written permission from TCG, except that you may freely do so for the purposes of (a) examining
or implementing TCG specifications or (b) developing, testing, or promoting information technology
standards and best practices, so long as you distribute the document with these disclaimers, notices, and
license terms.

Contact the Trusted Computing Group at admin@trustedcomputinggroup.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Revision 3 16 July 2021 PUBLISHED Page iii of 60

Change History

Revision Section Description

V2.3 R2 Last published version (23 July 2020)

V2.4 R3
(this
document)

2.2.1.4,
2.2.1.5
3.2.13

3.2.16

Removed all “For TPMs designed to meet Windows” statements, which are:

- RSA 2k and ECC NIST P256 EK must use low range EK Templates, and
associated EK certificates must be stored using low range handles
- EK certificate must contain AIA extension that contains URL for the issuing
CA certificate
- EK certificate must contain EKU extension that contains OID tcg-kp-
EKCertificate

Reader should consult respective operating system requirements instead

Revision 3 16 July 2021 PUBLISHED Page iv of 60

Acknowledgement

The TCG wishes to thank those who contributed to this specification. This document builds on considerable
work done in the various working groups in the TCG.

Special thanks to the members of the IWG group and others contributing to this document:

Name Affiliation
Carolin Baumgartner Carolin Baumgartner

Bob Bell Cisco Systems

Max Pritikin Cisco Systems

Monty Wiseman (Group Chair) General Electric Company

Tom Laffey (Group Chair) Hewlett Packard Enterprise

Scott Kelly Hyperthought

Ken Goldman IBM

Ga-Wai Chin (Editor) Infineon

Georg Rankl Infineon

Stefan Kaeser Infineon

Eduardo Cabre Intel Corporation

David Challener Johns Hopkins University, Applied Physics Lab

Gabriel Stocco Microsoft

Rahul Verma Microsoft

Ronald Aigner Microsoft

Will Arthur Raytheon Cyber Solutions, Inc

Olivier Collart STMicroelectronics

Gloria Serrao United States Government

Greg Kazmierczak Wave Systems

Revision 3 16 July 2021 PUBLISHED Page v of 60

Table of Contents

1 Introduction .. 8
1.1 Purpose ... 8
1.2 Scope .. 8
1.3 Relationship to Other TCG Specifications .. 8
1.4 Keywords ... 8
1.5 Abbreviations ... 8
1.6 Definition of Terms .. 8

2 TPM 2.0 EK and EK Credential .. 9
2.1 Endorsement Key .. 9

2.1.1 Primary Key Generation .. 9
2.1.2 EK Usage .. 9

2.1.2.1 User Device TPM .. 10
2.1.2.2 Non-User Device TPM .. 10

2.1.3 EK Lifetime .. 10
2.2 Endorsement Key Credential .. 12

2.2.1 NV Index Handles ... 12
2.2.1.1 General Design ... 12
2.2.1.2 NV Index Contents .. 12
2.2.1.3 Allowed and Recommended Usages of NV Indices ... 13
2.2.1.4 Low Range .. 13
2.2.1.5 High Range ... 14
2.2.1.6 TPMT_PUBLIC Calculation ... 16
2.2.1.7 Locating Keys or specific NV Index Content ... 16
2.2.1.8 Key Handle and Certificate Handle Relationships .. 16
2.2.1.9 Read EK certificates and create the associated EKs .. 16

2.2.2 EK Credential Lifetime .. 18
2.3 Privacy Protection ... 19

3 X.509 ASN.1 Definitions ... 20
3.1 TCG Attributes ... 20

3.1.1 TPM Security Assertions ... 20
3.1.2 TPM Device Attributes .. 23
3.1.3 TPM Specification Attributes ... 23

3.2 EK Certificate .. 24
3.2.1 Version .. 25
3.2.2 Serial Number ... 25
3.2.3 Signature Algorithm ... 25
3.2.4 Issuer ... 25
3.2.5 Validity ... 25
3.2.6 Subject .. 25
3.2.7 Subject Public Key Info ... 26
3.2.8 Certificate Policies ... 26
3.2.9 Subject Alternative Name .. 26
3.2.10 Basic Constraints .. 26
3.2.11 Subject Directory Attributes ... 26
3.2.12 Authority Key Identifier .. 27
3.2.13 Authority Information Access .. 27
3.2.14 CRL Distribution .. 27
3.2.15 Key Usage ... 27
3.2.16 Extended Key Usage .. 28
3.2.17 Subject Key Identifier .. 28

4 X.509 ASN.1 Structures and OIDs ... 29

5 References .. 32

Revision 3 16 July 2021 PUBLISHED Page vi of 60

A. Certificate Examples .. 34
 Example 1 (user device TPM, e.g. PC-Client) .. 34

B. Default EK Templates (algorithm-specific) .. 36
 Introduction .. 36
 Backwards Compatibility ... 36
 EK Templates in the Low Range ... 36

B.3.1 Introduction .. 36
B.3.2 Satisfying PolicyA .. 37
B.3.3 Template L-1: RSA 2048 (Storage)... 38
B.3.4 Template L-2: ECC NIST P256 (Storage) ... 39

 EK Templates in the High Range .. 40
B.4.1 Introduction .. 40
B.4.2 Authorization Options .. 40
B.4.3 Satisfying PolicyB .. 40
B.4.4 Template H-1: RSA 2048 (Storage) .. 42
B.4.5 Template H-2: ECC NIST P256 (Storage) .. 43
B.4.6 Template H-3: ECC NIST P384 (Storage) .. 44
B.4.7 Template H-4: ECC NIST P521 (Storage) .. 45
B.4.8 Template H-5: ECC SM2 P256 (Storage) ... 46
B.4.9 Template H-6: RSA 3072 (Storage) .. 47
B.4.10 Template H-7: RSA 4096 (Storage) .. 48

 Policy NV Indices .. 49
B.5.1 Introduction .. 49
B.5.2 Handle Values ... 50
B.5.3 Policy Index I-1: SHA256 .. 51
B.5.4 Policy Index I-2: SHA384 .. 52
B.5.5 Policy Index I-3: SHA512 .. 53
B.5.6 Policy Index I-4: SM3_256 .. 54

 Policy Computation ... 55
B.6.1 Introduction .. 55
B.6.2 Computing PolicyA .. 55
B.6.3 Computing Policy Index Names .. 56
B.6.4 Computing PolicyC .. 56
B.6.5 Computing PolicyB .. 57

C. Certificate Fields (algorithm-specific) .. 58
 Signature Algorithm ... 58

C.1.1 RSA ... 58
C.1.1.1 RSA 2k CA Key ... 58
C.1.1.2 RSA 3k and 4k CA Key ... 58

C.1.2 ECC ... 58
C.1.2.1 NIST P256 CA Key.. 58
C.1.2.2 NIST P384 CA Key.. 58
C.1.2.3 NIST P521 CA Key.. 58
C.1.2.4 SM2 P256 CA Key .. 58

 Subject Public Key Info ... 59
C.2.1 RSA ... 59
C.2.2 ECC ... 59

C.2.2.1 NIST P256 ... 59
C.2.2.2 NIST P384 ... 59
C.2.2.3 NIST P521 ... 59
C.2.2.4 SM2 P256 .. 60

Revision 3 16 July 2021 PUBLISHED Page vii of 60

Tables

Table 1: EK Certificate Fields.. 25
Table 2: Default EK Template (TPMT_PUBLIC) L-1: RSA 2048 (Storage) .. 38
Table 3: Default EK Template (TPMT_PUBLIC) L-2: ECC NIST P256 (Storage) 39
Table 4: Default EK Template (TPMT_PUBLIC) H-1: RSA 2048 (Storage) ... 42
Table 5: Default EK Template (TPMT_PUBLIC) H-2: ECC NIST P256 (Storage) 43
Table 6: Default EK Template (TPMT_PUBLIC) H-3: ECC NIST P384 (Storage) 44
Table 7: Default EK Template (TPMT_PUBLIC) H-4: ECC NIST P521 (Storage) 45
Table 8: Default EK Template (TPMT_PUBLIC) H-5: SM2 P256 (Storage) ... 46
Table 9: Default EK Template (TPMT_PUBLIC) H-6: RSA 3072 (Storage) ... 47
Table 10: Default EK Template (TPMT_PUBLIC) H-7: RSA 4096 (Storage) ... 48
Table 11: EK Policy Index (TPMS_NV_PUBLIC) I-1: SHA256 ... 51
Table 12: EK Policy Index (TPMS_NV_PUBLIC) I-2: SHA384 ... 52
Table 13: EK Policy Index (TPMS_NV_PUBLIC) I-3: SHA512 ... 53
Table 14: EK Policy Index (TPMS_NV_PUBLIC) I-4: SM3_256 ... 54
Table 15: PolicyA values ... 55
Table 16: Policy Index Names .. 56
Table 17: PolicyC values ... 57
Table 18: PolicyB values ... 57

Figures

Figure 1: Policy Indices for EK Templates in the High Range .. 49

Revision 3 16 July 2021 PUBLISHED Page 8 of 60

1 Introduction

1.1 Purpose
The purpose of this document is to define the TPM 2.0 Endorsement Key (EK) Credential. This
specification describes the content of the credential and provides an X.509 instantiation of the
credential. A standardized and commonly used format should provide better interoperability between
credential providers and users.

1.2 Scope
This document specifies the TPM 2.0 Endorsement Key Credential. It does not apply to TPM 1.2
credentials or credentials of other type.

1.3 Relationship to Other TCG Specifications
A TPM claiming adherence to this specification SHALL be compliant with the TPM 2.0 Library
Specification[1]; Family 2.0; Level 00; Revision 00.99 or later.

1.4 Keywords
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119[17].

1.5 Abbreviations
CFB Cipher Feedback mode

CSR Certificate Signing Request

EK Endorsement Key

EPS Endorsement Primary Seed

IDevID Initial Device Identifier

KDF Key Derivation Function

OEM Original Equipment Manufacturer

RDN Relative Distinguished Name

TPM2_ Prefix that indicates a TPM 2.0 command

1.6 Definition of Terms
The TCG Glossary [20] contains a few definitions that are fundamental to this document.

The following operational definitions, however, are specific to this specification.

Certificate – A certificate is an instantiation of a credential using the industry-standard certificate
structure from ISO/IEC/ITU-T X.509 version 3. Certificate generation consists of (a) assembling
values for the credential fields and (b) signing over the assembled fields.

Credential – A credential is an abstract proof that must be instantiated as a certificate before it can
be exchanged between entities.

Revision 3 16 July 2021 PUBLISHED Page 9 of 60

2 TPM 2.0 EK and EK Credential

2.1 Endorsement Key
The Endorsement Key (EK) is an asymmetric key pair consisting of a public and private key stored
in a Shielded Location on the TPM. The public part of the EK can be read from the TPM while the
private part MUST never be exposed. The public key of the EK is included in the EK certificate.

In TPM 1.2, the Endorsement Key was defined as an RSA 2048 bit key. This is not the case for TPM
2.0, which can have more than one EK. The algorithm flexibility provided by the TPM 2.0 Library
Specification [1] allows the TPM to create EKs of any type of asymmetric algorithm implemented in
the TPM (see 2.1.1). The properties of the Endorsement Key are defined by its public area structure,
the “template”. This specification defines multiple default templates for algorithm-specific
Endorsement Keys.

NOTE The default templates are defined in an annex of this document to allow easier integration of
additional default templates, which will be provided as they become available.

Any asymmetric algorithm supported in a platform-specific specification used to implement the TPM
MAY be used as a key type instead of or in addition to the defined key types in the annex of this
document.

A relevant Platform specification may provide guidance as to whether or not the EK should be
persistent in the TPM when it ships.

2.1.1 Primary Key Generation

The Endorsement Key is a Primary Object controlled by the Endorsement Hierarchy. The
Endorsement Hierarchy has a Seed, the Endorsement Primary Seed (EPS) which is unique to each
TPM. The Primary Seed is a large random value; its size is required to be at least twice the security
strength of any algorithm implemented on the TPM. The EPS MUST be generated within the TPM or
MUST be generated and injected by the TPM manufacturer in the manufacturing environment. The
attribute TPMA_PERMANENT.tpmGeneratedEPS (see TPM 2.0 Library Specification, Part 2[1])
MUST be set properly to indicate the source of the Seed. The attribute can be read with
TPM2_GetCapability(). The Seed cannot be read from the TPM and MUST never be exposed.

The TPM 2.0 Library Specification [1] defines a process to create primary keys based on a Key
Derivation Function (KDF) and a Primary Seed. The KDF is a deterministic function that uses key
parameters to derive a reproducible key. These parameters determine the type of the key and are
input to the command TPM2_CreatePrimary(). When this command is called with the same
parameters, the same key is generated as long as the EPS does not change. The key can be made
persistent in TPM NV memory using the command TPM2_EvictControl() or recreated when needed.
This way, any type of key (e.g. symmetric or asymmetric, signing or decryption key) can be created
by the TPM.

As of revision 1.38 of the TPM 2.0 Library Specification [1], TPM2_CreatePrimary() uses the sensitive
data (provided in the inSensitive.sensitive.data parameter) as part of the calculation for the Primary
Key. In the creation of an Endorsement Key for which an EK Credential is issued, the sensitive data
size (inSensitive.sensitive.data.t.size) MUST be set to zero.

2.1.2 EK Usage

In TPM 1.2, the Endorsement Key was defined as a decryption key; it could not be used for signing
operations. Unlike TPM 1.2, TPM 2.0 provides more flexibility in defining an EK. The properties of
the Endorsement Key are determined by its public area template (TPMT_PUBLIC structure, see TPM
2.0 Library Specification Part 2 [1]). The TPMT_PUBLIC structure includes the base attributes
restricted, sign and decrypt that determine the cryptographic operation a key may perform on an
object. The TPM 2.0 Library Specification [1] does not impose any restrictions regarding the attributes
of the Endorsement Key. As any other key the Endorsement Key can be a created as a decryption
or signing key.

Revision 3 16 July 2021 PUBLISHED Page 10 of 60

However, the EK and its credential may be considered privacy-sensitive if the private part of the EK
is used in a cryptographic protocol. In this case, the public EK or the EK certificate may represent a
privacy-sensitive cryptographic identifier for a particular platform. In privacy-sensitive environments,
the EK SHOULD NOT be used as a signing key and restricted to specific operations (this is described
in more detail in section 2.3 Privacy Protection).

On the other hand, there are environments where privacy is not an issue. This specification
distinguishes between user device TPMs and non-user device TPMs. Whether the EK may sign
depends on the type of platform for which the TPM is built.

2.1.2.1 User Device TPM

User device TPMs are TPMs that are associated with a human user, typically in PC Client or Mobile
platforms. If the EK is certified by a trusted entity, the EK SHOULD NOT be used for signing
operations due to privacy concerns. In this case, the EK SHOULD be defined as a restricted
decryption (Storage) key.

2.1.2.2 Non-User Device TPM

Non-user device TPMs on the other hand are TPMs that are associated with an enterprise, rather
than a specific user. This can be e.g.

• Network Elements (e.g. routers, switches, wireless access points)

• Servers, Virtual Servers, Virtual Devices in a cloud infrastructure

• Embedded Devices (e.g. printers)

For such platforms, privacy is not a central concern and unique identification is of critical importance.
These platforms MAY use a certified EK for signing operations. This is intended to facilitate
establishment of further TPM keys, like Device Identification keys, without the need for an Attestation
Key. This allows for simpler infrastructure implementations. In this case, no restrictions other than
those defined in the TPM 2.0 Library Specification [1] apply to the settings of the base attributes. The
EK MAY be defined as a general-purpose key if both signing and decryption should be supported.
The key usage field in the EK Credential defined in section 3.2.15 MUST be set appropriately to
indicate the usage of the EK.

