MARS API Specification

Version 1
Revision 2
May 9, 2023

Contact: admin@trustedcomputinggroup.org

PUBLISHED

ZO0—4>0—T—0Omuwm

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

mailto:admin@trustedcomputinggroup.org

DISCLAIMERS, NOTICES, AND LICENSE TERMS

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY
PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights,
relating to use of information in this specification and to the implementation of this specification, and
TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of
use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under
contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this specification or
any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied,
is granted herein other than as follows: You may not copy or reproduce the document or distribute it
to others without written permission from TCG, except that you may freely do so for the purposes of (a)
examining or implementing TCG specifications or (b) developing, testing, or promoting information
technology standards and best practices, so long as you distribute the document with these disclaimers,
notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

ACKNOWLEDGEMENTS

The TCG would like to gratefully acknowledge the contributions of the following individuals and
companies who volunteered their time and efforts for the development of this specification.

Joerg Borchert, Infineon Technologies
Tom Brostrom, Cyber Pack Ventures, Inc.
Eoin Carroll, Toyota Motor North America
Brian Dziki, United States Government
Mariza Marrero, United States Government
Vadim Sukhomlinov, Google LLC

Dick Wilkins, Phoenix Technologies, Inc.

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

CONTENTS

DISCLAIMERS, NOTICES, AND LICENSE TERMSoottitiitiiiiiiiiiiiiiiiiiieeieieeeeeeeeeeeeeeseeeeeeeseseeeeeeeeeeees 1
ACKNOWLEDGEMENTS ...coiiiiiiiiiiiiiitii ettt et eteeeeeeeeeeeee e et e e et ee et eeeeeeeseeeesseseessaesesseenesesnnnnnnnes 2
L@ N =V 155 T 3
TABLES ... 5
FIGURES ...ttt ettt ettt ettt ettt st st s st s st et st et e e st e s s e s s e s s e e e s e e e e e e nnnnnn e e 5
T S0P e 6
0 = VYT 0 o £ EPPSURS 6

Y = 1] 1 1 =T 01 A 1Y/ 0L PP 6

2 Abbreviations, ACronyms and TermMS USEcoiiiiiiiiiiiiiiiiiies e et e e e e e e e eeeaen s e e e e e eeeeennnnns 7
3 INITOTUCTION. ... 8
3.1 Serialized ArChItECIUIE........cooiiieeeeee e 8

3.2 Memory Mapped ArChItECIUNE.........ooi i 9

L N P PP PPPPPPPPPPPPPP 10
4.1 RESPONSE COUEBSvvuuiie e e eeee ettt e e e e ettt e e e e e e e e et ee e et e e e e e e e e eeeasaaa e e aaeeeeeeessssaaaaaaeeaeeees 10

o I - 10 IS o o T TSP PP RRSPPPPP 10

G I @0] 141 .4 F= 1 [0 £SO PP P PP PP PPPPPPPPPPPI 10
4.3.1 ComMMANA INTEITACE s 10

G B [011 F= 1742 L1 [o 11

B A o (0] 011/ 0[PP 11

4.3.2.2 RESPONSE COUES ...cooviiiiiiie ettt e et e e e e e e e e e e et e e e e e e e e e ae s e e e aaeeaees 11

4.3.3 TRIRATING ... s 11

4.3.3.1 MARS _LOCK ... 12

4.3.3.2 MARS _UNIOCK. ... s 12

ST g o (3 I T Y= To |1 To EO TP PP PP PP PPPPPPPPPPPPPPPP 13

5 HeAdEr FIlES ... 14
o0 0= TS = T T o U 14

5.2 MAIS/MAIS. N e et e e e et e e e e e aaar s 14

5.2, 1 PIEIUAE ...ttt sttt ettt s e e e e e s e e e e 14

I A e (0T 01T 4 Y = T TP 14

5.2.3 RESPONSE COUBSuiiiiiiiieiieiii ettt e e ettt e e e e e e e e e e e s e b e e e e e e e e eeeeaannn s 15

5.2.4 Management COMMANTASuuuiiieeeeeieieeiiieie e e e e e eeeeeaeaaaa e e e e e e e aeeasaann e e aeeeeeeesannnnnaaens 15

