

TCG

TCG Storage
Security Subsystem Class:
Enterprise

Specification Version 1.0
Revision 1.0
January 27, 2009

Contacts:

 storagewg@trustedcomputinggroup.org

Copyright © TCG 2009

Specification Version 1.0 TCG Copyright

Revision 1.0 Page ii of 133

Copyright
©
 2009 Trusted Computing Group, Incorporated.

Disclaimers, Notices, and License Terms

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is
granted herein other than as follows: You may not copy or reproduce the document or distribute it to
others without written permission from TCG, except that you may freely do so for the purposes of (a)
examining or implementing TCG specifications or (b) developing, testing, or promoting information
technology standards and best practices, so long as you distribute the document with these disclaimers,
notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owner.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page iii of 133

TABLE OF CONTENTS

1 INTRODUCTION... 1
1.1 Document Purpose...1
1.2 Security Subsystem Classes...1
1.3 Scope and Intended Audience...1
1.4 Goals ...1
1.5 Key Words..1
1.6 Precedence..2
1.7 References...2
1.8 Definition of Terms..2

2 OVERVIEW... 3

3 SSC FEATURES AND CAPABILITY DEFINITIONS.. 4
3.1 Interface Communications Protocol ..4
3.2 Cryptographic Features ..4
3.3 Authentication..4
3.4 Table Management ..4
3.5 Issuance ..4
3.6 SSC Discovery ..4

3.6.1 Discovery levels...4
3.6.2 Level 0 Discovery..5

4 COMMUNICATIONS... 7
4.1 Communication Properties ...7
4.2 Supported Security Protocols ...7
4.3 ComIDs ...8
4.4 Synchronous Protocol..8

4.4.1 Protocol States and State Transitions...8
4.4.2 Payload Encoding ..10

4.5 Storage Device Resets ..11
4.5.1 Interface Resets..11
4.5.2 Protocol Stack Reset Commands ...11

5 DATA TYPES.. 12

6 SESSION MANAGER... 13
6.1 Session Timeouts..13
6.2 Session Manager Method Requirements ...13

6.2.1 Session Manager Methods ...13

7 TEMPLATES .. 15
7.1 Definitions...15
7.2 Supported Templates...15

7.2.1 TPer Template Requirements ..15
7.3 Base Template ..15

7.3.1 Base Template Table Requirements ..15

Specification Version 1.0 TCG Copyright

Revision 1.0 Page iv of 133

7.3.2 Base Template Method Requirements ...15
7.3.3 Base Template Method Details..16

7.4 Admin Template ..19
7.4.1 Admin Template Table Requirements ...19
7.4.2 Admin Template Method Requirements..19

7.5 Locking Template ..19
7.5.1 Locking Template Table Requirements...19
7.5.2 Locking Template Method Requirements..19
7.5.3 Locking Template Method Details ..19

7.6 Crypto Template..20
7.6.1 Crypto Template Table Requirements ...20
7.6.2 Crypto Template Method Requirements..20
7.6.3 Crypto Template Method Details...20

8 SP IMPLEMENTATION DETAILS .. 21
8.1 SP life cycle...21
8.2 Admin SP..21

8.2.1 Authorities & Credentials ..21
8.2.2 ACE table ..23
8.2.3 AccessControl table ...24

8.3 Locking SP..25
8.3.1 Locking SP authorities...25
8.3.2 Credential Table (C_PIN)..27
8.3.3 Access Control Elements ...28
8.3.4 AccessControl table ...29
8.3.5 Locking Objects Definition ...32
8.3.6 K_AES_128 Table...32
8.3.7 K_AES_256 Table...33
8.3.8 LockingInfo table...34
8.3.9 DataStore table...34
8.3.10 Device Behavior Under Locking ...35

9 APPENDIX – MSID... 36
9.1 Use of MSID ...36

10 APPENDIX –CORE SPECIFICATION PROPOSALS - NORMATIVE................. 37
10.1 Required Core Specification proposals..37
10.2 Core Specification change proposals for this SSC specification..37

10.2.1 Transmitting 0-Length Byte Values 0..37
10.2.2 Stream Type Removal ...39
10.2.3 Authenticate Method, Authority Parameter ...79
10.2.4 Rename Method Table Name ..79
10.2.5 Anybody Authority Authentication ...80
10.2.6 Symmetric Key ChallengeResponse..81
10.2.7 Global Locking Range Identification...81
10.2.8 Fixed Location Optional Parameters ...82
10.2.9 Authentication Within Transactions ..83
10.2.10 Zero-Length Locking Range Handling ..83
10.2.11 Next Method ..84
10.2.12 Synchronous Communications ..86
10.2.13 TypeOr Name Removal ...89
10.2.14 Level 0 Capabilities Discovery..96
10.2.15 ComPacket/Packet/Subpacket Header Alignment Proposal ..104
10.2.16 Session Manager Session Number...105

Specification Version 1.0 TCG Copyright

Revision 1.0 Page v of 133

10.2.17 Next Method Behavior Modification...108
10.2.18 K_AES media encryption key tables ...109
10.2.19 Protocol Stack Reset Command ..117
10.2.20 Properties Clarification ..121
10.2.21 Inactive or Unsupported ComID in CDB Proposal ...125

11 APPENDIX –PARAMCHECK EXAMPLES - INFORMATIVE............................ 128
11.1 Set Method Example..128
11.2 Get Method Example...128

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 1 of 133

1 Introduction

1.1 Document Purpose
The Storage Workgroup specifications are intended to provide a comprehensive architecture for putting
storage devices under policy control as determined by the trusted platform host, the capabilities of the
storage device to conform with the policies of the trusted platform, and the lifecycle state of the storage
device as a Trusted Peripheral.

1.2 Security Subsystem Classes
The Core Specification (see [2]) defines the TCG-related functions for a TCG Trusted Storage Device.
However, not all trusted storage devices might support all functionality. There are multiple “classes” of Core
Specification compliance, called Security Subsystem Classes (SSCs).

Security Subsystem Classes explicitly define the minimum acceptable Core Specification capabilities of a
storage device in a specific “class”. A storage device in a specific class MAY have only some of the
capabilities (tables, methods, access controls) defined in the Core Specification and MAY include additional
capabilities definitions.

1.3 Scope and Intended Audience
This SSC specification is an implementation profile for storage devices built to:

• protect the confidentiality of stored user data and

• minimize the time to bring devices online.

A single threat model is assumed: unauthorized access to user data on the device once it leaves the
owner’s control. The specification’s scope is storage devices deployed in systems that implement Fibre
Channel (FC), Serial Attached SCSI (SAS), and Serial ATA (SATA) interfaces.

The intended audience for this specification is both trusted storage device manufacturers and developers
that want to use these devices in their systems.

1.4 Goals
The goal of this specification is to define an implementation profile for storage devices that ensures
interoperability between different vendor solutions. This is achieved by:

• Identification of a minimum subset of required functionality from the TCG SWG Core Architecture
specification (see [2]);

• Definition of additional functionality needed to satisfy enterprise-class storage use cases;

• Definition of expected storage device behavior for all required functionality.

1.5 Key Words
The key words "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", and "MAY" in this specification are to
be interpreted as described in [1]. These keywords are capitalized when used to unambiguously specify
requirements over protocol and features behavior that affect the interoperability and security of the
implementation. When these words are not capitalized, they are meant in their natural-language sense.

Additionally, the following terms are used in this specification to describe the requirement of particular
features, including tables, methods, and usages thereof.

• Mandatory (M): The feature SHALL be supported by the storage device in order to be compliant with
this specification. A compliance test SHALL validate the feature is operational.

• Optional (O): The feature MAY be supported by the storage device. If implemented, a compliance
test SHALL validate the feature is operational.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 2 of 133

1.6 Precedence
In the event of conflicting information in this specification and other documents, the precedence for
requirements is:

1) this specification;
2) the Storage Interface Interactions Specification (see[7]);
3) select proposals to change the Core Specification (see [2]) (See appendix 10); and
4) the Core Specification (see [2]).

1.7 References
[1]. IETF RFC 2119, 1997, “Key words for use in RFCs to Indicate Requirement Levels”.

[2]. Trusted Computing Group (TCG),, 2007, “TCG Storage Architecture Core Specification”, Version 1.0,
Revision 0.9 – Draft.

[3]. NIST, “Computer Security Division, Cryptographic Toolkit”, http://csrc.nist.gov

[4]. NIST FIPS-197, 2001, “Advanced Encryption Standard (AES)”

[5]. [INCITS T10/1731-D], “Information technology - SCSI Primary Commands - 4 (SPC-4)”

[6]. [ANSI INCITS 452-2008], “Information technology - AT Attachment 8 - ATA/ATAPI Command Set

(ATA8-ACS)”

[7]. Trusted Computing Group (TCG), “TCG Storage Interface Interactions Specification”, Version 1.0,
Revision 1.0

1.8 Definition of Terms

Term Definition

IF-RECV

An interface command used to retrieve security protocol data from
the TPer. Reference the Core Specifiacation [2]

IF-SEND

An interface command used to transmit security protocol data to the
TPer. Reference the Core Specifiacation [2]

Locking SP
A security provider that incorporates the Locking Template. The
Locking Template is defined in the Core Specification. [2]

SSC
Security Subsystem Class [2] specifications describe profiled sets of
TCG functionality

TCG Reset A high-level reset type defined in the Core Specification. [2]

TPer
The TCG security subsystem within a storage device. Reference the
Core Specifiacation [2]

VU Parameters that are vendor unique

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 3 of 133

2 Overview
Begin Informative Content

This specification is an implementation profile for trusted storage devices commonly deployed within
Enterprise-class systems. It provides storage device implementation requirements needed to guarantee
interoperability between storage devices from different vendors. Enterprise-class systems often deploy a
mix of cross-vendor storage devices and interoperability is therefore key, both for non-trusted and trusted
storage devices.

This specification defines a limited set of TCG Trusted Storage functionality that, combined with Full Disk
Encryption (FDE), protects the confidentiality of user data at rest. Only a single threat scenario is
addressed: removal of the storage device from its host system involving a power cycle of the storage device
and subsequent unauthorized access to data stored on that device.

This specification assumes that hosts in Enterprise systems could have limited (computational) capabilities
and/or operate within a system that has strict response time requirements. Based on this assumption, the
objective of this specification is to define strict boundaries on the host-device communication protocol and
data structures used in the TCG Storage Architecture. This prevents the host from having to maintain
security configuration information on a per storage device basis and allows it to expect similar behavior for
each SSC compliant storage device within the system.

To avoid requiring that the host perform dynamic discovery of features and values, the storage device
behavior is unambiguously defined, and as such creation and deletion of tables and/or rows within tables is
not required. This specification defines 2 SPs, the tables that are host-accessible within each SP, and the
values within each table. The SPs and tables MAY be present in the storage device when it leaves
manufacturing, See section 8.1.

This specification addresses a limited set of use scenarios. These scenarios are:

• Deploy storage device & Take Ownership: the device is integrated into its target system and
ownership transferred by actively setting or changing the device’s owner credential.

• Activate or Enroll Device: LBA ranges are configured, data encryption and access control credentials
(re)generated and/or set on the storage device.

• Lock & Unlock Device: active unlocking of one or more LBA ranges by the host and locking of those
ranges under host control via either an explicit lock or implicit lock triggered by a reset event.

• Repurpose & End-of-Life: erasure of data within one or more LBA ranges and reset of locking
credential(s) for storage device repurposing or decommissioning.

End Informative Content

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 4 of 133

3 SSC Features and Capability Definitions

3.1 Interface Communications Protocol
An Enterprise SSC-compliant storage device SHALL implement the synchronous communications protocol
(see section 4.4) using the SCSI (T10) or ATA (T13) defined security protocol commands. This SSC's
implementation of the synchronous communications protocol calls for a single ComPacket / Packet /
Subpacket combination per interface command and defines two Active ComIDs for communications using
ComPackets.

3.2 Cryptographic Features
The storage device SHALL implement Full Disk Encryption for all host accessible user data stored on
media. The storage device SHALL support AES 128 or AES 256 (see [4]).

3.3 Authentication
The storage device SHALL support password authorities and authentication with a maximum credential
password size of 32-bytes.

3.4 Table Management
The tables and table rows required by this specification MAY be present in the storage device when the
device leaves the manufacturer. The creation or deletion of tables in SPs post-manufacturing is outside the
scope of this specification. The creation or deletion of rows in tables post-manufacturing is outside the
scope of this specification.

3.5 Issuance
The SPs required by this specification MAY be present in the storage device when the storage device
leaves the manufacturer. The issuance of SPs post-manufacturing is outside the scope of this specification.

3.6 SSC Discovery
Discovery is a process for the Host to examine the storage device’s configurations and capabilities.

3.6.1 Discovery levels

Discovery is a process used to determine the capabilities of the TPer.

• Level 0: This discovery request is sent as an IF-RECV command. See appendix 10.2.14. The
Security Protocol SHALL be 0x01 and the ComID SHALL be 0x0001. The TPer SHALL support
the requirements in 3.6.2.

• Level 1: These TCG methods request basic TPer capabilities (i.e. via Properties) using simple
host messaging requirements. The required support is defined in this specification.

• Level 2: TCG methods retrieve specified table cell values. The required support is defined in this
specification.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 5 of 133

3.6.2 Level 0 Discovery

The TPer SHALL support the LEVEL 0 DISCOVERY response data format defined in 10.2.14.

3.6.2.1 TPer feature

The TPer SHALL return the TPer Feature in the Level 0 Discovery response with:

Feature Code = 0x0001
Version = 0x1 or any version that supports the defined features in this SSC.
Length = 0x0C
SyncSupported = 1
StreamingSupported = 1

3.6.2.2 Locking Feature

The TPer SHALL return the Locking Feature in the Level 0 Discovery response with:

The Feature Code = 0x0002
Version = 0x1 or any version that supports the defined features in this SSC.
Length = 0x0C
LockingSupported = 1
MediaEncryption = 1

3.6.2.3 Enterprise SSC Feature

The TPer SHALL return the Enterprise feature in the Level 0 Discovery response.

Table 1 - Enterprise SSC Descriptor Format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
Feature Code

(LSB)

2 Version Reserved

3 Length

4 (MSB)

5
Base ComID

(LSB)

6 (MSB)

7
Number of ComIDs

(LSB)

8 Reserved for future common SSC parameters
Range

Crossing

 9 - 19 Reserved for future common SSC parameters

The TPer SHALL support:

Feature Code = 0x0100
Version = 0x1 or any version that supports the defined features in this SSC.
Length = 0x10
Base ComID = base ComID supported by the TPer (e.g., 0x07FE)
Number of ComIDs = 0x0002 min

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 6 of 133

Range Crossing = VU 0 = The Storage device supports commands addressing consecutive
 LBAs in more than one LBA range if all the LBA ranges addressed are
 unlocked. See 8.3.10.
1 = The storage device terminates commands addressing consecutive
 LBAs in more than one LBA range. See 8.3.10.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 7 of 133

4 Communications

4.1 Communication Properties
The TPer SHALL support fixed size communication buffers with a minimum size of 1024 bytes each. The
number of buffers SHALL be sufficient to support concurrent communications with each ComID and/or open
session as supported by the TPer, whichever is greater.

For each ComID, the physical size of the buffers SHALL be reported to the host via the Properties method

(see section 6.2.1.1).

The TPer SHALL terminate any IF-SEND command whose transfer length is greater than the reported
MaxComPacketSize size for the corresponding ComID. For details, reference “Invalid Transfer Length
parameter on IF-SEND” in the Storage Interface Interactions Specification [7].

Data generated in response to methods contained within an IF-SEND command payload subpacket
(including the required ComPacket / Packet / Subpacket overhead data) SHALL fit entirely within the
response buffer. If the method response and its associated protocol overhead do not fit completely within
the response buffer, the TPer

1) SHALL terminate processing of the IF-SEND command payload,
2) SHALL NOT return any part of the method response if the Sync Protocol is being used, and
3) SHALL return an empty response list with a TCG status code of RESPONSE_OVERFLOW in that

method’s response status list.

4.2 Supported Security Protocols
The TPer SHALL support IF-RECV commands with a Security Protocol values of 0x00, 0x01 and 0x02.
The TPer SHALL support IF-SEND commands with a Security Protocol values of 0x01 and 0x02.

If the host sends an IF-SEND or IF-RECV to an unsupported Security Protocol, the TPer SHALL terminate
the command as defined in the Storage Interface Interactions Specification. Reference “Invalid Security
Protocol ID parameter” in [7].

For an IF-RECV command with Security Protocol set to 0x00 and Security Protocol Specific set to 0x0000
(Return list of supported protocols), the TPer SHALL respond in accordance to the SCSI (see [5]) or ATA
(see [6]) specifications for Security Protocol In and Trusted Receive.

For an IF-RECV command with Security Protocol set to 0x00 and Security Protocol Specific set to 0x0001
(Return a certificate), the TPer SHALL respond in accordance to the SCSI (see [5]) or ATA (see [6])
specifications for Security Protocol In and Trusted Receive.

For an IF-RECV command with Security Protocol set to 0x01 and Security Protocol Specific set to 0x0001
(Level 0 Discovery), the TPer SHALL return one or more 512-byte blocks that describe the attributes of the
TCG security protocol corresponding to Security Protocol 0x01. The return data structure SHALL comply to
the requirements in 3.6.2.

The TPer SHALL support IF-SEND and IF-RECV commands with Security Protocol set to 0x02 for the
Protocol Stack Reset Command function defined in appendix 10.2.19. If the host sends an IF-SEND with
Security Protocol set to 0x02 and an invalid or unsupported Request code in the payload, the TPer SHALL
prepare a response with "No Response Available" as defined in appendix 10.2.19.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 8 of 133

4.3 ComIDs
For the purpose of communication using Security Protocol 0x01, the TPer SHALL support:.

• ComIDs values 0x07FE and 0x07FF and Extended ComID values 0x07FE0000 and 0x07FF0000
for communications using the Synchronous Protocol, and

• ComID value 0x0001 for Device Level 0 Discovery. See section 3.6 and appendix 10.2.14.

Mandatory ComIDs SHALL be Active (in the “Issued” or “Associated” state).

If the host uses an inactive or unsupported ComID in an IF-SEND or IF-RECV, the TPer SHALL respond as
defined in appendix 10.2.21.

4.4 Synchronous Protocol
The TPer SHALL support the Synchronous Protocol for communications using ComPackets.

4.4.1 Protocol States and State Transitions

Figure 1 describes the synchronous protocol states and state transitions.

Figure 1– Synchronous Protocol Stack State Diagram

This specification defines the following protocol states for each valid ComID:

State “Power-Off” – In this state, power is removed from the TPer and it is completely unresponsive.

State “Awaiting IF-SEND” – In this state, the TPer command interface is ready and there are no

outstanding IF-SEND/IF-RECV commands for the specified ComID. A command is “outstanding” if it has
entered the “Processing” or “Awaiting IF-RECV” state. A command is not considered “outstanding” if it is
sitting in the TPer command queue awaiting initial processing by the device.

While in this state, if IF-SEND is received or dequeued with the ComID for this state machine, the TPer
MAY request command payload transfer and SHALL return interface status to the host.

While in this state, if IF-RECV is received or dequeued with the ComID for this state machine, the TPer
SHALL return a response ComPacket the specified ExtendedComID with the Length, OutstandingData, and
MinTransfer fields set per “All Response(s) returned – no further data” defined in 10.2.12.

State “Processing” – In this state, the TPer has begun processing the payload of an IF-SEND command.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 9 of 133

While in this state, the TPer SHALL terminate any received or dequeued IF-SEND commands as defined in
the Storage Interface Interactions Specification [7] “Synchronous Protocol Violation”.

While in this state, the TPer SHALL return a response ComPacket for any received or dequeued IF-RECV
commands for the specified ExtendedComID with the Length, OutstandingData, and MinTransfer fields set
per “Response(s) to come, no Response(s) available” defined in 10.2.12.

State “Awaiting IF-RECV” – The TPer has completely processed the TCG data payload and has the

associated TCG response ready for retrieval by the host.

While in this state, if IF-RECV is received or dequeued with the ComID for this state machine and a
transfer length less than the amount of response data staged for the ComID, the TPer SHALL return a
response ComPacket for the specified ExtendedComID with the Length, OutstandingData, and MinTransfer
fields set per “Response ready, insufficient transfer length request” defined in 10.2.12.

While in this state, the TPer SHALL terminate any received or dequeued IF-SEND command with a status
as defined in the Storage Interface Interactions Specification [7] “Synchronous Protocol Violation”.

This specification defines the following protocol state transitions for each valid ComID:

“Power Off : Awaiting IF-SEND” - This transition occurs automatically when the TPer is powered on.

“Awaiting IF-SEND : Processing” - This transition occurs when an IF-SEND command with the ComID

associated with this state machine is received or dequeued and successfully completes data transfer of the
command payload.

 “Awaiting IF-SEND : Power Off” - This transition occurs when the TPer is powered off.

 “Processing : Awaiting IF-SEND” - This transition occurs when the TPer receives:

• an interface initiated TCG reset (see 4.5.1),

• a Protocol Stack Reset Command for the ComID of this state machine (see 4.5.2), or

• when the TPer detects an error in the IF-SEND payload that prevents the TPer from resolving an
intended session for the IF-SEND command payload (see section 4.4.2.3) .

 “Processing : Awaiting IF-RECV” - This transition occurs when the TPer has completely processed the

contents of the IF-SEND command and has a complete response available for retrieval by the host. A
separate response MAY be generated for each method in the IF-SEND.

 “Processing : Power Off” - This transition occurs when the TPer is powered off.

“Awaiting IF-RECV : Awaiting IF-SEND” - This transition occurs when the TPer receives:

• an interface initiated TCG reset (see 4.5.1),

• a Protocol Stack Reset Command for the ComID of this state machine (see 4.5.2),

• an IF-RECV able to retrieve the entire response resulting from the IF-SEND, or

• an IF-RECV for the last of multiple responses resulting from the IF-SEND.

“Awaiting IF-RECV : Power Off” - This transition occurs when the TPer is powered off.

“Awaiting IF-RECV : Processing” - This transition occurs when the IF-SEND contained multiple method

invocations, the TPer is preparing a separate response for each method, an IF-RECV able to retrieve the

the current response was received and additional methods need to be processed.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 10 of 133

4.4.2 Payload Encoding

4.4.2.1 Stream Encoding Modifications

The TPer SHALL support tokens listed in Table 2. If an unsupported token is encountered, the TPer SHALL
treat this as a streaming protocol violation and return an error per the definition in section 4.4.2.3.

Table 2 – Supported Tokens

Acronym Meaning

 Tiny atom

 Short atom

 Medium atom

 Long atom

SL Start List

EL End List

SN Start Name

EN End Name

CALL Call

EOD End of Data

EOS End of session

ST Start transaction

ET End of transaction

For supported atom tokens the TPer SHALL support token atoms with the B bit set to 0 or 1 and the S bit
set to 0.

4.4.2.2 TCG Packets

Within a single IF-SEND/IF-RECV command, the TPer SHALL support a ComPacket containing one
Packet, which contains one Subpacket. Host MAY discover TPer support of capabilites beyond this

requirement in the parameters returned in response to a Properties method.

The TPer MAY ignore Credit Control Subpackets sent by the host. The host MAY discover TPer support of
Credit Management with Level 0 Discovery. See section 3.6.2.

The TPer MAY ignore the AckType and Acknowledgement fields in the Packet header on commands from
the host and set these fields to zero in its responses to the host. The host MAY discover TPer support of
the TCG packet acknowledgement/retry mechanism with Level 0 Discovery. See section 3.6.2.

The TPer MAY ignore TCG packet sequence numbering and not enforce any sequencing behavior. The
discovery of TPer packet sequence numbering.support is outside the scope of this SSC.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 11 of 133

4.4.2.3 Payload Error Response

The TPer SHALL respond according to the following rules if it encounters a streaming protocol violation:

• If the error is on Session Manager or is such that the TPer cannot resolve a valid session ID from the
payload (i.e. errors in the ComPacket header or Packet header), then the TPer SHALL discard the
payload and immediately transition to the “Awaiting IF-SEND” state.

• If the error occurs after the TPer has resolved the session ID, then the TPer SHALL close the session
and prepare a CloseSession method for retrieval by the host.

4.5 Storage Device Resets

4.5.1 Interface Resets

Interface resets that generate TCG reset events are defined in the Storage Interface Interactions
Specification [7] “Reset Mapping”.
Interface initiated TCG reset events SHALL result in:

1. All open sessions SHALL be aborted;

2. All uncommitted transactions SHALL be aborted;

3. All pending session startup activities SHALL be aborted;

4. All TCG command and response buffers SHALL be invalidated;

5. All related method processing SHALL be aborted;

6. For each ComID, the state of the synchronous protocol stack SHALL transition to “Awaiting IF-
SEND” state;

7. No notification of these events SHALL be sent to the host.

4.5.2 Protocol Stack Reset Commands

An IF-SEND containing a Protocol Stack Reset Command SHALL be supported as defined in appendix
10.2.19.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 12 of 133

5 Data Types
The TPer SHALL support TCG streaming protocol as defined in the Core Specification [2] as modified by
TCG Stream Typing Removal Proposal (see appendix 10.2.2).