One use case for a signing EK is to sign the Certificate Signing Request (CSR) for an Initial Device
Identifier (IDevID) key. The IDevID key is a TPM-generated key that is used as an initial identity for
secure device authentication (see IEEE 802.1AR [10]). The CSR can be signed with the command
TPM2_Sign(). The hash calculated over the certification request information is passed to the TPM in
the digest command parameter; the inScheme command parameter specifies the signing scheme.
The issuer of the IDevID certificate could verify the CSR signature to ensure that the chip requesting
the IDevID certificate is privileged to receive it. Therefore, the issuer could have a list of EK certificates
of all valid TPMs a product manufacturer has purchased. Alternatively, a CSR could be signed by an
Attestation Key.

2.1.3 EK Lifetime

In TPM 2.0, the lifetime of an Endorsement Key is tied to the Endorsement Primary Seed (EPS). As
long as the EPS is not changed, EKs can be recreated with their public area templates. The command
TPM2_ChangeEPS() replaces the Endorsement Primary Seed with a new random value and makes
it impossible to recreate any EKs derived from the previous Seed. This will invalidate all certificates
associated with the EKs.

Platform-specific specifications determine whether the command TPM2_ChangeEPS() is required to
be implemented. Some platforms might want to change the EPS, e.g. during platform refurbishment
to erase existing EKs or after a field upgrade from a firmware that had a severe security flaw (in order
to revoke all EKs associated with the old firmware).

On the other hand, there are platforms that need a permanent EPS because invalidating the
Endorsement Keys would prevent the platform proving that it is a genuine trusted platform. In non-

Revision 3 16 July 2021 PUBLISHED Page 11 of 60

user device TPMs (see 2.1.2.2), for instance, the EPS is required to be permanent because the EK
represents the trust anchor for the device identity.

The TPM 2.0 Library Specification [1] provides a means to prevent the EKs from being replaced. The
command to change the EPS requires Platform Authorization, so the OEM can decide if the EPS
ever changes. The use of Platform Authorization can be disallowed by turning off the Platform
hierarchy (by setting the phEnable flag to CLEAR); this disables any functionality in the TPM that
would require platformAuth or platformPolicy. Furthermore, TPM2_ChangeEPS() can be added to
the list of commands that require assertion of Physical Presence using TPM2_PP_Commands().
Alternatively, platforms could prevent EKs from being erased by not exposing this functionality to the
user.

Revision 3 16 July 2021 PUBLISHED Page 12 of 60

2.2 Endorsement Key Credential
The Endorsement Key Credential is an X.509 v3 certificate that contains the public EK, as well as
various assertions regarding the security qualities and provenance of the TPM. The definitions of the
certificate fields are specified in section 3.2. The EK Credential is usually issued by a TPM or Platform
manufacturer during manufacturing process. An entity SHALL NOT create an EK Credential for a
TPM unless the entity is satisfied that the public key referenced in the EK Credential was either:

• returned in response to a TPM2_CreatePrimary() command by an implementation of
Protected Capabilities and Shielded Locations that meets the TPM 2.0 Library Specification
[1] or

• generated outside the TPM and inserted by a process defined in the Target of Evaluation
(TOE) of the security target in use to evaluate the TPM.

There might be use cases where it is useful to issue an EK Credential after manufacturing (e.g. if the
EPS was changed or the TPM is shipped without EK). In this case, the entity issuing the credential
would create a new Endorsement Key with TPM2_CreatePrimary(). This procedure would require
support for certificate enrollment. Support for an enrollment protocol is optional and MAY be done
using a proprietary method of the TPM or Platform manufacturer or a method standardized by TCG.
One example implementation (at time of writing, only available for TPM 1.2) is described in the IWG
document CMC Profile for EK/Platform Certificate Enrollment [7].

A primary use case of an EK Credential is to assist Attestation CAs to issue credentials for restricted
signing keys (Attestation Keys). The EK Credential can be used to provide evidence that the
Attestation Keys are resident on the same TPM as the EK.

In TPM 2.0, multiple EKs can be derived from a single Seed (as described in section 2.1.1.) As a
result, the TPM can have more than one EK Credential. However, the TPM might not be provisioned
with all the credentials because of NV space restrictions; the credentials could be stored off the TPM.
If an EK Credential is stored on the TPM, it is stored as an NV Index; in this case, it is referenced by
its NV Index handle (see 2.2.1). The authorization to modify or access (read, write, delete) the
credential is determined by its attributes. The attributes of the Index are defined by platform-specific
workgroups, as well as the authorization for the index. Definitions specific to PC Client can be found
in PC Client Specific Platform TPM Profile for TPM 2.0 [6], section Non-volatile Storage.

2.2.1 NV Index Handles

2.2.1.1 General Design

The NV Index handles related to the EK Credential MUST have values that are defined by the TCG
in the Registry of Reserved TPM 2.0 Handles and Localities [2]. This section uses handles of the
type "Global NV indices for OEMs, assigned by TCG”, Refined Handle Type Endorsement certificate.

This section defines two variations. The Low Range (see 2.2.1.4) generally includes the RSA 2048
and ECC NIST P256 EK data. The High Range (see 2.2.1.5) generally includes EK data for other
algorithms. Both ranges permit the inclusion of an EK Template. In addition, the Low Range permits
inclusion of a distinct EK Nonce. The High Range does not permit a distinct EK Nonce.

This document uses the following terms with specific meanings:

Term Specific meaning within this document

Absent This NV Index is not defined (i.e., this NV Index does not exist)

Populated This NV Index is defined and written with content relevant to this document.

Within this document, manufacturer means either the TPM manufacturer or Platform manufacturer.

2.2.1.2 NV Index Contents

This section defines the NV Index contents, and is applicable to both the Low Range and High Range.

Revision 3 16 July 2021 PUBLISHED Page 13 of 60

NOTE: There is no length, type, or other metadata stored in the NV Index data.

2.2.1.2.1 EK Certificate

An EK Certificate is stored in an NV Index as an X.509 certificate encoded in DER format. The NV
Index data contains only the DER certificate data.

2.2.1.2.2 EK Template

An EK Template is stored in an NV Index as a TPMT_PUBLIC structure marshaled as described in
the TPM 2.0 Library Specification [1]. The default EK Templates are defined in annex B. The EK
Template NV Index MUST be Populated if non-default values are used. It SHOULD be Absent if
default values are used.

The EK Template unique field buffer size(s) SHOULD be zero.

NOTE 1: Setting the unique field buffer size(s) to zero minimizes the use of NV space. The unique
field is only necessary to generate multiple different EKs if the rest of the TPMT_PUBLIC is the same.
If other portions of the TPMT_PUBLIC change (e.g., the authPolicy), a different EK will be generated
even if the unique field size(s) is zero.

NOTE 2: A platform-specific working group may define a proprietary default EK public area template
that can be used instead of the templates defined in annex B.

2.2.1.2.3 EK Nonce

An EK Nonce is stored in an NV Index and is used to modify the EK Template unique field. The EK
Nonce size is determined by the size field of the NV Index public area.

2.2.1.3 Allowed and Recommended Usages of NV Indices

This table provides an overview of the allowed configurations of EK Nonce and EK Template in the
Low and High ranges.

EK Nonce EK Template Allowed in Low Range Allowed in High
Range

NV index Absent NV index Absent SHOULD SHOULD

NV index Absent NV index Populated SHOULD NOT See 2.2.1.5

NV index Populated NV index Absent MUST NOT MUST NOT

NV index Populated NV index Populated SHOULD NOT MUST NOT

2.2.1.4 Low Range

The Low Range is at NV Indices 0x01c00002 - 0x01c0000c.

0x01c00002 RSA 2048 EK Certificate

0x01c00003 RSA 2048 EK Nonce

0x01c00004 RSA 2048 EK Template

0x01c0000a ECC NIST P256 EK Certificate

0x01c0000b ECC NIST P256 EK Nonce

0x01c0000c ECC NIST P256 EK Template

EK Certificate NV Index(es) SHOULD be Populated by the manufacturer.

The manufacturer SHOULD leave the EK Nonce NV Index Absent. If a unique field is specified, it
SHOULD be included as part of the associated EK Template NV Index.

NOTE 1: The preferred provisioning uses default EK Templates to conserve TPM NV space.
NOTE 2: Earlier versions of this specification (V2.1 - V2.3) required that for TPMs designed to meet
a specific operating system, the low range had to be used for the RSA 2048 EK and the ECC NIST

Revision 3 16 July 2021 PUBLISHED Page 14 of 60

P256 EK. This has been removed as of version 2.4. The reader should consult their respective
operating system requirements.

2.2.1.5 High Range

The High Range is at 0x01c00012 and upwards.

Any Populated even index MUST contain an EK certificate. For any EK Certificate, an EK Template
MAY be included. If included it MUST be Populated in the next (subsequent odd) index.

EK Nonces SHALL NOT be Populated in any NV Index in the High Range.

NOTE 1: There is no need to tightly pack the certificate / template pairs. Any NV Index in the range
permitted in the Registry of Reserved TPM 2.0 Handles and Localities [2] is acceptable.

If the TCG defines a default template for the EK certificate, the EK Template SHOULD be Absent. If
the TCG does not define a default template for the EK certificate, the EK Template MUST be
Populated.

NOTE 2: The preferred provisioning uses default EK Templates to conserve TPM NV space.

2.2.1.5.1 Handle Values for EK Certificates

If EK Certificates are populated, then the following list of NV Index handles SHALL be used to store
the EK Certificates corresponding to the EKs created with the default Templates defined in the High
Range.

NOTE 1: Platform profiles define which EK certificates must be populated.

NOTE 2: The handle values are normative as of version 2.3 of this specification. Defining the NV
index handles as normative simplifies EK certificate validation because it eliminates parsing of
certificate content in order to identify the algorithm (RSA or ECC) and key/curve size.

0x01c00012 RSA 2048 EK Certificate (H-1)

0x01c00014 ECC NIST P256 EK Certificate (H-2)

0x01c00016 ECC NIST P384 EK Certificate (H-3)

0x01c00018 ECC NIST P521 EK Certificate (H-4)

0x01c0001a ECC SM2_P256 EK Certificate (H-5)

0x01c0001c RSA 3072 EK Certificate (H-6)

0x01c0001e RSA 4096 EK Certificate (H-7)

2.2.1.5.2 Handle Values for EK Certificate Chains

Storing EK Certificate chains in NVRAM is optional and generally not recommended due to potentially
large NV space consumption. Nonetheless, there may be scenarios where provisioning the EK
certificate chain in the TPM is necessary, such as when standard EK Certificate Chain distribution
methods are unavailable. If the TPM manufacturer decides to provision the EK Certificate Chain in
NV, index handles and formats defined in this section SHOULD be used.

TPM NV MAY contain all certificates of the EK Certificate Chain except the Root CA certificate. The
EK Certificate Chain MUST be stored as X.509 DER encoded certificates. If the chain consists of
more than one certificate, or if multiple chains exist, they MUST be stored in NV as a concatenated
sequence. The TPM manufacturer MAY provision certificate chains using the following list of indices:

0x01c00100 EK Certificate Chain Index 1

…

0x01c001ff EK Certificate Chain Index 256

Revision 3 16 July 2021 PUBLISHED Page 15 of 60

The NV indices MUST be populated starting with index 0x01c00100 through index 0x01c001ff. There
is no requirement to store the certificates in any particular order whatsoever. If a concatenated
certificate chain does not fit in a single index, the chain MUST overflow to the next numerically larger
index in the list of NV Indices. If the storage space in a single index is insufficient to store the entire
certificate, the certificate MAY overflow into the next numerically larger index in the list of NV Indices.
It is recommended to use the least number of indices possible for storing the chains.

If more than one EK Certificate Chain exists, the chains MUST be concatenated. If two or more chains
have common certificates, such as when they are anchored to the same intermediate or root CA, the
certificates MUST NOT be stored more than once. Verifiers are recommended to read the NV Indices
in order and store a copy of the contents (certificates) into a memory buffer. Individual certificates
may then be parsed from the buffer into a certificate store in order to perform EK Certificate chain
validation.

Example 1: a TPM is comprised of the following two EK Certificates chains:

1. ECC Root CA -> ECC Intermediate CA 1 -> ECC Issuing CA -> ECC EK Certificate (leaf)
2. RSA Root CA -> RSA Intermediate CA 1 -> RSA Intermediate CA 2 -> RSA Issuing CA ->

RSA EK Certificate (leaf)

The EK Certificate Chain NV Indices may be provisioned as follows:

NV Index Content (… overflow, || concatenation)

0x01c00100 ECC Issuing CA || ECC Intermediate CA 1 …

0x01c00101 … ECC Intermediate CA 1 || RSA Issuing CA || RSA Intermediate CA 2 …

0x01c00102 … RSA Intermediate CA 2 || RSA Intermediate CA 1

0x01c00103 (undefined)

In Example 1, the certificate ECC Intermediate CA 1 is too long to store in index 0x01c00100,
therefore it overflows into the immediately following index (0x01c00101). The RSA chain is stored
immediately following the ECC certificate chain, starting at index 0x01c00101.

Example 2: a TPM is comprised of the following two EK Certificates chains which share the same
root and intermediate CA:

1. ECC Root CA -> ECC Intermediate CA -> ECC Issuing CA 1 -> ECC EK Certificate (leaf)
2. ECC Root CA -> ECC Intermediate CA -> ECC Issuing CA 2 -> ECC EK Certificate (leaf)

The EK Certificate Chain NV Indices may be provisioned as follows:

NV Index Index Content (… overflow, || concatenation)

0x01c00100 ECC Issuing CA 1 || ECC Intermediate CA …

0x01c00101 … ECC Intermediate CA || ECC Issuing CA 2

0x01c00102 (undefined)

In Example 2, the ECC Intermediate CA certificate is stored only once in NV memory, since the
certificate chains share the same intermediate CA.

NOTE: It is the responsibility of the TPM vendor to provide mechanisms to perform PKI certificate
chain validation. This may involve providing revocation information through a CRL Distribution Point
or OCSP responder. This specification does not prescribe mechanisms for CA compromise recovery.

Revision 3 16 July 2021 PUBLISHED Page 16 of 60

2.2.1.6 TPMT_PUBLIC Calculation

The TPMT_PUBLIC structure forms part of the input to the TPM2_CreatePrimary() command.

• If the EK Template is Absent, the default template is used as the TPMT_PUBLIC.

• If the EK Template is Populated and the EK Nonce is Absent, the EK Template is used
unmodified as the TPMT_PUBLIC.

• The case of an EK Template Absent and an EK Nonce Populated is unspecified and MUST
NOT be provisioned.

• If the EK Template is Populated and the EK Nonce is Populated, form the TPMT_PUBLIC as
follows:

1. Begin with the EK Template.

2. Add the EK Nonce to the default template as follows:

• For RSA 2048, the EK Nonce is padded to 256 bytes by appending 0x00 bytes.
This value is inserted into the default template unique.rsa.t.buffer, and
unique.rsa.t.size is set to 256.

• For ECC NIST P256, the EK Nonce is padded to 32 bytes by appending 0x00
bytes. This value is inserted into the default template unique.ecc.x.t.buffer, and
unique.ecc.x.t.size is set to 32. The unique.ecc.y.t.buffer is set to 32 0x00 bytes
and the unique.y.size is set to 32.

2.2.1.7 Locating Keys or specific NV Index Content

NOTE: This section is informative. It is provided for convenience only.

Persistent Keys and NV Index content typically do not change between platform reset cycles. If
locating these entities during a boot cycle is resource sensitive, software should locate Persistent
Keys or NV Index content during initial installation or provisioning and store the specific location on
the platform.

Discovery of a Persistent Key can be done by TPM2_GetCapability() - TPM_CAP_HANDLES -
TPM_HT_PERSISTENT.

Discovery of the NV Index content (for example, a certificate) can be done by TPM2_GetCapability()
- TPM_CAP_HANDLES - TPM_HT_NV_INDEX.