5.2.5 SEqUENCE PrIMILIVESccoiiiiiiicie et e e e e e e e e e e ns 15

5.2.6 Integrity Collection CoOmMMAaNAS........cooiiiiiiiiiii e 15

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

5.2.7 Key Management COMMENTSuuuuuuuuuueeienieiiiunneeeansesseessnssssssnesssssssseessssessssnssnnennne 16
5.2.8 AtteStation COMIMANTUSuuuuiiiiiiiiiiieiiietieieieeeeeeeeebebeaeeeeeeaseeeeeeeeeseeesesseseeseeseseeesennnnnes 16
IR e I @] 011 4= T To G0 To L= T3P 17
LI =11o] ol | £=1 o] 1) V2T T PR PPOPPPPPTP 18

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

TABLES

Table 1 — Abbreviations, Acronyms and TermMS USEdcccoiviiiiiiiiiiiii e e e e e e e e e e eaeeens 7
Table 2 — Additional RESPONSE COUES.........cooiiiiiiiiiii e 10
FIGURES

Figure 1 — MARS Serialized ArCRItECIUIE..........u ittt eee e eeeeeeeseneees 8
Figure 2 — MARS Memory Mapped ArChitECIUIE...........ccoiiiiiiiiie e e e e e 9

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

file://Users/Tom/Documents/CPVI/attestation/TCG/MARS/spec_api/TCG_MARS_API_Spec_v1r2.docx#_Toc134529001
file://Users/Tom/Documents/CPVI/attestation/TCG/MARS/spec_api/TCG_MARS_API_Spec_v1r2.docx#_Toc134529002

1 Scope

This document is the Measurement and Attestation RootS (MARS) Application Programmer Interface
(API) Specification. It defines a C-language interface for host application code to utilize a MARS device.
Host application code means any software/firmware executing on a host including UEFI, boot loaders,
operating system, loadable libraries, and high-level applications. The intended audience for this
specification includes software developers and designers implementing applications for MARS as
specified in [1].

1.1 Key Words

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this document form normative statements and
are to be interpreted as described in RFC-2119, Key words for use in RFCs to Indicate Requirement
Levels.

1.2 Statement Type

Please note a very important distinction between different sections of text throughout this document.
There are two distinctive kinds of text: informative comment and normative statements. Because most
of the text in this specification will be of the kind normative statements, the authors have informally
defined it as the default and, as such, have specifically called out text which is of the kind informative
comment. They have done this by flagging the beginning and end of each informative comment and
highlighting its text in gray. This means that unless text is specifically marked as of the kind informative
comment, it can be considered a kind of normative statement.

EXAMPLE: Start of informative comment

This is the first paragraph of 1-n paragraphs containing text of the kind informative comment ...
This is the second paragraph of text of the kind informative comment ...

This is the nth paragraph of text of the kind informative comment ...

To understand the TCG specification the user must read the specification. (This use of MUST does not require
any action).

End of informative comment

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

2 Abbreviations, Acronyms and Terms Used

Table 1 — Abbreviations, Acronyms and Terms Used

API Application Programmer Interface

host A computing platform with an attached MARS device
MARS Measurement and Attestation RootS

MMIO Memory Mapped Input Output

TCG Trusted Computing Group

UEFI Unified Extensible Firmware Interface

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

3 Introduction

The purpose of this API specification is to enable seamless usage of all available MARS commands
with minimal dependency on the choice of MARS architecture or how commands, parameters and
responses are formatted and delivered. The remainder of section 3 is informative.

Start of informative comment

MARS architectures are described here as serialized or memory mapped. This specification does not
place limits on the type of MARS architecture.

3.1 Serialized Architecture

Externally attached MARS devices (e.g., outside the host’s microcontroller die) are accessed via
serialization. In a serialized MARS architecture, each command to and response from the MARS
device is marshaled into individual blocks that are then transmitted. An APl command that is designed
to take a potentially large parameter (such as MARS_SequenceUpdate()) may need to be
implemented to fragment the parameter to fit within message length limits, resulting in multiple
commands issued by the API to MARS. This action is transparent to the caller of the API.

The position of the API layer in the serialized logical architecture is shown in Figure 1.

