

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW © TCG 2022

•• PROTECTED 関係者外秘

Measurement and Attestation RootS
(MARS) Library Specification

Version 1
Revision 4
January 5, 2022

Contact: admin@trustedcomputinggroup.org

PUBLIC REVIEW

Work in Progress

This document is an intermediate draft
for comment only and is subject to
change without notice. Readers should
not design products based on this
document.

S
P
E
C
I
F
I
C
A
T
I
O
N

mailto:admin@trustedcomputinggroup.org

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 1 © TCG 2022

DISCLAIMERS, NOTICES, AND LICENSE TERMS

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in this specification and to the implementation of this specification, and
TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of
use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under
contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this specification or
any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied,
is granted herein other than as follows: You may not copy or reproduce the document or distribute it
to others without written permission from TCG, except that you may freely do so for the purposes of (a)
examining or implementing TCG specifications or (b) developing, testing, or promoting information
technology standards and best practices, so long as you distribute the document with these disclaimers,
notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 2 © TCG 2022

ACKNOWLEDGEMENTS

The TCG would like to gratefully acknowledge the contributions of the following individuals and
companies who volunteered their time and efforts for the development of this specification.

Tom Broström, Cyber Pack Ventures, Inc.

Brian Dziki, United States Government

Scott Ludwin, Toyota Motor North America

Steve Luther, United States Government

Graeme Proudler, Invited Expert

Vadim Sukhomlinov, Google Inc.

Dick Wilkins, Phoenix Technologies, Ltd.

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 3 © TCG 2022

CONTENTS

DISCLAIMERS, NOTICES, AND LICENSE TERMS .. 1

ACKNOWLEDGEMENTS ... 2

CONTENTS .. 3

TABLES .. 5

 SCOPE ... 6

1.1 Key Words ... 6

1.2 Statement Type ... 6

 Abbreviations, Acronyms and Terms Used .. 7

 Conventions and Data Types ... 8

3.1 Naming Conventions ... 8

3.2 Data Types .. 8

3.3 Symbols ... 8

 Trusted Platform Architecture ... 9

4.1 Events ... 9

4.2 Root of Trust for Measurement .. 9

4.3 Root of Trust for Storage ... 9

4.4 Root of Trust for Reporting .. 9

 MARS Device Requirements .. 11

5.1 Cryptography ... 11

5.2 Device State .. 11

5.2.1 Primary Seed (PS) ... 11

5.2.2 Derivation Parent (DP) .. 11

5.2.3 Selectable Registers .. 12

5.2.4 Initialization .. 13

5.3 Key Hierarchy .. 13

5.4 Support Functions ... 14

5.4.1 CryptHash(data) .. 15

5.4.2 CryptSign(key, digest) ... 15

5.4.3 CryptVerify(key, digest, signature) ... 15

5.4.4 CryptSkdf(parent, label, context) ... 15

5.4.5 CryptAkdf(parent, label, context) ... 15

5.4.6 CryptXkdf ... 15

5.4.7 CryptSnapshot(regSelect, context) .. 15

5.5 Session Management .. 16

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 4 © TCG 2022

5.6 Protected Capabilities and Locations .. 16

 Constants ... 17

6.1 Response Codes ... 17

 Compliance .. 18

 API ... 19

8.1 Management .. 19

8.1.1 MARS_SelfTest ... 19

8.1.2 MARS_Lock ... 19

8.1.3 MARS_Unlock ... 20

8.1.4 MARS_CapabilityGet ... 20

8.2 Sequence Primitives .. 21

8.2.1 MARS_SequenceHash .. 21

8.2.2 MARS_SequenceUpdate .. 22

8.2.3 MARS_SequenceComplete ... 22

8.3 Integrity Collection ... 23

8.3.1 MARS_PcrExtend .. 23

8.3.2 MARS_RegRead ... 24

8.4 Key Management .. 24

8.4.1 MARS_Derive .. 24

8.4.2 MARS_DpExtend .. 25

8.4.3 MARS_PublicRead .. 26

8.5 Attestation .. 27

8.5.1 MARS_Quote .. 27

8.5.2 MARS_Sign ... 28

8.5.3 MARS_SignatureVerify .. 29

 Bibliography ... 31

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 5 © TCG 2022

TABLES

Table 1 – Conventions .. 8

Table 2 – Cryptographic Key Label Prefixes ... 14

Table 3 – Definition of Response Code Constants ... 17

Table 4 – MARS Compliance Features ... 18

Table 5 – MARS Property Tags .. 20

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 6 © TCG 2022

 SCOPE

This document is the Measurement and Attestation RootS (MARS) Library Specification. It describes
hardware logic that enables devices (e.g., microcontrollers) to provide the functionality described in
MARS Use Cases and Considerations (TCG, 2021). The primary use case is measurement recording
and attesting in a manner inspired by the Trusted Platform Architecture defined in the TPM Library
specification (TCG, 2019).

Platform-specific profiles of this specification define options, settings and any additional commands
necessary to produce a functional and compliant device.

This specification does not place specific requirements on command, control and transport protocols
between driver and device, as the device implementation may be deeply embedded and proprietary.

1.1 Key Words

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this document form normative statements and
are to be interpreted as described in RFC-2119, Key words for use in RFCs to Indicate Requirement
Levels.

1.2 Statement Type

Please note a very important distinction between different sections of text throughout this document.
There are two distinctive kinds of text: informative comment and normative statements. Because most
of the text in this specification will be of the kind normative statements, the authors have informally
defined it as the default and, as such, have specifically called out text of the kind informative comment.
They have done this by flagging the beginning and end of each informative comment and highlighting
its text in gray. This means that unless text is specifically marked as of the kind informative comment,
it can be considered a kind of normative statements.

EXAMPLE: Start of informative comment

This is the first paragraph of 1–n paragraphs containing text of the kind informative comment ...