2.2.1.8 Key Handle and Certificate Handle Relationships

Unlike TPM 1.2, TPM 2.0 does not require persistent Endorsement Keys. They can be repeatedly
created as transient keys on demand, while a persistent EK would consume scarce NV space.

If an EK is made persistent, it may be easier for software if there is a relationship between the EK
persistent handle and the EK certificate NV Index. For example, if an Endorsement Certificate within
the Endorsement Certificate range in Table “Reserved Handles for NV indices” of [2] has an
Endorsement Primary Key within Table “Key Handles for Persistent Objects” of [2] the offset of each
entity could be the same within each respective range. For example, an Endorsement Certificate at
NV Index 0x01C00022 (offset 0x22 starting from the beginning of the assigned NV Index range) could
have an Endorsement Primary Key at handle 0x81010022 (offset 0x22 starting from the beginning of
the assigned key handle range).

2.2.1.9 Read EK certificates and create the associated EKs

The following describes a high level procedure how to read the EK certificates from the TPM and how
to create the associated Endorsement Keys. Differences in the Low and High Range are pointed out.

1. Get a list of all NV indices stored in the handle range reserved for EK certificates
(0x01C00000 – 0x01C07FFF) using TPM2_GetCapabilty(). The handle range is defined in
the Registry of Reserved TPM 2.0 Handles and Localities [2].

Revision 3 16 July 2021 PUBLISHED Page 17 of 60

2. Identify whether the returned NV index handles lie in the Low Range (0x01C00002 -
0x01C0000C) or in the High Range (0x01C00012 - 0x01C07FFF).

a. In the Low Range, an EK Certificate, an EK Nonce (recommended to be Absent),
and an EK Template (recommended to be Absent) are Populated at assigned
standard handle values. If present,

i. an EK Certificate is at 0x01c00002 (RSA) or 0x01c0000a (ECC)

ii. an EK Nonce is at 0x01c00003 (RSA) or 0x01c0000b (ECC)

iii. an EK Template is at 0x01c00004 (RSA) or 0x01c0000c (ECC)

b. In the High Range, no standard handle values are assigned. An EK Certificate is
Populated at an even handle value, and (if present) an EK Template is Populated
at the subsequent odd handle value.

3. Read all NV index handles or those of interest returned in the list from step 1 using
TPM2_NV_ReadPublic(), and TPM2_NV_Read().

4. Identify the type of EK certificate in order to create the associated EK.

a. In the Low Range, the certificate Populated at

i. 0x01c00002 is an RSA 2048 certificate

ii. 0x01c0000a is an ECC NIST P256 certificate

b. In the High Range, it is necessary to parse the content of the certificate because no
standard handle values are assigned. Parse the SubjectPublicKeyInfo field in the
certificate to determine the algorithm and key size/curve - If the algorithms is

i. rsaEncryption (OID 1 2 840 113549 1 1 1), it is an RSA certificate

1. This document only defines a Template for 2048, so it is an RSA
2048 bit key

ii. ecPublicKey (OID 1 2 840 10045 2 1), it is an ECC certificate

1. Parse namedCurve in the ECParameter to determine the curve – if
namedCurve is

a. secp256r1 (OID 1 2 840 10045 3 1 7), it is a NIST P256
key

b. secp384r1 (OID 1 3 132 0 34), it is a NIST P384 key

c. secp521r1 (OID 1 3 132 0 35), it is a NIST P521 key

d. SM2EllipticCurveCryptography (OID 1 2 156 10197 1 301),
it is an SM2 P256 key

5. Create the associated EK using TPM2_CreatePrimary() (typically with a NULL password)

a. Call TPM2_CreatePrimary() with

i. inPublic.publicArea set to

1. If the EK Template and/or the EK Nonce is Populated, the
parameter values defined in section 2.2.1.5.2

2. Otherwise the parameter values of default EK Templates defined
in annex B of this document

ii. inSensitive.sensitive.data set to Empty Buffer (see 2.1.1)

Revision 3 16 July 2021 PUBLISHED Page 18 of 60

b. Parse the public key from the returned outPublic.publicArea.unique parameter and
compare it with the public key stored in the certificate. If they match, the key
corresponds to the certificate.

2.2.2 EK Credential Lifetime

An EK Credential contains fields that express the validity period of the credential. The validity period
is at the discretion of the manufacturer. The credential is not expected to expire during the normal life
expectancy of the platform in which it resides. The lifetime can vary widely between different types of
platforms (e.g. while a typical validity period for a PC Client platform is 5-10 years, non-user device
TPMs are expected to operate indefinitely into the future in which case the value 99991231235959Z
should be used as expiration date). The credential lifetime can also depend on the lifetime of the TPM
device and the algorithm type of the Endorsement Key. The time frame during which the security
strength of the EK is acceptable SHOULD be taken into account by the manufacturer when
determining the credential lifetime (e.g. see SP800-57 [11]).

However, an EK Credential can become useless before expiration of the validity period if the
associated EK is irrevocably erased from the TPM. This is the case if the EPS is replaced (see 2.1.3
EK Lifetime).

TPM 2.0 provides functionality to define a permanent NV Index. In TPM 2.0, the NV Index attributes
TPMA_NV_PLATFORMCREATE and TPMA_NV_POLICY_DELETE (see TPM 2.0 Library
Specification, Part 2 [1]) determine the authorization required to delete an NV Index. If such an NV
Index is created such that Platform Authorization is required to write it, the EK Credential can be
protected against accidental deletion (e.g. by the Owner).

TPMA_NV_PLATFORMCREATE indicates whether the NV Index was defined by the platform. If
SET, the index may only be undefined with Platform Authorization and not with Owner Authorization.
TPMA_NV_PLATFORMCREATE SHOULD be SET for an EK Credential to prevent the credential
from being deleted if the Owner is cleared. Platform-defined NV indices can also SET
TPMA_NV_POLICY_DELETE.

If TPMA_NV_POLICY_DELETE is SET, the Index cannot be deleted unless the authPolicy of the NV
Index is satisfied using the command TPM2_NV_UndefineSpaceSpecial(). Similarly, it is possible to
create an NV index that cannot be written without a policy authorization. A platform that requires a
permanent EK Credential would not create a policy that allows the EK Credential to be removed or
overwritten. On the other hand, a platform that wants to clear the EK Credential, e.g. during platform
refurbishment, could create a policy that includes among the AND terms the command
TPM2_PolicyCommandCode() where the command code is set to
TPM_CC_NV_UndefineSpaceSpecial along with policy commands that control the authorization.

The settings of the NV Index attributes are determined by Platform-specific specifications. Definitions
specific to PC Client can be found in PC Client Specific Platform TPM Profile for TPM 2.0 [6], section
Non-volatile Storage.

Revision 3 16 July 2021 PUBLISHED Page 19 of 60

2.3 Privacy Protection
In TPM 2.0, privacy-sensitive operations are controlled by the Privacy Administrator. The Privacy
Administrator controls the Endorsement hierarchy and sets the hierarchy authorization and policy
(endorsementAuth and endorsementPolicy). The Privacy Administrator and the Owner are often the
same entity.

Because an Endorsement Key is unique to a TPM and usually has a long lifetime, it could be used to
identify a user or a platform. Therefore, the EK may be privacy-sensitive. The following applies if
protection of privacy is important:

• The usage of the EK SHOULD be limited by its object attributes, so the EK can only be
authorized per its policy (or in some cases by a password authorization, see B.4). The EK
SHOULD be defined as a non-duplicable restricted decryption key. This prevents the EK from
being used for signing operations.

The availability of the EK can be controlled with the flag ehEnable. The purpose of the flag is to
enable and disable the Endorsement hierarchy. When the Endorsement hierarchy is disabled
(ehEnable CLEAR), objects defined under that hierarchy are inaccessible, and endorsementAuth and
endorsementPolicy cannot be used for authorization. It is not possible to use the EK in any command
or read the public EK with TPM2_ReadPublic(). The ehEnable flag may be cleared with the command
TPM2_HierarchyControl() using Endorsement Authorization or Platform Authorization.

Protection for the EK Credential can be provided by the flag phEnableNV if
TPMA_NV_PLATFORMCREATE is SET in the NV Index attributes of the EK Credential. This
attribute indicates whether the index was defined by the platform. When phEnableNV is CLEAR, NV
space defined by the platform firmware is not accessible, including the EK Credential. This flag can
only be cleared by Platform Authorization, which is seldom accessible to the end user.

Revision 3 16 July 2021 PUBLISHED Page 20 of 60

3 X.509 ASN.1 Definitions
This section contains the format for the EK Credential instantiated as an X.509 certificate. All fields
are defined in ASN.1 and encoded using DER [19]. The appropriate OIDs are defined in section 4.

Version 3 of the X.509 certificate structure is used for compatibility with existing PKI tools and
services. TCG credential profiles do not utilize all aspects of X.509 defined fields and some fields are
overloaded with TCG specific interpretations. The following sections define TCG interpretations for
X.509 certificates.

TCG defines a number of new attribute value types to hold TCG-specific values. When present in a
public key certificate they are carried in the subject alternative name or subject directory attributes
extension.

This specification is a profile of RFC 5280 [12] which is itself a profile of the ISO/IEC/ITU-T X.509
specifications for public key certificates. All syntax and semantics are inherited from those
specifications unless explicitly documented otherwise below.

3.1 TCG Attributes

3.1.1 TPM Security Assertions

These attributes describe security-related assertions about the TPM.

Each attribute begins with a version number which identifies the version of the assertion syntax.
Future versions of this profile may add new assertions by appending new fields at the end of the
ASN.1 SEQUENCE and increasing the version number to identify which version of the assertion
syntax is encoded.

The fieldUpgradable BOOLEAN indicates whether the TPM is capable of having its firmware

upgraded after manufacturing.

The ekGenerationType indicates how the Endorsement Key in the TPM was created. It may be

internally generated within the TPM, generated externally and then inserted under a controlled
environment during manufacturing. The revocable variants indicate whether the EK Credential can
be revoked or not.

In the CommonCriteriaMeasures, the profile and target for the evaluation can be described by

either an OID, a URI to a document describing the value, or both. If both are present, they must
represent consistent values. The URI values are included in an URIReference which describes the

URI to the document and a cryptographic hash value which identifies a specific version of the
document.

URIMAX is a constant used to provide an upper bound on the length of a URI included in the
certificate. This upper bound may be helpful to consumers of the extension and also helps limit the
overall size of the certificate. In order to provide a reasonable upper bound for ASN.1 parsers,
URIMAX SHOULD NOT exceed a value of 1024. This value was selected as it matches the length
limit for <A> anchors in HTML as specified by the SGML declaration (LITLEN) for HTML [18].

STRMAX is a constant defining the upper bound on the length of a string type. Like the URIMAX this
is to aid ASN.1 parsers and help limit the upper bound on the length of the certificate. Based on the
expected sizes of the strings in the ASN.1 in this document an upper bound of 256 was selected.
STRMAX SHOULD NOT exceed a value of 256.

Version ::= INTEGER { v1(0) }

tPMSecurityAssertions ATTRIBUTE ::= {

 WITH SYNTAX TPMSecurityAssertions

Revision 3 16 July 2021 PUBLISHED Page 21 of 60

 ID tcg—at-tpmSecurityAssertions }

TPMSecurityAssertions ::= SEQUENCE {

 version Version DEFAULT v1,

 fieldUpgradable BOOLEAN DEFAULT FALSE,

 ekGenerationType [0] IMPLICIT EKGenerationType OPTIONAL,

 ekGenerationLocation [1] IMPLICIT EKGenerationLocation OPTIONAL,

 ekCertificateGenerationLocation [2] IMPLICIT

 EKCertificateGenerationLocation OPTIONAL,

 ccInfo [3] IMPLICIT CommonCriteriaMeasures OPTIONAL,

 fipsLevel [4] IMPLICIT FIPSLevel OPTIONAL,

 iso9000Certified [5] IMPLICIT BOOLEAN DEFAULT FALSE,

 iso9000Uri IA5STRING (SIZE (1..URIMAX) OPTIONAL }

EKGenerationType ::= ENUMERATED {

 internal (0),

 injected (1),

 internalRevocable(2),

 injectedRevocable(3) }

EKGenerationLocation ::= ENUMERATED {

 tpmManufacturer (0),

 platformManufacturer (1),

 ekCertSigner (2) }

EKCertificateGenerationLocation ::= ENUMERATED {

 tpmManufacturer (0),

 platformManufacturer (1),

 ekCertSigner (2) }

-- common criteria evaluation

CommonCriteriaMeasures ::= SEQUENCE {

 version IA5STRING (SIZE (1..STRMAX)), -- “2.2” or “3.1”; future syntax defined by

CC

 assurancelevel EvaluationAssuranceLevel,

 evaluationStatus EvalutionStatus,

 plus BOOLEAN DEFAULT FALSE,

 strengthOfFunction [0] IMPLICIT StrengthOfFunction OPTIONAL,

 profileOid [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 profileUri [2] IMPLICIT URIReference

 OPTIONAL,

 targetOid [3] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

Revision 3 16 July 2021 PUBLISHED Page 22 of 60

 targetUri [4] IMPLICIT URIReference OPTIONAL }

EvaluationAssuranceLevel ::= ENUMERATED {

 levell (1),

 level2 (2),

 level3 (3),

 level4 (4),

 level5 (5),

 level6 (6),

 level7 (7) }

StrengthOfFunction ::= ENUMERATED {

 basic (0),

 medium (1),

 high (2) }

-- Reference to external document containing information relevant to this subject.

-- The hashAlgorithm and hashValue MUST both exist in each reference if either

-- appear at all.

URIReference ::= SEQUENCE {

 uniformResourceIdentifier IA5String (SIZE (1..URIMAX),

 hashAlgorithm AlgorithmIdentifier OPTIONAL,

 hashValue BIT STRING OPTIONAL }

EvaluationStatus ::= ENUMERATED {

 designedToMeet (0),

 evaluationInProgress (1),

 evaluationCompleted (2) }

-- fips evaluation

FIPSLevel ::= SEQUENCE {

 version IA5STRING (SIZE (1..STRMAX)), -- “140-1” or “140-2”

 level SecurityLevel,

 plus BOOLEAN DEFAULT FALSE }

SecurityLevel ::= ENUMERATED {

 level1 (1),

 level2 (2),

 level3 (3),

 level4 (4) }

Revision 3 16 July 2021 PUBLISHED Page 23 of 60

3.1.2 TPM Device Attributes

The following definitions define the syntax of the relative distinguished names (RDNs) used in the
subject alternative name extension to identify the type of the TPM.

The value of the TPMManufacturer attribute MUST be the ASCII representation of the hexadecimal

value of the 4 byte vendor identifier defined in the TCG Vendor ID Registry [3]. Each byte is
represented individually as a two digit unsigned hexadecimal number using the characters 0-9 and
A-F. The result is concatenated together to form an 8 character name which is appended after the
lower-case ASCII characters “id:”.

For example, the vendorId 0x12 0x34 0x56 0xEF would be encoded as “id:123456EF”.

Likewise, the value of the TPMVersion attribute MUST be the ASCII representation of the

hexadecimal value of the 4 bytes derived from the major and minor firmware version of the TPM. The
TPM firmware version is a manufacturer-specific implementation version of the TPM. The version
represents the TPM firmware at the time the certificate was created, typically the initial TPM firmware
loaded during manufacturing. Each byte is represented individually as a two digit unsigned
hexadecimal number using the characters 0-9 and A-F. The result is concatenated together to form
a 8 character name which is appended after the lower-case ASCII characters “id:”.

For example, a revMajor of 0x0002 and revMinor of 0x0008 would be encoded as “id:00020008”.

The value of the TPMModel attribute is a UTF 8 string that represents the TPM part number. The

values are manufacturer-specific.