HOST

APPLICATION MARS
DISPATCHER

SERIALIZATION

SERIALIZATION COMMAND

TRANSPORT [TRANSPORT CRYPTO

Figure 1 — MARS Serialized Architecture

A description of each of the logical layers follows:

e Application — software/firmware using the MARS API

e API —the layer described by this specification

e Serialization — marshals and unmarshalls commands, parameters and responses between the
host APl and the MARS dispatcher

e Transport — delivers serialized data between the host and MARS

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

e Command — implements the MARS commands as defined in the MARS Library Specification
e Crypto — cryptographic services utilized by MARS Commands

3.2 Memory Mapped Architecture

Internally attached MARS devices (e.g., within the host’'s microcontroller die) are accessed using the
host's MMIO functionality. An MMIO-based MARS architecture can be depicted as shown in Figure
2. Since it may not be necessary to serialize commands into blocks, as with the MARS serialized
architecture, large parameters could be streamed to MARS via direct register writes.

HOST

APPLICATION

MARS

COMMAND

———————— CRYPTO

Figure 2 — MARS Memory Mapped Architecture

A description of each of the logical layers follows:

e Application — software/firmware using the MARS API
e API —the layer described by this specification

e MMIO — a memory mapped input/output device controller for an internally attached MARS
device

e Command — implements the MARS commands as defined in the MARS Library Specification
e Crypto — cryptographic services utilized by MARS Commands

End of informative comment

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

4 API

4.1 Response Codes

When MARS APl commands (see section 4.3) succeed, they SHALL return a response code of
MARS_RC_SUCCESS along with their specified results. When a requested MARS API command
cannot perform its function, then it SHALL return a single response code from the table of Response
Code Constants [1] other than MARS _RC_SUCCESS. This APl SHALL return MARS_RC_COMMAND
for commands that are not supported. Additionally, the API SHALL return a response code of
MARS_RC_LOCK in the event of locking errors (see Table 2 and section 4.3.3).

Table 2 — Additional Response Codes

Name Value | Description
MARS RC _LOCK 3 not locked or calling thread already locked

4.2 Transport

Start of informative comment

The MARS API assumes that the transport mechanism used by the API in the MARS Serialized
Architecture has been properly initialized prior to use of any other MARS API functions. Refer to
documentation from the provider of the MARS API for more detalil.

End of informative comment

4.3 Commands
A MARS API MUST implement all the functions described in this section.
4.3.1 Command Interface

To make usage of MARS commands as seamless as possible, the API MUST implement all the MARS
Command Interface definitions specified in [1]. Thus, the dispatcher can be viewed as a proxy for the
host API.

Start of informative comment

In this API, MARS_RegRead() uses the serialization and transport layers to convey the command code
MARS_CC_RegRead (from section 5.2.9) and its parameter regindex to the MARS dispatcher. The
MARS dispatcher then invokes its MARS RegRead() that retrieves the contents of the specified
register. The dispatcher then serializes and transports the response code MARS_RC_SUCCESS
(assuming the register index was valid) and the copied register back to the host APl where they are
returned to the calling application.

End of informative comment

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

4.3.2 Initialization

MARS _Apilnit() is responsible for setting the initial context needed by the MARS API, such as its mutex
and constants retrieved from the MARS device. MARS_Apilnit() is designed to be used once after
transport initialization (see section 4.2) and before other MARS API functions are called. If not used in
this manner, the MARS API functions SHALL return MARS_RC _IO.

4.3.2.1 Prototype
MARS_RC MARS Apilnit ();

4.3.2.2 Response Codes
¢ MARS_RC_SUCCESS — APl initialized successfully
¢ MARS_RC_IO — error during initialization

4.3.3 Threading

MARS maintains context for only a single series of commands (a session). There is no mechanism to
save and restore context.

MARS_Lock() implicitly uses and records an implementation-specific thread or context identifier to
restrict subsequent MARS APl commands to being issued by the thread/context with the same
identifier. Other MARS APl commands MUST check that the identifier is the same as recorded by the
last MARS_Lock(). If not, the commands SHALL return MARS_RC_LOCK.

MARS _Unlock() clears the recorded identifier.

Start of informative comment

To help maintain a desired MARS context, an operating system could be used to prevent interleaving
of multiple sessions amongst processes (e.g., via exclusive device access).