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 13 of 133

6 Session Manager

6.1 Session Timeouts
During session startup, if the host specifies a timeout outside of the supported TPer timeout interval, the

TPer rejects the session startup command and returns a failed SyncSession method call with TCG status

INVALID_PARAMETER.

6.2 Session Manager Method Requirements
TPer support for the Session Manager method in Table 3.

Table 3 – Session Manager Methods

Method Name Method Type

Properties Session Manager

StartSession Session Manager

SyncSession Session Manager

CloseSession Session Manager

6.2.1 Session Manager Methods

6.2.1.1 Properties

The TPer SHALL implement the Properties method with the constraints stated in this subsection.

When a Properties method is received, the TPer SHALL return the following parameters:

MaxPacketSize = min 1024 bytes - 20 bytes (ComPacket Hdr)
MaxComPacketSize = min 1024 bytes
MaxResponseComPacketSize = min 1024 bytes
MaxSessions = min 1
MaxIndTokenSize = min 256 bytes
MaxAuthentications = min 2
MaxTransactionLimit = min 1

The TPer SHALL ignore any parameters not supported by the TPer when the host tries to set its value and
not include it nor its value in the return data (behavior specified in the Core Specification [2]).

The TPer shall return all property name/value pairs for capabilities that it supports. For capabilities not
supported by the TPer (e.g,, Read-Only sessions), the associated property name/value pair (in this case,
MaxReadSessions) shall be omitted from the TPer's response.

6.2.1.2 StartSession

The TPer SHALL implement the StartSession method with the constraints stated in this subsection.

TPer support of the following parameters is mandatory:

• HostSessionID

• SPID

• Write (support of Write = True mandatory)

Attempts to use unsupported parameters SHALL result in a SyncSession response with TCG status
INVALID_PARAMETER.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 14 of 133

6.2.1.3 SyncSession

The TPer SHALL implement the SyncSession method with the constraints stated in this subsection.

Device support of the following parameters is mandatory:

• HostSessionID

• SPSessionID

6.2.1.4 CloseSession

The CloseSession method on the session manager SHALL only be invoked by the TPer in response to an

erroneous IF-SEND from the host.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 15 of 133

7 Templates

7.1 Definitions
For the purpose of this section, the following definitions SHALL apply:

• The TPer returns an INVALID_COMMAND TCG status when the host attempts to invoke a method
designated “Excluded”.

• The TPer returns a NOT_AUTHORIZED TCG status when the host attempts to invoke a method on a
table/object not permitted by the access control definitions.

7.2 Supported Templates
The TPer SHALL support the following modified templates:

• Base

• Admin

• Locking

• Crypto

7.2.1 TPer Template Requirements

The template requirements in Table 4 are mandatory.

Table 4 – TPer Templates

Template Name
SSC Reference
Section

Minimum Number
Instantiable

Maximum
Number
Instantiable

Admin Section 7.4 1 1

Base Section 7.3 2 VU

Locking Section 7.5 1 1

Crypto Section 7.6 2 VU

7.3 Base Template
This subsection defines the modified Base Template as applicable for this specification.

7.3.1 Base Template Table Requirements

Support for the Base Template table access requirements in Table 5 is mandatory.

Table 5 – Base Template Tables

Table Name Table Type

Authority Object

C_PIN Object

7.3.2 Base Template Method Requirements

Support for the Base Template method requirements in Table 6 is mandatory.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 16 of 133

Table 6 – Base Template Methods

Method Name Method Type

Get Object

Set Object

Next Table

Authenticate SP

GetACL Table

7.3.3 Base Template Method Details

7.3.3.1 Get

The UID for the Get method is: = 00 00 00 06 00 00 00 06

The TPer SHALL implement the Get method with the constraints stated in section 5 and modified according

to the below definition:

TableUID.Get [

ObjectUID.Get [

 Cellblock : cell_block,

ParamCheck = boolean]

=>

[Result : get_result,

ParamCheck = uinteger_2]

Method behavior is modified as follows:

The host MAY use the ParamCheck parameter to request a check value for a PIN credential value in the

Get method result.

If the ParamCheck parameter value is True, the TPer SHALL perform a check value calculation as defined
in section 7.3.3.3 on the result values portion of the method return result. The check value is returned as
the ParamCheck portion of the method result.

If the ParamCheck parameter is omitted or if its value is False, the ParamCheck portion of the method
result SHALL be omitted and only the contents of the requested Cellblock returned.

If the get_result contains no data, the TPer shall not return the ParamCheck Name-Value pair.

For a Get method example of ParamCheck calculations, see appendix 11.2.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 17 of 133

7.3.3.2 Set

The UID for the Set method is: = 00 00 00 06 00 00 00 07

The TPer SHALL implement the Set method with the constraints stated in section 5 and modified according

to the below definition:

Table.Set [

Object.Set [

 Where : cell_block,

Values : set_values,

 ParamCheck = uinteger_2]

=>

[]

Method behavior is modified as follows:

The host SHALL be required to provide at least one value to set in the "Values" parameter. In the absence
of any Values, the TPer SHALL return INVALID_PARAMETER.

For Byte and Array tables, the TPer MAY ignore EndRow in the Where parameter.

For Array tables, Object tables, and Objects, the TPer MAY ignore StartColumn and EndColumn in the
Where parameter.

The host MAY use the ParamCheck parameter to provide a check value for a PIN credential value.

If the ParamCheck parameter is supplied, the TPer SHALL first perform a calculation as defined in section
7.3.3.3. The TPer SHALL compare its computed value with that supplied in the ParamCheck parameter. If
the TPer computed value matches the supplied ParamCheck value, then the device SHALL continue

execution of the Set method. If the TPerTPer’s computed value does not match the supplied ParamCheck

value, then the method SHALL fail with TCG status INVALID_PARAMETER.

The TPer SHALL NOT calculate nor validate a check when the ParamCheck parameter value is omitted.

For a Set method example of ParamCeck calculations, see appendix 11.1.

.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 18 of 133

7.3.3.3 Check Value Algorithm

The TPer SHALL implement the ParamCheck Longitudinal Redundancy Check (LRC) for Get and Set

method calls on a PIN value. The LRC word size is 16-bits and the seed (initial value) is 0x5056.

Only the PIN parameter value is used for the LRC calculation. Tokens, names and ParamCheck parameter
are not input to the LRC calculation.

Words are input to the LRC calculation in stream order, i.e. in Big Endian order.

If a PIN parameter is not an even number of bytes in length, a pad byte of 0x00 is prepended as the MSB.

The calculation algorithm is:

• Initialize the LRC calculation (initial value 0x5056)

• For value in list of values
o Convert value into its TCG byte representation using minimal width stream encoding
o Discard any bytes associated with TCG token headers
o If sizeof(value) is not a multiple of 2

• Prepend one byte equal to 0x00 to the MSB of the value
o Feed value into the LRC calculation

• Get final LRC result

In pseudo code, the above MAY be expressed as:

lrc = 0x5056 // Initialize LRC
for value in values // ‘values’ represents all values from any name/value
 // pairs in the Values parameter of the Set method
 // or in the get_result of the Get method.
 bytes = value.tcg_encode() // Convert value to its TCG encoding
 bytes = bytes.strip_tcg_header() // Remove TCG token headers
 if len(bytes) modulo 2 != 0
 bytes = bytes.prepend(0x00)
 // What follows is the heart of the LRC calculation…
 for word in bytes // ‘word’ is 2 bytes
 lrc = lrc xor word
return lrc

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 19 of 133

7.4 Admin Template
This subsection defines the modified Admin Template as applicable for this specification.

7.4.1 Admin Template Table Requirements

There are no Admin Template table requirements.

7.4.2 Admin Template Method Requirements

There are no Admin Template method requirements.

7.5 Locking Template
This subsection defines the modified Locking Template as applicable for this specification.

7.5.1 Locking Template Table Requirements

The Locking Template table access requirements in Table 7 are mandatory.

Table 7 - Locking Template Tables

Table Name Table Type

LockingInfo Array

Locking Object

7.5.2 Locking Template Method Requirements

The following Locking Template method requirements in Table 8 are mandatory.

Table 8 - Locking Template Methods

Method Name Method Type Requirement

Erase Object Mandatory

7.5.3 Locking Template Method Details

7.5.3.1 Erase

The UID for the Erase method is: 00 00 00 06 00 00 08 03

The Erase method is specific for this specification and SHALL be supported by the device. This method is

used to cryptographically erase user data within a specific LBA Range and to reset the access control
(‘Locking”) of that LBA Range.

The Erase method is an object method and is defined as:

LockingObjectUID.Erase []

=>

[].

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 20 of 133

When invoked, the method’s side effects are:

• The TPer SHALL eradicate the current data encryption key for the LBA Range managed by the
Locking object on which the method is invoked;

• The TPer SHALL generate a new data encryption key for the LBA Range managed by the Locking
object on which the method is invoked;

• The TPer SHALL reset the ReadLockEnabled, WriteLockEnabled, ReadLocked, and WriteLocked

column values to “False” for the Locking object on which the method is invoked;

• The TPer SHALL set the associated BandMaster credential to the MSID Credential value (see
appendix 9) and, when applicable, set Tries to zero.

• The TPer SHALL NOT change RangeStart and RangeLength.

The method call fails with TCG SWG status NOT_AUTHORIZED if:

• The referenced object does not exist;

• The referenced object is not an object stored in the Locking Table.

7.6 Crypto Template
This subsection defines the modified Crypto Template as applicable for this specification.

7.6.1 Crypto Template Table Requirements

There are no Crypto Template table requirements.

7.6.2 Crypto Template Method Requirements

The Crypto Template methods access requirements in Table 9 are mandatory.

Table 9 - Crypto Template Methods

Method Name Method Type

Random SP

7.6.3 Crypto Template Method Details

7.6.3.1 Random

The TPer SHALL implement the Random method with the constraints stated in this subsection. TPer

support of the following parameters is mandatory:

• Count

Attempts to use unsupported parameters SHALL result in a method failure response with TCG status
INVALID_PARAMETER.

The TPer SHALL support Count parameter values less than or equal to 32.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 21 of 133

8 SP Implementation Details

8.1 SP life cycle
Enterprise SSC-compliant TPers in which SPs are created in manufacturing SHALL conform to the life
cycle defined in this section.

SPs created in manufacturing in an Enterprise SSC-compliant TPer SHALL support the "Manufactured"
state as defined in this specification. Other SP states and their state-specific implications are outside the
scope of this specification and considered vendor specific.

The "Manufactured" state is the standard operational state of an SP created in the manufacturing process,
which defines the initial required access control settings and preconfigurations of an SP based on the
Templates incorporated into the SP, prior to personalization.

For Enterprise SSC-compliant TPers that support issuance, refer to the Core Specification [2] for the life
cycle states and life cycle management. The Core Specification [2] describes the life cycle states for SPs
that are created through the issuance process. TPer requirements attendant to issuance are outside the
scope of this document.

8.2 Admin SP
This subsection defines specific requirements as applicable to the Admin SP.

The Admin SP SHALL instantiate the Base Template, Admin Template and Crypto Template subject to
requirements in section 7 of this specification.

8.2.1 Authorities & Credentials

The Admin SP SHALL implement the Anybody, Admins, Makers, and SID Authorities.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 22 of 133

8.2.1.1 Authority table

Table 10 - Admin SP Authority table

UID Name
Common

Name
IsClass Class Enabled Secure

HashAnd
Sign

Present
Certificate

►

00 00 00 09
00 00 00 01

"Anybody" "Anybody" FALSE Null TRUE None None FALSE a

00 00 00 09
00 00 00 03

"Makers" "Maker" TRUE Null TRUE None None FALSE b

00 00 00 09
00 00 00 06

"SID" "TPerOwner" FALSE Null TRUE None None FALSE c

Continued

► Operation Credential
Response

Sign
Response

Exch
Clock
Start

Clock
End

Limit Uses Log LogTo

a None Null Null Null <date_0_value> <date_0_value> 0 0 None Null

b None Null Null Null <date_0_value> <date_0_value> 0 0 None Null

c Password
00 00 00 0B
00 00 00 01

Null Null <date_0_value> <date_0_value> 0 0 None Null

8.2.1.2 Credential Table Group (C_PIN) table

The Admin S P C_PINs are defined in Table 11. PIN values are a maximum size of 32-bytes each.

Table 11 - Admin SP C_PIN table

UID Name
Common

Name
PIN CharSet TryLimit Tries Persistence

00 00 00 0B
00 00 00 01

"SID" "" <PIN0_value> Null VU VU VU

00 00 00 0B
00 00 84 02

"MSID” "" <PIN1_value> Null VU VU VU

This specification defines a SSC specific non-changeable PIN known as MSID. This PIN value SHALL be
set at manufacturing time and MAY be used as an initial value for other PIN authority credential values on
the device.

The SID PIN value SHALL be equal to the MSID Credential value at manufacturing time. Refer to section

9.1 for an informal discussion on the role of MSID Credential.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 23 of 133

8.2.2 ACE table

The ACE definitions in Table 12 are required for compliance to this specification. The text in parentheses is
only to provide clarification.

Table 12 - Admin SP ACE table

UID Name
Common

Name
Boolean

Expr
RowStart RowEnd ColStart ColEnd

00 00 00 08
00 00 00 01

"Anybody" ""
00 00 00 09 00 00 00 01

(Anybody)
Null Null "" ""

00 00 00 08
00 00 00 03

"Makers" ""
00 00 00 09 00 00 00 03

(Makers)
Null Null "" ""

00 00 00 08
00 00 02 01

"SID" ""
00 00 00 09 00 00 00 06

(SID)
Null Null "" ""

00 00 00 08
00 00 8C 03

"SID_SetSelf" ""
00 00 00 09 00 00 00 06

(SID)
Null Null "PIN" "PIN"

00 00 00 08
00 00 8C 04

"MSID_Get" ""
00 00 00 09 00 00 00 01

(Anybody)
Null Null "PIN" "PIN"

00 00 00 08
00 00 8C 05

"SID_Set
Makers"

""
00 00 00 09 00 00 00 06

(SID)
Null Null "Enabled" "Enabled"

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 24 of 133

8.2.3 AccessControl table

The access control definitions in Table 13 are required for compliance to this specification. The text in

parentheses is presented only for clarification. The CommonName fields in Table 13 are only for clarification

and MAY exceed the length limit for names.

Table 13 - Admin SP AccessControl table

R
o

w

N
u

m
b

e
r

U
ID

InvokingID MethodID CommonName ACL

L
o

g

A
d

d
A

C
E

A
C

L

R
e
m

o
v
e
A

C

E
A

C
L

GetACL
ACL

VU VU
00 00 00 00
00 00 00 01

(ThisSP)

00 00 00 06
00 00 00 0C

(Authenticate)

Anybody-
Authenticate-

AdminSP

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

VU VU
00 00 00 09
 00 00 00 00

(Authority table)

00 00 00 06
00 00 00 08

(Next)

Makers-Next-
Authority table

00 00 00 08
00 00 00 03

(Makers)
None Null Null

00 00 00 08
00 00 00 03

(Makers)

 VU VU

00 00 00 09
00 00 00 01

(Anybody Authority
object)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
Anybody Authority

Object

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

 VU VU

00 00 00 09
00 00 00 03

(Makers Authority
object)

00 00 00 06
00 00 00 06

(Get)

Makers-Get-
Makers Authority

Object

00 00 00 08
00 00 00 03

(Makers)
None Null Null

00 00 00 08
00 00 00 03

(Makers)

 VU VU

00 00 00 09
00 00 00 06

(SID Authority
object)

00 00 00 06
00 00 00 06

(Get)

SID-Get-SID
Authority Object

00 00 00 08
00 00 02 01

(SID)
None Null Null

00 00 00 08
00 00 02 01

(SID)

 VU VU
00 00 00 0B
00 00 00 00

(C_PIN table)

00 00 00 06
00 00 00 08

(Next)

Makers-Next-
C_PIN table

00 00 00 08
00 00 00 02

(Makers)
None Null Null

00 00 00 08
00 00 00 02

(Makers)

 VU VU
00 00 00 0B
00 00 00 01

(SID C_PIN object)

00 00 00 06
00 00 00 07

(Set)

SID_SetSelf-Set-
SID_C_PIN object

00 00 00 08
00 00 8C 03

(SID_SetSelf)
None Null Null

00 00 00 08
00 00 02 01

(SID)

 VU VU

00 00 00 0B
00 00 84 02

(MSID C_PIN
object)

00 00 00 06
00 00 00 06

(Get)

MSID_Get-Get-
MSID C_PIN

Object

00 00 00 08
00 00 8C 04
(MSID_Get)

None Null Null
00 00 00 08
00 00 02 01

(SID)

 VU VU

00 00 00 09
 00 00 00 03

Makers Authority
Object

00 00 00 06
00 00 00 07

(Set)

SID_Set Makers -
Set-Makers

Authority Object

00 00 00 08
00 00 8C 05

(SID_Set
Makers)

None Null Null
00 00 00 08
00 00 02 01

(SID)

 VU VU
00 00 00 00
00 00 00 01

(ThisSP)

00 00 00 06
00 00 06 01
(Random)

Anybody-Random
00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 25 of 133

8.3 Locking SP
This subsection defines specific requirements for the Locking SP.

The SPID for the Locking SP is 00 00 02 05 00 01 00 01.

The Locking SP SHALL instantiate the Base Template, Locking Template and Crypto Template subject to
constraints set forth in section 7 of this specification.

8.3.1 Locking SP authorities

Each LBA range has an associated authority allowing an authorized entity to manage the associated LBA
Range. Management includes locking and unlocking of that range, enabling or disabling Range locking, and
setting both start LBA and size of the range. The Authority table contains rows only for supported locking
ranges.

Table 14 - Locking SP Authority table

UID Name CommonName IsClass Class Enabled Secure
HashAnd

Sign
Present

Certificate ►

00 00 00 09
00 00 00 01

"Anybody" "Anybody" FALSE Null TRUE None None FALSE a

00 00 00 09
00 00 80 01

"BandMaster0" "BandMaster" FALSE

00 00 00 09
00 00 84 03

(BandMasters)

TRUE None None FALSE b

00 00 00 09
00 00 80 02

"BandMaster1" "BandMaster" FALSE

00 00 00 09
00 00 84 03

(BandMasters)

TRUE None None FALSE c

● ● ● ● ● ● ● ● ● -

00 00 00 09
00 00 84 00

"BandMaster
1023"

"BandMaster" FALSE

00 00 00 09
00 00 84 03

(BandMasters)

TRUE None None FALSE d

00 00 00 09
00 00 84 01

"EraseMaster" "EraseMaster" FALSE Null TRUE None None FALSE e

00 00 00 09
00 00 84 03

"BandMasters" "BandMasters" TRUE Null TRUE None None FALSE f

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 26 of 133

Continued

► Operation Credential
Response

Sign
Response

Exch
Clock
Start

Clock
End

Limit Uses Log LogTo

a None Null Null Null <date_0_value> <date_0_value> 0 0 None Null

b Password

00 00 00 0B
00 00 80 01

(BandMaster0
“PIN”)

Null Null <date_0_value> <date_0_value> 0 0 None Null

c Password

00 00 00 0B
00 00 80 02

(BandMaster1
“PIN”)

Null Null <date_0_value> <date_0_value> 0 0 None Null

- ● ● ● ● ● ● ● ● ● ●

d Password

00 00 00 0B
00 00 84 00
(BandMaster
1023 “PIN”)

Null Null <date_0_value> <date_0_value> 0 0 None Null

e Password

00 00 00 0B
00 00 84 01

(EraseMaster
“PIN”)

Null Null <date_0_value> <date_0_value> 0 0 None Null

f Password Null Null Null <date_0_value> <date_0_value> 0 0 None Null

8.3.1.1 BandMaster0 Authority

BandMaster0 SHALL be associated with the Global_Range; each additional Range SHALL have a
dedicated BandMaster authority. The BandMaster authorities are defined in Table 14.

8.3.1.2 EraseMaster Authority

The EraseMaster authority is defined in Table 14.

Begin Informative Content

The EraseMaster is a single dedicated authority used to reset one or more LBA Ranges by invoking the

Erase method on the Locking object representing that Range. This is typically done for repurposing the

storage device or for recovery of a LBA Range for which the unlock credential value is lost or blocked.

End Informative Content

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 27 of 133

8.3.2 Credential Table (C_PIN)

The Locking SP C_PINs are defined in Table 15. PIN values are a maximum size of 32-bytes each. The
C_PIN table contains rows only for supported locking ranges.

Table 15 - Locking C_PIN table

UID Name CommonName PIN CharSet TryLimit Tries Persistence

00 00 00 0B
00 00 80 01

"BandMaster0" "" <PIN2_value> Null VU VU VU

00 00 00 0B
00 00 80 02

"BandMaster1" "" <PIN3_value> Null VU VU VU

● ● ● ● ● ● ● ●

 00 00 00 0B
00 00 84 00

"BandMaster
1023"

"" <PIN1025_value> Null VU VU VU

00 00 00 0B
00 00 84 01

"EraseMaster" "" <PIN1026_value> Null VU VU VU

The PIN value for all ranges SHALL be set to the MSID Credential value at manufacturing time.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 28 of 133

8.3.3 Access Control Elements

The Locking SP Access Control Elements (ACEs) are defined in Table 16. The ACE table contains rows
only for supported locking ranges.

Table 16 - Locking SP ACE table

UID Name
Common

Name
Boolean

Expr
Row
Start

Row
End

Col
Start

Col
End

00 00 00 08
00 00 00 01

"Anybody" ""
00 00 00 09 00 00 00 01

(Anybody)
Null Null "" ""

00 00 00 08
00 00 80 01

"BandMaster0" ""
00 00 00 09 00 00 80 01

(BandMaster0)
Null Null "" ""

00 00 00 08
00 00 84 01

"BandMaster0_
SetSelf"

""
00 00 00 09 00 00 80 01

(BandMaster0)
Null Null "PIN" "PIN"

00 00 00 08
00 00 88 01

"BandMaster0_
SetBand"

""
00 00 00 09 00 00 80 01

(BandMaster0)
Null Null

"ReadLock
Enabled"

"LockOn
Reset"

00 00 00 08
00 00 80 02

"BandMaster1" ""
00 00 00 09 00 00 80 02

(BandMaster1)
Null Null "" ""

00 00 00 08
00 00 84 02

"BandMaster1_
SetSelf"

""
00 00 00 09 00 00 80 02

(BandMaster1)
Null Null "PIN" "PIN"

00 00 00 08
00 00 88 02

"BandMaster1_
SetBand"

""
00 00 00 09 00 00 80 02

(BandMaster1)
Null Null "RangeStart"

"LockOn
Reset"

● ● ● ● ● ● ● ●

00 00 00 08
00 00 84 00

"BandMaster1023" ""
 00 00 00 09 00 00 84 00

(BandMaster1023
Null Null "" ""

00 00 00 08
00 00 88 00

"BandMaster1023_
SetSelf"

""
 00 00 00 09 00 00 84 00

(BandMaster1023
Null Null "PIN" "PIN"

00 00 00 08
00 00 8C 00

"BandMaster1023_
SetBand"

""
 00 00 00 09 00 00 84 00

(BandMaster1023
Null Null "RangeStart"

"LockOn
Reset"

00 00 00 08
00 00 8C 01

"EraseMaster" ""
00 00 00 09 00 00 84 01

(EraseMaster)
Null Null "" ""

00 00 00 08
00 00 8C 02

"EraseMaster_
SetSelf"

""
00 00 00 09 00 00 84 01

(EraseMaster)
Null Null "PIN" "PIN"

00 00 00 08
00 00 8C 05

"AnyMaster" ""

00 00 00 09 00 00 84 03 or
00 00 00 09 00 00 84 01

(BandMasters or
EraseMaster)

Null Null "" ""

00 00 00 08
00 00 8C 06

"BandMasters” ""
00 00 00 09 00 00 84 03

(BandMasters)
Null Null "" ""

00 00 00 08
00 02 00 01

"Anybody_
GetBand"

""
00 00 00 09 00 00 00 01

(Anybody)
Null Null "UID" "ActiveKey"

00 00 00 08
00 03 BF FF

“Get_K_AES
_Mode”

“”
00 00 00 09 00 00 00 01

(Anybody)
Null Null “Mode” “Mode”

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 29 of 133

8.3.4 AccessControl table

The Locking SP access control definitions in Table 17 are required for compliance to this specification. The
text in parentheses is presented only for clarification. The CommonName fields are not required to be

accessible by this specification and MAY exceed the length limit for names to clarify the access control. The
AccessControl table contains rows only for supported locking ranges.