 TPMManufacturer ATTRIBUTE ::= {

 WITH SYNTAX UTF8String (SIZE (1..STRMAX))

 ID tcg-at-tpmManufacturer }

TPMModel ATTRIBUTE ::= {

 WITH SYNTAX UTF8String (SIZE (1..STRMAX))

 ID tcg-at-tpmModel }

TPMVersion ATTRIBUTE ::= {

 WITH SYNTAX UTF8String (SIZE (1..STRMAX))

 ID tcg-at-tpmVersion }

3.1.3 TPM Specification Attributes

The following definitions define the syntax of the TPM specification attributes.

The TPMSpecification attribute identifies the TPM family, level and revision of the TPM

specification with which a TPM implementation is compliant. The family value of “2.0” with level 0 and
revision 99 identifies a TPM compliant with a public TPM 2.0 specification version 0.99 published by
TCG. The family value is encoded in a UTF 8 string but the current defined standard values fall within
the ASCII character set.

tPMSpecification ATTRIBUTE ::= {

 WITH SYNTAX TPMSpecification

 ID tcg-at-tpmSpecification }

TPMSpecification ::= SEQUENCE {

 family UTF8String (SIZE (1..STRMAX)),

 level INTEGER,

 revision INTEGER }

Revision 3 16 July 2021 PUBLISHED Page 24 of 60

3.2 EK Certificate
This section contains the format for a TPM 2.0 EK Credential conforming to this specification. An
X.509 EK certificate is an instantiation of the TPM EK Credential defined in section 2.2.

The “Field Status” column in the table below specifies the presence of the certificate fields. The value
“Standard” means the field is an inherent component of the standard certificate syntax and is not
optional. The value “MUST”, “SHOULD” or “MAY” is used to indicate the presence of the certificate
extensions. The content is described in the “Value” column. Values marked with “(optional)” are
added for completeness and are meant to be optional.

NOTE This specification does not preclude the use of other certificate extensions. However, any
extensions marked as critical will cause interoperability problems when existing clients do not know
how to parse the extension and reject it as specified in RFC 5280 [12], section 4.2. (This has
historically been a challenge when introducing new critical extensions.)

Field Name RFC 5280 Type Value Field Status

Version INTEGER V3 (encoded as value 2) Standard

Serial Number INTEGER Positive integer Standard

Signature Algorithm AlgorithmIdentifier algorithm-specific, see C.1 Standard

Issuer Name Name of issuing CA Standard

Validity notBefore
notAfter

Beginning and end of
validity period

Standard

Subject Name Unique name assigned by
the manufacturer
or empty

Standard

Subject Public Key
Info

SubjectPublicKeyInfo algorithm-specific, see C.2 Standard

Extensions

Certificate Policies CertificatePolicies PolicyIdentifier MAY
non-critical

Subject Alternative
Name

GeneralName
directoryName

TPMManufacturer
TPMModel
TPMVersion

MUST
critical/ non-
critical
(dep. on subject)

Basic Constraints BasicConstraints CA=FALSE MUST
critical

Subject Directory
Attributes

SubjectDirectoryAttrib
utes

TPMSpecification
Family
Level
Revision

MAY
non-critical

Revision 3 16 July 2021 PUBLISHED Page 25 of 60

Field Name RFC 5280 Type Value Field Status

Authority Key
Identifier

AuthorityKeyIdentifier keyIdentifier (must)
authorityCertIssuer
(optional)
authorityCertSerialNumber
(optional)

MUST
non-critical

Authority Info Access AuthorityInfoAccessSy
ntax

id-ad-caIssuers
URI to issuing CA
id-ad-ocsp
URI to OCSP responder

MAY
non-critical

CRL Distribution CRLDistributionPoints URI to CRL MAY
non-critical

Key Usage KeyUsage keyEncipherment (RSA EK)
or keyAgreement (ECC EK)
or digitalSignature

MUST
critical

Extended Key Usage ExtKeyUsageSyntax tcg-kp-EKCertificate MAY
non-critical

Subject Key Id SubjectKeyIdentifier Key identifier MAY

Table 1: EK Certificate Fields

3.2.1 Version

This field describes the version of the X.509 certificate. Since EK certificates contain mandatory
extensions the version number MUST be set to 3 (which is encoded as the value 2 in ASN.1).

3.2.2 Serial Number

The serial number MUST be a positive integer which is uniquely assigned to each EK certificate by
the issuer. The combination of an issuer’s DN and the serial number MUST uniquely describe a single
certificate.

3.2.3 Signature Algorithm

This field identifies the algorithm used by the EK certificate issuer to sign the certificate. This field is
algorithm-specific, see annex C.1.

3.2.4 Issuer

This field contains the distinguished name of the certificate issuer which is the entity that vouches
that the TPM is genuine and complies with the TPM 2.0 Library Specification [1].

3.2.5 Validity

The period when the certificate is valid is represented by two date values named notBefore and
notAfter. Issuers SHOULD assign notBefore to the current time when the EK certificate is issued and
notAfter to the last date that the certificate will be considered valid. Both notBefore and notAfter MUST
use the appropriate time format as indicated by RFC 5280 [12]. (See also section 2.2.2 EK Credential
Lifetime)

3.2.6 Subject

The subject field MUST contain an X.500 distinguished name (DN) that uniquely identifies the TPM
or, if unique identification through the subject field is not required, MUST be empty.

Revision 3 16 July 2021 PUBLISHED Page 26 of 60

If the subject name field is empty, the subject alternative name extension MUST be critical in
accordance with RFC 5280 [12], otherwise it SHOULD be non-critical.

The subject field MAY contain a device (TPM) serial number in the attribute id-at-serialNumber.

NOTE The TPM serial number usually includes detailed production parameters. Since that might
reveal information that the manufacturer does not want to disclose, the hash of the TPM serial number
could be used instead in the EK Credential.

3.2.7 Subject Public Key Info

This describes the public Endorsement Key algorithm and key value. This field is algorithm-specific,
see annex C.2.

3.2.8 Certificate Policies

This extension indicates the policy terms under which the certificate was issued. This extension is
optional. If included, it SHOULD be non-critical and PolicyIdentifier MUST have at least one object
identifier. Policy qualifiers, such as the cPSuri policy qualifier and the userNotice policy qualifier
SHOULD NOT be included.

NOTE A pointer to a Certification Practice Statement (CPS) can be provided in the manufacturer’s
datasheet instead.

3.2.9 Subject Alternative Name

This contains the alternative name of the entity associated with this certificate. The issuer MUST
include TPM manufacturer, TPM part number and TPM firmware version, using the directoryName-
form within the GeneralName structure. The ASN.1 encoding is specified in section 3.1.2 TPM Device
Attributes. In accordance with RFC 5280 [12], this extension MUST be critical if subject is empty and
SHOULD be non-critical if subject is non-empty.

• The TPM manufacturer identifies the manufacturer of the TPM. This value MUST be the
vendor ID defined in the TCG Vendor ID Registry [3] . It MUST match the value reported by
the command TPM2_GetCapability(property = TPM_PT_MANUFACTURER).

• The TPM part number is encoded as a string and is manufacturer-specific. A manufacturer
MUST provide a way to the user to retrieve the part number physically or logically. This
information could be e.g. provided as part of the vendor string in the command
TPM2_GetCapability(property = TPM_PT_VENDOR_STRING_x; x=1…4).

• The TPM firmware version is a manufacturer-specific implementation version of the TPM.
The version represents the TPM firmware at the time the certificate was created, typically the
initial TPM firmware loaded during manufacturing. In the case of a Field Upgrade, the
firmware version will change and this value will no longer match the version reported by the
command TPM2_GetCapability (property = TPM_PT_FIRMWARE_VERSION_1).

Version 2.0 of this specification [5] allowed the inclusion of an optional attribute, called
HardwareModuleName that contains the TPM serial number. HardwareModuleName SHOULD NOT
be used in EK certificates conforming to this version of this specification. Instead, if a serial number
is present, it SHOULD be stored in the subject field (see 3.2.6).

3.2.10 Basic Constraints

This extension indicates whether the subject is a CA. “CA” MUST be set to FALSE. This extension
MUST be critical.

3.2.11 Subject Directory Attributes

The extension includes miscellaneous properties and security assertions about the entity. This
extension MUST be non-critical.

Revision 3 16 July 2021 PUBLISHED Page 27 of 60

The following attribute MAY be included in a subject directory attributes extension in the EK
certificate:

• The “TPM Specification” attribute that identifies the family, level and revision of the TCG TPM
specification to which the TPM was designed. The ASN.1 encoding is specified in section
3.1.3 TPM Specification Attributes.

Version 2.0 of this specification [5] allowed the inclusion of an optional attribute, called “TPM Security
Assertions”, which described various assertions about the security properties of the TPM and the
conditions under which the Endorsement Key was generated. The Security Assertions attribute
SHOULD NOT be included in EK certificates conforming to this version of this specification.

3.2.12 Authority Key Identifier

This identifies the subject public key of the certificate issuer and hence facilitates the validation of the
certificate path. The certificate MUST contain an AuthorityKeyIdentifier that matches the subject key
identifier of the CA certificate. The issuer name and the serial number are optional. This extension
MUST be non-critical.

3.2.13 Authority Information Access

This extension provides additional information about the issuer. Authority Information Access MAY
contain the accessMethod OID id-ad-caIssuers (see note 1 below) and/ or the OID id-ad-ocsp. This
extension MUST be non-critical.

If id-ad-caIssuers appears as accessMethod, then the accessLocation value SHOULD point to the
URL where the certificate of the issuing CA can be retrieved.

NOTE The root certificate should not be retrieved from a URL in the AIA extension as this is a
possible attack vector. Instead, the root certificate should be provisioned in a trusted root store out of
band or from a trusted source. Alternatively, a hash of the root public key or certificate could be stored
in a device root of trust.

If id-ac-ocsp appears as accessMethod, then the accessLocation value SHOULD point to the access
value of the OCSP responder (HTTP URI). The relying party can access the certificate status for this
certificate by sending a properly formatted OCSPRequest to the URI. If both a CDP and OCSP AIA
extension are present in the certificate, then the relying parties SHOULD use OCSP as the primary
validation mechanism.

3.2.14 CRL Distribution

This extension is optional and provides the location of the subject’s revocation information. The
relying party can access the CRL for this certificate from this URI. If both a CDP and OCSP AIA
extension are present in the certificate, then relying parties SHOULD use OCSP as the primary
validation mechanism. This extension MUST be non-critical.

3.2.15 Key Usage

This extension indicates the intended purpose of the subject public key. This extension MUST be
critical. The usage of the Endorsement Key is defined by the object attributes and algorithm in its
public area template.

If the EK has the object attributes

• restricted, decrypt SET (i.e. the EK is a Storage key),

o the keyEncipherment bit MUST be set for an RSA EK certificate

o the keyAgreement bit MUST be set for an ECC EK certificate

• restricted, sign SET (i.e. the EK is a Signing key), the digitalSignature bit MUST be set

Revision 3 16 July 2021 PUBLISHED Page 28 of 60

3.2.16 Extended Key Usage

The extended key usage extension indicates the intended purpose of the subject public key and MAY
be included in the EK certificate (see note 1 below). If present, extended key usage SHOULD contain
the OID tcg-kp-EKCertificate defined in section 5 of this document as shown below. The OID is used
to unambiguously identify the certificate as an EK certificate. This extension MUST be non-critical.

tcg-kp-EKCertificate OBJECT IDENTIFIER ::= {

 joint-iso-itu-t(2) international-organizations(23) tcg(133) kp(8) 1}

NOTE If the issuing CA is used exclusively to issue EK certificates, the OID tcg-kp-EKCertificate
MAY also be included in the issuing CA certificate. This ensures that the use of the CA is limited to
that particular purpose. If the issuing CA issues certificates for multiple known purposes, then the set
of relevant EKU OIDs could be included in the issuing CA certificate.

3.2.17 Subject Key Identifier

This identifies the public key of the certificate. This extension MAY be included. If included, it MUST
be non-critical.

Revision 3 16 July 2021 PUBLISHED Page 29 of 60

4 X.509 ASN.1 Structures and OIDs
TCG has registered an object identifier (OID) namespace as an “international body” in the ISO
registration hierarchy. This leads to shorter OIDs and gives TCG the ability to manage its own
namespace. The OID namespace is inherited from TCPA. These definitions are intended to be used
within the context of an X.509 v3 certificate specifically leveraging the profile described in RFC 5280
[12].

-- TCG specific OIDs

tcg OBJECT IDENTIFIER ::= {

 joint-iso-itu-t(2) international-organizations(23) tcg(133) }

tcg-attribute OBJECT IDENTIFIER ::= {tcg 2}

tcg-kp OBJECT IDENTIFIER ::= {tcg 8}

-- TCG Attribute OIDs

tcg-at-tpmManufacturer OBJECT IDENTIFIER ::= {tcg-attribute 1}

tcg-at-tpmModel OBJECT IDENTIFIER ::= {tcg-attribute 2}

tcg-at-tpmVersion OBJECT IDENTIFIER ::= {tcg-attribute 3}

tcg-at-tpmSpecification OBJECT IDENTIFIER ::= {tcg-attribute 16}

tcg-at-tpmSecurityAssertions OBJECT IDENTIFIER ::= {tcg-attribute 18}

-- TCG Key Purposes OIDs

tcg-kp-EKCertificate OBJECT IDENTIFIER ::= {tcg-kp 1}

-- tcg specification attributes for tpm

tPMSpecification ATTRIBUTE ::= {

 WITH SYNTAX TPMSpecification

 ID tcg-at-tpmSpecification }

TPMSpecification ::= SEQUENCE {

 family UTF8String (SIZE (1..STRMAX)),

 level INTEGER,

 revision INTEGER }

-- manufacturer implementation model and version attributes

TPMManufacturer ATTRIBUTE ::= {

 WITH SYNTAX UTF8String (SIZE (1..STRMAX))

 ID tcg-at-tpmManufacturer }

TPMModel ATTRIBUTE ::= {

 WITH SYNTAX UTF8String (SIZE (1..STRMAX))

 ID tcg-at-tpmModel }

TPMVersion ATTRIBUTE ::= {

 WITH SYNTAX UTF8String (SIZE (1..STRMAX))

 ID tcg-at-tpmVersion }

-- tpm security assertions

Version ::= INTEGER { v1(0) }

tPMSecurityAssertions ATTRIBUTE ::= {

 WITH SYNTAX TPMSecurityAssertions
 ID tcg—at-tpmSecurityAssertions

}

TPMSecurityAssertions ::= SEQUENCE {

 version Version DEFAULT v1,

 fieldUpgradable BOOLEAN DEFAULT FALSE,

 ekGenerationType [0] IMPLICIT EKGenerationType OPTIONAL,

Revision 3 16 July 2021 PUBLISHED Page 30 of 60

 ekGenerationLocation [1] IMPLICIT EKGenerationLocation OPTIONAL,

 ekCertificateGenerationLocation [2] IMPLICIT

 EKCertificateGenerationLocation OPTIONAL,

 ccInfo [3] IMPLICIT CommonCriteriaMeasures OPTIONAL,

 fipsLevel [4] IMPLICIT FIPSLevel OPTIONAL,

 iso9000Certified [5] IMPLICIT BOOLEAN DEFAULT FALSE,

 iso9000Uri IA5STRING (SIZE (1..URIMAX)) OPTIONAL }

EKGenerationType ::= ENUMERATED {

 internal (0),

 injected (1),

 internalRevocable(2),

 injectedRevocable(3) }

EKGenerationLocation ::= ENUMERATED {

 tpmManufacturer (0),

 platformManufacturer (1),

 ekCertSigner (2) }

EKCertificateGenerationLocation ::= ENUMERATED {

 tpmManufacturer (0),

 platformManufacturer (1),

 ekCertSigner (2) }

-- common criteria evaluation

CommonCriteriaMeasures ::= SEQUENCE {

 version IA5STRING (SIZE (1..STRMAX)), -- “2.2” or “3.1”; future syntax defined by

CC

 assurancelevel EvaluationAssuranceLevel,

 evaluationStatus EvalutionStatus,

 plus BOOLEAN DEFAULT FALSE,

 strengthOfFunction [0] IMPLICIT StrengthOfFunction OPTIONAL,

 profileOid [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 profileUri [2] IMPLICIT URIReference OPTIONAL,

 targetOid [3] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 targetUri [4] IMPLICIT URIReference OPTIONAL }

EvaluationAssuranceLevel ::= ENUMERATED {

 levell (1),

 level2 (2),

 level3 (3),

 level4 (4),

 level5 (5),

 level6 (6),

 level7 (7) }

StrengthOfFunction ::= ENUMERATED {

 basic (0),

 medium (1),

 high (2) }

URIReference ::= SEQUENCE {

 uniformResourceIdentifier IA5String (SIZE (1..URIMAX)),

 hashAlgorithm AlgorithmIdentifier OPTIONAL,

 hashValue BIT STRING OPTIONAL }

EvaluationStatus ::= ENUMERATED {

 designedToMeet (0),

 evaluationInProgress (1),

 evaluationCompleted (2) }

-- fips evaluation

FIPSLevel ::= SEQUENCE {

 version IA5STRING (SIZE (1..STRMAX)), -- “140-1” or “140-2”

 level SecurityLevel,

Revision 3 16 July 2021 PUBLISHED Page 31 of 60

 plus BOOLEAN DEFAULT FALSE }

SecurityLevel ::= ENUMERATED {

 level1 (1),

 level2 (2),

 level3 (3),

 level4 (4) }

Revision 3 16 July 2021 PUBLISHED Page 32 of 60

5 References

For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.