This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of MUST does not
require any action).

End of informative comment

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 7 © TCG 2022

 Abbreviations, Acronyms and Terms Used

AK Attestation Key

API Application Programming Interface

DP Derivation Parent

HMAC (keyed) Hash-based Message Authentication Code

KDF Key Derivation Function

MAC Message Authentication Code

MARS Measurement and Attestation RootS

PCR Platform Configuration Register

PS Primary Seed

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

SHA Secure Hash Algorithm

TPM Trusted Platform Module

TSR Trusted Sensor Register

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 8 © TCG 2022

 Conventions and Data Types

3.1 Naming Conventions

Table 1 – Conventions

CONVENTION EXAMPLE

All public names in the API are prefixed with “MARS_”.

See next rows

All function names have the form of
 MARS_Verb()
or
 MARS_NounVerb()

MARS_Sign()

MARS_SignatureVerify()

Nouns that are acronyms (e.g., PCR) are spelled as words. MARS_PcrExtend()

All other names are in upper case. MARS_RC_SUCCESS

3.2 Data Types

This specification uses primitive data types defined in ISO/IEC C18 (ISO/IEC, 2018). The following
general rules apply. Exceptions are defined where needed.

• All integer data types are uint32_t.

• All functions return a response code of type uint32_t.

• All data lengths are bytes represented by type size_t.

• Pointers must reference memory that is allocated and aligned.

3.3 Symbols

A || B concatenation of B to A

REG# contents of selectable register number #

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 9 © TCG 2022

 Trusted Platform Architecture

MARS closely follows the Trusted Platform concepts detailed in the TPM Architecture specification
(TCG, 2019), and as described below. Section 4 is informative.

4.1 Events

A code or data module that is about to be executed or processed for the first time is considered an
event. An event may be conceptualized as a link in a transitive trust chain. Each event is represented
by a digest/measurement produced by hashing its module’s contents. Since digests are statistically
unique, the digest identifies the event’s module. A sequence of events may be recorded by the host in
an event log.

4.2 Root of Trust for Measurement

A Trusted Platform is booted by an RTM whose actions include:

1. Locate and load a module external to the RTM,
2. Measure the module,
3. Deliver the measurement to the RTS (e.g., MARS),
4. Optionally populate an event log, and
5. Execute or process the module

Each subsequent module in an event sequence is responsible for the same five actions. Note that the
RTM is not part of MARS. The RTM and MARS reside on the same device and work together to
implement a Trusted Platform.

4.3 Root of Trust for Storage

Just as a module is identified by its digest, so too is the event log. Instead of recording the entire event
log’s digests, the RTS assists in cryptographically building a cumulative digest as the events transpire.
Refer to the MARS_PcrExtend() (section 8.3.1) operation for more detail. The RTS maintains this
cumulative digest in its Platform Configuration Register (PCR). Since the events are also digests
themselves, the PCR is said to contain a digest of digests.

4.4 Root of Trust for Reporting

To convey the history of the transitive trust chain, the RTR is used to digitally sign the PCR(s). This
signature is used by the host device to form an attestation about the host for a remote challenger. The
challenger can use this attestation to:

1. Verify the Endorser of the device’s identity,
2. Verify the device’s identity,
3. Verify the PCR’s authenticity,
4. Assess the event log’s identity,
5. Verify the event log’s integrity, and
6. Assess the events in the event log

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 10 © TCG 2022

The RTR can convey identity either asymmetrically or symmetrically.

• With asymmetric cryptography, the RTR uses an Attestation Key (AK) certified by an Endorser
known as the Attestation Certificate Authority. The public portion of an AK can be used to verify
RTR signatures produced with its private AK. A challenger that already trusts the Endorser can
directly verify the device identity.

• With symmetric cryptography, an AK is shared between the RTR and Endorser. A challenger
wishing to verify a device’s identity must trust and contact the Endorser. This contact between
challenger and Endorser can be negotiated asymmetrically. The Endorser can then retrieve the
shared AK associated with the claimed device identity to verify the identity and attestation
signature on behalf of a challenger. For example, the value of the identity may be from a
sequence (e.g., serial number) or derived from the Derivation Parent (see sections 5.2.2 and
8.4.1).

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 11 © TCG 2022

 MARS Device Requirements

5.1 Cryptography

To implement the RTS, a hash function is required to extend a PCR. The RTR also requires a hash
function to produce a digest of the information to be attested and a digital signing mechanism to sign
this digest. If the AK is generated on-demand, then a KDF mechanism is required. If MARS_Derive()
is implemented, a suitable Deterministic Random Bit Generator capability is needed.

Start of informative comment

MARS may exclusively use symmetric cryptography to produce a signature (e.g., MAC or AEAD tag)
and need not implement an asymmetric algorithm. This stands in contrast to the TPM which requires
at least one asymmetric algorithm.

End of informative comment

In keeping with MARS’ minimalist approach, a single core algorithm SHOULD be implemented to
support the three required primitives – hash, sign, and KDF. Furthermore, it is desirable to retain
compatibility with the TPM so that the TPM can verify MARS signatures. With this first release of this
MARS specification, the only algorithms that qualify with a single core algorithm for hash, sign and KDF
are SHA-256, HMAC-SHA256 and NIST SP800-108. They appear in the TCG Algorithm Registry
(TCG) with identifiers TPM_ALG_SHA256, TPM_ALG_HMAC and TPM_ALG_KDF1_SP800_108
respectively. Additional algorithm identifiers may be requested from the TCG. Profiles of this
specification MUST implement appropriate combinations of TCG registered algorithms to support the
cryptographic needs of the support functions defined in section 5.4.