A critical series of MARS commands is a series that is intolerant of unexpected changes in MARS’
state. Consequently, a thread depending on MARS state that could be altered by another thread’s
execution should call MARS Lock() once at the series’ beginning, and MARS _Unlock() at the series’
end. For example, suppose that thread A is used to quote PCR 0 and thread B is used to extend PCR
0. It is incorrect for thread A to:

MARS Lock(Q);
MARS Quote(l, .);
MARS Unlock();

MARS Lock(Q);
MARS_RegRead(0, ..);
MARS Unlock();

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

since thread B could update PCR 0 before thread A can read what it quoted. The correct, and simpler,
implementation of thread A is:

MARS_Lock();

MARS Quote(l, ..);
MARS RegRead(0, ..);
MARS_Unlock();

Another example of a critical series is use of MARS Sequence Primitives. MARS does not have a
mechanism for saving and restoring Sequence context, so those primitives must be used within a
single MARS_Lock() and MARS_Unlock() pair, as in:

MARS Lock();
MARS_SequenceHash();
MARS_SequenceUpdate(..);

MARS_SequenceUpdate(m);
MARS_SequenceComplete(..);
MARS_Unlock();

End of informative comment

4.3.3.1 MARS_Lock

MARS _Lock() prepares MARS for exclusive access to support a series of non-interleaved commands.
If already locked by another thread, this function SHALL block until that other thread calls
MARS_Unlock().

4.3.3.1.1 Prototype
MARS_RC MARS Lock ();

4.3.3.1.2 Response Codes
¢ MARS _RC_SUCCESS - exclusive access acquired
e MARS_RC_LOCK - calling thread already locked

4.3.3.2 MARS_Unlock

MARS_Unlock() SHALL render inaccessible all data (e.g., plaintext, keys) provided by or for code
accessing the MARS, and relinquish control of the MARS after a previous MARS_Lock().

4.3.3.2.1 Prototype
MARS RC MARS Unlock ();

4.3.3.2.2 Response Codes
e MARS_RC_SUCCESS - exclusive access relinquished
e MARS RC _LOCK - not locked

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

4.4 Single Threading

In non-threaded environments, simplified implementations of MARS_Lock() and MARS_Unlock() may
be implemented. As an example, refer to the informative code snippet below.

Start of informative comment

static bool locked = false;

MARS_RC MARS_Lock()

{ return locked ? MARS_RC LOCK : (locked = true , MARS_RC_SUCCESS); }

MARS_RC MARS_Unlock()
{ return locked ? locked = false , MARS_RC_SUCCESS : MARS_RC_LOCK; }

End of informative comment

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

5 Header Files
5.1 mars/api.h

#pragma once
#include "mars.h"
#define MARS_RC_LOCK 3 // not locked or calling thread already locked

MARS_RC MARS_Apilnit ();
MARS_RC MARS_Lock ();
MARS_RC MARS_Unlock ();

5.2 mars/mars.h
5.2.1 Prelude

#pragma once

#include <stdint.h> // for uint32_t, etc.
#include <stdlib.h> // for size t

#include <stdbool.h> // for bool, true, false

5.2.2 Property Tags

#define MARS PT PCR 1 // uintl6é_t number of consecutive PCRs
implemented on this MARS

#define MARS PT_TSR 2 // uintl6_t number of consecutive TSRs
implemented on this MARS

#define MARS PT_LEN DIGEST 3 // uintl6_t size of a digest that can be
processed or produced

#define MARS PT LEN SIGN 4 // uintl6_t size of signature produced by
CryptSign()

#define MARS PT_LEN KSYM 5 // uintl6_t size of symmetric key produced
by CryptSkdf()

#define MARS_PT_LEN_KPUB 6 // uintl6_t size of asymmetric key returned
by MARS_ PublicRead()

#define MARS PT_LEN_KPRV 7 // uintl6_t size of private asymmetric key
produced by CryptAkdf()

#define MARS PT ALG HASH 8 // uintl6_t TCG-registered algorithm for
hashing by CryptHash()

#define MARS PT_ALG_SIGN 9 // uintl6_t TCG-registered algorithm for
signing by CryptSign()

#define MARS PT_ALG_SKDF 10 // uintl6_t TCG-registered algorithm for
symmetric key derivation by CryptSkdf()

#define MARS PT ALG AKDF 11 // uintl6_t TCG-registered algorithm for
asymmetric key derivation by CryptAkdf()

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

5.2.3 Response Codes
typedef uintl6é_t MARS RC;

#define MARS _RC_SUCCESS O // Command executed as expected

#define MARS _RC 10 1 // Input / Output or parsing error

#define MARS RC_FAILURE 2 // self-testing placed MARS in failure mode
or MARS i1s otherwise inaccessible