[1] TPM 2.0 Library Specification:
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

[2] Registry of Reserved TPM 2.0 Handles and Localities:
http://www.trustedcomputinggroup.org/resources/registry

[3] Vendor ID Registry:
http://www.trustedcomputinggroup.org/resources/vendor_id_registry

[4] TCG Credential Profile Version 1.0, Version 1.1 and Version 1.2:
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_tcg_credential
_profiles_specification

[5] TCG EK Credential Profile for TPM 2.0, Version 2.0, Revision 14:
https://trustedcomputinggroup.org/tcg-ek-credential-profile-tpm-family-2-0

[6] PC Client Specific Platform TPM Profile for TPM 2.0:
http://www.trustedcomputinggroup.org/developers/pc_client

[7] CMC Profile for EK/Platform Certificate Enrollment for TPM 1.2:
http://www.trustedcomputinggroup.org/developers/infrastructure

[8] TPM Keys for Platform Identity for TPM 1.2:
http://www.trustedcomputinggroup.org/developers/infrastructure

[9] TPM 1.2 Main Specification:
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

[10] IEEE Standard for Local and metropolitan area networks, Secure Device Identity, 2009

[11] NIST Special Publication 800-57, Recommendation for Key Management – Part 1: General

[12] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, RFC 5280, http://www.ietf.org/rfc/rfc5280.txt

[13] Using SHA2 Algorithms with Cryptographic Message Syntax, RFC 5754,
http://www.ietf.org/rfc/rfc5754.txt

[14] Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, RFC 3279, http://www.ietf.org/rfc/rfc3279.txt

[15] Elliptic Curve Cryptography Subject Public Key Information, RFC 5480,
http://www.ietf.org/rfc/rfc5480.txt

[16] Using Cryptographic Message Syntax (CMS) to Protect Firmware Packages, RFC 4108,
http://www.ietf.org/rfc/rfc4108.txt

[17] Key words for use in RFCs to Indicate Requirement Levels, RFC 2119,
http://www.ietf.org/rfc/rfc2119.txt

[18] Hypertext Markup Language – 2.0, RFC 1866, http://www.ietf.org/rfc/rfc1866.txt

[19] ITU-T X.690: Information technology – ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER)

[20] Cryptographic Application Identifier Criterion Specification, GM/T 0006-2012,
http://www.cssn.net.cn/pagesnew/search/standard_detail.jsp?a001=NjM0ODU5Mg==

[21] TCG Glossary: https://trustedcomputinggroup.org/glossary

http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/registry
http://www.trustedcomputinggroup.org/resources/vendor_id_registry
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_tcg_credential_profiles_specification
http://www.trustedcomputinggroup.org/resources/infrastructure_work_group_tcg_credential_profiles_specification
https://trustedcomputinggroup.org/tcg-ek-credential-profile-tpm-family-2-0
http://www.trustedcomputinggroup.org/developers/pc_client
http://www.trustedcomputinggroup.org/developers/infrastructure
http://www.trustedcomputinggroup.org/developers/infrastructure
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5754.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc5480.txt
http://www.ietf.org/rfc/rfc4108.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc1866.txt
http://www.cssn.net.cn/pagesnew/search/standard_detail.jsp?a001=NjM0ODU5Mg
https://trustedcomputinggroup.org/glossary

Revision 3 16 July 2021 PUBLISHED Page 33 of 60

[22] CNSA-Suite-and-Quantum-Computing-FAQ.pdf, https://www.nsa.gov/

https://www.nsa.gov/

Revision 3 16 July 2021 PUBLISHED Page 34 of 60

A. Certificate Examples

 Example 1 (user device TPM, e.g. PC-Client)
This annex provides an example for a standard, user device TPM (e.g. PC-Client) Endorsement Key
certificate. The ASN.1 encoding for the subject alternative name and subject directory attributes
extension is provided below. The values used in this example are for illustrative purposes and must
be replaced with manufacturer-specific data.

Subject alternative name:
TPMManufacturer = id:54534700 (TCG)
TPMModel = ABCDEF123456 (part number)
TPMVersion = id:00010023 (firmware version)

// SEQUENCE

30 49

 // SET

 31 16

 // SEQUENCE

 30 14

 // OBJECT IDENTIFER tcg-at-tpmManufacturer (2.23.133.2.1)

 06 05 67 81 05 02 01

 // UTF8 STRING id:54434700 (TCG)

 0C 0B 69 64 3A 35 34 34 33 34 37 30 30

 // SET

 31 17

 // SEQUENCE

 30 15

 // OBJECT IDENTIFER tcg-at-tpmModel (2.23.133.2.2)

 06 05 67 81 05 02 02

 // UTF8 STRING ABCDEF123456

 0C 0C 41 42 43 44 45 46 31 32 33 34 35 36

 // SET

 31 16

 // SEQUENCE

 30 14

 // OBJECT IDENTIFER tcg-at-tpmVersion (2.23.133.2.3)

 06 05 67 81 05 02 03

 // UTF8 STRING id:00010023

 0C 0B 69 64 3A 30 30 30 31 30 30 32 33

Subject directory attributes:
TPMSpecification
Family = id:322E3000 (2.0)
Level = 0
Revision = 99
TPMSecurityAssertions (not included here since optional)

// SEQUENCE

30 16

 // OBJECT IDENTIFIER tcg-at-tpmSpecification (2.23.133.2.16)

 06 05 67 81 05 02 10

 // SET

 31 0D

 // SEQUENCE

 30 0B

 // UTF8 STRING (2.0)

 0C 03 32 2E 30

 // INTEGER (0)

 02 01 00

 // INTEGER (99)

 02 01 63

Revision 3 16 July 2021 PUBLISHED Page 35 of 60

The encoding of the extensions above is extracted from the following example certificate. The
example certificate provided below is for illustrative proposes only, and all example values must be
replaced with manufacturer-specific data. For simplicity some optional configurations (e.g. optional
data within an extension) are omitted. The manufacturer’s certificate is not required to look exactly
the same as this example certificate. For easier testing the certificate is provided in PEM format.
When read from the TPM the certificate is encoded in DER [19].

-----BEGIN CERTIFICATE-----

MIID7zCCAtegAwIBAgIBATANBgkqhkiG9w0BAQsFADAUMRIwEAYDVQQDDAlFeGFt

cGxlQ0EwHhcNMTQwMTE1MTU0MDUwWhcNMTUwMTE1MTU0MDUwWjAAMIIBIjANBgkq

hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAncvm0aOBK05rdNInYXzJGV5SFteVUFpt

XFxg4evROvlulB3BzUmFGQYFDcItVnJX2fAvf0UJLtLBVBQggb5ylL6bRpj72cS3

oyNbs0CGmix9Z1QDjkZZFvIsD1GcKO0tvsCvsEItH8Cm0fq8WcGFijWLdRD5eulP

55pq1bAHAvIo4+VLMJVBG71xrKGZeHPjKoq6seYjh7AGy+hk2vmFzpZ8Ghdgqv+K

02IZ7FEdzuylHW8U3qsxBHysMut4inj6AiVf467OOs5meHiifIK9MGkovMrfY9iX

uUVUs/KXpE1sgeoX9BLvx1BPcODosr5K+z5i71OtIXy4CXrPvcGzRwIDAQABo4IB

XjCCAVowQAYIKwYBBQUHAQEENDAyMDAGCCsGAQUFBzAChiRodHRwOi8vd3d3LmV4

YW1wbGUuY29tL0V4YW1wbGVDQS5jcnQwDgYDVR0PAQH/BAQDAgAgMFkGA1UdEQEB

/wRPME2kSzBJMRYwFAYFZ4EFAgEMC2lkOjU0NDM0NzAwMRcwFQYFZ4EFAgIMDEFC

Q0RFRjEyMzQ1NjEWMBQGBWeBBQIDDAtpZDowMDAxMDAyMzAMBgNVHRMBAf8EAjAA

MDUGA1UdHwQuMCwwKqAooCaGJGh0dHA6Ly93d3cuZXhhbXBsZS5jb20vRXhhbXBs

ZUNBLmNybDAQBgNVHSAECTAHMAUGAyoDBDAfBgNVHSMEGDAWgBQ0d2ckTESv554q

4LJMaVeVJLM92jAQBgNVHSUECTAHBgVngQUIATAhBgNVHQkEGjAYMBYGBWeBBQIQ

MQ0wCwwDMi4wAgEAAgFjMA0GCSqGSIb3DQEBCwUAA4IBAQAba2btJ/+4z02MWpNp

99AFGpEu3yIaJqI6NeHvC6fxxe/9lWlHKISR+CnpAh03/MKT8TP2/cUSi0jjkQNh

MtueUNofE79fYXtHXHU7wzzUFWNwCmhTuHDYl3jmD0fJ9yA2CuUHT6q3UV+PwXN+

EHE1hQwC8QtNC/5A7wY1e5dBLdgwSSIgTc4lSsbNcZ9d+m7mWEWpumSYU0czTDEN

Hmdu/VJuDN/RCOAyBb+hc19LAucGmnFYOhxWHfd9zbXZA1ldFUxrpPuVfKx+Eo8f

rMsB2oZKMwSYUAWotqolhLe2wdBMRjdmVz44kIhuFB7y4BpQjlB1+xAzX9Hb31CG

eoS2

-----END CERTIFICATE-----

Revision 3 16 July 2021 PUBLISHED Page 36 of 60

B. Default EK Templates (algorithm-specific)

 Introduction
This annex defines multiple default EK Templates for algorithm-specific Endorsement Keys. The
Templates are assigned to either the Low or High Range. These default values are used to generate
the RSA or ECC Endorsement Key corresponding to the EK certificates installed by the TPM or
Platform manufacturer. The hash calculated over the public area template is one of the command
parameters that is used to create the EK.

The TPM or Platform manufacturer MAY create a proprietary EK public area template that is different
from the defaults in this annex (this procedure is further described in section 2.2.1). Platform-specific
working groups MAY define a proprietary EK public area template if required. The EK provided by
the manufacturer MUST be defined as a non-duplicable key. This is ensured by setting the attributes
fixedTPM and fixedParent both to SET (1). The noDA attribute is set to CLEAR (0) (meaning the
object is subject to dictionary attack protections), in the default EK Templates because the EK is
considered privacy sensitive. When privacy is an issue, great care should be taken when selecting
the attributes and the authorization for the key (see section 2.3 privacy protection).

 Backwards Compatibility
Version 2.0 of the EK Credential Profile [5] defined one EK Template for RSA 2048 and one for ECC
NIST P256. These Templates are retained unmodified in this version of the EK Credential Profile and
are named L-1 (see B.3.3) and L-2 (see B.3.4). In addition, a second EK Template for RSA 2048 and
ECC NIST P256 are defined, which utilize a different authorization.

If a platform-specific TPM profile requires an EK Certificate from the manufacturer for RSA 2048 and/
or ECC NIST P256, the platform specification SHOULD specify which EK Template is to be used to
create the associated EK. For backwards compatibility, it is recommended that TPMs use the
Templates L-1 and L-2 in the Low Range instead of H-1 and H-2 in the High Range.

 EK Templates in the Low Range

B.3.1 Introduction

The EK certificates associated with the default EK Templates defined in this section are stored in the
Low Range (see section 2.2.1.4). The default EK Templates L-1 and L-2 (see appendices B.3.3 and
B.3.4) specify an RSA 2048 bit and ECC NIST P256 bit restricted decryption (Storage) key whose
authorization is only allowed with authPolicy. The policies in Template L-1 and L-2 require
endorsementAuth to authorize use of the EK. This policy is created with TPM2_PolicySecret() where
the authHandle parameter of the command, indicating the entity providing the authorization value,
references the Endorsement hierarchy. In the following, this policy is referenced as PolicyA. A
symmetric key is used to protect the child keys of the EK and is defined as an AES 128 bit key using
CFB mode. SHA256 is used to calculate the Name of the EK. The buffer reserved for the public key
of the EK is set to all zeros. For the setting of the sensitive data, see section 2.1.1.

Using PolicyA rather than a policy using the EK authorization (userWithAuth SET) enables the
following use case: An entity wishes to pre-provision an EK in persistent storage; since the password
of a persistent object cannot be changed, the entity must:

• communicate the password to the final user, and

• securely delete the copy of the password held by the entity

This policy (PolicyA) used by the EK Templates in the Low Range permits the EK to be pre-
provisioned while letting the end user set its password (though endorsement authorization).

The disadvantage of PolicyA is that it results in reduced flexibility for the Privacy Administrator when
delegating control of the EK. If an administrator wishes to give an end user the ability to use the EK,
the administrator has to give the end user the Endorsement hierarchy password. Among other things,

Revision 3 16 July 2021 PUBLISHED Page 37 of 60

knowledge of the EH password allows the end user to change the EH password and policy, potentially
locking out the administrator from using the EK.

B.3.2 Satisfying PolicyA

When using the EK created with Template L-1 or L-2, the user has to satisfy PolicyA. This is done by
executing the TPM2_PolicySecret() command, passing in the handle to the Endorsement Hierarchy,
and then proving knowledge of the Endorsement Hierarchy password. The caller proves knowledge
of the Endorsement Hierarchy password using an authorization session. A password session, an
HMAC session, or a policy session containing TPM2_PolicyAuthValue() or TPM2_PolicyPassword()
will satisfy this requirement.