5.2 Device State

5.2.1 Primary Seed (PS)

A MARS device SHALL contain a persistent Primary Seed that is the most critical security parameter
in MARS’ architecture and provides the identity of the device. The PS is the root of the MARS key
hierarchy, which can, in part, be used to derive device identities. The PS MUST be in a form appropriate
for the implemented KDF to derive the initial Derivation Parent and SHOULD have at least the highest
level of protection required for all PS uses.

Establishment of the PS, its type of non-volatile memory, and lifecycle management are beyond the
scope of this specification.

5.2.2 Derivation Parent (DP)

The Derivation Parent is first derived from the PS on device power-up or reset, using a platform profile
specific procedure. The DP is volatile, and is used to derive an Attestation Key, other derived values,
or the next DP.

Start of informative comment

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 12 © TCG 2022

The term “volatile” is used to express the fact that there is no requirement to retain a value after a power
cycle. However, this document does not specify which type of memory to utilize for the DP.

End of informative comment

5.2.3 Selectable Registers

MARS supports two types of volatile registers that can be selected for use in a variety of API functions.
MARS has PCR, and TSR (Trusted Sensor Registers). A MARS Profile MUST implement at least one
PCR. TSR are optional. The maximum number of PCR plus TSR registers allowed is 32. The quantity
of PCR and TSR registers in an implementation can be retrieved via MARS_CapabilityGet() with the
MARS_PT_PCR and MARS_PT_TSR tags, respectively. The length of all selectable registers is the
size of a digest produced by the implemented hash algorithm (see MARS_PT_LEN_DIGEST). PCR
and TSR registers MUST only be modifiable by MARS and in the following ways – via initialization
(5.2.4), or extend (for PCR), or sampling (for TSR).

5.2.3.1 Selection

When choosing a group of registers to use in certain MARS functions, a uint32_t bitmask parameter
named regSelect is used. In an implementation with m PCR and n TSR registers, bits 0 through m-1
of regSelect represent the PCRs, and bits m through m+n-1 represent the TSRs. Bits m+n through 31
MUST be zero.

5.2.3.2 PCR

A PCR (see section 4.3) is initialized to zero and MUST only be updated via MARS_PcrExtend() (8.3.1).
A device MUST have at least one PCR, known as PCR 0. MARS MAY provide additional PCRs,
typically to record some subset of events. When a PCR is updated with events in an event log (section
4.1), that PCR’s value can be used as an integrity check of the corresponding events.

MARS commands that use PCR values can be directed to use a specific subset of PCRs (including
only one or none) so that the commands’ results will depend on certain device events.

5.2.3.3 TSR – Trusted Sensor Register

A device profile specification utilizing MARS MAY link an onboard sensor (or clock, etc.) to a TSR. TSR
are not extendable. Instead, they are implicitly written from a sampled linked sensor whenever they are
used in a regSelect. The sampling is performed by logic supplemental to MARS (refer to
CryptSnapshot(), see section 5.4.7). TSR registers retain their sampled values until modified by a
subsequent use of regSelect. MARS commands that use regSelect do not return the values of the
selected registers. To obtain the registers’ values, MARS_RegRead() (8.3.2) MUST be used after
regSelect is processed.

Start of informative comment

The anticipated use of TSR is to sign sensor values via MARS’ quoting ability. For example, suppose
a device is constructed with MARS having four PCR and two TSR linked to an onboard clock and

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 13 © TCG 2022

pressure sensor. To attest to both the sensor’s reading and the time of the reading, the following
events would occur:

• A challenge nonce is received.

• A command to quote registers 5 and 6 is issued (TSR registers 0 and 1).

• The MARS quoting function uses CryptSnapshot() to create a signable digest or “snapshot”.
o CryptSnapshot(), in the process of gathering the selected registers, triggers

supplemental hardware to sample linked sensors.
o The sampled values are written to the selected TSR registers.
o The regSelect, register values, and nonce are hashed to produce a snapshot.

• The snapshot is signed, and its signature is returned.

• A command to read register 5 is issued.

• A command to read register 6 is issued.

The signature and contents of the registers can be sent to and verified by the challenger.

Note that reading a TSR does not trigger its update.

End of informative comment

5.2.4 Initialization

MARS’ Roots of Trust MUST only be reset concurrently with a reset of its host and its host’s RTM (see
section 4.2). MARS is reset via the _MARS_Init signal.

When _MARS_Init is issued, MARS performs the following:

• Initialize PCRs to zero.

• Initialize TSR to Profile-specified values.

• Reset failure mode to False.

• Perform a self-test as per MARS_SelfTest(), if implemented.

• Derive a volatile DP from a non-volatile PS per section 5.2.2

After MARS successfully completes its reset, MARS MUST be ready to process commands from the
RTM and other host software.

5.3 Key Hierarchy

All secrets used by MARS for generating other secrets, keys, signatures, and values to support the Use
Cases belong to a single hierarchy rooted in the PS. The only immediate child of the PS is the DP. The
DP is a volatile secret used as the source secret for deriving keys, and for deriving and overwriting the
next generation DP. Refer to Figure 1 - Key Hierarchy.

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 14 © TCG 2022

Figure 1 - Key Hierarchy

Keys and values derived from the DP are shown as leaf nodes, which may be created for signing
(unrestricted keys), attestation (restricted keys), verifying or as derived bits for external use. Leaf nodes
are created on demand and not retained in MARS dedicated registers. Keys are created when needed,
using the key derivation function as with:

key = kdf(DP, label, context)

where the MARS-supplied label designates the purpose of the key, and the host-supplied context is
used to differentiate keys used for the same purpose (e.g., multiple attestation keys). The label
guarantees that keys used for different purposes will be unique. For example, it will not be possible for
the user to create an unrestricted signing key that is the same as a restricted attestation key. All values
are derived deterministically given the same inputs.

The label takes on the values defined in Table 2, zero padded as required by the implemented KDF.