Table 17 - Locking SP AccessControl table

R
o

w

N
u

m
b

e
r

U
ID

InvokingID MethodID CommonName ACL

L
o

g

A
d

d
A

C
E

A
C

L

R
e
m

o
v
e
A

C
E

A
C

L

GetACL
ACL

VU VU
00 00 00 00
00 00 00 01

(ThisSP)

00 00 00 06
00 00 00 0C

(Authenticate)

Anybody-
Authenticate-
LockingSP

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

VU VU
00 00 00 09
 00 00 00 00

(Authority table)

00 00 00 06
00 00 00 08

(Next)

Anybody-Next-
Authority table

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
00 00 8C 05
(AnyMaster)

 VU VU

00 00 00 09
00 00 00 01

(Anybody Authority
Object)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
Anybody Authority

object

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
 00 00 00 01
(Anybody)

VU VU

00 00 00 09
 00 00 84 03

(BandMasters
Authority Object)

00 00 00 06
00 00 00 06

(Get)

AnyMaster-Get-
BandMasters

Authority object

00 00 00 08
00 00 8C 05
(AnyMaster)

None Null Null
00 00 00 08
 00 00 8C 05
(AnyMaster)

 VU VU

00 00 00 09
00 00 84 01

(EraseMaster
Authority Object)

00 00 00 06
00 00 00 06

(Get)

EraseMaster-Get-
Erase Authority

object

00 00 00 08
00 00 8C 01

(EraseMaster)
None Null Null

00 00 00 08
 00 00 8C 01

(EraseMaster)

 VU VU

00 00 00 09
00 00 80 01

(BandMaster0
Authority Object)

00 00 00 06
00 00 00 06

(Get)

BandMaster0-Get-
BandMaster0

Authority object

00 00 00 08
00 00 80 01

(BandMaster0)
None Null Null

00 00 00 08
00 00 80 01

BandMaster0

. None . . .

 VU VU

00 00 00 09
00 00 84 00

(BandMaster)
1023 Authority

Object)

00 00 00 06
00 00 00 06

(Get)

BandMaster1023-
Get-

BandMaster1023
Authority object

00 00 00 08
00 00 84 00
(BandMaster

1023)

None Null Null

00 00 00 08
00 00 84 00

(BandMaster102
3)

 VU VU
00 00 00 0B
00 00 00 00

(C_PIN table)

00 00 00 06
00 00 00 08

(Next)

AnyMaster-Next-
C_PIN table

00 00 00 08
00 00 8C 05
(AnyMaster)

None Null Null
00 00 00 08
 00 00 8C 05
(AnyMaster)

 VU VU

00 00 00 0B
00 00 84 01

(EraseMaster
C_PIN object)

00 00 00 06
00 00 00 07

(Set)

EraseMaster_
SetSelf-Set-
EraseMaster
C_PIN object

00 00 00 08
 00 00 8C 02

(EraseMaster_
SetSelf)

None Null Null
00 00 00 08
00 00 8C 01

(EraseMaster)

 VU VU

00 00 00 0B
 00 00 80 01

(BandMaster0
C_PIN object)

00 00 00 06
00 00 00 07

(Set)

BandMaster0_
SetSelf-Set-

BandMaster0
C_PIN object

00 00 00 08
00 00 84 01

(BandMaster0_
SetSelf)

None Null Null
00 00 00 08
 00 00 80 01

(BandMaster0)

.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 30 of 133

R
o

w

N
u

m
b

e
r

U
ID

InvokingID MethodID CommonName ACL

L
o

g

A
d

d
A

C
E

A
C

L

R
e
m

o
v
e
A

C
E

A
C

L

GetACL
ACL

 VU VU

00 00 00 0B
00 00 84 00

(BandMaster1023
C_PIN object)

00 00 00 06
00 00 00 07

(Set)

BandMaster1023_
SetSelf-Set-

BandMaster1023
C_PIN object

00 00 00 08
00 00 88 00
(BandMaster

1023_SetSelf)

None Null Null

00 00 00 08
 00 00 84 00

(BandMaster102
3)

 VU VU
00 00 08 01
00 00 00 01

(LockingInfo table)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
LockingInfo table

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
 00 00 8C 05
(AnyMaster)

 VU VU
00 00 08 02
00 00 00 00

(Locking table)

00 00 00 06
00 00 00 08

(Next)

AnyMaster-Next-
Locking table

00 00 00 08
00 00 8C 05
(AnyMaster)

None Null Null
00 00 00 08
00 00 8C 05
(AnyMaster)

 VU VU

00 00 08 02
00 00 00 01

(Global_Range
Locking object)

00 00 00 06
00 00 00 07

(Set)

BandMaster
0_SetBand-Set-
Global_Range
Locking object

00 00 00 08
00 00 88 01
(BandMaster
0_SetBand)

None Null Null
00 00 00 08
 00 00 80 01

(BandMaster0)

.

 VU VU

00 00 08 02
00 00 04 00
(Band1023 _

Locking object)

00 00 00 06
00 00 00 07

(Set)

BandMaster1023_
SetBand-Set-
Band1023 _

Locking object

00 00 00 08
00 00 8C 00
(BandMaster

1023_SetBand))

None Null Null

00 00 00 08
00 00 84 00

(BandMaster102
3)

 VU VU

00 00 08 02
00 00 00 01

(Global_Range
Locking object)

00 00 00 06
00 00 00 06

(Get)

Anybody
_GetBand-Get-
Global_Range
Locking object

00 00 00 08
00 02 00 01
(Anybody

_GetBand)

None Null Null
00 00 00 08
00 00 80 01

(BandMaster0)

.

 VU VU

00 00 08 02
00 00 04 00
(Band1023 _

Locking object)

00 00 00 06
00 00 00 06

(Get)

Anybody
_GetBand-Get-

Band1023 _
Locking object

00 00 00 08
00 02 00 01
(Anybody

_GetBand)

None Null Null

00 00 00 08
00 00 84 00

(BandMaster102
3)

VU VU

00 00 08 02
 00 00 00 01

(Global_Range
Locking object)

00 00 00 06
00 00 08 03

(Erase)

EraseMaster-
Erase-

Global_Range
Locking object

00 00 00 08
00 00 8C 01

(EraseMaster)
None Null Null

00 00 00 08
 00 00 80 01

(BandMaster0)

.

 VU VU

00 00 08 02
00 00 04 00

(Band1023 _Range
Locking object)

00 00 00 06
00 00 08 03

(Erase)

EraseMaster-
Erase-Band1023
_Range Locking

object

00 00 00 08
 00 00 8C 01

(EraseMaster)
None Null Null

00 00 00 08
00 00 84 00

(BandMaster102
3)

VU VU
00 00 80 01
00 00 00 00
(DataStore)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
DataStore

00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

VU VU
00 00 80 01
 00 00 00 00
(DataStore)

00 00 00 06
00 00 00 07

(Set)

BandMasters-Set-
DataStore

00 00 00 08
00 00 8C 06

(BandMasters)
None Null Null

00 00 00 08
00 00 8C 06

(BandMasters)

 VU VU
00 00 00 00
00 00 00 01

(ThisSP)

00 00 00 06
00 00 06 01
(Random)

Anybody-Random
00 00 00 08
00 00 00 01
(Anybody)

None Null Null
00 00 00 08 00

00 00 01
(Anybody)

VU VU

00 00 08 05
00 00 00 01

(Global_Range_
AES_128)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
Global_Range_

AES128

00 00 00 08
00 03 BF FF

(Get_K_AES_
Mode)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 31 of 133

R
o

w

N
u

m
b

e
r

U
ID

InvokingID MethodID CommonName ACL

L
o

g

A
d

d
A

C
E

A
C

L

R
e
m

o
v
e
A

C
E

A
C

L

GetACL
ACL

. . ●

 VU VU

00 00 08 05
00 00 04 00
(Band1023_
AES_128)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
Band1023_

AES128

00 00 00 08
00 03 BF FF

(Get_K_AES_
Mode)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

VU VU

00 00 08 06
00 00 00 01

(Global_Range_
AES_256)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
Global_Range_

AES256

00 00 00 08
00 03 BF FF

(Get_K_AES_
Mode)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

. . ●

 VU VU

00 00 08 06
00 00 04 00
(Band1023_
AES_256)

00 00 00 06
00 00 00 06

(Get)

Anybody-Get-
Band1023_

AES256

00 00 00 08
00 03 BF FF

(Get_K_AES_
Mode)

None Null Null
00 00 00 08
00 00 00 01
(Anybody)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 32 of 133

8.3.5 Locking Objects Definition

The LBA Range (“Locking”) objects are defined in Table 18. The Locking table SHALL at minimum have a
single Locking object (“Global_Range”) and MAY contain one or more additional Locking objects. The
implementation of greater than 1023 locking ranges is beyond the scope of this specification.

Table 18 - Locking SP Locking table

UID Name
Common

Name
Range
Start

Range
Length

Read
Lock

Enabled

Write
Lock

Enabled

Read
Locked

Write
Locked

LockOn
Reset

►

00 00 08 02
00 00 00 01

"Global_Range" "Locking" 0 0 FALSE FALSE FALSE FALSE
Power
Cycle

a

00 00 08 02
00 00 00 02

"Band1" "Locking" 0 0 FALSE FALSE FALSE FALSE
Power
Cycle

b

● ● ● ● ● ● ● ● ● ● -

00 00 08 02
00 00 04 00

"Band1023" "Locking" 0 0 FALSE FALSE FALSE FALSE
Power
Cycle

c

Continued

► ActiveKey
1
 NextKey

ReEncrypt
State

ReEncrypt
Request

AdvKey
Mode

Verf
Mode

ContOn
Reset

Last
ReEncrypt

LBA

Last
ReEnc

Stat

General
Status

a
00 00 08 05/6
 00 00 00 01

VU VU VU VU VU VU VU VU VU

b
00 00 08 05/6
 00 00 00 02

VU VU VU VU VU VU VU VU VU

- ● ● ● ● ● ● ● ● ● ●

c
00 00 08 05/6
00 00 04 00

VU VU VU VU VU VU VU VU VU

1
 UID of K_AES_128 or K_AES_256 table row for the band

The TPer SHALL support the LockOnReset column values of "[0]" ("Power Cycle") and "[]" (the empty

set).

Begin Informative Content

Changing the size and/or location of LBA Ranges will result in loss of data.

End Informative Content

8.3.6 K_AES_128 Table

The encryption keys and mode are defined in Table 19 for Locking Objects using the AES 128 encryption
algorithm.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 33 of 133

Table 19 – K_AES _128 table

UID Name CommonName Key Mode

00 00 08 05
00 00 00 01

"Global_Range-
_AES_128"

"" VU VU

00 00 08 05
00 00 00 02

"Band1 -
AES_128"

"" VU VU

● ● ● ● ●

00 00 08 05
00 00 04 00

"Band1023_
AES_128"

"" VU VU

8.3.7 K_AES_256 Table

The encryption keys and mode are defined in Table 20 for Locking Objects using the AES 256 encryption
algorithm.

Table 20 - K_AES _256 table

UID Name CommonName Key Mode

00 00 08 06
00 00 00 01

"Global_Range-
_AES_256"

"" VU VU

00 00 08 06
00 00 00 02

"Band1 -
AES_256"

"" VU VU

● ● ● ● ●

00 00 08 06
00 00 04 00

"Band1023_
AES_256"

"" VU VU

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 34 of 133

8.3.8 LockingInfo table

The LockingInfo information is defined in Table 21

Table 21 - LockingInfo table

Row
Number

UID Name Version
Encrypt
Support

MaxRanges
Max

ReEncryptions
Keys

AvailableCfg

1
00 00 08 01
00 00 00 01

VU VU
Media

Encryption
VU VU VU

8.3.9 DataStore table

The DataStore table provides a generic non-volatile storage in the TPer for host access and modification.
TCG access control enforces write access authorization to only bandmasters but allows unconstrained read
access.

Table UID: 00 00 80 01 00 00 00 00

Name: “DataStore”

Type: Byte

Size: 1024 bytes min

Begin Informative Content

Use cases exist in which the host needs to store a limited amount of data in a TPer. Such a use case is one
where the drive is moved between different hosts and the new host needs reference information to
subsequently to get the drive unlock keys.

End Informative Content

The DataStore byte table is defined in Table 22.

Table 22 - DataStore table

Row
Number

Byte Value

0 Byte_0

● ●

n Byte_n

All bytes of the DataStore table SHALL be set to a value of 0x00 at manufacturing time.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 35 of 133

8.3.10 Device Behavior Under Locking

The storage device SHALL terminate read commands that address consecutive LBAs in one or more LBA
ranges for which ReadLockEnabled=True and ReadLocked=True.

The storage device SHALL terminate write commands that address consecutive LBAs in one or more LBA
ranges for which WriteLockEnabled=True and WriteLocked=True.

When a command is terminated due to range locking, the storage device SHALL terminate the command
with a “Data Protection Error” as defined in the Storage Interface Interactions Specification (see [7]).

If the storage device receives a read or write command that addresses consecutive LBAs in more than one
LBA range and the LBA ranges are not locked, the storage device SHALL either:

• Process the data transfer without an error,
or

• Terminate the command with “Other Invalid Command Parameter” as defined in the Storage
Interface Interactions Specification (see [7]).

The storage device's range crossing behavior SHALL be reported in Level 0 Discovery (see the 'Range
Crosing' bit in section 3.6.2.3).

The device SHALL always abort the following commands:

For SCSI commands:

• READ LONG(10);

• READ LONG(16);

• WRITE LONG(10), (WR_UNCOR = 0);

• WRITE LONG(16), (WR_UNCOR = 0).

For ATA devices:

• READ LONG (obsolete);

• WRITE LONG (obsolete);

• SCT READ LONG;

• SCT WRITE LONG.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 36 of 133

9 Appendix – MSID

9.1 Use of MSID
Begin Informative Content

The MSID Credential value is set at manufacturing time by the storage device vendor and is typically
printed on the storage device label. It represents the device’s initial storage device SID Credential value
(owner’s password) and is electronically readable over the interface by the host.

The MSID Credential value is used as an initial value for SID and an initial value for any BandMaster and
EraseMaster Credentials on the Locking SP. During enrollment, the host reads the MSID value from the
MSID Credential and uses that to authenticate and change all other Credential values on the storage
device.

Having the MSID Credential value electronically available to the host constitutes a risk to the overall
security of the device. It is therefore very important that the host executes a Take-Ownership scenario the
moment a new device is inserted into the system, whereby it

• Invokes the Erase() method on every Range on the device;

• Replaces SID, any BandMaster, and EraseMaster Credentials with host known values.

If any of the above mentioned steps fails, then the host should reject the device from the system, as it could
be compromised due to malicious behavior.

End Informative Content

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 37 of 133

10 Appendix –Core Specification proposals - Normative

10.1 Required Core Specification proposals
The proposals to change the TCG Storage Architecture Core Specification, Revision 0.9 and required for
implementation of this specification are included in this appendix.

10.2 Core Specification change proposals for this SSC specification
• Transmitting 0-Length Byte Values

• Stream Type Removal

• Authenticate Method, Authority Parameter

• Rename Method Table Name

• Anybody Authority Authentication

• Symmetric Key ChallengeResponse

• Global Locking Range Identification

• Fixed Location Optional Parameters

• Authentication Within Transactions

• Zero-Length Locking Range Handling

• Next Method

• Synchronous Communications

• TypeOr Name Removal

• Interface Level Device Discovery

• ComPacket/Packet/Subpacket Header Alignment Proposal

• Session Manager Session Number

• Next Method Behavior Modification

• K_AES media encryption key tables

• Protocol Stack Reset Command

• Properties Clarification

• Inactive or Unsupported ComID in CDB Proposal

10.2.1 Transmitting 0-Length Byte Values 0

 Start Proposal

Transmitting 0-Length Byte Values
Author: Jason Cox

Revision:

0.1 07.31.07 Start of draft

1 Goal

The goal of this proposal is:

•••• Incorporate a mechanism into the Core Specification messaging structure that allows a 0-length
byte value to be transmitted in the message stream.

2 Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 38 of 133

Currently, there is no mechanism in the TCG Storage Architecture Core Specification that allows a 0-length
byte value to be transmitted as part of the message stream. However, the max bytes type permits such a
value to be set as a valid column value.

In order to enable transmission of a 0-length byte value, one of the existing token structures must be
modified to enable it to encode a 0-length data byte value.

The Short atom, as described in section 3.2.3.2.1.2 is the smallest of the atom types that is able to encode
a bytes value. The capability to encode a 0-length byte value using this size atom is simply a matter of
changing the description of the valid length of the atom.

Note that this proposal limits 0-length values for only bytes encoded with the Short atom. 0-length integers
shall be illegal values.

2.1 Concepts

This section provides a detailed review of the concepts to be incorporated into the Core Specification.

2.1.1 Short Atom Token

Short atoms consist of a one-byte header and between 0 and 15 bytes of data.

Table 01 Short Atom Description

Header (1 byte) Data

Short Atom
byte/

integer
sign/

continued
length (0...15 bytes)

1 0 B S n n n n d ... d

The encoding is as follows:

Table 02 Short Atom Encoding

Short Atom
indicator

These two bits are set to 10b to indicate the atom is a short atom.

Byte/integer
indicator

Value Interpretation

0b The data bytes represent an integer value and the S bit indicates if that
value is signed.

1b The data bytes represent a byte sequence and the S bit indicates whether or
not this value is continued into another atom.

Sign/continued
indicator

Value Interpretation

0b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as unsigned integer data.

B==1b The data is either the complete byte sequence, or the final segment
of a continued byte sequence.

1b The interpretation of the data depends on the byte/integer indicator bit.

B==0b The data is treated as signed integer data.

B==1b The data is a non-final segment of a multi-byte continued value.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 39 of 133

Length These bits specify the length of the following data byte sequence. The permitted
range is from 0 to 15, inclusive.

2.1.2 Example Encoding

The encoding of a 0-length byte value is displayed in the following table.

Table 03 0-Length Byte Encoding

Header (1 byte) Data

Short Atom
byte/

integer
sign/

continued
length (0...15 bytes)

1 0 B S n n n n d ... d

1 0 1 0 0 0 0 0 no data

A 0-length byte value is encoded using only 1 byte:

1 0 1 0 0 0 0 0

This value would be encoded in the token stream as:

A0

 End Proposal

10.2.2 Stream Type Removal

 Start Proposal

Stream Type Removal Proposal
Author: Jason Cox

Revision:

0.1 07.26.07 Start of draft (Jason Cox)

0.2 08.10.07 Minor modifications of method signatures (Jason Cox)

0.3 08.16.07 Expanded ToC, added pagination, added Example section content, some
other modifications

1 Goal
The goals of this proposal are:

•••• To simplify the messaging structure and reduce messaging overhead by removing type identifiers
for method parameters and results.

•••• To clarify the construction of method invocations and responses in the messaging stream.

•••• To reduce the complexity and size of the Type table by removing types currently associated with
method parameters and results.

•••• To clarify column type requirements.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 40 of 133

2 Proposal
The original goal of adding type identifiers to method parameters and results was to allow implementation of
a first level type checking, possibly performed upon receipt of a method. To achieve that end, type
identifiers were added to method parameters and results.

Each different type associated with a method parameter or result was added to the Type table, which
resulted in the addition of many rows to the Type table. Due to the complexity of describing some method
parameters and results in this manner, many of the added types are complicated combinations of other
types.

This proposal defines the removal of type identifiers from the message stream (method parameters and
results), while still enabling general identifiers for method parameter types through the use of basic
interface types, and the use of types for columns. This includes the removal of method-associated types
from the Type table.

In addition, this proposal will briefly outline a possible implementation to enable first level type checking that
is possible even without the inclusion of type identifiers for method parameters and results.

2.1 Concepts
This section provides a detailed review of the concepts to be incorporated into the Core Specification.

2.1.1 Interface Types
Interface data types are introduced in Section 3.2 of the TCG Storage Core Architecture Specification. This
introduction is divided into several parts:

•••• Pseudo-Code – this section describes the formatting used in method signatures in the Core
Specification.

•••• Messaging Data Types – this section introduces two data types used for messaging – Named
values and List values.

•••• Method Parameter/Column Value Typing and Encoding – this section introduces the mechanism
defined by the Core Spec for inclusion of method parameter and result type identifiers in the
message stream.

Because of the manner in which data is encoded and transferred across the interface, the actual types used
in method parameter and result values can be described using a limited set of basic types: Byte string
values and N length integer values (either signed or unsigned). All data is transferred across the
interface as one of these two fundamental types (bytes or integers).

•••• Byte-string values are a sequence of n bytes that can be used to represent strings, blobs, bit
vectors, etc.

•••• N byte integer values are whole numbers that can be either signed or unsigned.

Due to the nature of method parameters and results, there are two additional constructs defined for
messaging that serve as grouping mechanisms for the fundamental types: Named values and List
values.

•••• Named values. The name (a byte-value) followed by its value (any messaging type). Named
values are used to send the optional parameters in method calls.

•••• List values. Zero or more values of some type, grouped into an ordered list. List values are used to
encode method parameter lists and return results.

Method parameters and results are made up of byte and (signed or unsigned) integer values that can be
grouped using Named values and List values.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 41 of 133

2.1.2 Abstract Types
Abstract types are representations of grouped interface types, or interface types that have limits on their
legal values. These representations are used primarily for documentation purposes, as part of the pseudo-
code method signatures to simplify the description of those methods.

Abstract types do not affect the operation or regular encoding of a method, nor are they used as column
types or represented in the Type table (though they may resemble some of these types in structure, name,
or both). The primary goals of the abstract type constructs are to simplify the pseudo-code description of
the methods themselves, and to provide insight into grouping using the List and Named value tokens
introduced previously.

2.1.2.1 Abstract Types definitions
The following sections describe the pseudo-code parameters that each of these abstract types represent
when they appear in a pseudo-code method signature.

2.1.2.1.1 access_control_list

An access_control_list is a list of uidrefs, specifically uidrefs to objects in the ACE table. The length of the
list is implementation/SSC-specific.

Format:

[uidref ...]

2.1.2.1.2 boolean

This abstract type is similar to an enumeration column type, and has a valid range of the integer 0 to the
integer 1, where 0 is used to represent "False" and 1 is used to represent "True".

Format:

uinteger

In the messaging stream, "False" will be represented as 0x00 and "True" will be represented as 0x01.

2.1.2.1.3 cell_block

This type represents a grouping of Named values that are used to identify a portion of a table. In
messaging, this grouping is enclosed by List value delimiters, and each component is enclosed by Named
value delimiters.

Because this is a group of Named values, its separate components are optional. However, there are
default requirements if components are omitted. These requirements are as follows:

•••• Table – this Named value has the Name "Table" and a value that is a uid to a table.

o If the value with Name "Table" is omitted, then the operation defaults to the table upon
which the method was invoked.

o Table shall be omitted if the method was invoked to operate on an object.

•••• startRow – this Named value has the Name "startRow". This Named value type can be assigned
one of two values – either a uid of an object or a RowNumber that corresponds to the RowNumber
value of an Array table row. Only one of these two values will appear in the messaging stream.
The "typeOr" identifier and accompanying curly brackets ("{", "}") have no effect on the values as
represented in the message.

o If the value with Name "startRow" is omitted and the method is invoked to operate on a
table, then the operation defaults to the first row of the table.

o The value with Name "startRow" may be omitted if the method is invoked to operate on an
object. If it is not omitted, it shall be the uid of the object on which the method is to operate,
and shall be the same as the value assigned to endRow.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 42 of 133

o If both the value with Name "startRow" and the value with Name "endRow" are included in
the type parameterization, then the value with Name "startRow" shall have the same type
(uid or uinteger) as the value with Name "endRow".

•••• endRow – this Named value has the Name "endRow". This Named value type can be assigned
one of two values – either a uid of an object or a RowNumber that corresponds to the RowNumber
value of an Array table row. Only one of these two values will appear in the messaging stream.
The "typeOr" identifier and accompanying curly brackets ("{", "}") have no effect on the values as
represented in the message.

o If the value with Name "endRow" is omitted and the method is invoked to operate on a
table, then the operation defaults to the last row of the table.

o The value with Name "endRow" shall be omitted if the method is invoked to operate on an
object. If it is not omitted, it shall be the uid of the object on which the method is to operate,
and shall be the same as the value assigned to startRow.

o If both the value with Name "startRow" and the value with Name "endRow" are included in
the type parameterization, then the value with Name "endRow" shall have the same type
(uid or uinteger) as the value with Name "startRow".

•••• startColumn – this Named value has the Name "startColumn". This Named value type has a max
bytes value that is represented by here using the name abstract type.

o If the value with Name "startColumn" is omitted, then the operation defaults to the first
column of the table or object.

•••• endColumn – this Named value has the Name "endColumn". This Named value type has a max
bytes value that is represented by here using the name abstract type.

o if the value with Name "endColumn" is omitted, then the operation defaults to the last
column of the table or object.

Format:

[Table = uid, startRow = typeOr { UID = uid, Row = RowNumber }, endRow = typeOr
{ UID = uid, Row = RowNumber }, startColumn = name, endColumn = name]

2.1.2.1.4 clock_time

This type represents a grouping of Named values that are used to identify time values, and is similar to the
column type of the same name. In messaging, this grouping is enclosed by List value delimiters, and each
component is enclosed by Named value delimiters.

Because this is a group of Named values, its separate components are optional. Components that are
omitted are considered to have a value of 0.