Revision 3 16 July 2021 PUBLISHED Page 38 of 60

B.3.3 Template L-1: RSA 2048 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_RSA

nameAlg TPMI_ALG_HASH TPM_ALG_SHA256

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 0
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 32

 buffer BYTE 0x83, 0x71, 0x97, 0x67, 0x44, 0x84,
0xB3, 0xF8, 0x1A, 0x90, 0xCC, 0x8D,
0x46, 0xA5, 0xD7, 0x24, 0xFD, 0x52,
0xD7, 0x6E, 0x06, 0x52, 0x0B, 0x64,
0xF2, 0xA1, 0xDA, 0x1B, 0x33, 0x14,
0x69, 0xAA
TPM2_PolicySecret(TPM_RH_ENDO
RSEMENT)

parameters TPMS_RSA_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 128

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ASYM_SCHEME TPM_ALG_NULL

 scheme->details NULL

 keyBits TPMI_RSA_KEY_BITS 2048

 exponent UINT32 0

unique TPM2B_PUBLIC_KEY_RSA

 size UINT16 256

 buffer BYTE All 0

Table 2: Default EK Template (TPMT_PUBLIC) L-1: RSA 2048 (Storage)

Revision 3 16 July 2021 PUBLISHED Page 39 of 60

B.3.4 Template L-2: ECC NIST P256 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_ECC

nameAlg TPMI_ALG_HASH TPM_ALG_SHA256

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 0
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 32

 buffer BYTE 0x83, 0x71, 0x97, 0x67, 0x44, 0x84,
0xB3, 0xF8, 0x1A, 0x90, 0xCC, 0x8D,
0x46, 0xA5, 0xD7, 0x24, 0xFD, 0x52,
0xD7, 0x6E, 0x06, 0x52, 0x0B, 0x64,
0xF2, 0xA1, 0xDA, 0x1B, 0x33, 0x14,
0x69, 0xAA
TPM2_PolicySecret(TPM_RH_ENDO
RSEMENT)

parameters TPMS_ECC_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 128

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ECC_SCHEME TPM_ALG_NULL

 scheme->details NULL

 curveID TPMI_ECC_CURVE TPM_ECC_NIST_P256

 kdf->scheme TPMI_ALG_KDF TPM_ALG_NULL

 kdf->details NULL

unique TPMS_ECC_POINT

 x->size UINT16 32

 x->buffer BYTE All 0

 y->size UINT16 32

 y->buffer BYTE All 0

Table 3: Default EK Template (TPMT_PUBLIC) L-2: ECC NIST P256 (Storage)

Revision 3 16 July 2021 PUBLISHED Page 40 of 60

 EK Templates in the High Range

B.4.1 Introduction

The EK certificates associated with the default EK Templates defined in this section are stored in the
High Range (see section 2.2.1.5). The default EK Templates H-1 to H-5 (see appendices B.4.4 to
B.4.8) specify an RSA 2048 bit, ECC NIST P256, NIST P384, NIST P521, and SM2 P256 bit restricted
decryption (Storage) key whose authorization is allowed with either the object’s authValue (as
userWithAuth is SET) or the object’s authPolicy. The authPolicy in Template H-1 to H-5 is set to
PolicyB.

PolicyB is a policy OR term of

• PolicyA: a policy created with TPM2_PolicySecret() where the entity providing the
authorization value is the Endorsement hierarchy, and

• PolicyC: a policy created withTPM2_PolicyAuthorizeNV() where the authorization value is
determined by the data (payload) area of a reserved NV Index.

A symmetric key is used to protect the child keys of the EK and is defined as an AES 128 bit, AES
256 bit, or SM4 128 bit key using CFB mode. The hash algorithm used to calculate the Name of the
EK is defined as SHA256, SHA384, SHA512, or SM3_256 and has a security strength equivalent to
the Endorsement Key. The unique field (reserved for the public key of the EK) is set to Empty Buffer
for the RSA default EK Template, and set to Empty Point for the ECC default EK Templates. For the
setting of the sensitive data, see section 2.1.1.

B.4.2 Authorization Options

The authorization of the default EK Templates defined in the High Range (H-1 to H-5) is improved in
two ways (compared to the Low Range):

1) The policy of the EK is changed to an OR policy that allows authorization of the EK with
a. Either the EH password
b. OR a policy (only writeable with knowledge of the EH password) at a particular NV

index (see B.5).

2) userWithAuth is SET (1) so that the EK can also be used by someone with knowledge of the
EK’s authValue.

The policy in the default high-range EK Templates allows only someone who knows the EH password
(if he or she wishes) to assign (or change) a policy to use the EK. If that is wished, an NV index (at a
reserved index) must be created and written with that policy. Otherwise no additional NV indexes are
used.

The problem of someone creating an EK with a known authValue and storing it persistently in the
TPM before the EH password is assigned using TPM2_HierarchyChangeAuth() can be obviated in a
few ways by either

1) Clearing the TPM using TPM2_Clear() and then changing the EH password when it is
recreated -OR-

2) Changing the EH password and then checking with the TPM to see if any keys are persistently
stored and evicting them.

After either of these operations, only someone with EH authority is able to create a new EK, assigning
it a new password.

B.4.3 Satisfying PolicyB

When using the EK created with one of the Templates H-1 to H-5, the user has to either prove
knowledge of the object’s authValue or satisfy PolicyB. PolicyB can be satisfied by either satisfying
PolicyA (see B.3.2) OR by satisfying PolicyC. PolicyC is stored in a reserved NV index (defined in

Revision 3 16 July 2021 PUBLISHED Page 41 of 60

B.5). The NV index is established with a policy that only allows it to be written by the Endorsement
Hierarchy owner. The Name of this NV index (after it is written by the Endorsement Hierarchy owner),
is used in creation of PolicyC.

When the TPM is shipped, the NV Index will not be Populated as described in B.5.1. It is entirely up
to the owner of the TPM if he or she wishes to populate it. If it is not Populated, the EK is controlled
with the Endorsement Hierarchy authorization. If the owner decides to populate the NV Index with an
owner chosen policy, the EK can be controlled either with that policy OR with the Endorsement
Hierarchy authorization. In this case, the owner can now delegate control of the EK via use of PolicyB.
PolicyB can be satisfied either by first executing PolicyA and then executing TPM2_PolicyOR(). It
can also be satisfied by first satisfying whatever policy was placed in the reserved NV Index, then
executing TPM2_PolicyAuthorizeNV(), and then executing TPM2_PolicyOR().

Revision 3 16 July 2021 PUBLISHED Page 42 of 60

B.4.4 Template H-1: RSA 2048 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_RSA

nameAlg TPMI_ALG_HASH TPM_ALG_SHA256

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 32

 buffer BYTE 0xCA, 0x3D, 0x0A, 0x99, 0xA2, 0xB9,
0x39, 0x06, 0xF7, 0xA3, 0x34, 0x24,
0x14, 0xEF, 0xCF, 0xB3, 0xA3, 0x85,
0xD4, 0x4C, 0xD1, 0xFD, 0x45, 0x90,
0x89, 0xD1, 0x9B, 0x50, 0x71, 0xC0,
0xB7, 0xA0
(PolicyBSHA256, see B.6.2)

parameters TPMS_RSA_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 128

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ASYM_SCHEME TPM_ALG_NULL

 scheme->details NULL

 keyBits TPMI_RSA_KEY_BITS 2048

 exponent UINT32 0

unique TPM2B_PUBLIC_KEY_RSA

 size UINT16 0

 buffer BYTE Empty

Table 4: Default EK Template (TPMT_PUBLIC) H-1: RSA 2048 (Storage)

Revision 3 16 July 2021 PUBLISHED Page 43 of 60

B.4.5 Template H-2: ECC NIST P256 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_ECC

nameAlg TPMI_ALG_HASH TPM_ALG_SHA256

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 32

 buffer BYTE 0xCA, 0x3D, 0x0A, 0x99, 0xA2, 0xB9,
0x39, 0x06, 0xF7, 0xA3, 0x34, 0x24,
0x14, 0xEF, 0xCF, 0xB3, 0xA3, 0x85,
0xD4, 0x4C, 0xD1, 0xFD, 0x45, 0x90,
0x89, 0xD1, 0x9B, 0x50, 0x71, 0xC0,
0xB7, 0xA0
(Policy BSHA256, see B.6.5)

parameters TPMS_ECC_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 128

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ECC_SCHEME TPM_ALG_NULL

 scheme->details NULL

 curveID TPMI_ECC_CURVE TPM_ECC_NIST_P256

 kdf->scheme TPMI_ALG_KDF TPM_ALG_NULL

 kdf->details NULL

unique TPMS_ECC_POINT

 x->size UINT16 0

 x->buffer BYTE Empty

 y->size UINT16 0

 y->buffer BYTE Empty

Table 5: Default EK Template (TPMT_PUBLIC) H-2: ECC NIST P256 (Storage)

Revision 3 16 July 2021 PUBLISHED Page 44 of 60

B.4.6 Template H-3: ECC NIST P384 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_ECC

nameAlg TPMI_ALG_HASH TPM_ALG_SHA384

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 48

 buffer BYTE 0xB2, 0x6E, 0x7D, 0x28, 0xD1, 0x1A,
0x50, 0xBC, 0x53, 0xD8, 0x82, 0xBC,
0xF5, 0xFD, 0x3A, 0x1A, 0x07, 0x41,
0x48, 0xBB, 0x35, 0xD3, 0xB4, 0xE4,
0xCB, 0x1C, 0x0A, 0xD9, 0xBD, 0xE4,
0x19, 0xCA, 0xCB, 0x47, 0xBA, 0x09,
0x69, 0x96, 0x46, 0x15, 0x0F, 0x9F,
0xC0, 0x00, 0xF3, 0xF8, 0x0E, 0x12
(PolicyBSHA384, see B.6.5)

parameters TPMS_ECC_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 256

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ECC_SCHEME TPM_ALG_NULL

 scheme->details NULL

 curveID TPMI_ECC_CURVE TPM_ECC_NIST_P384

 kdf->scheme TPMI_ALG_KDF TPM_ALG_NULL

 kdf->details NULL

unique TPMS_ECC_POINT

 x->size UINT16 0

 x->buffer BYTE Empty

 y->size UINT16 0

 y->buffer BYTE Empty

Table 6: Default EK Template (TPMT_PUBLIC) H-3: ECC NIST P384 (Storage)

NOTE AES 256 bit is used instead of AES 192 bit because a platform specific profile might define

AES 192 as optional algorithm.

Revision 3 16 July 2021 PUBLISHED Page 45 of 60

B.4.7 Template H-4: ECC NIST P521 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_ECC

nameAlg TPMI_ALG_HASH TPM_ALG_SHA512

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 64

 buffer BYTE 0xB8, 0x22, 0x1C, 0xA6, 0x9E, 0x85,
0x50, 0xA4, 0x91, 0x4D, 0xE3, 0xFA,
0xA6, 0xA1, 0x8C, 0x07, 0x2C, 0xC0,
0x12, 0x08, 0x07, 0x3A, 0x92, 0x8D,
0x5D, 0x66, 0xD5, 0x9E, 0xF7, 0x9E,
0x49, 0xA4, 0x29, 0xC4, 0x1A, 0x6B,
0x26, 0x95, 0x71, 0xD5, 0x7E, 0xDB,
0x25, 0xFB, 0xDB, 0x18, 0x38, 0x42,
0x56, 0x08, 0xB4, 0x13, 0xCD, 0x61,
0x6A, 0x5F, 0x6D, 0xB5, 0xB6, 0x07,
0x1A, 0xF9, 0x9B, 0xEA
(PolicyBSHA512, see B.6.5)

parameters TPMS_ECC_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 256

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ECC_SCHEME TPM_ALG_NULL

 scheme->details NULL

 curveID TPMI_ECC_CURVE TPM_ECC_NIST_P521

 kdf->scheme TPMI_ALG_KDF TPM_ALG_NULL

 kdf->details NULL

unique TPMS_ECC_POINT

 x->size UINT16 0

 x->buffer BYTE Empty

 y->size UINT16 0

 y->buffer BYTE Empty

Table 7: Default EK Template (TPMT_PUBLIC) H-4: ECC NIST P521 (Storage)

Revision 3 16 July 2021 PUBLISHED Page 46 of 60

B.4.8 Template H-5: ECC SM2 P256 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_ECC

nameAlg TPMI_ALG_HASH TPM_ALG_SM3_256

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 32

 buffer BYTE 0x16, 0x78, 0x60, 0xA3, 0x5F, 0x2C,
0x5C, 0x35, 0x67, 0xF9, 0xC9, 0x27,
0xAC, 0x56, 0xC0, 0x32, 0xF3, 0xB3,
0xA6, 0x46, 0x2F, 0x8D, 0x03, 0x79,
0x98, 0xE7, 0xA1, 0x0F, 0x77, 0xFA,
0x45, 0x4A
(PolicyBSM3_256, see B.6.5)

parameters TPMS_ECC_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_SM4

 symmetric->keyBits TPMI_SM4_KEY_BITS 128

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ECC_SCHEME TPM_ALG_NULL

 scheme->details NULL

 curveID TPMI_ECC_CURVE TPM_ECC_SM2_P256

 kdf->scheme TPMI_ALG_KDF TPM_ALG_NULL

 kdf->details NULL

unique TPMS_ECC_POINT

 x->size UINT16 0

 x->buffer BYTE Empty

 y->size UINT16 0

 y->buffer BYTE Empty

Table 8: Default EK Template (TPMT_PUBLIC) H-5: SM2 P256 (Storage)

Revision 3 16 July 2021 PUBLISHED Page 47 of 60

B.4.9 Template H-6: RSA 3072 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_RSA

nameAlg TPMI_ALG_HASH TPM_ALG_SHA384

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 48

 buffer BYTE 0xB2, 0x6E, 0x7D, 0x28, 0xD1, 0x1A,
0x50, 0xBC, 0x53, 0xD8, 0x82, 0xBC,
0xF5, 0xFD, 0x3A, 0x1A, 0x07, 0x41,
0x48, 0xBB, 0x35, 0xD3, 0xB4, 0xE4,
0xCB, 0x1C, 0x0A, 0xD9, 0xBD, 0xE4,
0x19, 0xCA, 0xCB, 0x47, 0xBA, 0x09,
0x69, 0x96, 0x46, 0x15, 0x0F, 0x9F,
0xC0, 0x00, 0xF3, 0xF8, 0x0E, 0x12
(PolicyBSHA384, see B.6.5)

parameters TPMS_RSA_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 256

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ASYM_SCHEME TPM_ALG_NULL

 scheme->details NULL

 keyBits TPMI_RSA_KEY_BITS 3072

 exponent UINT32 0

unique TPM2B_PUBLIC_KEY_RSA

 size UINT16 0

 buffer BYTE Empty

Table 9: Default EK Template (TPMT_PUBLIC) H-6: RSA 3072 (Storage)

NOTE The selection of SHA384 and AES256 to be used with RSA 3k follows CNSA-Suite

recommendations [22].

Revision 3 16 July 2021 PUBLISHED Page 48 of 60

B.4.10 Template H-7: RSA 4096 (Storage)

Parameter Type Content

type TPMI_ALG_PUBLIC TPM_ALG_RSA

nameAlg TPMI_ALG_HASH TPM_ALG_SHA384

objectAttributes TPMA_OBJECT fixedTPM = 1
stClear = 0
fixedParent = 1
sensitiveDataOrigin = 1
userWithAuth = 1
adminWithPolicy = 1
noDA = 0
encryptedDuplication = 0
restricted = 1
decrypt = 1
sign = 0

authPolicy TPM2B_DIGEST

 size UINT16 48

 buffer BYTE 0xB2, 0x6E, 0x7D, 0x28, 0xD1, 0x1A,
0x50, 0xBC, 0x53, 0xD8, 0x82, 0xBC,
0xF5, 0xFD, 0x3A, 0x1A, 0x07, 0x41,
0x48, 0xBB, 0x35, 0xD3, 0xB4, 0xE4,
0xCB, 0x1C, 0x0A, 0xD9, 0xBD, 0xE4,
0x19, 0xCA, 0xCB, 0x47, 0xBA, 0x09,
0x69, 0x96, 0x46, 0x15, 0x0F, 0x9F,
0xC0, 0x00, 0xF3, 0xF8, 0x0E, 0x12
(PolicyBSHA384, see B.6.5)

parameters TPMS_RSA_PARMS

 symmetric->algorithm TPMI_ALG_SYM_OBJECT TPM_ALG_AES

 symmetric->keyBits TPMI_AES_KEY_BITS 256

 symmetric->mode TPMI_SYM_MODE TPM_ALG_CFB

 symmetric->details NULL

 scheme->scheme TPMI_ALG_ASYM_SCHEME TPM_ALG_NULL

 scheme->details NULL

 keyBits TPMI_RSA_KEY_BITS 4096

 exponent UINT32 0

unique TPM2B_PUBLIC_KEY_RSA

 size UINT16 0

 buffer BYTE Empty

Table 10: Default EK Template (TPMT_PUBLIC) H-7: RSA 4096 (Storage)

NOTE The selection of SHA384 and AES256 to be used with RSA 4k follows CNSA-Suite

recommendations [22].