Table 2 – Cryptographic Key Label Prefixes

NAME VALUE DESCRIPTION

MARS_KX ‘X’ eXternal

MARS_KD ‘D’ Derivation Parent

MARS_KU ‘U’ Unrestricted signing

MARS_KR ‘R’ Restricted attestation

MARS devices MAY support development or debug mode in addition to regular or production mode to
ease development. If the MARS device is in debug mode, then the KDF MUST XOR the label prefix
with 0x80 prior to its use. This enables derivation of different values depending on whether the device
is in or out of debug mode.

5.4 Support Functions

The following support functions or equivalent functionality MUST be implemented within MARS, and
inaccessible elsewhere. These functions will be referenced when defining the behavior of MARS
commands but they are not part of the API.

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 15 © TCG 2022

5.4.1 CryptHash(data)

Computes a one-way cryptographic hash over the supplied data using the Profile-specified hash
algorithm. The resulting digest is returned.

5.4.2 CryptSign(key, digest)

Produces a digital signature of the digest using the Profile-specified algorithm (e.g., MAC, Digital
Signature Algorithm) and the provided key. The size of the resulting signature can be retrieved via
MARS_CapabilityGet() with the MARS_PT_LEN_SIGN tag.

5.4.3 CryptVerify(key, digest, signature)

Returns a Boolean result to indicate whether the signature of the digest has been verified using the
Profile-specified signature verification algorithm and the provided key.

5.4.4 CryptSkdf(parent, label, context)

Derives a symmetric key using the Profile-specified symmetric KDF from the specified parent secret,
label and API-provided context. This function is used when establishing the DP from the PS (section
5.2.2), when extending the DP (section 8.4.2), when creating the AK (if symmetric, see comment below)
from the DP, or when deriving bytes for external use (section 8.4.1). Refer to section 5.3 for a
description of the label parameters.

5.4.5 CryptAkdf(parent, label, context)

Derives an asymmetric key pair using the Profile-specified asymmetric KDF from the provided parent
secret, label and API-provided context. Refer to section 5.3 for a description of the label parameters.

5.4.6 CryptXkdf

CryptXkdf is CryptAkdf if CryptAkdf is implemented. Otherwise, CryptXkdf is CryptSkdf.

5.4.7 CryptSnapshot(regSelect, context)

A “snapshot” is a digest created by MARS as input for quoting or deriving other values. The snapshot
MUST be computed as defined here, using:

• regSelect – a 32-bit bitmask indicating the register indices whose contents will be used

• register values – contents of selected PCR and/or TSR

• context – caller provided data

During the execution of CryptSnapshot(), the TSR registers identified in regSelect are written, as
specified by the applicable MARS Profile.

The snapshot is then computed by

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 16 © TCG 2022

 snapshot = CryptHash (regSelect || REG# || … || REG# || context)

with the selected registers being concatenated in ascending order of their indices.

Start of informative comment

For example, in an implementation with three PCR, a call to

 CryptSnapshot (0b101 || nonce)

using 32-byte digests and nonce would result in 4 + 3 * 32 = 100 bytes hashed with

 CryptHash (0 || 0 || 0 || 5 || PCR0 || PCR2 || nonce)

where "0 || 0 || 0 || 5" is the four-byte, big endian representation of regSelect 0b101.

End of informative comment

5.5 Session Management

MARS MUST maintain context for a single series of commands (session) only. There is no mechanism
to save and restore context. The operating system should prevent interleaving of multiple sessions
amongst processes (e.g., via exclusive device access). MARS_Lock() (section 8.1.2) and
MARS_Unlock() (section 8.1.3) MUST be used around a set of MARS commands for analogous
prevention amongst threads. Attempts to use the API when MARS is not locked SHALL return
MARS_RC_ACCESS.

5.6 Protected Capabilities and Locations

MARS’ Roots of Trust maintain sensitive values and capabilities that require protections commensurate
with the security needs of the manufactured device. While all MARS’ resources require integrity
protection against arbitrary alteration (e.g., of the PCR, TSR, signing algorithm, or _MARS_Init signal),
some require confidentiality protection against disclosure. Volatile secrets (e.g., DP, AK) MUST NOT
be readable at run time. When MARS is powered off, profile-specific protection is anticipated for data-
at-rest – specifically, the PS.

Though the design of a protected capability may not be sensitive, its operation may be. MARS SHOULD
provide protection against leakage of sensitive information from the operation of a sensitive capability.
For example, the signing mechanism in MARS should resist leakage of key or plaintext through side
channel analysis or other observable means.

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 17 © TCG 2022

 Constants

6.1 Response Codes

MARS functions MUST return Response Codes defined in Table 3, and as documented for each
function. Other values of response code are reserved for future use by the TCG.

Table 3 – Definition of Response Code Constants

Name Value Description

MARS_RC_SUCCESS 0 Command executed as expected

MARS_RC_FAILURE 1
MARS_SelfTest() placed MARS in failure mode or MARS
is otherwise inaccessible

MARS_RC_ACCESS 2 MARS is not locked

MARS_RC_SIZE 3
Invalid buffer pointer parameter (null or misaligned) or
length parameter invalid for specified operation

MARS_RC_COMMAND 4 Command not supported

MARS_RC_VALUE 5 Value out of range or incorrect for context

MARS_RC_REG 6 Invalid register index specified

MARS_RC_SEQ 7 Not preceded by Sequence start command

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 18 © TCG 2022

 Compliance

Table 4 identifies which features defined in the API (section 8) are Mandatory, Recommended, or
Optional. Mandatory commands are essential to support basic measurement and attestation and MUST
be implemented. Recommended commands fulfill most other Use Cases (TCG, 2021) and MAY be
implemented. Optional features support convenience functions, or commands that add complexity
beyond what would otherwise be recommended, and MAY be implemented. A MARS Profile
specification defines inclusion or exclusion of specific features.