The components are as follows:

•••• Year – this Named value has the Name "Year" and a value that is implicitly defined as being of
uinteger of size 2. This Named value abstract type represents the year in a timestamp. Valid
values are unsigned integers ranging from 1970 to 9999

•••• Month – this Named value has the Name "Month" and a value that is implicitly defined as being of
uinteger of size 2. This Named value abstract type represents the month in a timestamp. Valid
values are unsigned integers ranging from 1 to 12, which correspond to the months of the year as
follows:

o January = 1 (0x01)

o February = 2 (0x02)

o March = 3 (0x03)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 43 of 133

o April = 4 (0x04)

o May = 5 (0x05)

o June = 6 (0x06)

o July = 7 (0x06)

o August = 8 (0x08)

o September = 9 (0x09)

o October = 10 (0x0A)

o November = 11 (0x0B)

o December = 12 (0x0C)

•••• Day – this Named value has the Name "Day" and a value that is implicitly defined as being of
uinteger of size 1. This Named value abstract type represents the day of the month in a timestamp.
Valid values are unsigned integers ranging from 1 to 31.

•••• Hour – this Named value has the Name "Hour" and a value that is implicitly defined as being of
uinteger size 1. This Named value abstract type represents the hour of the day in a timestamp.
Valid values are unsigned integers ranging from 0 to 23.

•••• Minute – this Named value has the Name "Minute" and a value that is implicitly defined as being of
uinteger size 1. This Named value abstract type represents the minute of the hour in a timestamp.
Valid values are unsigned integers ranging from 0 to 59.

•••• Seconds – this Named value has the Name "Seconds" and a value that is implicitly defined as
being of uinteger size 1. This Named value abstract type represents the second of the minute in a
timestamp. Valid values are unsigned integers ranging from 0 to 59.

•••• Fraction – this Named value has the Name "Fraction" and a value that is implicitly defined as being
of uinteger size 2. This Named value abstract type represents fractions of a second in a
timestamp, measured in milliseconds. Valid values are unsigned integers ranging from 0 to 999.

Format:

 [Year = uinteger, Month = uinteger, Day = uinteger, Hour = uinteger, Minute =
uinteger, Second = uinteger, Fraction = uinteger]

2.1.2.1.5 columns

This is a list of two lists of Named values, where the List value delimiters enclose the entire list and both
subordinate lists, and the Named value delimiters enclose each component of each subordinate list.

The Named values in both subordinate lists represent column names and their associated types. Each
Name portion of the Named value will be the host-supplied name of a column to be created in the new
table, and the associated value is the uidref to the type to be assigned for that column.

The ordering of and within the subordinate lists determines the ordering of the columns and the indexed
columns in the newly created table. The first subordinate list contains the columns whose combination of
values is required to be unique within the table. The columns described within that list are ordered "first".

The second subordinate list contains the rest of the columns of the table. The columns described within the
second subordinate list are ordered according to their order in the list, all of which come after the columns
defined in the first subordinate list.

For Byte tables, the external grouping will be empty. For tables with no host-assigned indexed columns,
the first subordinate list will be empty. For tables with no host assigned non-indexed columns, the second
list will be empty. For tables with no host assigned columns, both lists will be empty.

Format:

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 44 of 133

 [IsIndex = [ColumnName = uidref { TypeUID } ...], IsColumn = [ColumnName =
uidref { TypeUID } ...]]

Byte table format pseudo-code example:

 []

Array/Object table with no indexed columns pseudo-code example:

 [IsIndex = [] IsColumn = [ColumnName1 = uidref1 ColumnName2 = uidref2
ColumnName3 = uidref3]]

2.1.2.1.6 date

This type represents a grouping of Named values that are used to identify time values, and is similar to the
column type of the same name. In messaging, this grouping is enclosed by List value delimiters, and each
component is enclosed by Named value delimiters.

Because this is a group of Named values, its separate components are optional. Components that are
omitted are considered to have a value of 0.

The components are as follows:

•••• Year – this Named value has the Name "Year" and a value that is implicitly defined as being of
uinteger of size 2. This Named value abstract type represents the year in a timestamp. Valid
values are unsigned integers ranging from 1970 to 9999

•••• Month – this Named value has the Name "Month" and a value that is implicitly defined as being of
uinteger of size 2. This Named value abstract type represents the month in a timestamp. Valid
values are unsigned integers ranging from 1 to 12, which correspond to the months of the year as
follows:

o January = 1 (0x01)

o February = 2 (0x02)

o March = 3 (0x03)

o April = 4 (0x04)

o May = 5 (0x05)

o June = 6 (0x06)

o July = 7 (0x06)

o August = 8 (0x08)

o September = 9 (0x09)

o October = 10 (0x0A)

o November = 11 (0x0B)

o December = 12 (0x0C)

•••• Day – this Named value has the Name "Day" and a value that is implicitly defined as being of
uinteger of size 1. This Named value abstract type represents the day of the month in a timestamp.
Valid values are unsigned integers ranging from 1 to 31.

Format:

 [Year = uinteger, Month = uinteger, Day = uinteger]

2.1.2.1.7 hash_protocol

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 45 of 133

This abstract type is similar to an enumeration column type, and is used to identify a selected hash
algorithm. This type has valid values in the range of integers from 0-15. These integers have the following
values:

•••• 0 = none

•••• 1 = SHA 1

•••• 2 = SHA 256

•••• 3 = SHA 384

•••• 4 = SHA 512

•••• 5-15 = reserved

Format:

uinteger

In the messaging stream, these values will be represented as follows:

•••• 0x00 represents none

•••• 0x01 represents SHA 1

•••• 0x02 represents SHA 256

•••• 0x03 represents SHA 384

•••• 0x04 represents SHA 512

•••• 0x05 – 0x0F are reserved.

2.1.2.1.8 lag

This type represents a grouping of two Named value pairs, used to describe seconds and milliseconds, and
is similar to the column type of the same name. The components are encapsulated with the interface type
List value delimiters ("[", "]"). Each of the components is encapsulated with the Named value delimiters.
The components are optional.

The components are as follows:

•••• Seconds – this component is a Named value pair with a Name of "Seconds" and a value of
uinteger. This value has an implicit size requirement of 2.

•••• Milliseconds – this component is a Named value pair with a Name of "Milliseconds" and a value of
uinteger. This value has an implicit size requirement of 2.

Format:

[Seconds = uinteger, Milliseconds = uinteger]

2.1.2.1.9 name

This type is a representation of the max bytes type, and in most methods in which it is used it is assigned to
parameters that are associated with a table's Name column or CommonName column. As such, it has an
implicit size restriction of 32 bytes.

Format:

 bytes

2.1.2.1.10 package

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 46 of 133

This abstract type is a bytes type that is parsed according to the rules described in the Core Specification
section on GetPackage and SetPackage.

Format:

 Bytes

2.1.2.1.11 package_purpose

This abstract type is similar to an enumeration column type, and is used to identify a selected purpose for
the package in which it is being included. This type has valid values in the range of integers from 1-32.
These integers have the following values:

•••• 1 = Issuance

•••• 2 = Key Wrapping

•••• 3 = Backup

•••• 4-32 = reserved

Format:

uinteger

In the messaging stream, these values will be represented as follows:

•••• 0x01 represents Issuance

•••• 0x02 represents Key Wrapping

•••• 0x03 represents Backup

•••• 0x04 – 0x20 are reserved.

2.1.2.1.12 ref

The ref abstract type represents a reference to a table row that is expressed using a uinteger type with a
size of 8, and corresponds to a row's RowNumber column value.

In the pseudo-code method signatures, the ref abstract type is often followed by curly brackets ("{", "}") that
are used to define the limitation of a valid value for that ref. These valid values are typically represented as
a reference to a specific table, which indicates that to ultimately be considered valid, the ref must be to a
row in that table.

Limitations expressed with curly brackets have no effect on the appearance of the associated ref value as it
appears in the message stream. Because this abstract type describes the inclusion of a RowNumber, it
represents a uinteger value that has an implicit size restriction of 8 bytes in the uinteger value.

Format:

 uinteger

2.1.2.1.13 row_address

This abstract type is used to describe a parameter that can be either a ref or a uidref. It is similar to the
alternative column type. For additional information on the component types (ref and uidref), see their
respective entries in this section.

Only one of these two values will appear in the messaging stream. The "typeOr" identifier and
accompanying curly brackets ("{", "}") have no effect on the values as represented in the message.

Format

 typeOr { RowAddress = ref, UIDAddress = uidref }

In the message stream itself, the value will one of the following:

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 47 of 133

•••• ref

•••• uidref

2.1.2.1.14 row_date

This type represents a list of lists of Named values. Each interior list represents a row, so there are multiple
interior lists (a list of lists). The Named values represent column names and the values to be associated
with them. The number of interior lists (i.e. the number of rows that may be represented by this type "at one
time") may be limited by SSC or implementation.

Format:

 [[ColumnName = Value ...] ...]

2.1.2.1.15 table_kind

This abstract type is similar to an enumeration column type, and is used to represent table types in the
Table table. This type has valid values in the range of integers from 1-3. These integers have the following
values:

•••• 1 = Object

•••• 2 = Array

•••• 3 = Byte

Format:

uinteger

In the messaging stream, these values will be represented as follows:

•••• 0x01 represents Object

•••• 0x02 represents Array

•••• 0x03 represents Byte

2.1.2.1.16 table_sizes

This abstract type defines a grouping of pairs of values that are table uidrefs and the size associated with
that particular table. The grouping is a list of uidrefs and uintegers. The set of values are encapsulated by
List value delimiters ("[", "]"). Inside the delimiters will be a series of one or more pairs of values. The first
value in each pair is a uidref to a table descriptor object and the second value in each pair is a uinteger that
describes the number of rows that may be additionally created for that table.

Format:

[[uidref {TableObjectUID}, uinteger] ...]

Pseudo-code example:

 [[uidref1 uinteger1] [uidref2 uinteger2] [uidref3 uinteger3]]

2.1.2.1.17 uidref

The uidref abstract type represents a uid of an object, table, or table row that is expressed using a bytes
type with a size of 8, and corresponds to an object, table, or table row's UID column value.

In the pseudo-code method signatures, the uidref abstract type is often followed by curly brackets ("{", "}")
that are used to define the limitation of a valid value for that uidref. These valid values are typically
represented as requiring an object of a specific type. Limitations expressed with curly brackets have no
effect on the appearance of the associated uid value as it appears in the message stream.

Because this abstract type describes the inclusion of a uid, it represents a bytes value that has an implicit
size restriction, and that value shall always be 8 bytes long.

Format:

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 48 of 133

 bytes

2.1.3 Method Signatures
Method signatures are presented in pseudo-code, which is used to describe types, method parameters, and
snippets of code without having to use the byte encodings directly.

Methods are made up of two kinds of parameters: required and optional.

•••• Required parameters must come in the order given in the method signature, and must precede
optional parameters. In the pseudo-code signature, required parameters are given expositional
names for ease of reference. The right-hand portion of the parameter is the interface or abstract
type that shall be used with that parameter.

Required parameters are formatted as follows:

o Expositional-Name : Parameter-type

•••• Optional parameters are not required to come in order, but each shall appear only once in a
method invocation or the method shall fail and return a non-Success status. In the pseudo-code
signature, optional parameters are given in the form of Named values except the right-hand portion
of the parameter is the interface or abstract type that shall be used with that parameter. The Name
(left-hand portion in the pseudo-code) shall be the name of the Named value type for that
parameter when the method is invoked.

Optional parameters are formatted as follows:

o Parameter-Name = Parameter-type

The result portion of a method's signature are formatted similarly to the parameters, using the same
conventions for results that are required to be returned for successful method invocations ("required
results"), and results that may be returned only in certain situations ("optional results"). The result list of a
failed method invocation should be empty.

Any appearance of "=" in a method's parameter list or result list (including in abstract type definitions)
indicates the required use of an interface Named value, where the required Name is to the left of the "="
and the required value is to the right of the "=".

The components of an abstract typeOr alternative type used in method signature pseudo-code are always
presented as Named value pairs. As such, each typeOr component will be represented on the interface as
a Named value pair. Note that the typeOr itself may be an optional parameter or result, and as such this
type could represent an instance of an embedded Named value pair (i.e. Name1 = Name2 = Value, where
the value of Name2 is "Value" and the value of Name1 is "Name2 = Value").

Parameters typically have implicit size restrictions based on the table column that the particular parameter
is modifying or to which it is referring.

Separating brackets ("[", "]") in method signatures are used to mark places in the stream where List values
are used to encapsulate values. Commas (",") in the pseudo-code method signatures are used to separate
items in a list. Ellipses in pseudo-code method signatures are used to indicate multiples of the immediately
preceding type appears within the list (i.e. within the closest set of enclosing brackets).

In the pseudo-code, curly braces ("{", "}") are used to signify additional information regarding the type with
which they are associated, but are not required to be checked as part of method parsing and do not affect
the content or composition of the messaging stream.

2.1.3.1 Session Manager

2.1.3.1.1 StartSession/SyncSession

SMUID.StartSession [

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 49 of 133

HostSessionID : uinteger,

SPID : uidref {SPObjectUID},

Write : boolean,

HostChallenge = bytes,

HostExchangeAuthority = uidref {AuthorityObjectUID},

HostExchangeCert = bytes,

HostSigningAuthority = uidref {AuthorityObjectUID},

HostSigningCert = bytes,

SessionTimeout = uinteger,

TransTimeout = uinteger,

InitialCredit = uinteger,

SignedHash = bytes]

=>

SMUID.SyncSession [

HostSessionID : uinteger,

SPSessionID : uinteger,

SPChallenge = bytes,

SPExchangeCert = bytes,

SPSigningCert = bytes,

TransTimeout = uinteger,

InitialCredit = uinteger,

SignedHash = bytes]

2.1.3.1.2 StartTrustedSession/SyncTrustedSession
SMUID.StartTrustedSession [

HostSessionID : uinteger,

SPSessionID : uinteger,

HostResponse = bytes,

HostEncryptSessionKey = bytes,

HostIntegritySessionKey = bytes,

SignedHash = bytes]

=>

SMUID.SyncTrustedSession [

HostSessionID : uinteger,

SPSessionID : uinteger,

SPResponse = bytes,

SPEncryptSessionKey = bytes,

SPIntegritySessionKey = bytes,

SignedHash = bytes]

2.1.3.1.3 CloseSession

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 50 of 133

SMUID.CloseSession [

RemoteSessionNumber : uinteger,

LocalSessionNumber : uinteger]

2.1.3.2 Base Template
2.1.3.2.1 DeleteSP

SPUID.DeleteSP []

=>

[Result : boolean]

2.1.3.2.2 CreateTable
 SPUID.CreateTable [

 NewTableName : name,

 Kind : table_kind,

 GetSetACL : access_control_list,

 Columns : columns,

 MinSize : uinteger,

 MaxSize = uinteger,

 HintSize = uinteger,

 CommonName = name]

 =>

 [UID : uid, Rows : uinteger]

2.1.3.2.3 Delete
 ObjectUID.Delete []

 =>

 [Result : boolean]

2.1.3.2.4 CreateRow
 TableUID.CreateRow [

 Row : row_data+]

 =>

 [Result : typeOr { ArrayTable = list [list [ref, uidref] ...], ObjectTable =
list [uidref ...] }]

2.1.3.2.5 DeleteRow
 TableUID.DeleteRow [

 Where : row_address,

 Count = uinteger]

 =>

 [Result : boolean]

2.1.3.2.6 Get
 TableUID.Get [

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 51 of 133

 ObjectUID.Get [

 Cellblock : cell_block]

 =>

 [Result : typeOr { Bytes = Bytes, RowValues = list [list [ColumnName = Value
...] ...] }]

2.1.3.2.7 Set
 TableUID.Set [

 ObjectUID.Set [

 Where : cell_block,

 Values : typeOr { Bytes = bytes, RowValues = list [list [ColumnName =
Value ...] ...]]

 =>

 [Result : boolean]

2.1.3.2.8 Next
 TableUID.Next [

 Where = row_address,

 Count = uinteger]

 =>

 [Result : TypeOr { ArrayTable = list [[ref, uidref] ...], ObjectTable = list
[uidref ...] }]

2.1.3.2.9 GetFreeSpace
 SPUID.GetFreeSpace []

 =>

 [FreeSpace : uinteger, TableRows : table_sizes]

2.1.3.2.10 GetFreeRows
 TableObjectUID.GetFreeRows []

 =>

 [FreeRows : uinteger]

2.1.3.2.11 DeleteMethod
 MethodTableUID.DeleteMethod [

 InvokingID : uidref { SP/table/object },

 MethodID : uidref { MethodID }]

 =>

 [Result : boolean]

2.1.3.2.12 Authenticate
 SPUID.Authenticate [

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 52 of 133

 Authority : uidref { AuthorityObjectUID },

 Proof = bytes]

 =>

 [Result : typeOr { Success = boolean, Response = bytes }]

2.1.3.2.13 GetACL
 MethodTableUID.GetACL [

 InvokingID : uidref { SP/table/object },

 MethoID : uidref { MethodID }]

 =>

 [Result : access_control_list]

2.1.3.2.14 AddACE
 MethodTableUID.AddACE [

 InvokingID : uidref { SP/table/object },

 MethodID : uidref { MethodID },

ACE : uidref { ACEObjectUID}]

 =>

 [Result : boolean]

2.1.3.2.15 RemoveACE
 MethodTableUID.RemoveACE [

 InvokingID : uidref { SP/table/object },

 MethodID : uidref { MethodID },

ACE : uidref { ACEObjectUID}]

 =>

 [Result : boolean]

2.1.3.2.16 GenKey
 CredentialObjectUID.GenKey [

 PublicExponent = uinteger,

 PinLength = uinteger]

 =>

 [Result : boolean]

Admin Template
2.1.3.3.1 IssueSP
 SPUID.IssueSP [

 SPName : name,

 Size : uinteger,

 Templates : list [TemplateObjectUID ...],

 AdminExch : bytes,

 Enabled : boolean]

 =>

 [UID : uid, Size : uinteger]

Clock Template

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 53 of 133

2.1.3.4.1 GetClock
 ClockTimeTableUID.GetClock []

 =>

 [Kind : clock_kind, ExactTime : clock_time, LagTime : lag, MonotonicTime :
uinteger]

2.1.3.4.2 ResetClock
 ClockTimeTableUID.ResetClock []

 =>

 [Result : boolean]

2.1.3.4.3 SetClock
 ClockTimeTableUID.SetClockHigh [

 ExactTime : clock_time]

 =>

 [Result : boolean]

2.1.3.4.4 GetLagHigh
 ClockTimeTableUID.SetLagHigh [

 LagTime : lag]

 =>

 [Result : boolean, LowPreserved : boolean]

2.1.3.4.5 SetClockLow
 ClockTimeTableUID.SetClockLow [

 ExactTime : clock_time]

 =>

 [Result : boolean]

2.1.3.4.6 GetLagLow
 ClockTimeTableUID.SetLagHigh [

 LagTime : lag]

 =>

 [Result : boolean]

2.1.3.4.7 IncrementCounter
 ClockTimeUID.IncrementCounter []

 =>

 [MonotonicTime : uinteger]

2.1.3.5 Crypto Template

2.1.3.5.1 Random

SPUID.Random[

Count : uinteger,

BufferOut = cell_block]

=>

[Result : bytes]

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 54 of 133

2.1.3.5.2 Stir
SPUID.Stir[

 Value : typeOr { Input = integer, Internal = boolean }]

=>

[Result : boolean]

2.1.3.5.3 DecryptInit
CredentialObjectUID.DecryptInit [

IV = bytes]

=>

[Result : boolean]

2.1.3.5.4 Decrypt
 CredentialObjectUID.Decrypt [

Input : typeOr { Data = bytes, Buffer = cell_block },

BufferOut = cell_block]

=>

[Result : bytes]

2.1.3.5.5 DecryptFinalize
CredentialObjectUID.DecryptFinalize []

=>

[Result : bytes]

2.1.3.5.6 EncryptInit
 CredentialObjectUID.EncryptInit [

IV = bytes]

=>

[Result : boolean]

2.1.3.5.7 Encrypt
 CredentialObjectUID.Encrypt [

Input : typeOr { Data = bytes, Buffer = cell_block },

BufferOut = cell_block]

=>

[Result : bytes]

2.1.3.5.8 EncryptFinalize
CredentialObjectUID.EncryptFinalize []

=>

[Result : boolean]

2.1.3.5.9 Sign
CredentialObjectUID.Sign

HashObjectUID.Sign[

Input : typeOr { Data = bytes, Buffer = cell_block },

BufferOut = cell_block]

=>

[Result : bytes]

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 55 of 133

2.1.3.5.10 Verify
CredentialObjectUID.Verify

HashObjectUID.Verify[

Input : typeOr { Data = bytes, Buffer = cell_block},

Data : typeOr { Proof = bytes, ProofBuffer = cell_block }]

=>

[Result : boolean]

2.1.3.5.11 HashInit
HashObjectUID.HashInit [

 BufferOut = cell_block]

=>

[Result : boolean]

2.1.3.5.12 Hash
HashObjectUID.HashCalc [

Input : typeOr { Data = bytes, BufferIn = cell_block }]

=>

[Result : bytes]

2.1.3.5.13 HashFinalize
HashObjectUID.HMACFinalize []

=>

[Result : bytes]

2.1.3.5.14 HashCinit
HashObjectUID.HMACInit []

=>

[Result : boolean]

2.1.3.5.15 HMAC
HashObjectUID.HMACCalc [

Input : typeOr { Data = bytes, Buffer = cell_block }]

=>

[Result : bytes]

2.1.3.5.16 HMACFinalize
HashObjectUID.HMACFinalize [

BufferOut = cell_block

]

=>

[Result : bytes]

2.1.3.5.17 XOR
SPUID.XOR[

PatternInput : uidref {ByteTable},

DeletePattern : boolean,

Input : typeOr { Data = bytes, BufferIn = cell_block },

BufferOut = cell_block

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 56 of 133

]

=>

[Result : bytes]

2.1.3.6 Locking Template

2.1.3.6.1 GetPackage

CredentialObjectUID.GetPackage [

 Purpose : package_purpose,

 WrappingKey : uidref { AuthorityObjectUID },

 HashType : hash_protocol,

 Date = date,

 Log = bytes

=>

[Result : package]

2.1.3.6.2 SetPackage
CredentialObjectUID.SetPackage [

Value : package,

 WrappingKey : uidref { AuthorityObjectUID },

 HashType : hash_protocol]

=>

[Result : boolean]

2.1.3.7 Log Template

2.1.3.7.1 AddLog

LogTableUID.AddLog[

LogEntryName : name,

Data : bytes]

=>

[Result : boolean]

2.1.3.7.2 CreateLog
 LogListUID.CreateLog[

NewLogTableName : name,

HighSecurity : boolean,

MinSize : uinteger,

MaxSize = uinteger,

Hintsize = uinteger,

CommonName = name]

=>

[LogListUID : uid, LogTableUID : uid, Rows : uinteger]

2.1.3.7.3 ClearLog
LogTableUID.ClearLog []

=>

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 57 of 133

[Result : boolean]

2.1.3.7.4 FlushLog
LogTableUID.FlushLog []

=>

[Result : boolean]

2.1.4 Column Types in Messaging
Certain column types used in messaging as method parameters (particularly in the Set method) utilize the
interface grouping mechanisms (Named and List values) to provide clarity regarding the scope of the
transmitted values.

•••• Simple types – values of this type require no special handling in the messaging stream.

•••• Enumeration types – values of this type require no special handling in the messaging stream.

•••• Alternative types – values of this type require no special handling in the messaging stream. See
2.1.7 for more information on Alternative types.

•••• List type – the "List" column type is handled in the same way a parameter list is handled, by using
the interface List value grouping tokens (F0 and F1 tokens, which represent "[" and "]" respectively)
to enclose the values in the list.

•••• Restricted Reference types – values of this type require no special handling in the messaging
stream.

•••• General Reference types – values of this type require no special handling in the messaging stream.

•••• Name value types – values of this type are handled in the same way a Named value in a parameter
list is handled, by using the Named value grouping tokens (SN and EN tokens, which represent
"StartName" and "EndName" respectively) to enclose the name-value pair.

Note that Name value types are made up of two components – a name component (bytes), and a
uid to a row in the Type table. So, the Format column for a Name value type holds a format
identifier, a name, and a uid to a Type table row.

•••• Struct value types – Structs allow the creation of composite types by combining Name value types.
Values of the struct type are made up of either Named value types. These optional types do not
need to be included when sending values for a struct.

The struct itself is delimited using the List value grouping tokens (F0 and F1 tokens, which
represent "[" and "]" respectively) to enclose the values in the struct. The name values that make
up the values stored in the struct are each grouped using the interface Named value-grouping
tokens (SN and EN tokens, which represent "StartName" and "EndName" respectively) to enclose
each name-value pair.

•••• Set value types – the "Set" column type is handled in the same way that the List type is handled, by
using the interface List value grouping tokens (F0 and F1 tokens, which represent "[" and "]"
respectively) to enclose the values in the Set.