Revision 3 16 July 2021 PUBLISHED Page 49 of 60

 Policy NV Indices

B.5.1 Introduction

This annex defines the public structure (TPMS_NV_PUBLIC) of NV Indices that may be used to store
a policy digest in their data (payload) area. This policy may then be used as authorization policy by
an Endorsement Key that was created with one of the default EK Templates of the High Range. Other
authorizations options – which do not require such an NV Index - are described in B.4.

One NV Index is reserved for each hash algorithm: SHA256, SHA384, SHA512 and SM3_256. Figure
1 illustrates which Policy Index (I-1 to I-4) is to be used by which default EK Template of the High
Range (H-1 to H-5).

The Policy NV Indices SHOULD NOT be Populated by the TPM manufacturer. Instead, a Policy NV
Index MAY be defined and undefined by the platform Owner using Owner Authorization. The NV
Index is written with Endorsement authorization.

NOTE It is not anticipated that all four Policy NV Indices would be Populated at the same time in a
TPM. Instead only the Policy Index corresponding to the EK in operation would be Populated. For
example, Policy Index I-1 for use of EKs created with Template H-1 or H-2.

TPMT_PUBLIC
nameAlg = SHA256
...
authPolicy (0x20)
...

RSA 2k (H-1)

TPMT_PUBLIC
nameAlg = SHA256
...
authPolicy (0x20)
...

ECC NIST P256 (H-2)

TPMT_PUBLIC
nameAlg = SHA384
...
authPolicy (0x30)
...

ECC NIST P384 (H-3)

TPMT_PUBLIC
nameAlg = SHA512
...
authPolicy (0x40)
...

ECC NIST P521 (H-4)

TPMT_PUBLIC
nameAlg =
SM3_256

authPolicy (0x20)
...

ECC SM2 P256 (H-5)

TPMS_NV_PUBLIC
nvIndex = 0x01C07F01
nameAlg = SHA256
attributes
authPolicy = PolicyA
dataSize = 0x22

TPMS_NV_PUBLIC
nvIndex = 0x01C07F02
nameAlg = SHA384
attributes
authPolicy = PolicyA
dataSize = 0x32

TPMS_NV_PUBLIC
nvIndex = 0x01C07F03
nameAlg = SHA512
attributes
authPolicy = PolicyA
dataSize = 0x42

TPMS_NV_PUBLIC
nvIndex = 0x01C07F04
nameAlg = SM3_256
attributes
authPolicy = PolicyA
dataSize = 0x22

Default EK Templates
(High Range)

Individual Policy Indices
(optional)

(policAlg = SHA256)
PolicyOR of the following policies:
 TPM2_PolicySecret(TPM_RH_ENDORSEMENT)
 TPM2_PolicyAuthorizeNV (0x01C07F01)

(policyAlg = SHA384)
PolicyOR of the following polcies:
 TPM2_PolicySecret(TPM_RH_ENDORSEMENT)
 TPM2_PolicyAuthorizeNV (0x01C07F02)

(policyAlg = SHA512)
PolicyOR of the following policies:
 TPM2_PolicySecret(TPM_RH_ENDORSEMENT)
 TPM2_PolicyAuthorizeNV (0x01C07F03)

(policyAlg = SM_256)
PolicyOR of the following policies:
 TPM2_PolicySecret(TPM_RH_ENDORSEMENT)
 TPM2_PolicyAuthorizeNV (0x01C07F04)

Policy Index (I-1)

Policy Index (I-2)

Policy Index (I-3)

Policy Index (I-4)

TPMT_PUBLIC
nameAlg = SHA384
...
authPolicy (0x30)
...

RSA 3k (H-6)/ 4k (H-7)

Figure 1: Policy Indices for EK Templates in the High Range

Revision 3 16 July 2021 PUBLISHED Page 50 of 60

B.5.2 Handle Values

The Policy NV Indices (if Populated) use the following handle values:

0x01c07f01 Policy Index I-1 with nameAlg = SHA256 (B.5.3)

0x01c07f02 Policy Index I-2 with nameAlg = SHA384 (B.5.4)

0x01c07f03 Policy Index I-3 with nameAlg = SHA512 (B.5.5)

0x01c07f04 Policy Index I-4 with nameAlg = SM3_256 (B.5.6)

Revision 3 16 July 2021 PUBLISHED Page 51 of 60

B.5.3 Policy Index I-1: SHA256

Parameter Type Content

nvIndex TPMI_RH_NV_INDEX 0x01C07F01

nameAlg TPMI_ALG_HASH TPM_ALG_SHA256 (0x000B)

attributes TPMA_NV TPMA_NV_PPWRITE = 0
TPMA_NV_OWNERWRITE = 0
TPMA_NV_AUTHWRITE = 0
TPMA_NV_POLICYWRITE = 1
TPM_NT = 0
TPMA_NV_POLICY_DELETE = 0
TPMA_NV_WRITELOCKED = 0
TPMA_NV_WRITEALL = 1
TPMA_NV_WRITEDEFINE = 0
TPMA_NV_WRITE_STCLEAR = 0
TPMA_NV_GLOBALLOCK = 0
TPMA_NV_PPREAD = 1
TPMA_NV_OWNERREAD = 1
TPMA_NV_AUTHREAD = 1
TPMA_NV_POLICYREAD = 1
TPMA_NV_NO_DA = 1
TPMA_NV_ORDERLY = 0
TPMA_NV_CLEAR_STCLEAR = 0
TPMA_NV_READLOCKED = 0
TPMA_NV_WRITTEN = 1
TPMA_NV_PLATFORMCREATE = 0
TPMA_NV_READ_STCLEAR = 0
(0x220F1008)

authPolicy TPM2B_DIGEST

 size UINT16 32 (0x0020)

 buffer BYTE 0x83, 0x71, 0x97, 0x67, 0x44, 0x84,
0xB3, 0xF8, 0x1A, 0x90, 0xCC, 0x8D,
0x46, 0xA5, 0xD7, 0x24, 0xFD, 0x52,
0xD7, 0x6E, 0x06, 0x52, 0x0B, 0x64,
0xF2, 0xA1, 0xDA, 0x1B, 0x33, 0x14,
0x69, 0xAA
(PolicyASHA256, see Table 15)

dataSize UINT16 34 (0x0022)

Table 11: EK Policy Index (TPMS_NV_PUBLIC) I-1: SHA256

NOTE The first two bytes of the Index data area contain a TPM_ALG_ID, followed by the policy

value (without size).

Revision 3 16 July 2021 PUBLISHED Page 52 of 60

B.5.4 Policy Index I-2: SHA384

Parameter Type Content

nvIndex TPMI_RH_NV_INDEX 0x01C07F02

nameAlg TPMI_ALG_HASH TPM_ALG_SHA384 (0x000C)

attributes TPMA_NV TPMA_NV_PPWRITE = 0
TPMA_NV_OWNERWRITE = 0
TPMA_NV_AUTHWRITE = 0
TPMA_NV_POLICYWRITE = 1
TPM_NT = 0
TPMA_NV_POLICY_DELETE = 0
TPMA_NV_WRITELOCKED = 0
TPMA_NV_WRITEALL = 1
TPMA_NV_WRITEDEFINE = 0
TPMA_NV_WRITE_STCLEAR = 0
TPMA_NV_GLOBALLOCK = 0
TPMA_NV_PPREAD = 1
TPMA_NV_OWNERREAD = 1
TPMA_NV_AUTHREAD = 1
TPMA_NV_POLICYREAD = 1
TPMA_NV_NO_DA = 1
TPMA_NV_ORDERLY = 0
TPMA_NV_CLEAR_STCLEAR = 0
TPMA_NV_READLOCKED = 0
TPMA_NV_WRITTEN = 1
TPMA_NV_PLATFORMCREATE = 0
TPMA_NV_READ_STCLEAR = 0
(0x220F1008)

authPolicy TPM2B_DIGEST

 size UINT16 48 (0x0030)

 buffer BYTE 0x8B, 0xBF, 0x22, 0x66, 0x53, 0x7C,
0x17, 0x1C, 0xB5, 0x6E, 0x40, 0x3C,
0x4D, 0xC1, 0xD4, 0xB6, 0x4F, 0x43,
0x26, 0x11, 0xDC, 0x38, 0x6E, 0x6F,
0x53, 0x20, 0x50, 0xC3, 0x27, 0x8C,
0x93, 0x0E, 0x14, 0x3E, 0x8B, 0xB1,
0x13, 0x38, 0x24, 0xCC, 0xB4, 0x31,
0x05, 0x38, 0x71, 0xC6, 0xDB, 0x53
(PolicyASHA384, see Table 15)

dataSize UINT16 50 (0x0032)

Table 12: EK Policy Index (TPMS_NV_PUBLIC) I-2: SHA384

NOTE The first two bytes of the Index data area contain a TPM_ALG_ID, followed by the policy

value (without size).

Revision 3 16 July 2021 PUBLISHED Page 53 of 60

B.5.5 Policy Index I-3: SHA512

Parameter Type Content

nvIndex TPMI_RH_NV_INDEX 0x01C07F03

nameAlg TPMI_ALG_HASH TPM_ALG_SHA512 (0x000D)

attributes TPMA_NV TPMA_NV_PPWRITE = 0
TPMA_NV_OWNERWRITE = 0
TPMA_NV_AUTHWRITE = 0
TPMA_NV_POLICYWRITE = 1
TPM_NT = 0
TPMA_NV_POLICY_DELETE = 0
TPMA_NV_WRITELOCKED = 0
TPMA_NV_WRITEALL = 1
TPMA_NV_WRITEDEFINE = 0
TPMA_NV_WRITE_STCLEAR = 0
TPMA_NV_GLOBALLOCK = 0
TPMA_NV_PPREAD = 1
TPMA_NV_OWNERREAD = 1
TPMA_NV_AUTHREAD = 1
TPMA_NV_POLICYREAD = 1
TPMA_NV_NO_DA = 1
TPMA_NV_ORDERLY = 0
TPMA_NV_CLEAR_STCLEAR = 0
TPMA_NV_READLOCKED = 0
TPMA_NV_WRITTEN = 1
TPMA_NV_PLATFORMCREATE = 0
TPMA_NV_READ_STCLEAR = 0
(0x220F1008)

authPolicy TPM2B_DIGEST

 size UINT16 64 (0x0040)

 buffer BYTE 0x1E, 0x3B, 0x76, 0x50, 0x2C, 0x8A,
0x14, 0x25, 0xAA, 0x0B, 0x7B, 0x3F,
0xC6, 0x46, 0xA1, 0xB0, 0xFA, 0xE0,
0x63, 0xB0, 0x3B, 0x53, 0x68, 0xF9,
0xC4, 0xCD, 0xDE, 0xCA, 0xFF, 0x08,
0x91, 0xDD, 0x68, 0x2B, 0xAC, 0x1A,
0x85, 0xD4, 0xD8, 0x32, 0xB7, 0x81,
0xEA, 0x45, 0x19, 0x15, 0xDE, 0x5F,
0xC5, 0xBF, 0x0D, 0xC4, 0xA1, 0x91,
0x7C, 0xD4, 0x2F, 0xA0, 0x41, 0xE3,
0xF9, 0x98, 0xE0, 0xEE
(PolicyASHA512, see Table 15)

dataSize UINT16 66 (0x0042)

Table 13: EK Policy Index (TPMS_NV_PUBLIC) I-3: SHA512

NOTE The first two bytes of the Index data area contain a TPM_ALG_ID, followed by the policy

value (without size).

Revision 3 16 July 2021 PUBLISHED Page 54 of 60

B.5.6 Policy Index I-4: SM3_256

Parameter Type Content

nvIndex TPMI_RH_NV_INDEX 0x01C07F04

nameAlg TPMI_ALG_HASH TPM_ALG_SM3_256 (0x0012)

attributes TPMA_NV TPMA_NV_PPWRITE = 0
TPMA_NV_OWNERWRITE = 0
TPMA_NV_AUTHWRITE = 0
TPMA_NV_POLICYWRITE = 1
TPM_NT = 0
TPMA_NV_POLICY_DELETE = 0
TPMA_NV_WRITELOCKED = 0
TPMA_NV_WRITEALL = 1
TPMA_NV_WRITEDEFINE = 0
TPMA_NV_WRITE_STCLEAR = 0
TPMA_NV_GLOBALLOCK = 0
TPMA_NV_PPREAD = 1
TPMA_NV_OWNERREAD = 1
TPMA_NV_AUTHREAD = 1
TPMA_NV_POLICYREAD = 1
TPMA_NV_NO_DA = 1
TPMA_NV_ORDERLY = 0
TPMA_NV_CLEAR_STCLEAR = 0
TPMA_NV_READLOCKED = 0
TPMA_NV_WRITTEN = 1
TPMA_NV_PLATFORMCREATE = 0
TPMA_NV_READ_STCLEAR = 0
(0x220F1008)

authPolicy TPM2B_DIGEST

 size UINT16 32 (0x0020)

 buffer BYTE 0xC6, 0x7F, 0x7D, 0x35, 0xF6, 0x6F,
0x3B, 0xEC, 0x13, 0xC8, 0x9F, 0xE8,
0x98, 0x92, 0x1C, 0x65, 0x1B, 0x0C,
0xB5, 0xA3, 0x8A, 0x92, 0x69, 0x0A,
0x62, 0xA4, 0x3C, 0x00, 0x12, 0xE4,
0xFB, 0x8B
(PolicyASM2_256, see Table 15)

dataSize UINT16 34 (0x0022)

Table 14: EK Policy Index (TPMS_NV_PUBLIC) I-4: SM3_256

NOTE The first two bytes of the Index data area contain a TPM_ALG_ID, followed by the policy

value (without size).

Revision 3 16 July 2021 PUBLISHED Page 55 of 60

 Policy Computation

B.6.1 Introduction

This annex documents how the different policy values used in the default EK Templates (in
appendices B.3 and B.4) and the Policy NV Indices (in B.5) were computed. The equations in this
section are copied from the TPM 2.0 Library Specification Part 3 [1]. If there are any inconsistencies
between the equations below and the equations defined in the TPM 2.0 Library Specification, the
definitions in the Library Specification take precedence.

B.6.2 Computing PolicyA

TPM2_PolicySecret() uses the PolicyUpdate function:

PolicyUpdate(TPM_CC_PolicySecret, authObject→Name, policyRef)

This is equivalent to:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicySecret || authObject→Name)

policyDigestnew+1 ≔ HpolicyAlg(policyDigestnew || policyRef.buffer)

With:

policyAlg = SHA256, or SHA384, or SHA512, or SM3_256
policyDigestold = 0x0...0 (32, or 48, or 64 bytes)
TPM_CC_PolicySecret = 0x00000151
authObject→Name is TPM_RH_ENDORSEMENT (=0x4000000B)
policyRef.buffer = not available (policyRef is an Empty Buffer)

The policy digest is calculated as follows:

policyDigestnew ≔ HpolicyAlg(0x0...0 || 0x00000151 || 0x4000000B)
 policyDigestnew+1 ≔ HpolicyAlg(policyDigestnew)

The following table contains the computed PolicyA values for the different hash algorithms.