Table 4 – MARS Compliance Features

Feature M / R / O Comment

MARS_SelfTest R

MARS_Lock M

MARS_Unlock M

MARS_CapabilityGet M

MARS_SequenceHash R

MARS_SequenceUpdate R

MARS_SequenceComplete R

MARS_PcrExtend M

MARS_RegRead M

MARS_Derive R

MARS_DpExtend O

MARS_PublicRead M Only needed if asymmetric AK is supported

MARS_Quote M

MARS_Sign R

MARS_SignatureVerify R

ctxiskey O

If a MARS does not support ctxiskey
functionality and the ctxiskey parameter in a
function is set to TRUE, the API MUST return
MARS_RC_VALUE.

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 19 © TCG 2022

 API

Functions within the MARS Application Programming Interface are defined below with a behavioral
description, C function prototype, parameter description, returned Response Codes, and often C-like
pseudocode. Though the pseudocode is somewhat abbreviated (e.g., excluding error checking, length
and response code usage), its behavior, together with the C function prototype, parameters
descriptions and response codes are normative.

8.1 Management

8.1.1 MARS_SelfTest

Compliance to standards for hardware security modules may require certain aspects of MARS be tested
prior to their use. The features to be tested depend on the implementation of MARS, what security level
is desired and direction from the pertinent Profile specification. If a Profile requires MARS_SelfTest(),
then MARS output SHALL be disabled until all the tests have passed and SHALL remain disabled when
a test fails. A non-destructive self-test can be triggered by a system-wide reset (see section 8.1), or on
demand by the host invoking MARS_SelfTest(). Any ongoing sequenced command SHALL be
cancelled, and any remaining sequence commands SHALL return MARS_RC_SEQ. If a self-test error
occurs, MARS enters failure mode where all MARS commands SHALL return MARS_RC_FAILURE.

8.1.1.1 Prototype
MARS_RC MARS_SelfTest ();

8.1.1.2 Response Codes

• MARS_RC_SUCCESS – all tests executed and passed

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_FAILURE – one or more tests failed; MARS entered failure mode

• MARS_RC_COMMAND – command not supported

8.1.2 MARS_Lock

MARS_Lock() prepares MARS for exclusive access to support a series of non-interleaved commands.
If already locked by another thread, this function SHALL block until that thread calls MARS_Unlock().
This command is for software implementing a hardware abstraction layer only. MARS cannot
distinguish between software threads accessing it.

8.1.2.1 Prototype
MARS_RC MARS_Lock ();

8.1.2.2 Response Codes

• MARS_RC_SUCCESS – exclusive access acquired

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 20 © TCG 2022

8.1.3 MARS_Unlock

MARS_Unlock() SHALL render inaccessible all data (e.g., plaintext, keys) provided by or for code
accessing the MARS, and relinquish control of the MARS after a previous MARS_Lock().

8.1.3.1 Prototype
MARS_RC MARS_Unlock ();

8.1.3.2 Response Codes

• MARS_RC_SUCCESS – exclusive access relinquished

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

8.1.4 MARS_CapabilityGet

This command returns various information regarding MARS capabilities according to the requested
property tag. Property tags that MUST be supported are shown in Table 5 – MARS Property Tags.
Additional values are reserved by the TCG. If an algorithm is not implemented (e.g. AKDF), the returned
value SHALL be TPM_ALG_ERROR.

Table 5 – MARS Property Tags

Name Value Returned Type Description

MARS_PT_PCR 1 size_t number of consecutive PCRs implemented on this MARS

MARS_PT_TSR 2 size_t number of consecutive TSRs implemented on this MARS

MARS_PT_LEN_DIGEST 3 size_t size of a digest that can be processed or produced

MARS_PT_LEN_SIGN 4 size_t size of signature produced by CryptSign()

MARS_PT_LEN_SKEY 5 size_t size of symmetric key produced by CryptSkdf()

MARS_PT_LEN_AKEY 6 size_t size of public asymmetric key produced by CryptAkdf()

MARS_PT_ ALG_HASH 7 uint32_t TCG-registered algorithm (TCG) for hashing by CryptHash()

MARS_PT_ ALG_SIGN 8 uint32_t TCG-registered algorithm (TCG) for signing by CryptSign()

MARS_PT_ ALG_SKDF 9
uint32_t TCG-registered algorithm (TCG) for symmetric key derivation by

CryptSkdf()

MARS_PT_ ALG_AKDF 10
uint32_t TCG-registered algorithm (TCG) for asymmetric key derivation by

CryptAkdf()

MARS_PT_CTXISKEY 11 bool Indicates whether ctxiskey as a parameter may be passed as TRUE

8.1.4.1 Prototype
MARS_RC MARS_CapabilityGet (

uint32_t pt,

void * cap,

size_t caplen);

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 21 © TCG 2022

8.1.4.2 Parameters

• pt – property tag value from Table 5 – MARS Property Tags

• cap – pointer to result defined in Table 5 – MARS Property Tags

• caplen – number of bytes in buffer provided in cap

8.1.4.3 Response Codes

• MARS_RC_SUCCESS – capability result written to cap

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_VALUE – invalid pt

• MARS_RC_SIZE – Buffer pointer or size invalid

8.2 Sequence Primitives

Functions such as hashing can consume large amounts of data as well as data from noncontiguous
regions of memory. The concatenation of data to form a single parameter is known as a sequence. To
support sequenced parameters, a Start/Update/Complete approach is used. The start of a function
requiring a sequenced parameter(s) is via the MARS_SequenceFunc() command, where Func refers
to the type of function (e.g., Hash). Sequenced bytes to be supplied effectively as a single parameter
are given via successive calls to MARS_SequenceUpdate(). Fixed (non-sequenced) parameters are
specified by each MARS_SequenceFunc() command. The end of a sequence, and possibly the start
of the next, is signaled by MARS_SequenceComplete(). A null parameter is signaled by
MARS_SequenceComplete() without any preceding MARS_SequenceUpdate()s.