2.1.5 Type Table
The Type table holds only those types required to identify Column types/sizes. Abstract types and Interface
types are not represented in the Type table, though there may be types represented in the Type table that
appear to be similarly constructed to Abstract and Interface types, or that have similar names. These type
analogs are not to be confused with the actual Interface types or the pseudo-code Abstract types.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 58 of 133

The contents of the Type table are presented below. The Default column defines the default value for the
associated type. Rows with no Default column value in the descriptive table are types that shall have a
value specified whenever a column of that type is used in a CreateRow (or other similar) method invocation,
or that method invocation shall fail. Other rows, those with values, shall have a uidref in the Type table to a
byte table that stores the default value for that type (without the “”).

The Description column in the table below is informative only, and is not intended to be part of the Type
table implementation.

In the interest of efficiency, due to the removal of many types from this table, it may be necessary to re-
assign uids to the default rows described below to utilize contiguous blocks of uids.

Note: * in the table below indicates SSC-dependent or implantation-dependent values.

Table 01 Default Type Table Values

ID Name Format Size Default Description

00 00 00 05
00 00 00 01

NULL 0 0 Base installed type, used to
represent a null value. The null
value for a particular column is
dependent on that column's type.
In order to define a legal Null
value for a particular type, it is
necessary to construct an
alternative type where Null is one
of the options.

00 00 00 05
00 00 00 02

bytes 0 0 Base installed type, used to
represent a value made up of a
fixed-size sequence of bytes.

00 00 00 05
00 00 00 03

max_bytes 0 0 Base installed type, used to
represent a bytes value that is
equal to or less than the size
specified for the type instance.

00 00 00 05
00 00 00 04

integer 0 0 Base installed type, used to
represent a signed integer.

00 00 00 05
00 00 00 05

uinteger 0 0 Base installed type, used to
represent an unsigned integer.

00 00 00 05
00 00 02 01

bytes_12 1
0000000500000002
12

00 00 00 05
00 00 02 02

bytes_16 1
0000000500000002
16

00 00 00 05
00 00 02 03

bytes_20_def_00 1
0000000500000002
20

 "00s"

00 00 00 05
00 00 02 04

bytes_32_def_00 1
0000000500000002
32

 "00s"

00 00 00 05
00 00 02 05

bytes_32 1
0000000500000002
32

 This bytes type is used for,
among other things, the Key
column of the C_HMAC_256
table.

00 00 00 05
00 00 02 06

version_bytes_4 1
0000000500000002

 "00 00 00 01"

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 59 of 133

ID Name Format Size Default Description

4

00 00 00 05
00 00 02 07

bytes_48_def_00 1
0000000500000002
48

 "00s"

00 00 00 05
00 00 02 08

bytes_64_def_00 1
0000000500000002
64

 "00s"

00 00 00 05
00 00 02 09

uid 1
0000000500000002
8

 Used for UIDs

00 00 00 05
00 00 02 0B

name 1
0000000500000003
32

 Name that generically describes
bytes{max=32}, which is used for
name columns and method
parameters. This type is also
used in the Name_Value_Type
format.

00 00 00 05
00 00 02 0C

password 1
0000000500000003
32

 Max {bytes = 32}, used for PINs

00 00 00 05
00 00 02 0D

max_bytes_32 1
0000000500000003
32

00 00 00 05
00 00 02 0E

max_bytes_64 1
0000000500000003
64

 Generic Max Bytes type, used
for logging.

00 00 00 05
00 00 02 0F

int_1_def_0 1
0000000500000004
1

 "0" integer_1 with default of 0

00 00 00 05
00 00 02 10

integer_1 1
0000000500000004
1

00 00 00 05
00 00 02 11

uinteger_1 1
0000000500000005
1

00 00 00 05
00 00 02 12

uinteger_128 1
0000000500000005
128

00 00 00 05
00 00 02 13

uinteger_16 1
0000000500000005
16

00 00 00 05
00 00 02 14

feedback_size 1
0000000500000005
2

 Feedback sizes for AES used in
CFB or OFB mode. If AES Mode
is CFB, this shall be between 1
and the block length. If AES
Mode is OFB, this shall be the
block size.

00 00 00 05
00 00 02 15

uinteger_2 1
0000000500000005
2

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 60 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 02 16

uinteger_20 1
0000000500000005
20

00 00 00 05
00 00 02 17

uinteger_21 1
0000000500000005
21

00 00 00 05
00 00 02 18

uinteger_24 1
0000000500000005
24

00 00 00 05
00 00 02 19

uinteger_256 1
0000000500000005
256

00 00 00 05
00 00 02 1A

uinteger_28 1
0000000500000005
28

00 00 00 05
00 00 02 1B

uinteger_30 1
0000000500000005
30

00 00 00 05
00 00 02 1D

uinteger_32 1
0000000500000005
32

00 00 00 05
00 00 02 1F

uinteger_36 1
0000000500000005
36

00 00 00 05
00 00 02 20

uinteger_4 1
0000000500000005
4

00 00 00 05
00 00 02 21

uint_4_def_0 1
0000000500000005
4

 "0" Uinteger_4 with default of 0

00 00 00 05
00 00 02 23

uinteger_48 1
0000000500000005
48

00 00 00 05
00 00 02 24

uinteger_64 1
0000000500000005
64

00 00 00 05
00 00 02 25

uinteger_8 1
0000000500000005
8

00 00 00 05
00 00 02 26

common_name 1
0000000500000003
32

 "Host_Application" This type is used for the
CommonName column. Many
tables have values defined for
the CommonName column for
rows created at issuance. This
type defines the default value of
rows for user-defined objects.

00 00 00 05
00 00 02 27

uinteger_66 1
0000000500000005
66

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 61 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 02 36

bytes_20 1
0000000500000002
20

 This bytes type is used for the
Key column of the C_HMAC_160
table.

00 00 00 05
00 00 02 37

bytes_48 1
0000000500000002
48

 This bytes type is used for the
Key column of the C_HMAC_384
table.

00 00 00 05
00 00 02 38

bytes_64 1
0000000500000002
64

 This bytes type is used for the
Key column of the C_HMAC_512
table.

00 00 00 05
00 00 04 01

boolean 2 0 1 Derived type, used to represent
True (1) or False (0).

00 00 00 05
00 00 04 02

boolean_def_false 2 0 1 "0"

00 00 00 05
00 00 04 03

boolean_def_true 2 0 1 "1"

00 00 00 05
00 00 04 04

messaging_type 2 0 128 This enumeration describes the
options for selecting secure
messaging. The options for this
value are defined in the TCG
Storage Architecture Core
Specification 27-128 are
reserved values.

00 00 00 05
00 00 04 05

life_cycle_state 2 0 15 Used to represent the current life
cycle state. The valid values
are: 0 = issued, 1 = issued-
disabled, 2 = issued-frozen, 3 =
issued-disabled-frozen, 4 =
manufacturing, 5 =
manufacturing-disabled, 6 =
manufacturing-frozen, 7 =
manufacturing-disabled-frozen, 8
= failed, 9-15 = reserved

00 00 00 05
00 00 04 06

padding_type 2 0 15 Defines the type of padding used
with RSA encryption. '0'
identifies the value as None or
Null, '1' identifies the padding as
that described in PKCS #1 v 1.5,
and '2' identifies the padding as
that described in PKCS #1 v 2.1.
Values 3-15 are reserved for
future use.

00 00 00 05
00 00 04 08

auth_method 2 0 23 This describes the enumeration
used to represent
authentications methods that
may be used to authenticate
authorities. The valid entries
are: 0 = None 1 = Password, 2 =
Exhange, 3 = Sign, 4 = SymK, 5
= HMAC, 6 = TPerSign, 7 =
TPerExchange, 8-23 = reserved
for future use

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 62 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 04 09

log_kind 2 0 23 Used to represent the predefined
log messages used in the default
Log table. The valid values are:
0 = available, 1 = methodFail,2 =
methodSuccess, 3 =
authenticateFail,4 =
authenticateSuccess,5 =
transactOpen,6 =
transactCommit, 7 =
transactAbort,8 = sessionEnd, 9
= user, 10 = system, 11-23 =
reserved

00 00 00 05
00 00 04 0A

symmetric_mode 2 0 23 Defines the mode to be used
with this AES credential. The
valid values are: 0 = ECB, 1 =
CBC, 2 = CFB, 3 = OFB, 4 =
GCM, 5 = CTR, 6 = CCM, 23 =
MediaEncryption, 7-22 reserved
for future use.

00 00 00 05
00 00 04 0B

clock_kind 2 0 3 Defines the type of clock
currently active. The valid
values are: 0 = Timer, 1 = Low,
2 = High, 3 = LowAndHigh

00 00 00 05
00 00 04 0C

log_select 2 0 3 Identifies the scope of the
logging for an access control
association or authority. The
valid values are: 0 = None,1 =
LogSuccess,2 = LogFail,3 =
LogAlways

00 00 00 05
00 00 04 0D

hash_protocol 2 0 15 Selects which hash algorithm
should be used to create a digital
signature. Options are: 0 =
none, 1 = SHA 1, 2 = SHA 256, 3
= SHA 384, 4 = SHA 512, 5-15 =
reserved

00 00 00 05
00 00 04 0E

boolean_ACE 2 0 7 Used to identify "And" and "Or",
where "And" is 0, "Or" is 1, and
“Not” is 2, and 3-7 are reserved
for future use - used to construct
ACE Expression

00 00 00 05
00 00 04 0F

adv_key_mode 2 0 7 This enumeration defines when
the NextKey is moved to the
ActiveKey. 0 = wait for
ADVKey_Req, 1 = auto-advance
keys

00 00 00 05
00 00 04 10

keys_avail_conds 2 0 7 This enumeration describes the
conditions required to assert
KeysAvailable in the Locking
Template. 0 = None, 1 =
Authentication of the authority
with Set access to read/write
locked columns for the LBA
Range

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 63 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 04 11

last_reenc_stat 2 0 7 This enumeration identifies the
last attempted re-encryption
step. 0 = success, 1 = Read
error, 2 = Write Error, 3 = Verify
Error

00 00 00 05
00 00 04 12

verify_mode 2 0 7 This enumeration defines the
verification operation to perform
after a sector has been written
with a new encryption key. 0 =
no verify, 1 = verify enabled, 2-7
= reserved

00 00 00 05
00 00 04 13

reencrypt_request 2 1 16 This enumeration identifies a
host re-encryption request value.

00 00 00 05
00 00 04 14

reencrypt_state 2 1 16 This enumeration identifies the
present Re-encryption state for
an LBA range. 1 = Idle, 2 =
Pending, 3 = Active, 4=
Completed, 5 = Paused, 6-16 =
Reserved

00 00 00 05
00 00 04 15

table_kind 2 1 3 Defines the kind of table. The
valid values are: 1 = Object, 2 =
Array, 3 = Byte

00 00 00 05
00 00 06 01

ACE_expression 3 2
1
0000000500000C04
2
000000050000040E

 This is an alternative type where
the options are either a uidref to
an ACE object or one of the
boolean_ACE options

00 00 00 05
00 00 06 02

row_selection 3 2
1
0000000500000F01
2
0000000500001001

 This type is used to provide a
selection between a uidref to an
object table row or a ref to an
array table row

00 00 00 05
00 00 06 04

uint_ref 3 2
1
0000000500000211
2
0000000500000C02

 Alternative type with selections
for a uinteger_1 or a uidref to an
object in the Type table

00 00 00 05
00 00 06 06

table_object_ref 3 2
1
0000000500001001
2
0000000500001201

 This type defines a reference to
the uid of a table or the uid of
some object.

00 00 00 05
00 00 08 01

AC_element 4 *
0000000500000601

 An AC_Element is a list of
ACE_Expressions forming a
postfix Authority expression. For
example: [32 24 0 8273 1 7728
0] is the list representing the
infix ACE Expression:((32 AND
24) OR 8273) AND 7728

00 00 00 05
00 00 08 02

ACL 4 *
0000000500000801

 An ACL is represented as a list
of uidrefs to ACE objects. The
length of the list is SSC-

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 64 of 133

ID Name Format Size Default Description

dependant.

00 00 00 05
00 00 08 03

type_ref_list 4 *
0000000500000C02

 A list of an SSC-dependent
number of uidrefs to objects in
the Type table

00 00 00 05
00 00 08 04

components_list 4 *
0000000500001601

 A list of SSC-dependant number
of struct_component types.

00 00 00 05
00 00 08 06

uint_ref_list 4 2
0000000500000604

 List of the Alternative type that
contains selections for a
uinteger_1 or a uidref to an
object in the Type table

00 00 00 05
00 00 0A 01

column_ref 5
0000000400000000

 Reference to a row number that
must exist in the Column table

00 00 00 05
00 00 0C 01

SPTemplates_ref 6
0000000300000000

00 00 00 05
00 00 0C 02

Type_ref 6
0000000500000000

 Reference to a uid that must
exist in the Type table.

00 00 00 05
00 00 0C 03

MethodID_ref 6
0000000500000000

 Reference to a uid that must
exist in the MethodID table

00 00 00 05
00 00 0C 04

ACE_table_ref 6
0000000800000000

 This is a
Restricted_Reference_Type,
which indicates that the uidref
used in this type must be to a uid
contained in the ACE table.

00 00 00 05
00 00 0C 05

Authority_ref 6
0000000900000000

 Reference to a uid that must
exist in the Authority table

00 00 00 05
00 00 0C 06

Certificates_ref 6
0000000A00000000

 Reference to a uid that must
exist in the Certificates table

00 00 00 05
00 00 0C 08

Template_ref 6
0000020400000000

 Reference to a uid that must
exist in the Admin SP's Template
table.

00 00 00 05
00 00 0F 01

row_ref 7

00 00 00 05
00 00 0F 02

log_row_ref 7 This is a reference type that shall
be used specifically for rows in
Log tables. When performing
type checking, as part of that
type checking the TPer shall
validate that this is a ref to a row
in a Log table.

00 00 00 05
00 00 10 01

row_uidref 8

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 65 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 10 02

cred_object_uidref 8 This is a reference type that shall
be used specifically for uidrefs to
credential objects. When
performing type checking, as
part of that type checking the
TPer shall validate that this
uidref is to an object in a
credential (C_*) table.

00 00 00 05
00 00 12 01

table_ref 9 This type is used to represent a
uidref to a Table that is one of
the set of all tables in the SP.

00 00 00 05
00 00 12 02

ref_def_00 9 "00 00 00 00 00
00 00 00"

This table ref is to a byte table
that defines the default value for
this column

00 00 00 05
00 00 12 03

byte_table_ref 9 This is a reference type that shall
be used specifically for uidrefs to
byte tables. When performing
type checking, as part of that
type checking the TPer shall
validate that this uidref is to a
table that is a byte table.

00 00 00 05
00 00 14 01

Year 10
Year
0000000500000215

 Name-value pair that has a
Name of "Year" and takes a
uinteger_2 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

00 00 00 05
00 00 14 02

Month 10
Month
0000000500000211

 Name-value pair that has a
Name of "Month" and takes a
uinteger_1 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

00 00 00 05
00 00 14 03

Day 10
Day
0000000500000211

 Name-value pair that has a
Name of "Day" and takes a
uinteger_1 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

00 00 00 05
00 00 14 04

Hour 10
Hour
0000000500000211

 Name-value pair that has a
Name of "Hour" and takes a
uinteger_1 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

00 00 00 05
00 00 14 05

Minute 10
Minute
0000000500000211

 Name-value pair that has a
Name of "Minte" and takes a
uinteger_1 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 66 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 14 06

Seconds 10 Seconds
0000000500000211

 Name-value pair that has a
Name of "Seconds" and takes a
uinteger_2 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

00 00 00 05
00 00 14 07

Fraction 10 Fraction
0000000500000215

 Name-value pair that has a
Name of "Fraction" and takes a
uinteger_1 as the value. The
value limitations associated with
this type can be found in
2.1.2.1.4.

00 00 00 05
00 00 14 08

Format 10
Format
0000000500000211

 Name-value pair that has a
Name of "Format" and that takes
a uinteger_1 value.

00 00 00 05
00 00 14 09

Size 10
Size
0000000500000211

 Name-value pair that has a
Name of "Size" and that takes a
uinteger_1 value.

00 00 00 05
00 00 14 0A

Name 10
Name
000000050000020D

 Name-value pair that has a
Name of "Name" and that takes
a max_bytes_32 value.

00 00 00 05
00 00 14 0B

Components 10
Components
0000000500000804

 Name-value pair that has a
Name of "Components" and that
has a components_list type as a
value.

00 00 00 05
00 00 14 0C

ID 10
ID
000000050000020D

 Name-value pair that has a
Name of "ID" and that takes a
max bytes 32 as the value.

00 00 00 05
00 00 14 0D

Value 10
Value
0000000500000C02

 Name-value pair that has a
Name of "Value" and takes a uid
that must exist in the Type table
as the value.

00 00 00 05
00 00 16 02

lag 11 2
0000000500001406
0000000500001407

 A struct made up of 2 uinteger_2
name-value types, used to define
the lag when setting time. The 2
types represent seconds and
fraction of seconds. The names
required are "Seconds" for the
first value and "Fraction" for the
second. The "Fraction" value is
a number of milliseconds.

00 00 00 05
00 00 16 04

date 11 3
0000000500001401
0000000500001402
0000000500001403

 The date type represents the
date portion of the time from the
system clock. This is a set of
name-value pairs, with the
following names: "Year"
(uinteger_2), "Month"
(uinteger_1), and "Day"
(uinteger_1)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 67 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 16 05

clock_time 11 3
0000000500001401
0000000500001402
0000000500001403
0000000500001404
0000000500001405
0000000500001406
0000000500001407

 Type made up of name-value
pairs used to represent time.
Any value not supplied is treated
as 0. Time comes from the
Clock SP. If the host has
supplied a trusted time since
powerup, that time is used;
otherwise a monotonic counter is
used. The Clock_time type can
be used to represent times in
either Generalized Time or UTC
Time. Using this type to
represent UTC Time requires 0’s
(zeroes) in fields where
Generalized time requires a
value but UTC Time does not
(i.e. 2006 in UTC Time would be
represented as 0006). The
names for these name-value
types are "Year", "Month", "Day",
"Hour", "Minute", "Seconds",
"Fraction"

00 00 00 05
00 00 16 06

type_def 11 4
0000000500001408
0000000500001409
000000050000140A
000000050000140B

 A struct made up of of the
Format name-value type, the
Size name-value type, the Name
name-value type, and the
Components name-value type. It
is used to represent the Type
table format column. The
requirements for each of the
name-value pairs in the type are
based on the corresponding
format (the value of the
component Format type).

00 00 00 05
00 00 16 01

struct_components 11 2
000000050000140C
000000050000140D

 Struct composed of an ID type
that takes a name value of
Name=name and name value of
Value=uid {Type}

00 00 00 05
00 00 18 01

reset_types 12 0 31 This Set type is used to identify
TCG reset types that map to
interface specific behaviors. The
set values are: 0 = Power Cycle,
1 = Hardware, 2 = HotPlug, 3-
15=reserved for TCG use, 16-31
reserved for vendor-specific
reset behaviors.

00 00 00 05
00 00 18 02

gen_status 12 0 63 This set type is used to identify
the general status of the re-
encryption process.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 68 of 133

ID Name Format Size Default Description

00 00 00 05
00 00 18 03

enc_supported 12 0 15 This set describes the types of
user data encryption supported
by the TPer. 0 = None, 1 =
Media Encryption, 2-15 are
reserved.

2.1.6 Type Checking
Informative Content:

Type checking when a method is received remains possible even without the use of type identifiers in the
messaging stream.

It is reasonable to consider the parameter list of each method call as a struct with both required and
optional member types. Since this is the case, whenever a particular method is received, the TPer may
compare the values included as method parameters in the method's invocation to the types required for
each of that method's parameters according to the method definition.

For methods that have less static parameter requirements (such as the Set and Get methods), it is
necessary to consider the composition of the table upon which the method is operating.

Using the Set method as an example, the method parameters upon invocation of this method will include
names of columns and the values to be assigned to each of those columns. Because the definition of a
table is known and fixed, the TPer can treat each table as a struct (for the purposes of type checking), with
components equal to the columns of that table.

With the knowledge of the columns that make up the table/object upon which the method is operating, as
well as the type of each of those columns, the TPer is able to initially determine if the value sent is of the
correct type for each column without having to perform close type checking on whether or not the value is
valid for actual assignation to that object's column (i.e. the TPer can initially verify that a particular
parameter is a uinteger without having to determine if its size is within bounds for the column).

2.1.7 Other Restrictions
In order to mitigate complexity required for type casting, and to limit messaging overhead to identify options
in variable types, it is necessary for the TPer to enforce that, for alternative types, each component of the
alternative type, when the type is created, shall have an arbitrary bytes identifier associated by the host that
shall be unique for that component of that type.

For instance, when creating an alternative type that is made up of a uinteger_1 and a uinteger_2, the host
includes in the data for the Format column for that type an identifier preceding the uid of component types.

When a value is to be set to a column that is an alternative type, the value includes both the identifier and
the value. In the previous example, invoking the Set method to set a value in a column that is either a 1
followed by the uinteger_1 value or a 2 followed by the uinteger_2 value.

2.2 Examples
2.2.1 Get
This example demonstrates the invocation of the Get method on the TPerInfo table in order to retrieve the
GUDID.

2.2.1.1 Pseudo-Code Invocation
TPerInfo_TableUID.Get [["startRow" = "Row" = 1, "endRow" = "Row" = 1,
"startColumn" = "GUDID", "endColumn" = "GUDID"]]

2.2.1.2 Invocation Byte Representation

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 69 of 133

F8 A8 00 00 02 01 00 00 00 00 A8 00 00 00 06 00 00 00 0C F0 F0 F2 A8 73 74 61
72 74 52 6F 77 F2 A3 52 6F 77 01 F3 F3 F2 A6 65 6E 64 52 6F 77 F2 A3 52 6F 77
01 F3 F3 F2 AB 73 74 61 72 74 43 6F 6C 75 6D 6E A5 47 55 44 49 44 F3 F2 A9 65
6E 64 43 6F 6C 75 6D 6E A5 47 55 44 49 44 F3 F1 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

F8 Call Token Begins method

A8 00 00 02 01 00 00 00 00 Invoking UID TPerInfo table UID

A8 00 00 00 06 00 00 00 0C Method UID Get Method UID

F0 Start List Token Begins parameter list

F0 Start List Token
Begins cell block for Where
parameter

F2 Start Name Token name-value

A8 73 74 61 72 74 52 6F 77 Name "startRow"

F2 Start Name Token

A3 52 6F 77 Name "Row"

01 Value 1

F3 End Name Token

F3 End Name Token

F2 Start Name Token name-value

A6 65 6E 64 52 6F 77 name "endRow"

F2 Start Name Token

A3 52 6F 77 Name "Row"

01 Value 1

F3 End Name Token

F3 End Name Token

F2 Start Name Token name-value

AB 73 74 61 72 74 43 6F 6C 75
6D 6E Name "startColumn"

A5 47 55 44 49 44 Value "GUDID"

F3 End Name Token

F2 Start Name Token name-value

A9 65 6E 64 43 6F 6C 75 6D 6E Name "endColumn"

A5 47 55 44 49 44 Value "GUDID"

F3 End Name Token

F1 End List Token Ends cell block

F1 End List Token Ends parameter list

F9 End of Data Token Ends method

F0 00 00 00 F1 Status List

2.2.1.3 Pseudo-Code Response
 ["RowValues" = [["GUDID"="GUDID_VALUE"]]]

2.2.1.4 Response Byte Representation
F0 F2 A9 52 6F 77 56 61 6C 75 65 73 F0 F0 F2 A5 47 55 44 49 44 AB 47 55 44 49
44 5F 56 41 4C 55 45 F3 F1 F1 F3 F1

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 70 of 133

Bytes Purpose Value Notes

F0 Start List token Start of results list

F2
Start Name
token

A9 52 6F 77 56 61 6C 75 65 73 Name "RowValues"

F0 Start List token

F0 Start List token Start of first row of results

F2
Start Name
token name-value

A5 47 55 44 49 44 "GUDID"

AB 47 55 44 49 44 5F 56 41 4C 55 45 "GUDID_VALUE"

F3
End Name
token

F1 End List token

F1 End List token

F3
End Name
token

F1 End List token End of results list

2.2.2 CreateRow
This example demonstrates the invocation of the CreateRow method on the C_PIN table to create two rows
within one CreateRow invocation.