PolicyA Value (hex)

PolicyASHA256

HSHA256(HSHA256(0x0...0 || 0x00000151 ||
0x4000000B))

837197674484b3f81a90cc8d46a5d724

fd52d76e06520b64f2a1da1b331469aa

PolicyASHA384

HSHA384(HSHA384(0x0...0 || 0x00000151 ||
0x4000000B))

8bbf2266537c171cb56e403c4dc1d4b6

4f432611dc386e6f532050c3278c930e

143e8bb1133824ccb431053871c6db53

PolicyASHA512

HSHA512(HSHA512(0x0...0 || 0x00000151 ||
0x4000000B))

1e3b76502c8a1425aa0b7b3fc646a1b0

fae063b03b5368f9c4cddecaff0891dd

682bac1a85d4d832b781ea451915de5f

c5bf0dc4a1917cd42fa041e3f998e0ee

PolicyASM3_256

HSM3_256(HSM3_256(0x0...0 || 0x00000151 ||
0x4000000B))

c67f7d35f66f3bec13c89fe898921c65

1b0cb5a38a92690a62a43c0012e4fb8b

Table 15: PolicyA values

Revision 3 16 July 2021 PUBLISHED Page 56 of 60

B.6.3 Computing Policy Index Names

The NV Index Name is computed as defined in Part 1:

Name ≔ nameAlg || HnameAlg (handle→nvPublicArea):

Where

 handle→nvPublicArea is the public area of the NV Index (TPMS_NV_PUBLIC) and
TPMS_NV_PUBLIC = nvIndex || nameAlg || attributes || authPolicy || dataSize

With:

 nvIndex = 0x01C07F01, 0x01C07F02, 0x01C07F03, or 0x01C07F04
nameAlg = TPM_ALG_SHA256/ SHA384/ SHA512, or TPM_ALG_SM2
attributes = 0x220F1008
authPolicy = PolicyA (including size), see Table 15
dataSize = 0x0022, 0x0032, or 0x0042

The name for the Policy Indices I-1 to I-4 (see B.5.3 to B.5.6) is computed as shown in Table 16.

Policy Index Names Value (hex)

I-1 Name
0x000B || HSHA256(0x01C07F01 || 0x000B ||
0x220F1008 || 0x0020 || PolicyASHA256 || 0x0022)

000b0c9d717e9c3fe69fda41769450bb

145957f8b3610e084dbf65591a5d11ec

d83f

I-2 Name
0x000C || HSHA384(0x01C07F02 || 0x000C ||
0x220F1008 || 0x0030 || PolicyASHA384 || 0x0032)

000cdb62fca346612c976732ff4e8621

fb4e858be82586486504f7d02e621f8d

7d61ae32cfc60c4d120609ed6768afcf

090c

I-3 Name
0x000D || HSHA512(0x01C07F03 || 0x000D ||
0x220F1008 || 0x0040 || PolicyASHA512 || 0x0042)

000d1c47c0bbcbd3cf7d7cae6987d319

37c171015dde3b7f0d3c869bca1f7e8a

223b9acfadb49b7c9cf14d450f41e932

7de34d9291eece2c58ab1dc10e9059cc

e560

I-4 Name
0x0012 || HSM3_256(0x01C07F04 || 0x0012 ||
0x220F1008 || 0x0020 || PolicyASM3_256 ||
0x0022)

001298c4652e788dd7ddcccc353a5ea1

a0e0b5efd2e7af1afb09cae8d9453c5f

1152

Table 16: Policy Index Names

B.6.4 Computing PolicyC

The policy digest for TPM2_PolicyAuthorizeNV() is computed as defined in the Library Spec, Part 3:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthorizeNV || nvIndex→Name)

Where

policyAlg = SHA256, SHA384, SHA512, or SM3_256
policyDigestold = 0x0...0 (32, 48, or 64 bytes)
TPM_CC_ PolicyAuthorizeNV = 0x00000192
nvIndex→Name is the Name of the NV Index containing the policy

With the Policy Index Names from Table 16, Policy C is computed as shown in Table 17.

Revision 3 16 July 2021 PUBLISHED Page 57 of 60

PolicyC Value (in hex)

PolicyCSHA256

HSHA256(0x0...0 || 0x00000192 || Name of Policy
Index I-1)

3767e2edd43ff45a3a7e1eaefcef7864

3dca964632e7aad82c673a30d8633fde

PolicyCSHA384

HSHA384(0x0...0 || 0x00000192 || Name of Policy
Index I-2)

d6032ce61f2fb3c240eb3cf6a33237ef

2b6a16f4293c22b455e261cffd217ad5

b4947c2d73e63005eed2dc2b3593d165

PolicyCSHA512

HSHA512(0x0...0 || 0x00000192 || Name of Policy
Index I-3)

589ee1e146544716e8deafe6db247b01

b81e9f9c7dd16b814aa159138749105f

ba5388dd1dea702f35240c184933121e

2c61b8f50d3ef91393a49a38c3f73fc8

PolicyCSM3_256

HSM3_256(0x0...0 || 0x00000192 || Name of Policy
Index I-4)

2d4e81578c3531d9bd1cdd7d02ba298d

5699a3e39fc3551bfeffcf132b49e11d

Table 17: PolicyC values

B.6.5 Computing PolicyB

The policy digest for TPM2_PolicyOR() is computed as defined in the Library Spec, Part 3:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyOR || digests)

Where

digests ≔ pHashList.digests[1].buffer || … || pHashList.digests[n].buffer

With

TPM_CC_PolicyOR = 0x00000171
pHashList.digests[1].buffer = PolicyA from Table 15
pHashList.digests[2].buffer = PolicyC from Table 17

PolicyB is computed as shown in Table 18.

PolicyB Value (in hex)

PolicyBSHA256

HSHA256(0x0...0 || 0x00000171 || PolicyASHA256 ||
PolicyCSHA256)

ca3d0a99a2b93906f7a3342414efcfb3

a385d44cd1fd459089d19b5071c0b7a0

PolicyBSHA384

HSHA384(0x0...0 || 0x00000171 || PolicyASHA384 ||
PolicyCSHA384)

b26e7d28d11a50bc53d882bcf5fd3a1a

074148bb35d3b4e4cb1c0ad9bde419ca

cb47ba09699646150f9fc000f3f80e12

PolicyBSHA512

HSHA512(0x0...0 || 0x00000171 || PolicyASHA512 ||
PolicyCSHA512)

b8221ca69e8550a4914de3faa6a18c07

2cc01208073a928d5d66d59ef79e49a4

29c41a6b269571d57edb25fbdb183842

5608b413cd616a5f6db5b6071af99bea

PolicyBSM3_256

HSM3_256(0x0...0 || 0x00000171 || PolicyASM3_256 ||
PolicyCSM3_256)

167860a35f2c5c3567f9c927ac56c032

f3b3a6462f8d037998e7a10f77fa454a

Table 18: PolicyB values

Revision 3 16 July 2021 PUBLISHED Page 58 of 60

C. Certificate Fields (algorithm-specific)

 Signature Algorithm
The signature algorithm depends on the algorithm of the CA key used to sign the EK certificate. The
security strength of the signing algorithm SHOULD be equivalent to the security strength of the
signing key. The security strength of the CA key used to sign the EK certificate SHALL have an equal
or higher security strength than the EK. An EK certificate for an RSA EK MAY be signed using ECDSA
with an ECC NIST P256, 384, or 521 CA Key.

C.1.1 RSA

When using an RSA CA key, the EK certificate SHOULD be signed using the algorithms appropriate
to the key size. The AlgorithmIdentifier parameters field MUST be the ASN.1 type NULL.

C.1.1.1 RSA 2k CA Key

For an RSA 2k CA key, the algorithm SHOULD be sha256WithRSAEncryption as defined in RFC
5754 [13].

sha256WithRSAEncryption OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 }

C.1.1.2 RSA 3k and 4k CA Key

For an RSA 3k or 4k CA key, the algorithm SHOULD be sha384WithRSAEncryption as defined in
RFC 5754 [13].

sha384WithRSAEncryption OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 12 }

NOTE 1 The use of SHA384 with RSA 3k and 4k follows CNSA-Suite recommendations [22].

NOTE 2 The recommendation for use of sha384WithRSAEncryption for RSA 3k and 4k CA key was
added in version 2.3 of this specification.

C.1.2 ECC

When using an ECC CA key, the EK certificate SHOULD be signed using the algorithms appropriate
to the curve size. The AlgorithmIdentifier parameters field MUST be absent.

C.1.2.1 NIST P256 CA Key

For an ECC NIST P256 CA key, the algorithm SHOULD be ecdsa-with-SHA256 as defined in RFC
5754 [13].

ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840)ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }

C.1.2.2 NIST P384 CA Key

For an ECC NIST P384 CA key, the algorithm SHOULD be ecdsa-with-SHA384 as defined in RFC
5754 [13].

ecdsa-with-SHA384 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }

C.1.2.3 NIST P521 CA Key

For an ECC NIST P521 CA key, the algorithm SHOULD be ecdsa-with-SHA512 as defined in RFC
5754 [13].

ecdsa-with-SHA512 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }

C.1.2.4 SM2 P256 CA Key

When using an ECC SM2 key, the EK certificate SHOULD be signed using the algorithm
SM3WithSM2Encryption which has the OID value defined in GM/T 0006-2012 Cryptographic

Revision 3 16 July 2021 PUBLISHED Page 59 of 60

Application Identifier Criterion Specification [20] as shown below. The AlgorithmIdentifier parameters
field MUST be absent.

SM3WithSM2Encryption OBJECT IDENTIFIER ::= { iso(1) member-body(2) cn(156)

 ccstc(10197) cryptographic-algorithm (1) 501 }

 Subject Public Key Info

C.2.1 RSA

For an RSA public key the algorithm rsaEncryption that has the OID value defined in RFC 3279 [14]
as shown below MUST be used. The AlgorithmIdentifier parameters field MUST be the ASN.1 type
NULL.

rsaEncryption OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

The RSA public key MUST be encoded using the ASN.1 type RSAPublicKey as defined in RFC 3279
[14].

RSAPublicKey ::= SEQUENCE {

 modulus INTEGER, -- n

 publicExponent INTEGER } -- e

C.2.2 ECC

For an ECC public key the algorithm id-ecPublicKey which has the OID value defined in RFC 5480
[15] as shown below MUST be used. The ECParameters field is required, the nameCurve field
SHOULD contain the OID of the respective curve (see below).

id-ecPublicKey OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }

ECParameters ::= CHOICE {

 namedCurve OBJECT IDENTIFIER

 -- implicitCurve NULL

 -- specifiedCurve SpecifiedECDomain

 }

The ECC public key MUST be encoded as an ECC Point. The uncompressed format SHOULD be
used.

ECPoint ::= OCTET STRING

The namedCurve field in ECParameters of the Subject Public Key Info depends on the ECC curve.

C.2.2.1 NIST P256

For NIST P256, the namedCurve field MUST contain the OID defined in RFC 5480 [15]:

secp256r1 OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3) prime(1) 7 }

C.2.2.2 NIST P384

For NIST P384, the namedCurve field MUST contain the OID defined in RFC 5480 [15]:

secp384r1 OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) certicom(132) curve(0) 34 }

C.2.2.3 NIST P521

For NIST P521, the namedCurve field MUST contain the OID defined in RFC 5480 [15]:

secp521r1 OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) certicom(132) curve(0) 35 }

Revision 3 16 July 2021 PUBLISHED Page 60 of 60

C.2.2.4 SM2 P256

For SM2 P256, the namedCurve field MUST contain the OID defined in GM/T 0006-2012
Cryptographic Application Identifier Criterion Specification [20]:

SM2EllipticCurveCryptography OBJECT IDENTIFIER ::= {

 iso(1) member-body(2) cn(156) ccstc(10197) cryptographic-algorithm (1) 301 }

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Relationship to Other TCG Specifications
	1.4 Keywords
	1.5 Abbreviations
	1.6 Definition of Terms

	2 TPM 2.0 EK and EK Credential
	2.1 Endorsement Key
	2.1.1 Primary Key Generation
	2.1.2 EK Usage
	2.1.2.1 User Device TPM
	2.1.2.2 Non-User Device TPM

	2.1.3 EK Lifetime

	2.2 Endorsement Key Credential
	2.2.1 NV Index Handles
	2.2.1.1 General Design
	2.2.1.2 NV Index Contents
	2.2.1.2.1 EK Certificate
	2.2.1.2.2 EK Template
	2.2.1.2.3 EK Nonce

	2.2.1.3 Allowed and Recommended Usages of NV Indices
	2.2.1.4 Low Range
	2.2.1.5 High Range
	2.2.1.5.1 Handle Values for EK Certificates
	2.2.1.5.2 Handle Values for EK Certificate Chains

	2.2.1.6 TPMT_PUBLIC Calculation
	2.2.1.7 Locating Keys or specific NV Index Content
	2.2.1.8 Key Handle and Certificate Handle Relationships
	2.2.1.9 Read EK certificates and create the associated EKs

	2.2.2 EK Credential Lifetime

	2.3 Privacy Protection

	3 X.509 ASN.1 Definitions
	3.1 TCG Attributes
	3.1.1 TPM Security Assertions
	3.1.2 TPM Device Attributes
	3.1.3 TPM Specification Attributes

	3.2 EK Certificate
	3.2.1 Version
	3.2.2 Serial Number
	3.2.3 Signature Algorithm
	3.2.4 Issuer
	3.2.5 Validity
	3.2.6 Subject
	3.2.7 Subject Public Key Info
	3.2.8 Certificate Policies
	3.2.9 Subject Alternative Name
	3.2.10 Basic Constraints
	3.2.11 Subject Directory Attributes
	3.2.12 Authority Key Identifier
	3.2.13 Authority Information Access
	3.2.14 CRL Distribution
	3.2.15 Key Usage
	3.2.16 Extended Key Usage
	3.2.17 Subject Key Identifier

	4 X.509 ASN.1 Structures and OIDs
	5 References
	A. Certificate Examples
	A.1 Example 1 (user device TPM, e.g. PC-Client)

	B. Default EK Templates (algorithm-specific)
	B.1 Introduction
	B.2 Backwards Compatibility
	B.3 EK Templates in the Low Range
	B.3.1 Introduction
	B.3.2 Satisfying PolicyA
	B.3.3 Template L-1: RSA 2048 (Storage)
	B.3.4 Template L-2: ECC NIST P256 (Storage)

	B.4 EK Templates in the High Range
	B.4.1 Introduction
	B.4.2 Authorization Options
	B.4.3 Satisfying PolicyB
	B.4.4 Template H-1: RSA 2048 (Storage)
	B.4.5 Template H-2: ECC NIST P256 (Storage)
	B.4.6 Template H-3: ECC NIST P384 (Storage)
	B.4.7 Template H-4: ECC NIST P521 (Storage)
	B.4.8 Template H-5: ECC SM2 P256 (Storage)
	B.4.9 Template H-6: RSA 3072 (Storage)
	B.4.10 Template H-7: RSA 4096 (Storage)

	B.5 Policy NV Indices
	B.5.1 Introduction
	B.5.2 Handle Values
	B.5.3 Policy Index I-1: SHA256
	B.5.4 Policy Index I-2: SHA384
	B.5.5 Policy Index I-3: SHA512
	B.5.6 Policy Index I-4: SM3_256

	B.6 Policy Computation
	B.6.1 Introduction
	B.6.2 Computing PolicyA
	B.6.3 Computing Policy Index Names
	B.6.4 Computing PolicyC
	B.6.5 Computing PolicyB

	C. Certificate Fields (algorithm-specific)
	C.1 Signature Algorithm
	C.1.1 RSA
	C.1.1.1 RSA 2k CA Key
	C.1.1.2 RSA 3k and 4k CA Key

	C.1.2 ECC
	C.1.2.1 NIST P256 CA Key
	C.1.2.2 NIST P384 CA Key
	C.1.2.3 NIST P521 CA Key
	C.1.2.4 SM2 P256 CA Key

	C.2 Subject Public Key Info
	C.2.1 RSA
	C.2.2 ECC
	C.2.2.1 NIST P256
	C.2.2.2 NIST P384
	C.2.2.3 NIST P521
	C.2.2.4 SM2 P256