MARS always requires data to be submitted in a sequence, even for a sequence of one. A higher-level
API may provide a function (that uses sequence commands) for atomic submission of data, so callers
themselves do not need to use sequence commands, but this is not a MARS requirement.

The Start/Update/Complete set of commands should not be interleaved with other MARS commands.
If other commands are used, the sequence is terminated. In this event, MARS_Update() and
MARS_Complete() MUST return MARS_RC_SEQ.

Start of informative comment

While the only sequenced function supported in this initial specification is for hashing, additional support
is anticipated, e.g., for encrypt and decrypt functions.

End of informative comment

8.2.1 MARS_SequenceHash

A hash sequence is started by MARS_SequenceHash(). The final digest is written during
MARS_SequenceComplete(). The digest’s length is indicated via MARS_PT_LEN_DIGEST.

8.2.1.1 Prototype
MARS_RC MARS_SequenceHash ();

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 22 © TCG 2022

8.2.1.2 Parameters

• None

8.2.1.3 Response Codes

• MARS_RC_SUCCESS – hash sequence initiated

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_COMMAND – command not supported

8.2.2 MARS_SequenceUpdate

MARS_SequenceUpdate() SHALL process additional data under the sequenced algorithm. In the
course of performing the update, MARS_SequenceUpdate() MAY, depending on the
MARS_SequenceFunc() algorithm, produce additional output that SHALL be written to the output buffer
specified. The outlen parameter indicates the size of the destination buffer out. Upon return, outlen
SHALL contain the number of bytes written.

8.2.2.1 Prototype
MARS_RC MARS_SequenceUpdate(

const void * in,

size_t inSize,

void * out,

size_t * outlen);

8.2.2.2 Parameters

• in – pointer to source data to be sequenced

• inSize – length of in buffer in bytes

• out – pointer to output data results

• outlen – length of out in bytes

8.2.2.3 Response Codes

• MARS_RC_SUCCESS – sequence successfully updated

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_SEQ – Not preceded by Sequence start command

• MARS_RC_SIZE – Buffer pointer or size invalid

8.2.3 MARS_SequenceComplete

The end of a sequenced parameter is signaled by MARS_SequenceComplete(). The outlen parameter
indicates the size of the destination buffer out. Upon return, outlen SHALL contain the number of bytes

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 23 © TCG 2022

written. If additional sequenced parameters are required, then MARS_SequenceComplete() SHALL
also signal the start of the next sequence.

8.2.3.1 Prototype
MARS_RC MARS_SequenceComplete(

void * out,

size_t * outlen);

8.2.3.2 Parameters

• out – pointer to output data results

• outlen – length of out in bytes

8.2.3.3 Response Codes

• MARS_RC_SUCCESS – sequence processed successfully

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_SEQ – Not preceded by Sequence start command

• MARS_RC_SIZE – Buffer pointer or size invalid

8.3 Integrity Collection

The following commands support the implementation of the RTS as described in section 4.3.

8.3.1 MARS_PcrExtend

The specified PCR SHALL be updated with a supplied digest as described in the pseudocode.

8.3.1.1 Prototype
MARS_RC MARS_PcrExtend (

uint32_t pcrIndex,

const void * dig,

size_t diglen);

8.3.1.2 Parameters

• pcrIndex – specifies which PCR to update

• dig – address containing source digest used in updating the PCR

• diglen – number of bytes in dig

8.3.1.3 Response Codes

• MARS_RC_SUCCESS – PCR extended

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_REG – invalid pcrIndex

• MARS_RC_SIZE – bad pointer or size for dig

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 24 © TCG 2022

8.3.1.4 Pseudocode
PCRpcrIndex = CryptHash(PCRpcrIndex || dig)

8.3.2 MARS_RegRead

The content of the specified register SHALL be returned by MARS_RegRead().

8.3.2.1 Prototype
MARS_RC MARS_RegRead (

uint32_t regIndex,

void * dig,

size_t diglen);

8.3.2.2 Parameters

• regIndex – specifies which register to read

• dig – address to write a copy of register content

• diglen – number of bytes reserved in dig

8.3.2.3 Response Codes

• MARS_RC_SUCCESS – the contents of the selected register was returned in digest

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_REG – invalid regIndex

• MARS_RC_SIZE – Buffer pointer or size invalid

8.4 Key Management

8.4.1 MARS_Derive

MARS_Derive() SHALL use CryptSkdf() to generate bytes for external use from the DP, a device
snapshot, and a label of MARS_KX. The caller’s context ctx SHALL be used to distinguish between
snapshots with the same regSelect. The number of bytes written can be retrieved via
MARS_PT_LEN_SKEY.

8.4.1.1 Prototype
MARS_RC MARS_Derive (

uint32_t regSelect,

const void * ctx,

size_t ctxlen,

void * out,

size_t outlen);

8.4.1.2 Parameters

• regSelect – bitmask identifying registers

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 25 © TCG 2022

• ctx – context that distinguishes between derivations with the same regSelect

• ctxlen – number of bytes in ctx

• out – destination buffer

• outlen – size of output buffer

8.4.1.3 Response Codes

• MARS_RC_SUCCESS – n bytes generated

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_REG – selected register not implemented

• MARS_RC_SIZE – bad pointer or size for out

8.4.1.4 Pseudocode

snapshot = CryptSnapshot(regSelect, ctx)

*out = CryptSkdf(DP, MARS_KX, snapshot)

8.4.2 MARS_DpExtend

This function SHALL derive a new value of DP from the current DP, register selection, selected register
values and provided context, ctx. If ctx is NULL, the DP SHALL be reset to its initial state (section 5.2.2).
When binding DP to register values is needed, regSelect may specify a non-empty set of registers.