2.2.2.1 Pseudo-Code Invocation
C_PIN_TableUID.CreateRow [[["Name" = "LockingOwner1", "CommonName" = "Pool",
"PIN" = "THIS_IS_A_32_BYTE_PASSWORD_VALUE", "TryLimit" = 0, "Tries" = 0,
"Persistence" = 0] ["Name" = "LockingOwner2", "CommonName" = "Pool", "PIN" =
"THIS_IS_A_32_BYTE_PASSWORD_VALUE", "TryLimit" = 0, "Tries" = 0, "Persistence"
= 0]]]

2.2.2.2 Invocation Byte Representation
F8 A8 00 00 00 0B 00 00 00 00 A8 00 00 00 06 00 00 00 0A F0 F0 F0 F2 A4 4E 61
6D 65 AC 4C 6F 63 6B 69 6E 67 4F 77 6E 65 72 31 F3 F2 AA 43 6F 6D 6D 6F 6E 4E
61 6D 65 A4 50 6F 6F 6C F3 F2 A3 50 49 4E D0 20 54 48 49 53 5F 49 53 5F 41 5F
33 32 5F 42 59 54 45 5F 50 41 53 53 57 4F 52 44 5F 56 41 4C 55 45 F3 F2 A8 54
72 79 4C 69 6D 69 74 00 F3 F2 A5 54 72 69 65 73 00 F3 F2 AB 50 65 72 73 69 73
74 65 6E 63 65 00 F3 F1 F0 F2 A4 4E 61 6D 65 AC 4C 6F 63 6B 69 6E 67 4F 77 6E
65 72 32 F3 F2 AA 43 6F 6D 6D 6F 6E 4E 61 6D 65 A4 50 6F 6F 6C F3 F2 A3 50 49
4E D0 20 54 48 49 53 5F 49 53 5F 41 5F 33 32 5F 42 59 54 45 5F 50 41 53 53 57
4F 52 44 5F 56 41 4C 55 45 F3 F2 A8 54 72 79 4C 69 6D 69 74 00 F3 F2 A5 54 72
69 65 73 00 F3 F2 AB 50 65 72 73 69 73 74 65 6E 63 65 00 F3 F1 F1 F1 F9 F0 00
00 00 F1

Bytes Purpose Value Notes

F8 Call Token
Begins
method

A8 00 00 00 0B 00 00 00 00
Invoking
UID C_PIN Table UID

A8 00 00 00 06 00 00 00 0A
Method
UID CreateRow Method UID

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 71 of 133

F0
Start List
Token

Begins
parameter
list

F0
Start List
Token

F0
Start List
Token

F2
Start Name
Token name-value

A4 4E 61 6D 65 "Name"

AC 4C 6F 63 6B 69 6E 67 4F 77
6E 65 72 31 "LockingOwner1"

F3
End Name
Token

F2
Start Name
Token name-value

AA 43 6F 6D 6D 6F 6E 4E 61 6D
65 "CommonName"

A4 50 6F 6F 6C "Pool"

F3
End Name
Token

F2
Start Name
Token name-value

A3 50 49 4E "PIN"

D0 20 54 48 49 53 5F 49 53 5F 41
5F 33 32 5F 42 59 54 45 5F 50 41
53 53 57 4F 52 44 5F 56 41 4C 55
45 "THIS_IS_A_32_BYTE_PASSWORD_VALUE"

F3
End Name
Token

F2
Start Name
Token name-value

A8 54 72 79 4C 69 6D 69 74 "TryLimit"

00 0

F3
End Name
Token

F2
Start Name
Token name-value

A5 54 72 69 65 73 "Tries"

00 0

F3
End Name
Token

F2
Start Name
Token name-value

AB 50 65 72 73 69 73 74 65 6E
63 65 "Persistence"

00 0

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 72 of 133

F3
End Name
Token

F1
End List
Token

F0
Start List
Token

F2
Start Name
Token name-value

A4 4E 61 6D 65 "Name"

AC 4C 6F 63 6B 69 6E 67 4F 77
6E 65 72 32 "LockingOwner2"

F3
End Name
Token

F2
Start Name
Token name-value

AA 43 6F 6D 6D 6F 6E 4E 61 6D
65 "CommonName"

A4 50 6F 6F 6C "Pool"

F3
End Name
Token

F2
Start Name
Token name-value

A3 50 49 4E "PIN"

D0 20 54 48 49 53 5F 49 53 5F 41
5F 33 32 5F 42 59 54 45 5F 50 41
53 53 57 4F 52 44 5F 56 41 4C 55
45 "THIS_IS_A_32_BYTE_PASSWORD_VALUE"

F3
End Name
Token

F2
Start Name
Token name-value

A8 54 72 79 4C 69 6D 69 74 "TryLimit"

00 0

F3
End Name
Token

F2
Start Name
Token name-value

A5 54 72 69 65 73 "Tries"

00 0

F3
End Name
Token

F2
Start Name
Token name-value

AB 50 65 72 73 69 73 74 65 6E
63 65 "Persistence"

00 0

F3
End Name
Token

F1
End List
Token

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 73 of 133

F1
End List
Token

F1
End List
Token

Ends
parameter
list

F9
End of
Data Token Ends method

F0 00 00 00 F1 Status List

2.2.2.3 Pseudo-Code Response
 ["ObjectTable" = [0000000B00000002 0000000B00000003]]

2.2.2.4 Response Byte Representation
F0 F2 AA 4F 62 6A 65 63 74 54 61 62 6C 65 F0 A8 00 00 00 0B 00 00 00 02 00 00
00 0B 00 00 00 03 F1 F3 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

F0 Start List Token Begins results list

F2 Start Name Token

AA 4F 62 6A 65 63 74 54 61 62
6C 65 Name "ObjectTable"

F0 Start List Token

A8 00 00 00 0B 00 00 00 02 New Row UID

A8 00 00 00 0B 00 00 00 03 New Row UID

F1 End List Token

F3 End Name Token

F1 End List Token Ends results list

F9 End of Data Token Ends method response

F0 00 00 00 F1 Status List

2.2.3 CreateTable
2.2.3.1 Pseudo-Code Invocation
SPUID.CreateTable ["SpecialStore", 1, 0000000000000000, ["IsColumn" = [
"GUDID" = 0000000500000201, "PasswordUID" = 0000000500000209, "Name" =
000000050000020B, "CommonName" = 000000050000020B, "Password =
"000000050000020C]] , 100]

2.2.3.2 Invocation Byte Representation
F8 A8 00 00 00 00 00 00 00 01 A8 00 00 00 06 00 00 00 08 F0 AC 53 70 65 63 69
61 6C 53 74 6F 72 65 01 A8 00 00 00 00 00 00 00 00 F0 F2 A8 49 73 43 6F 6C 75
6D 6E F0 F2 A5 47 55 44 49 44 A8 00 00 00 05 00 00 02 01 F3 F2 AB 50 61 73 73
77 6F 72 64 55 49 44 A8 00 00 00 05 00 00 02 09 F3 F2 A4 4E 61 6D 65 A8 00 00
00 05 00 00 02 0B F3 F2 AA 43 6F 6D 6D 6F 6E 4E 61 6D 65 A8 00 00 00 05 00 00
02 0B F3 F2 A8 50 61 73 73 77 6F 72 64 A8 00 00 00 05 00 00 02 0C F3 F1 F1 81
64 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 74 of 133

F8 Call Token Begins method

A8 00 00 00 00 00 00 00 01 Invoking UID ThisSP Reserved UID

A8 00 00 00 06 00 00 00 08 Method UID
CreateTable Method
UID

F0 Start List Token Begins parameter list

AC 53 70 65 63 69 61 6C 53
74 6F 72 65

Required Parameter:
Name "SpecialStore"

01 Required Parameter: Kind Object table

A8 00 00 00 00 00 00 00 00
Required Parameter:
GetSetACL "0000000000000000"

F0 Start List Token

F2 Start Name Token

A8 49 73 43 6F 6C 75 6D 6E name "IsColumn"

F0 Start List Token
Required Parameter:
Columns

F2 Start Name Token name-value

A5 47 55 44 49 44 "GUDID"

A8 00 00 00 05 00 00 02 01 bytes_12

F3 End Name Token

F2 Start Name Token name-value

AB 50 61 73 73 77 6F 72 64
55 49 44 "PasswordUID"

A8 00 00 00 05 00 00 02 09 uid

F3 End Name Token

F2 Start Name Token name-value

A4 4E 61 6D 65 "Name"

A8 00 00 00 05 00 00 02 0B name

F3 End Name Token

F2 Start Name Token name-value

AA 43 6F 6D 6D 6F 6E 4E 61
6D 65 "CommonName"

A8 00 00 00 05 00 00 02 0B name

F3 End Name Token

F2 Start Name Token name-value

A8 50 61 73 73 77 6F 72 64 "Password"

A8 00 00 00 05 00 00 02 0C password

F3 End Name Token

F1 End List Token

F1 End List Token

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 75 of 133

81 64
Required Parameter:
MinSize 100

F1 End List Token End of parameters

F9 End of Data Token End of method

F0 00 00 00 F1 Status List

2.2.3.3 Pseudo-Code Response
 [0000090100000000, 100]

2.2.3.4 Response Byte Representation
A8 00 00 09 01 00 00 09 01 81 64 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

F0 Start List Token Begins results list

A8 00 00 09 01 00 00 09 01 New Table UID

81 64 Number of rows assigned 100

F1 End List Token Ends results list

F9 End of Data Token Ends method response

F0 00 00 00 F1 Status List

2.2.4 Set (Locking Object)
This example demonstrates the usage of the Set method. This particular example utilizes the Set method
on a Locking object.

2.2.4.1 Pseudo-Code Invocation
LockingTable_GlobalRangeUID.Set [[], "RowValues" = [["ReadLockEnabled" = 1,
"WriteLockEnabled" = 1, "ReadLocked" = 1, "WriteLocked" = 1, "LockOnReset" = [
0]]]]

2.2.4.2 Invocation Byte Representation
F8 A8 00 00 08 02 00 00 00 01 A8 00 00 00 06 00 00 00 0D F0 F0 F1 F2 A9 52 6F
77 56 61 6C 75 65 73 F0 F0 F2 AF 52 65 61 64 4C 6F 63 6B 45 6E 61 62 6C 65 64
01 F3 F2 D0 10 57 72 69 74 65 4C 6F 63 6B 45 6E 61 62 6C 65 64 01 F3 F2 AA 52
65 61 64 4C 6F 63 6B 65 64 01 F3 F2 AB 57 72 69 74 65 4C 6F 63 6B 65 64 01 F3
F2 AB 4C 6F 63 6B 4F 6E 52 65 73 65 74 F0 00 F1 F3 F1 F1 F1 F3 F1 F9 F0 00 00
00 F1

Bytes Purpose Value Notes

F8 Call Token Begins method

A8 00 00 08 02 00 00 00
01 Invoking UID Locking Table Global Range Object UID

A8 00 00 00 06 00 00 00
0D Method UID Set Methd UID

F0 Start List Token Begins parameter list

F0 Start List Token

F1 End List Token

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 76 of 133

F2
Start Name
Token

A9 52 6F 77 56 61 6C 75
65 73 Name "RowValues"

F0 Start List Token

F0 Start List Token

F2
Start Name
Token name-value

AF 52 65 61 64 4C 6F 63
6B 45 6E 61 62 6C 65 64 "ReadLockEnabled"

01 True

F3
End Name
Token

F2
Start Name
Token name-value

D0 10 57 72 69 74 65 4C
6F 63 6B 45 6E 61 62
6C 65 64 "WriteLockEnabled"

01 True

F3
End Name
Token

F2
Start Name
Token name-value

AA 52 65 61 64 4C 6F
63 6B 65 64 "ReadLocked"

01 True

F3
End Name
Token

F2
Start Name
Token name-value

AB 57 72 69 74 65 4C
6F 63 6B 65 64 "WriteLocked"

01 True

F3
End Name
Token

F2
Start Name
Token name-value

AB 4C 6F 63 6B 4F 6E
52 65 73 65 74 "LockOnReset"

F0 Start List Token

00 0

F1 End List Token

F3
End Name
Token

F1 End List Token

F1 End List Token

F1 End List Token

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 77 of 133

F3
End Name
Token

F1 End List Token Ends parameter list

F9
End of Data
Token Ends method

F0 00 00 00 F1 Status List

2.2.3.3 Pseudo-Code Response
 [0000090100000000, 100]

2.2.4.3 Response Byte Representation
 [1]

2.2.4.4 Response Byte Representation
F0 01 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

F0 Start List Token Begins results list

01 True

F1 End List Token Ends results list

F9 End of Data Token Ends method response

F0 00 00 00 F1 Status List

2.2.5 Set (ACE Object)
This example demonstrates the usage of the Set method. This particular example utilizes the Set method
on an ACE object.

2.2.5.1 Pseudo-Code Invocation
Locking_2_ACEObjectUID.Set [[], "RowValues" = [["BoolExpr" = [
0000000900000002, 0000000900FFFF01, 0]]]]

2.2.5.2 Invocation Byte Representation
F8 A8 00 00 00 08 00 00 08 03 A8 00 00 00 06 00 00 00 0D F0 F0 F1 F2 A9 52 6F
77 56 61 6C 75 65 73 F0 F0 F2 A8 42 6F 6F 6C 45 78 70 72 F0 A8 00 00 00 09 00
00 00 02 A8 00 00 00 09 00 FF FF 01 00 F1 F3 F1 F1 F1 F3 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

F8 Call Token Begins method

A8 00 00 00 08 00 00 08
03 Invoking UID Locking_2 ACE Object UID

A8 00 00 00 06 00 00 00
0D Method UID Set Methd UID

F0 Start List Token Begins parameter list

F0 Start List Token

F1 End List Token

F2
Start Name
Token

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 78 of 133

A9 52 6F 77 56 61 6C 75
65 73 Name "RowValues"

F0 Start List Token

F0 Start List Token

F2
Start Name
Token name-value

A8 42 6F 6F 6C 45 78 70
72 "BoolExpr"

F0 Start List Token

A8 00 00 00 09 00 00 00
02 0000000900000002

Admins Class
Authority UID

A8 00 00 00 09 00 FF FF
01 0000000900FFFF01

LockingOwner
Authority UID

00 And

F1 End List Token

F3
End Name
Token

F1 End List Token

F1 End List Token

F1 End List Token

F3
End Name
Token

F1 End List Token Ends parameter list

F9
End of Data
Token Ends method

F0 00 00 00 F1 Status List

2.2.5.3 Response Byte Representation
 [1]

2.2.5.4 Response Byte Representation
F0 01 F1 F9 F0 00 00 00 F1

Bytes Purpose Value Notes

F0 Start List Token Begins results list

01 True

F1 End List Token Ends results list

F9 End of Data Token Ends method response

F0 00 00 00 F1 Status List

 End Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 79 of 133

10.2.3 Authenticate Method, Authority Parameter

 Start Proposal

Authenticate Method Parameter Requirement
Author: Jason Cox

Revision:

0.1 07.31.07 Start of draft (Jason Cox)

0.2 08.03.07 fixed title

1 Goal
The goal of this proposal is:

•••• To suggest modification of the Authenticate method parameter requirements as described in Core
Spec section 5.3.4.1.12.

2 Proposal
Section 5.3.4.1.12 of the Core Specification indicates that, when an authority that is being authenticated by
the host through the use of the Authenticate method requires challenge-response, the host must invoke the
Authenticate method twice. The first Authenticate shall be empty, and the result should be a challenge from
the TPer.

This behavior is incorrect, and must be modified. The first Authenticate method in the challenge/response
pair must be invoked with an Authority object UID as the Authority parameter, so that the TPer can
determine the length of the challenge to be returned as the result of that method invocation.

The second Authenticate method invocation shall also be invoked with an Authority object UID as the
Authority parameter, which shall be the same as that used in the first invocation. In addition, as specified,
the second Authenticate method invocation shall contain the response to the TPer's challenge as its
Challenge parameter.

 End Proposal

10.2.4 Rename Method Table Name

 Start Proposal

Rename Method Tables
Author: Jason Cox

Revision:

0.1 08.01.07 Start of draft (Jason Cox)

1.0 08.10.07 Final draft, approved for inclusion in Core Spec (Jason Cox)

1 Goal
The goal of this proposal is:

•••• To suggest a modification in table naming to make the Base Template Method table have a more
descriptive name.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 80 of 133

2 Proposal
In the TCG Store Core Architecture Specification, the Method table is a table that contains access control
associations between methods and entities (objects/tables/SP). This document proposes to change the
name of this table to "AccessControl".

The "Method" table becomes the "AccessControl" table.

 End Proposal

10.2.5 Anybody Authority Authentication

 Start Proposal

Anybody Authority Authentication
Author: Jason Cox

Revision:

0.1 08.07.2007 Start of draft

1 Goal
The goal of this proposal is:

•••• To clarify authentication methods and usages associated with the Anybody Authority.

2 Proposal
The utilization of the Anybody authority in certain situations requires clarification in the TCG Storage
Architecture Core Specification.

2.1 Concepts
2.1.1 Session Startup
The Anybody authority has an Operation column value of None. Per the TCG Storage Architecture Core
Specification, an authority with an Operation value of None may be parameterized during session startup as
a signing authority (HostSigningAuthority in the StartSession method, or SPSigningAuthority – the
ResponseSign column value of the Control Authority).

Also per the Core Spec, parameterization of an authority with an Operation value of None as an exchange
authority (HostExchangeAuthority in the StartSession method, or SPExchangeAuthority – the
ResponseExch column value of the Control Authority) shall result in method failure.

Thus, during session startup, it is not an error for the Anybody authority to be parameterized as the
HostSigningAuthority in the StartSession method. If the Anybody authority is submitted in this manner, any
value submitted in the HostChallenge parameter shall be ignored and disregarded.

It is also not an error for a referenced HostSigningAuthority to have the Anybody authority as its
ResponseSign column value.

2.1.2 Authenticate Method
The Anybody authority can be submitted as a parameter of the Authenticate method, either with or without
a value in the Authenticate method's Challenge parameter. Any value submitted in the Challenge
parameter when the Authority parameter is the Anybody authority shall be ignored and disregarded.
Assuming all other Authenticate method syntax is correct, the method shall return a Success status and a
True result.

2.1.3 Authentication Limits

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 81 of 133

The Anybody authority counts against the maximum number of authenticated authorities permitted per
session (as reported in the Properties method response MaxAuthentications field). Thus, if the maximum
number of authorities that may be authenticated within a session is 8, the Anybody authority counts as one
of these, and the host may authenticate up to 7 additional authorities during session startup or using the
Authenticate method.

 End Proposal

10.2.6 Symmetric Key ChallengeResponse

 Start Proposal

Symmetric Key Challenge/Response
Author: Jason Cox

Revision:

0.1 08.09.2007 Start of draft

1 Goal
The goal of this proposal is:

•••• To clarify the operation of the SymK (symmetric key challenge/response) authentication type.

2 Proposal
This proposal identifies the requirements for the use of SymK (symmetric key challenge/response)
authentication during session startup and upon invocation of the Authenticate method using an authority
that requires such authentication.

This proposal describes the challenge size, response size, and encryption mode used with this
authentication type.

2.1 Concepts
2.1.1 SymK Authorities
Authorities that require symmetric key challenge/response authenticate are identified by the value of their
Operation column. Authorities that use SymK shall have an Operation column value of 4. Such an
authority may be authenticated through the use of the Authenticate method, or via session startup. This
authority may be used as the HostSigningAuthority in the StartSession method call, or it may be referenced
from the Control Authority's ResponseSign column value as the SPSigningAuthority.

In addition to having an Operation column value of 4 ("SymK"), a SymK authority shall also have a
Credential column value that is a valid uidref to a valid symmetric key credential object (for instance, a
C_AES_128 or C_AES_256 object). That credential shall have a Mode column value of 0 ("ECB").

 End Proposal

10.2.7 Global Locking Range Identification

 Start Proposal

Global Locking Range Identification
Author: Doug Philips, Jason Cox

Revision:

0.1 09.19.2007 Start of draft

1 Goal
The goal of this proposal is:

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 82 of 133

•••• To clarify and simplify the identification of the Global Locking Range.

2 Proposal
This proposal clarifies the properties of the Global Locking Range by which it can be identified by the host.

3 Concepts
This item proposes removing text indicating that the Global Range is the "first row" in the table. The
Locking table is an object table, and "row ordering is not defined for object tables.

Additionally, the implied restriction that only the Global Range may have RangeLength and RangeStart both
= 0 should also be lifted.

Since the Core Spec assigns the UID of the Global Range, and that row is not deletable from the Locking
table, the assigned UID is sufficient to identify the Global Range in that table and the other restrictions are
superfluous.

This proposal lifts the restriction that the RangeLength and RangeStart columns of Locking objects other
than the Global Range cannot be changed after the row has been created instead leaving that to the usual
ACL control mechanism. Changes to the RangeLength and/or RangeStart columns are to be subjected to
the same constraints and checks that are defined for those columns when rows of the locking table are
created.

 End Proposal

10.2.8 Fixed Location Optional Parameters

 Start Proposal

Fixed Location Optional Parameters
Author: Jason Cox

Revision:

0.1 09.19.2007 Start of draft

1 Goal
The goal of this proposal is:

•••• To simplify method parameterization

2 Proposal
This proposal suggests requiring that Optional method parameters be submitted in a fixed order.

3 Concepts
Section 3.2.2.1 of the Core Specification 0.9 indicates:

"Optional parameters are not required to be in order, and are not required to be included in a
method invocation."

This proposal suggests that the above text in the Core Specification be replaced by the following:

 "Optional parameters are not required to be included in a method invocation. If any optional
parameters of a method are supplied to an invocation of that method, the supplied optional parameters
shall be provided in the order specified in the Core Specification for that method. If any optional parameter
is supplied out of order, the method invocation shall fail and return a non-success status code."

 End Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 83 of 133

10.2.9 Authentication Within Transactions

 Start Proposal

Authentication Within Transactions
Author: Jason Cox

Revision:

0.1 08.07.2007 Start of draft

0.2 10.04.2007 Modified per SWG discussion

1 Goal
The goal of this proposal is:

•••• To clarify the behavior of the Authenticate method when used within transactions.

2 Proposal
The utilization of the Authenticate method within transactions causes some specific behavior that differs
from most other methods and should be defined in the TCG Storage Architecture Core Specification.

2.1 Concepts
2.1.1 Authenticate Method in-Transaction Invocations
Successful invocations of the Authenticate method occur outside of transactional control, such that even in
the event that a transaction in which a successful Authenticate method occurs is aborted, the authority
authenticated by that method invocation continues to be authenticated.

If a successful Authenticate method invocation is made at any time within a session (either inside or outside
of a transaction), the authority is considered authenticated for the rest of the session and any subsequent
method invocations that depend on that authentication will be authorized. This applies even to a successful
Authenticate method invocation that occurs in a transaction that is subsequently aborted.

 End Proposal

10.2.10 Zero-Length Locking Range Handling

 Start Proposal

Zero-length Locking Range Handling
Author: Doug Philips, Jason Cox

Revision:

0.1 09.19.2007 Start of draft

0.2 10.02.2007 Updated with Re-encryption interactions

0.3 10.04.2007 Added FAIL status code

1 Goal
The goal of this proposal is:

•••• To permit the existence of zero length ranges in the Locking Table.

•••• To define the behavior of modification of Locking objects undergoing re-encryption.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 84 of 133

2 Proposal
This proposal clarifies handling of Locking ranges with RangeLength column value of zero.

3 Concepts
3.1 Zero-Length Range Handling
This proposal depends on the Global Range Identification proposal’s passage. Assuming that, this proposal
enhances the definition of overlapping ranges such that they apply only to Locking Table rows that have a
RangeLength > 0.

Locking objects whose RangeLength column == 0 do not have any LBAs under their control and thus do
not overlap any other row, even if their RangeStart values match. Any Set method invocation that results in
a Locking Table row’s RangeLength column being non-zero, or that does not change a non-zero
RangeLength column but does change a RangeStart column, is subject to the same overlapping range
restrictions as already described in the Core Spec.

Locking objects that have a RangeLength column of zero interact with re-encryption requests as identified
in the Core Spec and section 3.2 of this document.

3.2 Re-Encryption and Modification of Locking Objects
Attempts to modify the RangeStart and RangeLength columns of a Locking object that is undergoing re-
encryption (the Locking object's ReEncryptState column value is not IDLE) shall fail and return a non-
success status (FAIL) for the invoked method.

Attempts to delete a Locking object that has a ReEncryptState column value of ACTIVE shall fail and return
a non-success status (FAIL) for the invoked method.

When the Global Locking Range is undergoing re-encryption (the Global Range's ReEncryptState column
value is not IDLE):

• Attempts to modify the RangeStart and RangeLength columns of any Locking object shall fail
and return a non-success status (FAIL) for the invoked method.

• Attempts to delete any Locking object shall fail and return a non-success status (FAIL) for the
invoked method.

• Attempts to create a new Locking object shall fail and return a non-success status (FAIL) for
the invoked method.

3.3 FAIL Status Code
In addition to the method status codes defined in the Core Spec, a new status code is suggested.

Name Value

FAIL 0x3F

This status is returned when a method fails in a manner for which none of the other failure statuses apply.

 End Proposal

10.2.11 Next Method

 Start Proposal

Next Method Modification
Author: Scott Marks

Revision:

1 11.08.2007 Start of draft

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 85 of 133

1 Goal
The goal of this proposal is:

•••• To clarify the semantics of the Next method.

2 Proposal
2.1 Concepts
The Core Specification defines the Next[] method to be:

TableUID.Next [
Where : row_selection,
Count: uinteger_4]
=>

[Result : next_result]

The purpose of this method is to allow iteration over an object table despite the lack of ordering of the rows
of such tables. This method is intentionally fragile with respect to modifications of the underlying table.

In addition, the semantics of “iteration”, if that is taken to mean a sequence of Next method calls, is not
completely described. What happens if one calls Next with the same parameters twice – when is it
reasonable to expect the same result? What constitutes “modification of the underlying table”? If once
calls Next without a Where parameter, without any intervening “modification”, is it reasonable to expect the
same result?