// reserved 3

#define MARS_RC_BUFFER 4 // Invalid buffer pointer (null or
misaligned) or length

#define MARS RC _COMMAND 5 // Command not supported

#define MARS_RC_VALUE 6 // Value out of range or incorrect for

context
#define MARS RC_REG 7 // Invalid register index specified
#define MARS RC SEQ 8 // Not preceded by Sequence start command

5.2.4 Management Commands
MARS RC MARS SelfTest (bool fullTest);

MARS RC MARS_ CapabilityGet (
uintlé_t pt,
void * cap,
uintl6_t caplen);

5.2.5 Sequence Primitives
MARS RC MARS_ SequenceHash ();

MARS RC MARS_SequenceUpdate(
const void * 1in,
size_t inSize,
void * out,
size_t * outlen);

MARS RC MARS_SequenceComplete(

void * out,
size_t * outlen);

5.2.6 Integrity Collection Commands

MARS RC MARS PcrExtend (
uintl6_t pcrindex,
const void * dig);

MARS_RC MARS_RegRead (

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

uintl6é_t reglndex,
void * dig);

5.2.7 Key Management Commands

MARS RC MARS Derive (
uint32_t regSelect,
const void * ctx,
uintl6é_t ctxlen,
void * out);

MARS_RC MARS_DpDerive (
uint32_t regSelect,
const void * ctx,
uintl6é_t ctxlen);

MARS RC MARS PublicRead (
bool restricted,
const void * ctx,
uintl6é_t ctxlen,
void * pub);

5.2.8 Attestation Commands

MARS_RC MARS Quote (
uint32_t regSelect,
const void * nonce,
uintlé_t nlen,
const void * ctx,
uintlé_t ctxlen,
void * siQg);

MARS_RC MARS_Sign (
const void * ctx,
uintl6é_t ctxlen,
const void * dig,
void * sig);

MARS_RC MARS_SignatureVerifty (
bool restricted,
const void * ctx,
uintlé_t ctxlen,
const void * dig,
const void * sig,
bool * result);

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

5.2.9 Command Codes

#define MARS CC_SelfTest 0
#define MARS_CC_CapabilityGet 1
#define MARS_CC_SequenceHash 2
#define MARS_CC_SequenceUpdate 3
#define MARS_CC_SequenceComplete 4
#define MARS CC_PcrExtend 5
#define MARS CC_RegRead 6
#define MARS_CC_Derive 7
#define MARS _CC_DpDerive 8
#define MARS_CC_PublicRead 9
#define MARS_CC_Quote 10
#define MARS _CC_Sign 11
#define MARS_CC_SignatureVerity 12
#define MARS_CC_LAST 12

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

MARS API Specification

6 Bibliography

[1] TCG, "MARS Library Specification, v1lrl4," 2 Jan 2023. [Online]. Available:
https://trustedcomputinggroup.org/resource/mars-library-specification/.

[2] Trusted Computing Group, "MARS Repository,” [Online]. Available:
https://github.com/TrustedComputingGroup/MARS.

MARS API Specification | Version 1 | Revision 2 | 5/9/2023 | PUBLISHED © TCG 2023

	DISCLAIMERS, NOTICES, AND LICENSE TERMS
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	1 Scope
	1.1 Key Words
	1.2 Statement Type

	2 Abbreviations, Acronyms and Terms Used
	3 Introduction
	3.1 Serialized Architecture
	3.2 Memory Mapped Architecture
	4 API
	4.1 Response Codes
	4.2 Transport
	4.3 Commands
	4.3.1 Command Interface
	4.3.2 Initialization
	4.3.2.1 Prototype
	4.3.2.2 Response Codes
	4.3.3 Threading
	4.3.3.1 MARS_Lock
	4.3.3.1.1 Prototype
	4.3.3.1.2 Response Codes

	4.3.3.2 MARS_Unlock
	4.3.3.2.1 Prototype
	4.3.3.2.2 Response Codes

	4.4 Single Threading

	5 Header Files
	5.1 mars/api.h
	5.2 mars/mars.h
	5.2.1 Prelude
	5.2.2 Property Tags
	5.2.3 Response Codes
	5.2.4 Management Commands
	5.2.5 Sequence Primitives
	5.2.6 Integrity Collection Commands
	5.2.7 Key Management Commands
	5.2.8 Attestation Commands
	5.2.9 Command Codes

	6 Bibliography