Start of informative comment

MARS_DpExtend() supports the Chain of Custody use case documented in (TCG, 2021). Additional
guidance on the use of this feature may be provided in future.

End of informative comment

8.4.2.1 Prototype
MARS_RC MARS_DpExtend (

uint32_t regSelect,

const void * ctx,

size_t ctxlen);

8.4.2.2 Parameters

• regSelect – bitmask identifying registers

• ctx – context for deriving a new DP

• ctxlen – number of bytes in ctx

8.4.2.3 Response Codes

• MARS_RC_SUCCESS – DP extended

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 26 © TCG 2022

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_REG – selected register not implemented

• MARS_RC_SIZE – Buffer pointer or size invalid

8.4.2.4 Pseudocode

if (ctx)

snapshot = CryptSnapshot(regSelect, ctx)

DP = CryptSkdf(DP, MARS_KD, snapshot, sizeof(DP))

else

 reset DP to initial state

8.4.3 MARS_PublicRead

The public portion of the specified key SHALL be returned. The format of the result is dependent upon
the algorithm selected within the corresponding MARS Profile. The number of bytes written can be
retrieved via MARS_PT_LEN_AKEY.

Start of informative comment

Typically, endorsement of an asymmetric public key begins with the creation of a Certificate Signing
Request (CSR). A CSR is signed by the paired private key. However, MARS does not currently support
CSR signing. An alternate method to create an AK cert is to use the desired AKPUB and a proxy CSR
with metadata during the certificate creation process. For example, openssl supports this via the x509
“-force_pubkey” option.

The “-force_pubkey” option is documented in openssl as being “useful for creating certificates where
the algorithm can’t normally sign requests.”

End of informative comment

8.4.3.1 Prototype
MARS_RC MARS_PublicRead (

bool restricted,

const void * ctx,

size_t ctxlen,

void * pub,

size_t n);

8.4.3.2 Parameters

• restricted – indicates whether the specified key is restricted

• ctx – context for asymmetric key differentiation

• ctxlen – number of bytes in ctx

• pub – destination buffer

• n – size in bytes of pub buffer

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 27 © TCG 2022

8.4.3.3 Response Codes

• MARS_RC_SUCCESS – public key read

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_SIZE – Buffer pointer or size invalid

8.4.3.4 Pseudocode

label = restricted ? MARS_KR : MARS_KU

K = CryptAkdf(DP, label, ctx)

*pub = Kpub

8.5 Attestation

The following commands support the implementation of the RTR and related functionality as described
in section 4.4.

8.5.1 MARS_Quote

MARS_Quote() SHALL sign a snapshot of the current device state as reflected in the selected registers
with the designated restricted key.

The number of bytes written to sig can be retrieved via MARS_PT_LEN_SIGN.

8.5.1.1 Prototype
MARS_RC MARS_Quote (

uint32_t regSelect,

const void * nonce,

size_t nlen,

const void * ctx,

size_t ctxlen,

void * sig,

size_t siglen);

8.5.1.2 Parameters

• regSelect – bitmask identifying registers

• nonce – challenge data, same size as digest

• nlen – number of bytes in nonce

• ctx – context for AK differentiation

• ctxlen – number of bytes in ctx

• sig – location to return resulting signature

• siglen – number of bytes in sig

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 28 © TCG 2022

8.5.1.3 Response Codes

• MARS_RC_SUCCESS – signature produced

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_REG – selected register not implemented

• MARS_RC_SIZE – Buffer pointer or size invalid

8.5.1.4 Pseudocode

snapshot = CryptSnapshot(regSelect, nonce)

AK = CryptXkdf(DP, MARS_KR, ctx)

*sig = CryptSign(AK, snapshot)

8.5.2 MARS_Sign

This command SHALL sign an externally provided digest with the designated unrestricted key.

The number of bytes written to sig can be retrieved via MARS_PT_LEN_SIGN.

8.5.2.1 Prototype

MARS_RC MARS_Sign (

bool ctxiskey,

const void * ctx,

size_t ctxlen,

const void * dig,

size_t diglen,

void * sig,

size_t siglen);

8.5.2.2 Parameters

• ctxiskey – indicates whether ctx contains a key (instead of a context for derivation)

• ctx – context for key differentiation

• ctxlen – number of bytes in ctx

• dig – source data to be signed

• diglen – number of bytes in digest

• sig – location to return resulting signature

• siglen – number of bytes in sig

8.5.2.3 Response Codes

• MARS_RC_SUCCESS – signing successful

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_SIZE – bad pointer or size parameter

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 29 © TCG 2022

8.5.2.4 Pseudocode

if (ctxiskey)

key = ctx

else

key = CryptXkdf(DP, MARS_KU, ctx)

*sig = CryptSign(key, dig)

8.5.3 MARS_SignatureVerify

MARS SHALL return, via the result parameter, a verdict of digital signature verification using
CryptVerify(). MARS SHALL process ctx as a verification key when ctxiskey is True. Otherwise, MARS
SHALL derive a verification key using the restricted and ctx parameters. If restricted is True, MARS
SHALL use ctx to derive a restricted attestation key, else an unrestricted signing key. The context
parameter ctx is used to generate different keys.