Fortunately, the “state” of the iteration can be considered to be completed specified in the Result returned
by one step and subsequently fed back in as the Where in a next step. The very act of iteration implies, at
least for the duration of that iteration, an “current” order to the rows, although that order is determined by
the TPer, not in particular by the UIDs of the rows or the order in which rows were added or deleted in
bringing the table to its current state.

This proposal suggests changing the focus of the next method from implementing iteration, with its possible
implication of a hidden dynamic state, to discovery of a “current” order of rows of an object table. This order
will still be arbitrarily determined by the TPer and subject to change when the underlying table is modified.
In the proposed replacement explanatory text below, the first paragraph, addressing using the method on
array tables, is unchanged.

2.1.1 Proposed replacement explanatory text following pseudocode
When successfully invoked on an array table, the Next method returns zero or more row number/uidref
pairs currently in use in the table following the specified Where row, iterating sequentially (by RowNumber
column value) through the table rows. If Where is not specified, the first row of the table is the first row
number returned. If Count is not specified, it defaults to 1. If there are fewer than Count rows defined after
the indicated starting row, only the defined row numbers are returned.

The Next Method may be used to discover an ordering of rows in an object table. Since the ordering of
object tables is unspecified, the ordering that is discovered by successful invocation(s) of this method on an
object table will be some undefined ordering, the “current” ordering.

When successfully invoked on an object table, the Next method returns a list of zero or more uidrefs
“following” the specified Where row in the current ordering. If a value for the Where parameter is not
specified in the method invocation, the first element, if any, of the list of uidrefs, will denote the “beginning”
of the ordering, i.e. the row which has no predecessor in the current ordering.

The implementation is required to discover a consistent ordering of all rows of an object table only if the
object table is not modified between calls to Next. Actions which cause modifications to the object table

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 86 of 133

that would result in a new ordering shall be specified in each SSC, and shall include at least method calls
adding or deleting rows if those are permitted by the SSC.

 End Proposal

10.2.12 Synchronous Communications

 Start Proposal

Synchronous Communications
Author: Jason Cox

Revision:

1 08.28.2007 Start of draft

2 09.19.2007 Removed some extraneous restrictions, mods per SJ FtF

3 10.15.2007 Removed more extraneous restrictions, added state diagram

4 11.15.2007 Modified OutstandingData and MinTransfer field values per discussion

5 12.03.2007 Modified to add method, protocol restriction; renumbered

1 Goal
The goal of this proposal is:

•••• To describe the usage of the communications protocol stack described in the TCG Storage
Architecture Core Specification to perform synchronous command exchanges.

2 Proposal
The Core Specification defines how to enable fully asynchronous messaging between host applications and
SPs. The communications protocol can be adjusted also to enable synchronous communications to occur
between host applications and SPs.

This proposal describes the operation of that protocol, including requirements on exchange of interface
commands and associated limitations on packets, subpackets, and flow control.

2.1 Concepts
2.1.1 Introduction
Begin Informative Text

The communications protocol stack as described in the Core Specification enables a fully asynchronous
exchange of data between host and TPer. Using the communications stack in this manner is a matter of
arbitrarily interleaving IF-SEND commands with IF-RECV commands.

Asynchronous communications allows the host to transmit methods and data to the TPer without having to
retrieve the results of those methods before sending additional methods; and enables the TPer to return
method results, upon request, at arbitrary boundaries. Flow control provides a mechanism for buffer
management to occur as data is successfully transmitted and received.

However, for some hosts and devices, these mechanisms are more complex and require more processing
capability and code space than may be realistically available. For these situations, the communications
protocol stack may be tailored to better meet the capabilities of the TPer.

For instance, fixed or semi-fixed sized commands simplifies message creation and parsing; and fixed buffer
sizes along with restrictions on the relationship between IF-SEND and IF-RECV negates the need for the
communications to require flow control for buffer management.

End Informative Text

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 87 of 133

2.1.2 Interface Commands
2.1.2.1 Restrictions
This section defines the restrictions imposed on the exchange of IF-SEND and IF-RECV commands.

1. Any number of non IF-SEND/IF-RECV commands may be interleaved with IF-SEND/IF-RECV
commands.

2. The normal communications state of an Associated ComID shall be to await receipt of an IF-SEND
command for that ComID.

a. While awaiting receipt of an IF-SEND interface command, any received IF-SEND command
with a valid ComID shall be accepted.

b. Once the entire command payload has been received, the TPer shall return an interface
status to the host.

c. Any IF-RECV command received for the Associated ComID awaiting receipt of an IF-SEND
command shall return to the host a ComPacket with a Length field value of zero, an
OutstandingData field value of zero, and a MinTransfer field value of zero. This signals to
the host that there is no pending response data to retrieve.

3. After an IF-SEND command has been received, a command completion without error has been
returned, and the payload has been decoded without an error, the TPer shall not accept another IF-
SEND command for that ComID until the host has retrieved the entire response via IF-RECV(s).

a. Any subsequently received IF-SEND commands for the specified ComID shall be aborted
at the interface level. The interface status for this action shall be specified in the SWG SIIF
Interface Specification.

b. If the TPer has not sufficiently processed the command payload and prepared a response,
any IF-RECV command for that ComID shall receive a ComPacket with a Length field value
of zero (no payload), an OutstandingData field value of 0x01, and a MinTransfer field value
of zero.

c. If the TPer has sufficiently processed the command payload and prepared a response, an
IF-RECV command that requests a transfer length less than the amount of response data
the TPer has prepared shall reply with a ComPacket with a Length field value of zero (no
payload) and OutstandingData value of total bytes currently available, and MinTransfer
field value of zero or the minimum request required to transfer a packet.

d. In the case of TPers based on an SSC that permits multiple method invocations per IF-
SEND command, the SSC may additionally require that each method response shall be
retrieved separately (along with Control Tokens as determined by the TPer), via multiple IF-
RECV commands. For these SSCs:

i. If all responses have not been retrieved, and additional responses are available,
the TPer shall respond to an IF-RECV command with OutstandingData value of
total bytes currently available, and MinTransfer field value of zero or the minimum
request required to transfer a packet.

ii. If all responses have not been retrieved, and no additional responses are prepared
but more are to come, the TPer shall respond to an IF-RECV command with
OutstandingData field value of 0x01 and MinTransfer field value of Zero.

Table 01 IF-RECV Field Values
IF-RECV Length Field

Value
OutstandingData Field
Value

MinTransfer Field
Value

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 88 of 133

IF-RECV Length Field
Value

OutstandingData Field
Value

MinTransfer Field
Value

Response(s) to
come, no
Response(s)
available

Zero 0x01* Zero

Response ready,
insufficient transfer
length request

Zero Total bytes currently
available

Zero, or the minimum
request required to
transfer a packet

Response, additional
Response(s)
available

Data Length Total bytes currently
available

Zero, or the minimum
request required to
transfer a packet

Response, additional
Response(s) to
come, no
Response(s)
available

Data Length 0x01* Zero

Response, all
Response(s)
returned – no further
data

Data Length Zero Zero

All Response(s)
returned – no further
data

Zero Zero Zero

*Indicates a required change to the Core Spec – an OutstandingData field value of 0x01 denotes that the
TPer is processing response(s). This provides insight to the host that there are responses still to come, but
that are not ready yet. This is applicable to both the synchronous and asynchronous exchange of
messages.

2.1.2.2 Error Handling
This section defines the manner in which violations of the restrictions on Interface Commands shall be
handled by the TPer.

1. If a restriction violation occurs such that the TPer is unable to resolve a valid Session ID in an IF-
SEND command, or if the restriction violation occurs due to violations of packet requirements, the
TPer shall ignore the entire payload and shall immediately transition to the state of awaiting an IF-
SEND command.

2. If a restriction violation occurs such that the TPer is able to resolve the Session ID, the TPer shall
close that session and shall prepare for transmission the CloseSession method for retrieval by the
host.

3. The device shall abort at the interface level any IF-SEND command whose transfer length is
greater than the reported MaxComPacketSize for the corresponding ComID. The interface status
for this action shall be specified in the SWG SIIF Interface Specification.

4. For SSCs that require that entire method responses be retrieved, if data generated in response to
any single method in an IF-SEND command (together with required communications overhead)
does not fit entirely within the TPer's response buffer, the device shall not return any part of that
method response and shall instead return an empty response list with a status code of
RESPONSE_OVERFLOW in the response status list. Additionally, the TPer shall continue
processing methods and control tokens that had been sent in that command payload (if any).

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 89 of 133

2.1.3 Other Restrictions
There are two other restrictions necessitated by this restriction on the exchange of interface commands:

1. Methods shall not span ComPackets. In the case where an incomplete method is submitted, if the
TPer can identify the associated session, then that session shall be aborted and a CloseSession
may be prepared for delivery on Session 0/Session Manager Layer.

2. The synchronous exchange of interface commands shall only apply to IF-SEND/IF-RECV
commands exchanged on Protocol ID 1.

2.1.4 State Diagram
Figure 1 State Diagram

 End Proposal

10.2.13 TypeOr Name Removal

 Start Proposal

TypeOr Name Removal
Author: Jason Cox

Revision:

1 12.03.2007 Start of draft

2 1.02.2007 Fixed Set method signature

1 Goal
The goal of this proposal is:

•••• To remove TypeOr tag names in method parameters.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 90 of 133

2 Proposal
This proposal suggests removing the TypeOr tag names in method parameters, and defines how TypeOr
values are to be transmitted over the interface.

2.1 Scope
The scope of this proposal is limited to addressing TypeOr tag names in method parameters. This proposal
does not address naming in Optional Parameter naming, and is not related to the Alternative column type.

2.2 Concepts
2.2.1 TypeOr Values
Based on the descriptions in the Core Specification, and updated in the Stream Type Removal Proposal,
the TypeOr type used in method parameterization is defined as follows:

"The components of an abstract typeOr alternative type used in method signature pseudo-code are
always presented as Named value pairs. As such, each typeOr component will be represented on
the interface as a Named value pair. Note that the typeOr itself may be an optional parameter or
result, and as such this type could represent an instance of an embedded Named value pair (i.e.
Name1 = Name2 = Value, where the value of Name2 is "Value" and the value of Name1 is "Name2
= Value")."

An example of a method signature that contains one of these types is the Next method:

TableUID.Next [
Where = row_address,
Count = uinteger]

=>
[Result : TypeOr { ArrayTable = list [[ref, uidref] ...],
ObjectTable = list [uidref ...] }]

The result of this method contains a TypeOr type, and will either be represented as:

ArrayTable = [[]] or ObjectTable = []

2.2.2 Proposed Functional Modifications
Review of the methods that contain TypeOr types and tags in the Core Specification indicate that an
implementation can, based on the context of the method, properly identify and interpret which of the
alternatives in that type is being presented as the method parameter or result.

Based on this review, this proposal suggests removing of the tagging in the TypeOr types on the in
methods transmitted on the interface. Thus, the value transmitted for a TypeOr will not be a Named value
type. It will only be the value, encoded as only the value (not as a Named value).

Additionally, for clarity and readability, this proposal suggests that the TypeOr names remain in the pseudo-
code method definitions and abstract type definitions, but that those signatures change so that the TypeOr
identifiers use ":" instead of "=". The identifier to the left of the ":" in the method signature would NOT be
transmitted as part of the method invocation, and is used only for documentation and identification
purposes.

2.2.2.1 Documentation Example
For example, the Next method signature of Next is currently:

TableUID.Next [
Where = row_address,
Count = uinteger]

=>
[Result : TypeOr { ArrayTable = list [[ref, uidref] ...],
ObjectTable = list [uidref ...] }]

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 91 of 133

When considered with the "abstract type" row_address factored into the method signature, the Next
signature is actually:

TableUID.Next [
Where = typeOr { RowAddress = ref, UIDAddress = uidref },
Count = uinteger]

=>
[Result : TypeOr { ArrayTable = list [[ref, uidref] ...],
ObjectTable = list [uidref ...] }]

This signature would change to:

TableUID.Next [
Where = row_address,
Count = uinteger]

=>
[Result : TypeOr { ArrayTable : list [[ref, uidref] ...], ObjectTable : list [
uidref ...] }]

The abstract type row_address is thus modified to be:

typeOr { RowAddress : ref, UIDAddress : uidref }

2.2.2.2 Encoding Example
The encoding of the Next method, as defined by the Core Spec and the Stream Typing Removal Proposal,
is as follows:

ArrayTableUID.Next F0 F2 Where F2 ArrayTable F0 F0 ref uidref F1 F1 F3 F3 F2 Count

uinteger F3 F1 F9 F0 0 0 0 F1
=>
F0 F2 ArrayTable F0 F0 ref uidref F1 F0 ref uidref F1 F3 F1 F0 0 0 0 F1

Based on this proposal, the above encoding would be:

ArrayTableUID.Next F0 F2 Where F0 F0 ref uidref F1 F1 F3 F2 Count uinteger F3 F1 F9 F0
0 0 0 F1
=>
F0 F0 F0 ref uidref F1 F0 ref uidref F1 F1 F1 F0 0 0 0 F1

2.2.3 Updated Abstract Types
This section identifies the specific changes required of relevant abstract types. Not all abstract types are
presented – only those that are affected by this proposal.

2.2.3.1 cell_block
This type represents a grouping of Named values that are used to identify a portion of a table. In
messaging, this grouping is enclosed by List value delimiters, and each component is enclosed by Named
value delimiters.

Because this is a group of Named values, its separate components are optional. However, there are
default requirements if components are omitted. These requirements are as follows:

•••• Table – this Named value has the Name "Table" and a value that is a uid to a table.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 92 of 133

o If the value with Name "Table" is omitted, then the operation defaults to the table upon
which the method was invoked.

o Table shall be omitted if the method was invoked to operate on an object.

•••• startRow – this Named value has the Name "startRow". This Named value type can be assigned
one of two values – either a uid of an object or a RowNumber that corresponds to the RowNumber
value of an Array table row. Only one of these two values will appear in the messaging stream.
The "typeOr" identifier, accompanying curly brackets ("{", "}"), and identifier ("'name' :") have no
effect on the values as represented in the message.

o If the value with Name "startRow" is omitted and the method is invoked to operate on a
table, then the operation defaults to the first row of the table.

o The value with Name "startRow" may be omitted if the method is invoked to operate on an
object. If it is not omitted, it shall be the uid of the object on which the method is to operate,
and shall be the same as the value assigned to endRow.

o If both the value with Name "startRow" and the value with Name "endRow" are included in
the type parameterization, then the value with Name "startRow" shall have the same type
(uid or uinteger) as the value with Name "endRow".

•••• endRow – this Named value has the Name "endRow". This Named value type can be assigned
one of two values – either a uid of an object or a RowNumber that corresponds to the RowNumber
value of an Array table row. Only one of these two values will appear in the messaging stream.
The "typeOr" identifier, accompanying curly brackets ("{", "}"), and identifier ("'name' :") have no
effect on the values as represented in the message.

o If the value with Name "endRow" is omitted and the method is invoked to operate on a
table, then the operation defaults to the last row of the table.

o The value with Name "endRow" shall be omitted if the method is invoked to operate on an
object. If it is not omitted, it shall be the uid of the object on which the method is to operate,
and shall be the same as the value assigned to startRow.

o If both the value with Name "startRow" and the value with Name "endRow" are included in
the type parameterization, then the value with Name "endRow" shall have the same type
(uid or uinteger) as the value with Name "startRow".

•••• startColumn – this Named value has the Name "startColumn". This Named value type has a max
bytes value that is represented by here using the name abstract type.

o If the value with Name "startColumn" is omitted, then the operation defaults to the first
column of the table or object.

•••• endColumn – this Named value has the Name "endColumn". This Named value type has a max
bytes value that is represented by here using the name abstract type.

o if the value with Name "endColumn" is omitted, then the operation defaults to the last
column of the table or object.

Format:

[Table = uid, startRow = typeOr { UID : uid, Row : RowNumber }, endRow = typeOr { UID :
uid, Row : RowNumber }, startColumn = name, endColumn = name]

2.2.3.2 row_address
This abstract type is used to describe a parameter that can be either a ref or a uidref. It is similar to the
alternative column type. For additional information on the component types (ref and uidref), see their
respective entries in this section.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 93 of 133

Only one of these two values will appear in the messaging stream. The "typeOr" identifier, accompanying
curly brackets ("{", "}"), and identifier ("'name' :") have no effect on the values as represented in the
message.

Format

 typeOr { RowAddress : ref, UIDAddress : uidref }

In the message stream itself, the value will one of the following:

•••• ref

•••• uidref

2.2.4 Updated Method Signatures
This section identifies the specific changes required of relevant method signatures. Not all method
signatures are presented – only those that are affected by this proposal.

2.2.4.1 CreateRow
 TableUID.CreateRow [

 Row : row_data+]

 =>

 [Result : typeOr { ArrayTable : list [list [ref, uidref] ...], ObjectTable :
list [uidref ...] }]

2.2.4.2 DeleteRow
 TableUID.DeleteRow [

 Where : row_address,

 Count = uinteger]

 =>

 [Result : boolean]

2.2.4.3 Get
 TableUID.Get [

 ObjectUID.Get [

 Cellblock : cell_block]

 =>

 [Result : typeOr { Bytes : Bytes, RowValues : list [list [ColumnName = Value
...] ...] }]

2.2.4.4 Set
 (This method signature is based on the approved Set Parameters proposal)

TableUID.Set [
ObjectUID.Set [

Where = typeOr { UID : UID, Row : RowNumber },
Values = typeOr { Bytes : bytes, RowValues : list [list [ColumnName = Value ...] ...]]
=>

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 94 of 133

[]

2.2.4.5 Next
 TableUID.Next [

 Where = row_address,

 Count = uinteger]

 =>

 [Result : TypeOr { ArrayTable : list [[ref, uidref] ...], ObjectTable : list
[uidref ...] }]

2.2.4.6 Authenticate
 SPUID.Authenticate [

 Authority : uidref { AuthorityObjectUID },

 Proof = bytes]

 =>

 [Result : typeOr { Success : boolean, Response : bytes }]

2.2.4.7 Stir
SPUID.Stir[

 Value : typeOr { Input : integer, Internal : boolean }]

=>

[Result : boolean]

2.2.4.8 Decrypt
 CredentialObjectUID.Decrypt [

Input : typeOr { Data : bytes, Buffer : cell_block },

BufferOut = cell_block]

=>

[Result : bytes]

2.2.4.9 Encrypt
 CredentialObjectUID.Encrypt [

Input : typeOr { Data : bytes, Buffer : cell_block },

BufferOut = cell_block]

=>

[Result : bytes]

2.2.4.10 Sign
CredentialObjectUID.Sign

HashObjectUID.Sign[

Input : typeOr { Data : bytes, Buffer : cell_block },

BufferOut = cell_block]

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 95 of 133

=>

[Result : bytes]

2.2.4.11 Verify
CredentialObjectUID.Verify

HashObjectUID.Verify[

Input : typeOr { Data : bytes, Buffer : cell_block},

Data : typeOr { Proof : bytes, ProofBuffer : cell_block }]

=>

[Result : boolean]

2.2.4.13 Hash
HashObjectUID.HashCalc [

Input : typeOr { Data : bytes, BufferIn : cell_block }]

=>

[Result : bytes]

2.2.4.14 HMAC
HashObjectUID.HMACCalc [

Input : typeOr { Data : bytes, Buffer : cell_block }]

=>

[Result : bytes]

2.2.4.15 XOR
SPUID.XOR[

PatternInput : uidref {ByteTable},

DeletePattern : boolean,

Input : typeOr { Data : bytes, BufferIn : cell_block },

BufferOut = cell_block

]

=>

[Result : bytes]

2.2.5 Updated Text
In the Stream Typing Removal Proposal (section 2.1.3 in that proposal), TypeOr method
parameters/abstract types are defined in this way:

"The components of an abstract typeOr alternative type used in method signature pseudo-code are
always presented as Named value pairs. As such, each typeOr component will be represented on
the interface as a Named value pair. Note that the typeOr itself may be an optional parameter or
result, and as such this type could represent an instance of an embedded Named value pair (i.e.
Name1 = Name2 = Value, where the value of Name2 is "Value" and the value of Name1 is "Name2
= Value")."

This following text is intended to update that description (and to be subsequently adapted as necessary for
inclusion in the Core Specification):

"The components of an abstract typeOr alternative type used in method signature pseudo-code are
presented as "'name' : value". Each typeOr component will be represented on the interface as only

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 96 of 133

the value – the colon (":") indicates that the name identifier is for informational purposes and is
ignored."

Additionally, the following paragraph is intended to update the section (and to be subsequently adapted as
necessary for inclusion in the Core Specification):

"In typeOr types, when represented in abstract types or method signatures, a colon (":") indicates
that the string to the left of the colon is only a pseudo-code identifier associated with the value to
the right of the colon, and the value to the right of the colon is the actual value to be transmitted on
the interface."

 End Proposal

10.2.14 Level 0 Capabilities Discovery

 Start Proposal

 Level 0 Capabilities Discovery

Authors: Jim Hatfield, Seagate Technology
 Danny Ybarra, Western Digital
Revision:
0.1 10.25.07 Start of draft [Hines]
0.2 11.05.07 Revision presented to SIIF F2F meeting [Hatfield]
0.3 11.07.07 Addressed review comments, put in SWG proposal format
[Hatfield]
0.4 01.10.08 Added generic SSC discovery feature, renamed the function to

“Level 0 discovery [Hatfield/Ybarra/Hines]
0.5 01.15.08 Feedback during reviews [Hatfield/Ybarra/Hines]
0.6 01.30.08 Feedback during 1/25/08 review [Hatfield/Ybarra]
0.7 03.10.08 Feedback during several reviews [Hatfield/Ybarra]
0.71 03.12.08 Feedback during F2F reviews [Hatfield/Ybarra]
0.72 03.13.08 Feedback during F2F reviews [Hatfield/Ybarra]
0.73 03.18.08 Feedback during reviews [Hatfield/Ybarra]
0.74 03.21.08 Final draft: as voted on and accepted [Hatfield/Ybarra]

3 Proposal – Core Spec Changes
(Place this section in the Core spec. as new section 3.3.6 in the Interface
Communications
section.)

3.3.6 Level 0 Discovery

The LEVEL 0 DISCOVERY command provides a host with some basic information about
TPer
capabilities; both current and potential. More detailed information is
obtainable through SP
operations.

3.3.6.1 IF-SEND Command

IF-SEND command, with

Security Protocol = 01h
Security Protocol Specific = 0001h
Transfer Length= n/a

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 97 of 133

There is no IF-SEND command defined for Level 0 Discovery.
The TPer SHALL transfer all of the data from the host, SHALL discard it, and
return ’good’ status
to the host.

3.3.6.2 IF-RECV Command

IF-RECV command, with

Security Protocol = 01h
Security Protocol Specific = 0001h
Allocation Length = maximum length of the LEVEL 0 DISCOVERY response data

that the host elects to receive.
This IF-RECV command may be processed at any time, without regard to sessions
or prior
authentication.

If the Allocation Length is less than the size of the LEVEL 0 DISCOVERY
response data that is
available, the TPer SHALL return the requested amount of data, even if it is
truncated.

If the Allocation Length is greater than the size of the LEVEL 0 DISCOVERY
response data:

a) An ATA device shall pad with zeros to the Allocation Length requested.
b) A SCSI target with INC_512 set to one shall pad with zeroes to the next

512-byte boundary. If INC_512 is set to zero, the target shall only
transfer the available number of bytes.

The LEVEL 0 DISCOVERY response data (see Table 1) consists of a header field
and zero or
more variable length feature descriptors. A TPer SHALL not include feature
descriptors for
features that it does not implement. The data does not contain any ComPackets,
and is not
contained within a ComPacket.

Table 1 — LEVEL 0 DISCOVERY response data format

Bit

Byte
7 6 5 4 3 2 1 0

0 – 47 Level 0 Discovery header (see (see Table 2

48 – n Feature Descriptor(s) (see 3.3.6.3)

Table 2 — LEVEL 0 Discovery header

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1

2

3

Length of Parameter Data

(LSB)

4 (MSB) Data structure revision

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 98 of 133

5

6

7 (LSB)

8 (MSB)

…

15

Reserved

(LSB)

16 (MSB)

…

47

Vendor Specific

(LSB)

3.3.6.2.1 Length of parameter data

Indicates the total number of bytes that are valid in the level 0 discovery
header and all of the
feature descriptors returned, not including this field.

3.3.6.2.2 Data structure version number

This version number describes the format of the level 0 discovery header
returned. The value
SHALL be 00000001h

3.3.6.2.3 Vendor Specific

These bytes are vendor specific.

3.3.6.3 Features - Overview
A feature is a set of capabilities that may be implemented in a TPer. A Host
may discover the
capabilities and properties of a TPer by examining its feature descriptors.
Features that are
implemented by a TPer SHALL be indicated by the presence of a feature
descriptor.
The feature descriptors SHALL be returned in the LEVEL 0 DISCOVERY response
data in order
of increasing feature code values. Features that are not implemented SHALL NOT
be returned.
Table 3 contains the list of defined feature codes.