8.5.3.1 Prototype
MARS_RC MARS_ SignatureVerify (

bool ctxiskey,

bool restricted,

const void * ctx,

size_t ctxlen,

const void * dig,

size_t diglen,

const void * sig,

size_t siglen,

bool * result);

8.5.3.2 Parameters

• ctxiskey – indicates whether ctx contains a key (instead of context for derivation)

• restricted – selects label for key derivation

• ctx – key or context for key differentiation

• ctxlen – number of bytes in ctx

• dig – source digest that was signed

• diglen – number of bytes in digest

• sig – signature of dig to verify

• siglen – number of bytes in sig

• result – outcome of CryptVerify

8.5.3.3 Response Codes

• MARS_RC_SUCCESS – signature verified correctly

• MARS_RC_COMMAND – command not supported

• MARS_RC_FAILURE – MARS is in failure mode or otherwise inaccessible

• MARS_RC_ACCESS – MARS is not locked

• MARS_RC_SIZE – bad pointer or size parameter

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 30 © TCG 2022

8.5.3.4 Pseudocode

if (ctxiskey)

key = ctx

else {

label = restricted ? MARS_KR : MARS_KU

key = CryptXkdf(DP, label, ctx)

}

*result = CryptVerify(key, dig, sig)

MARS Functional and System API Specification

MARS Functional and System API Specification | Version 1 | Revision 4 | 1/5/2022 | PUBLIC REVIEW Page 31 © TCG 2022

 Bibliography

ISO/IEC. (n.d.). 10116:2017, Information technology — Security techniques — Modes of operation for
an n-bit block cipher. Retrieved from https://www.iso.org/standard/64575.html

ISO/IEC. (2018, Jun). ISO/IEC 9899:2018 Information technology — Programming languages — C.
Retrieved from https://www.iso.org/standard/74528.html

TCG. (2019, Nov 8). TPM 2.0 Library Specification. Retrieved from
https://trustedcomputinggroup.org/resource/tpm-library-specification

TCG. (2021, Jan 27). MARS Use Cases and Considerations. Retrieved from
https://trustedcomputinggroup.org/resource/mars-use-cases-and-considerations/

TCG. (n.d.). TCG Algorithm Registry. Retrieved from https://trustedcomputinggroup.org/resource/tcg-
algorithm-registry/

	DISCLAIMERS, NOTICES, AND LICENSE TERMS
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	1 SCOPE
	1.1 Key Words
	1.2 Statement Type

	2 Abbreviations, Acronyms and Terms Used
	3 Conventions and Data Types
	3.1 Naming Conventions
	3.2 Data Types
	3.3 Symbols

	4 Trusted Platform Architecture
	4.1 Events
	4.2 Root of Trust for Measurement
	4.3 Root of Trust for Storage
	4.4 Root of Trust for Reporting

	5 MARS Device Requirements
	5.1 Cryptography
	5.2 Device State
	5.2.1 Primary Seed (PS)
	5.2.2 Derivation Parent (DP)
	5.2.3 Selectable Registers
	5.2.3.1 Selection
	5.2.3.2 PCR
	5.2.3.3 TSR – Trusted Sensor Register

	5.2.4 Initialization

	5.3 Key Hierarchy
	5.4 Support Functions
	5.4.1 CryptHash(data)
	5.4.2 CryptSign(key, digest)
	5.4.3 CryptVerify(key, digest, signature)
	5.4.4 CryptSkdf(parent, label, context)
	5.4.5 CryptAkdf(parent, label, context)
	5.4.6 CryptXkdf
	5.4.7 CryptSnapshot(regSelect, context)

	5.5 Session Management
	5.6 Protected Capabilities and Locations

	6 Constants
	6.1 Response Codes

	7 Compliance
	8 API
	8.1 Management
	8.1.1 MARS_SelfTest
	8.1.1.1 Prototype
	8.1.1.2 Response Codes

	8.1.2 MARS_Lock
	8.1.2.1 Prototype
	8.1.2.2 Response Codes

	8.1.3 MARS_Unlock
	8.1.3.1 Prototype
	8.1.3.2 Response Codes

	8.1.4 MARS_CapabilityGet
	8.1.4.1 Prototype
	8.1.4.2 Parameters
	8.1.4.3 Response Codes

	8.2 Sequence Primitives
	8.2.1 MARS_SequenceHash
	8.2.1.1 Prototype
	8.2.1.2 Parameters
	8.2.1.3 Response Codes

	8.2.2 MARS_SequenceUpdate
	8.2.2.1 Prototype
	8.2.2.2 Parameters
	8.2.2.3 Response Codes

	8.2.3 MARS_SequenceComplete
	8.2.3.1 Prototype
	8.2.3.2 Parameters
	8.2.3.3 Response Codes

	8.3 Integrity Collection
	8.3.1 MARS_PcrExtend
	8.3.1.1 Prototype
	8.3.1.2 Parameters
	8.3.1.3 Response Codes
	8.3.1.4 Pseudocode

	8.3.2 MARS_RegRead
	8.3.2.1 Prototype
	8.3.2.2 Parameters
	8.3.2.3 Response Codes

	8.4 Key Management
	8.4.1 MARS_Derive
	8.4.1.1 Prototype
	8.4.1.2 Parameters
	8.4.1.3 Response Codes
	8.4.1.4 Pseudocode

	8.4.2 MARS_DpExtend
	8.4.2.1 Prototype
	8.4.2.2 Parameters
	8.4.2.3 Response Codes
	8.4.2.4 Pseudocode

	8.4.3 MARS_PublicRead
	8.4.3.1 Prototype
	8.4.3.2 Parameters
	8.4.3.3 Response Codes
	8.4.3.4 Pseudocode

	8.5 Attestation
	8.5.1 MARS_Quote
	8.5.1.1 Prototype
	8.5.1.2 Parameters
	8.5.1.3 Response Codes
	8.5.1.4 Pseudocode

	8.5.2 MARS_Sign
	8.5.2.1 Prototype
	8.5.2.2 Parameters
	8.5.2.3 Response Codes
	8.5.2.4 Pseudocode

	8.5.3 MARS_SignatureVerify
	8.5.3.1 Prototype
	8.5.3.2 Parameters
	8.5.3.3 Response Codes
	8.5.3.4 Pseudocode

	9 Bibliography