Table 3 —Feature Codes

Feature Code Feature Name Description

0000h Reserved

0001h TPer feature See 3.3.6.4

0002h Locking feature See 3.3.6.5

0003h – 00FFh Reserved

0100h – 01FFh Enterprise SSC See the Enterprise_A SSC specification

0200h – 02FFh Opal SSC See the Opal SSC specification.

0300h - 03FFh Optical SSC See the Optical SSC specification

0400h - BFFFh Reserved

C000h - FFFFh Vendor Unique Vendor specific features

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 99 of 133

All feature descriptors SHALL conform to the general format defined in Table 4.

Table 4 — Feature Descriptor template format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
Feature Code

(LSB)

2 Version Reserved

3 Length

4 – n Feature Dependent Data

3.3.6.3.1.1 Feature Code

The Feature Code field SHALL identify a feature (see Table 3) implemented by
the TPer.

3.3.6.3.1.2 Version

The Version field describes the format of the data returned. Future versions of a feature SHOULD be
backward compatible; incompatible changes SHOULD be included in a different feature.

3.3.6.3.1.3 Length

The Length field indicates the length of the Feature Dependent Data (in bytes)
that follow this header. This field SHALL be an integral multiple of 4.

3.3.6.4 TPer feature (0001h)

This information reports support for various TPer parameters. This mandatory
feature SHALL always be returned in the Level 0 Discovery response.

These parameters indicate whether the TPer supports a variety of features.
Having a given “support’ flag true does not imply that the feature is required
or enabled. Actually enabling a feature may require personalization of the
TPer.

Table 5 — TPer feature

Bit

Byte
7 6 5 4 3 2 1 0

0 (MSB)

1
Feature Code

(LSB)

2 Version Reserved

3 Length

4 Reserved ComID
Mgmt

Supported

Reserved Streaming
Supported

Buffer
Mgmt

Supported

ACK/NAK
Supported

Asynch
Supported

Sync
Supported

5 - 15

Reserved

The Feature Code field SHALL be set to 0001h.
The Version field SHALL be set to 1h.
The Length field SHALL be set to 0Ch.

3.3.6.4.1 SyncSupported

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 100 of 133

SyncSupported SHALL be set to one if the TPer supports the Synchronous Protocol, otherwise
SyncSupported SHALL be cleared to zero.

3.3.6.4.2 AsynchSupported

AsynchSupported SHALL be set to one if the TPer supports the Asynchronous Protocol, otherwise
AsynchSupported SHALL be cleared to zero.

3.3.6.4.3 ACK/NAKSupported

ACK/NAKSupported SHALL be set to one if the TPer supports transmission ACK/NAK flow control for
communications, otherwise ACK/NAKSupported SHALL be cleared to zero.

3.3.6.4.4 BufferMgmtSupported

BufferMgmtSupported SHALL be set to one if the TPer supports buffer management flow control for
communications, otherwise BufferMgmtSupported SHALL be cleared to zero.

3.3.6.4.5 StreamingSupported

StreamingSupported SHALL be set to one if the TPer supports the streaming protocol, otherwise
StreamingSupported SHALL be cleared to zero.

3.3.6.4.6 ComID Management Supported

Shall be set to one if the TPer supports ComID management using Protocol ID 02h, otherwise SHALL be
cleared to zero.

3.3.6.5 Locking Feature (0002h)

This information indicates support for an issued Locking template. This mandatory feature SHALL always
be returned in the Level 0 Discovery response.

Table 23 — Locking feature descriptor

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
Feature Code

(LSB)

2 Version Reserved

3 Length

4 Reserved MBR
Done

MBR
Enabled

Media
Encryption

Locked Locking
Enabled

Locking
Supported

5 - 15 Reserved

The Feature Code field SHALL be set to 0002h.
The Version field SHALL be set to 1h.
The Length field SHALL be set to 0Ch.

3.3.6.5.1 LockingSupported

LockingSupported SHALL be set to one if the TPer supports the Locking template;
otherwise
LockingSupported SHALL be set to zero.

3.3.6.5.2 LockingEnabled

LockingEnabled SHALL be set to one if an SP that incorporates the Locking
template is in any

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 101 of 133

state other than nonexistent or manufactured-inactive; otherwise LockingEnabled
SHALL be set
to zero.

3.3.6.5.3 Locked

Locked SHALL be set to one if LockingEnabled is set to one, and one or more LBA
ranges in
the Locking table have either (ReadLockEnabled=True and ReadLocked=True) or
(WriteLockEnabled=True and WriteLocked=True); otherwise Locked SHALL be set to
zero.

3.3.6.5.4 MediaEncryption

MediaEncryption SHALL be set to one if the TPer supports media encryption;
otherwise
MediaEncryption SHALL be set to zero.

3.3.6.5.5 MBREnabled

MBREnabled SHALL be set to one if LockingEnabled is set to one, and the
MBRControl and
MBR tables are implemented, and that the MBRControl table’s Enabled column has
a value of
"True"; otherwise MBREnabled SHALL be set to zero.

3.3.6.5.6 MBRDone

MBRDone SHALL be set to one if MBREnabled is set to one, and the MBRControl
table’s Done
column has a value of "True"; otherwise MBRDone SHALL be set to zero.

3.3.6.6 Common SSC feature information

This information is supplied as part of every reported SSC feature.

Table 7 — Common SSC Information

Bit

Byte
7 6 5 4 3 2 1 0

0 (MSB)

1
Base ComID

(LSB)

2 (MSB)

3
Number of ComIDs

(LSB)

4 - 15

Reserved for future common SSC parameters

3.3.6.6.1 Base ComID

This is the lowest static, pre-assigned ComID that the SSC supports for
Protocol ID=01h
sessions.

3.3.6.6.2 Number of ComIDs

This specifies the number of static, pre-assigned ComIDs that the SSC supports
for Protocol
ID=01h sessions, starting at the Base ComID.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 102 of 133

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 103 of 133

4 Proposal – Enterprise_A SSC Spec Changes
(Place the following section in the Enterprise_A SSC specification, in the
Level 0
Discovery section.)

4.3.6 Enterprise_A SSC Feature (0100h)

This feature SHALL be returned in the Level 0 Discovery response if the
Enterprise_A
SSC is implemented.

Table 8 — Enterprise SSC Descriptor Format

Bit
Byte

7 6 5 4 3 2 1 0

0 (MSB)

1
Feature Code

(LSB)

2 Version Reserved

3 Length

4 (MSB)

5
Base ComID

(LSB)

6 (MSB)

7
Number of ComIDs

(LSB)

8 - 19

Reserved for future common SSC parameters

20 (MSB)

21

22

N

Reserved for Enterprise_A SSC

(LSB)

The Feature Code field SHALL be set to 0100h.
The Version field SHALL be set to 1h.
The Length field SHALL be set to 0x10.
The Base ComID SHALL be set to 07FEh.
The Number of ComIDs SHALL be set to 0002h.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 104 of 133

 End Proposal

10.2.15 ComPacket/Packet/Subpacket Header Alignment
Proposal

 Start Proposal

ComPacket/Packet/Subpacket Header Alignment Proposal

Author: Darren Lasko (Fujitsu)

Revision

v0.1: 10/30/2007 start of the document

v0.2: 10/31/2007 Corrected the size of the Pad field in the Data Subpacket Payload

v0.3: 11/7/2007 Modified the Subpacket headers to group the Reserved fields into a single field of type
uinteger_6; removed the Reserved field from the Credit Control Subpacket payload and changed the type
of the Credit field to uinteger_4; added a section to modify the type for InitialCredit in
StartSession/SyncSession to uinteger_4.

1 Goal

The goal of this proposal is to align all ComPacket, Packet, and Subpacket header fields to be 32-bit (4
byte) aligned, and to require that all Subpacket payloads contain a multiple of 4 bytes of data. This will
ensure that all Compacket/Packet/Subpacket header and payload boundaries are 32-bit aligned (even for
multiple Packets per ComPacket and multiple Subpackets per Packet). In addition to enabling easier
processing of the headers, the alignment will also cause the memory locations for cryptographic processing
of secure messages (encryption/decryption/MAC) to be 32-bit aligned.

2 Motivation

Currently, the AckType field in the Packet header is of type uinteger_2, which causes the
Acknowledgment and Length fields to not be 32-bit aligned. It also causes the location in memory where
SecureData encryption/decryption begins to not be 32-bit aligned.
Requiring all header fields and header/payload boundaries be 32-bit aligned will help simplify the header
processing and the encryption/decryption/MAC of secure messages.

3 Proposal

3.1 ComPacket Header Modifications

No changes are necessary to the ComPacket header. However, any future modifications to the ComPacket
header shall maintain the 32-bit alignment of all fields in the ComPacket header.
The value of the Length field in the ComPacket header will automatically be a multiple of 4 by virtue of the
modifications defined in section 3.2 through 3.6 of this proposal.

3.2 Packet Header Modifications

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 105 of 133

Add a field of “Reserved: uinteger_2” between SeqNumber and AckType fields.
The value of the Length field in the Packet header will automatically be a multiple of 4 by virtue of the
modifications defined in section 3.3 through 3.6 of this proposal.

3.3 Subpacket Header Modifications

Move the Reserved field to come before the Kind field, and change the Reserved field to be of type
uinteger_6 in each of the defined Subpacket headers.

3.4 Credit Control Subpacket Modifications

The Length field in the Subpacket header shall contain a value of 0x00000004.
In the Payload, the Credit field shall be changed to type uinteger_4.

3.5 Data Subpacket Modifications

In the payload, add a field after the Data field of “Pad: bytes{(4 – (Length mod 4)) mod 4}”. The value of
the Pad bytes shall be 0x00.
Informative Note: The receiver of a Subpacket can unambiguously know how many bytes of real data there
are by examining the Length field in the Subpacket header. The receiver can also unambiguously know
how many bytes of pad there are by calculating ((4 – (Length modulo 4)) modulo 4).

3.6 New Subpacket Kinds

Any new Subpacket kind that is added to a future revision of the SWG Core specification shall maintain the
32-bit alignment of boundaries between headers and payloads.

3.7 StartSession/SyncSession Parameters

The InitialCredit parameter for both StartSession and SyncSession shall be changed to type uinteger_4
in order to maintain consistency with the type change to the Credit field defined in section 3.4.

 End Proposal

10.2.16 Session Manager Session Number

 Start Proposal

Session Manager Session Number

Author: Jason Cox, Doug Philips

Revision:
0.1 08.03.07 Start of draft

1 Goal
The goal of this proposal is:

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 106 of 133

• To indicate the changes required to the TCG Storage Architecture Core Specification to indicate that
Packets that are transmitted on the Session Manager layers, and contain Session Manager
methods, shall have a Packet.SessionNumber value of 0.

2 Proposal
Currently, the Core Spec indicates that the SessionNumber field of packets transmitted on the Session
Manager communications layer has a value of 0's for the TPer Session Number (TSN) portion, and the Host
Session Number (HSN), which in this instance does not identify the session but is used as a "routing aid".
This addressing is inconsistent and provides an artificial barrier to simultaneous startup of multiple sessions
that can be eliminated by setting the entire SessionNumber field to 0's.

2.1 Concepts

By requiring all Session Manager traffic to utilize a Packet.SessionNumber value of 0's,

• The Properties method usage is not inconsistently associated with a phantom session.

• Multiple session startup methods may be sent in a single Packet.

2.1.1 Session Manager Method Usage
2.1.1.1 Properties

The Properties method is a Session Manager layer method, but is never associated with a specific
Packet.SessionNumber value. Requiring all Session Manager layer methods, such as the Properties
method, to utilize Packet.SessionNumber values of 0 removes any inconsistencies with between the way
this method is transmitted and the way other Session Manager layer methods are transmitted.

2.1.1.2 Session Startup with SessionNumber=0's

Requiring the use of a non-0's Packet.SessionNumber with a session startup method provides an arbitrary
barrier to any Host Session Manager that attempts to start multiple sessions
simultaneously (transmitting multiple StartSession or StartTrustedSession methods in the same packet).
The same barrier occurs in conjunction with aggregation by the TPer of corresponding multiple
SyncSession or SyncTrustedSession methods for transmission back to the host. Associating Session
Manager layer methods with a Packet.SessionNumber of 0's removes artificial limitations on requiring only
one StartSession per packet.
The Host Session Number is identified in the StartSession method. Once the session has successfully
started, this value becomes part of the Packet.SessionNumber. Until that occurs, the Host Session
Manager and TPer Session Manager simply track the session startup methods transmitted on the single
session with SessionNumber of 0's.

2.1.2 Core Specification Changes
2.1.2.1 Session Manager Layer Method SessionNumber Requirements

The Control Sessions section of the Core Specification, section 3.3.4.2 shall be modified in a manner that
reflects the changes suggested in this section.
All Session Manager Layer Methods shall be transmitted in packets where Packet.SessionNumber = 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00.
Session Manager layer methods are:

• Properties

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 107 of 133

• StartSession

• SyncSession

• StartTrustedSession

• SyncTrustedSession

• CloseSession

Once a session has started (the session startup protocol has completed successfully), data may be
transmitted for that newly started session. The Packet.SessionNumber for that session shall be the
concatenation of the TSN and HSN, as described in the Core Specification, where HSN is initially
transmitted in the StartSession method and TSN is initially transmitted in the SyncSession method.
 End Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 108 of 133

10.2.17 Next Method Behavior Modification

 Start Proposal

Next Method Behavior Modification
Author: Jason Cox
Revision:
1 03/25/2008 Start of draft
2 03/28/2008 Updated starting row description per discussion

Next Method Behavior Modification...1
1 Goal...1
2 Proposal..1
2.1 Concepts...1

1 Goal

The goal of this proposal is:

• To change the behavior of the Next method when the Count optional parameter is omitted.

2 Proposal

2.1 Concepts

Currently, the Core Spec indicates that the behavior of the Next method when the Count parameter is such
that the value defaults to 1. So, if Next is invoked with an omitted Count parameter, the scope of the Next
method's return value is a single row.
This proposal suggests that when the Next method is invoked and the Count parameter is omitted, the
following behavior be exhibited:

• If both the Where parameter and the Count parameter are omitted, the scope of the Next
method's return value is the entire table.

• If the Where parameter is included in the invocation and the Count parameter is omitted, the

scope of the Next method's return value begins at the starting point in the table's ordering
indicated by the row following that identified by the Where parameter, and ends at the end of
the table's row ordering.

 End Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 109 of 133

10.2.18 K_AES media encryption key tables

 Start Proposal

K_AES media encryption key tables

Author: Cyril Guyot
Revision: 0.2

Changes:

0.1 – first draft
0.2 – added usage text for the Key column of the K_AES_128 and K_AES_256
tables

K_AES media encryption key tables

...
1

1
Goals..
...1
2 Proposal
...
..1

Media Key Table Group - K_AES_128 (Object Table)
..1
Media Key Table Group - K_AES_256 (Object Table)
..2

1 Goals

C_AES credentials, as defined in the TCG SWG Core Specification, can be used in at least two
fundamentally different processes: as media encryption keys and as authentication credentials.
One consequence of this design is a fair amount of complexity in the access control set-up to
ensure that a user is not allowed to use for authentication keys meant for media encryption - and
vice-versa -.

Moreover, access control rules for Set and Get methods on media encryption keys might typically
be fairly different from the ones associated with authentication. For instance one could envision a
TPer that might disallow entirely Set and Get methods on media encryption keys, but for which
allowing Get or Set on authentication credentials would be required to bootstrap a symmetric key
authentication mechanism.

This proposal solves those issues by adding two new K_AES_128 and K_AES_256 key tables
dedicated to media encryption keys.

2 Proposal

This proposal adds a new group of tables to the Locking template: the Media Key
Tables of which
two new tables K_AES_128 and K_AES_256 are defined. Those tables contain the media
encryption keys which are pointed to by the Locking Table cells in the Active Key
and Next
Key columns.

Active Key and Next Key column types are modified to only allow pointing to
K_AES_128

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 110 of 133

and K_AES_256 tables.

Finally, and as a consequence of the newly defined type, the Credential column of
the
Authority tables does not allow pointing to K_AES_128 or K_AES_256 key tables.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 111 of 133

Media Encryption Key Table Group - K_AES_128 (Object Table)

Table 01 K_AES_128 Table Description

Column IsIndex Type Description

UID uid This is the unique
identifier for this
object.

(Read-only)

Name Yes name This is the name of this
object. (Read-only

for pre-personalization
objects)

CommonName Yes common_name A name that may be shared
among multiple K_AES_128
objects (Read-only for
prepersonalization
objects)

Key bytes{max=32} Key

Mode symmetric_mode Defines the mode with
which this key shall be
used.

The Mode column defines the encryption mode with which this key shall
be used.
Valid values are ECB, CBC, CFB, OFB, GCM, CCM, CTR and
MediaEncryption.
MediaEncryption mode permits a vendor-specific encryption mode. Any
byte
beyond the first 16 in the Key column shall be ignored for the ECB,
CBC, CFB,
OFB, GCM, CCM, CTR modes. For MediaEncryption mode, the content of
the
Key column may be vendor-specific.

Media Encryption Key Table Group - K_AES_256 (Object Table)

Table 02 K_AES_256 Table Description

Column IsIndex Type Description

UID uid This is the unique
identifier for this
object.

(Read-only)

Name Yes name This is the name of this

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 112 of 133

Column IsIndex Type Description

object. (Read-only

for pre-personalization
objects)

CommonName Yes common_name A name that may be shared
among multiple K_AES_256
objects (Read-only for
prepersonalization
objects)

Key bytes{max=64} Key

Mode symmetric_mode Defines the mode with
which this key shall be
used.

The Mode column defines the encryption mode with which this key shall
be used.
Valid values are ECB, CBC, CFB, OFB, GCM, CCM, CTR and
MediaEncryption.
MediaEncryption mode permits a vendor-specific encryption mode. Any
byte
beyond the first 32 in the Key column shall be ignored for the ECB,
CBC, CFB,
OFB, GCM, CCM, CTR modes. For MediaEncryption mode, the content of
the
Key column may be vendor-specific.

Table 03 Default Type Table Values

ID Name Format SizeDefault Description

…. …. …. …. …. ….

00 00 00
05 00 00

10 02

cred_object_uidref 8 This is a
reference type
that
shall be used
specifically for
uidrefs to
credential
objects.
When performing
type
checking, as
part of that
type checking
the TPer shall
validate that

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 113 of 133

ID Name Format SizeDefault Description

this uidref is
to
an object in a
credential

table.

00 00 00
05 00 00
10 03

mediakey_object_uidref 8 This is a
reference type
that shall be
used
specifically for
uidrefs to
media encryption
key
objects. When
performing
type checking,
as part of
that type
checking the
TPer shall
validate that
this uidref is
to an object

in a media
encryption key
table

00 00 00
05 00 00

12 01

table_ref 9 This type is
used to
represent a
uidref to a
Table
that is one of
the set of all

tables in the
SP.

…. …. …. …. …. ….

Table 04 Locking Table

Column Type Description

…. …. ….

LockOnReset reset_types Identifies the LBA
range’s storage-related

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 114 of 133

Column Type Description

locking behavior,
dependent on reset

type.
Note that both Read and
Write Locking
behavior on reset are
controlled by this
value.
An empty set means
locking does not
occur on any reset.

ActiveKey mediakey_object_uidrefPoints to the present
encryption key for this

LBA range

NextKey mediakey_object_uidrefPoints to the next
encryption key for this LBA

range

ReEncryptStatereencrypt_state This is the present Re-
encryption State for
this LBA range.
ReEncryptState reports
the TPer’s response to
re-encrypt requests.
(Read-only)

…. …. ….

NextKey: This column identifies the LBA range’s next media encryption
key. This
value and the referenced media encryption key object shall be
writable when
the value of the ReEncryptState column is IDLE only. Otherwise, attempts
to
invoke an of the Set, Delete, or DeleteRow methods on the associated
credential
object shall return an error.

User Data shall be returned to clear text when the key value stored
at NextKey is
00s AND Re-encryption has been requested

Table 05 Table UIDs

UID of Table
Object

UID of Table Table Name Template

00 00 00 01 00 00
00 01

00 00 00 01 00 00
00 00

Table Base

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 115 of 133

UID of Table
Object

UID of Table Table Name Template

00 00 00 01 00 00
00 02

00 00 00 02 00 00
00 00

SPInfo Base

00 00 00 01 00 00
00 03

00 00 00 03 00 00
00 00

SPTemplates Base

00 00 00 01 00 00
00 04

00 00 00 04 00 00
00 00

Column Base

00 00 00 01 00 00
00 05

00 00 00 05 00 00
00 00

Type Base

00 00 00 01 00 00
00 06

00 00 00 06 00 00
00 00

MethodID Base

00 00 00 01 00 00
00 07

00 00 00 07 00 00
00 00

Method Base

00 00 00 01 00 00
00 08

00 00 00 08 00 00
00 00

ACE Base

00 00 00 01 00 00
00 09

00 00 00 09 00 00
00 00

Authority Base

00 00 00 01 00 00
00 0A

00 00 00 0A 00 00
00 00

Certificates Base

00 00 00 01 00 00
00 0B

00 00 00 0B 00 00
00 00

C_PIN Base

00 00 00 01 00 00
00 0C

00 00 00 0C 00 00
00 00

C_RSA_1024 Base

00 00 00 01 00 00
00 0D

00 00 00 0D 00 00
00 00

C_RSA_2048 Base

00 00 00 01 00 00
00 0E

00 00 00 0E 00 00
00 00

C_AES_128 Base

00 00 00 01 00 00
00 0F

00 00 00 0F 00 00
00 00

C_AES_256 Base

00 00 00 01 00 00
00 10

00 00 00 10 00 00
00 00

C_EC_160 Base

00 00 00 01 00 00
00 11

00 00 00 11 00 00
00 00

C_EC_192 Base

00 00 00 01 00 00
00 12

00 00 00 12 00 00
00 00

C_EC_224 Base

00 00 00 01 00 00
00 13

00 00 00 13 00 00
00 00

C_EC_256 Base

00 00 00 01 00 00
00 14

00 00 00 14 00 00
00 00

C_EC_384 Base

00 00 00 01 00 00
00 15

00 00 00 15 00 00
00 00

C_EC_521 Base

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 116 of 133

UID of Table
Object

UID of Table Table Name Template

00 00 00 01 00 00
00 16

00 00 00 16 00 00
00 00

C_EC_163 Base

00 00 00 01 00 00
00 17

00 00 00 17 00 00
00 00

C_EC_233 Base

00 00 00 01 00 00
00 18

00 00 00 18 00 00
00 00

C_EC_283 Base

00 00 00 01 00 00
02 01

00 00 02 01 00 00
00 00

TPerInfo Admin

00 00 00 01 00 00
02 02

00 00 02 02 00 00
00 00

Properties Admin

00 00 00 01 00 00
02 03

00 00 02 03 00 00
00 00

CryptoSuite Admin

00 00 00 01 00 00
02 04

00 00 02 04 00 00
00 00

Template Admin

00 00 00 01 00 00
02 05

00 00 02 05 00 00
00 00

SP Admin

00 00 00 01 00 00
04 01

00 00 04 01 00 00
00 00

ClockTime Clock

00 00 00 01 00 00
06 01

00 00 06 01 00 00
00 00

H_SHA_1 Crypto

00 00 00 01 00 00
06 02

00 00 06 02 00 00
00 00

H_SHA_256 Crypto

00 00 00 01 00 00
06 03

00 00 06 03 00 00
00 00

H_SHA_384 Crypto

00 00 00 01 00 00
06 04

00 00 06 04 00 00
00 00

H_SHA_512 Crypto

00 00 00 01 00 00
0A 01

00 00 0A 01 00 00
00 00

Log Log

00 00 00 01 00 00
0A 02

00 00 0A 02 00 00
00 00

LogList Log

00 00 00 01 00 00
08 01

00 00 08 01 00 00
00 00

Locking_Info Locking

00 00 00 01 00 00
08 02

00 00 08 02 00 00
00 00

Locking Locking

00 00 00 01 00 00
08 03

00 00 08 03 00 00
00 00

MBR_Control Locking

00 00 00 01 00 00
08 04

00 00 08 04 00 00
00 00

MBR Locking

00 00 00 01 00 00
08 05

00 00 08 05 00 00
00 00

K_AES_128 Locking

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 117 of 133

UID of Table
Object

UID of Table Table Name Template

00 00 00 01 00 00
08 06

00 00 08 06 00 00
00 00

K_AES_256 Locking

 End Proposal

10.2.19 Protocol Stack Reset Command

 Start Proposal

Protocol Stack Reset Command
Author: Jason Cox, Manuel Offenberg

Revision: 1 [Initial Draft]

2 [Clarifications]

3 [Added error conditions]

4 [Clarifications]

5 [Removed one condition for buffer clearing, changed ComID error]

6 [Changed “No Response Available” and command processing during reset]

7 [Changed “Pending” payload]

8 [Updated text per SWG Telecon]

9 [mod'ed available data length notation to allow for blocks or bytes]

10 [reordered fields]

11 [clarification of request/response fields, buffer reset conditions]

12 [added clarification for response upon receipt of a 2
nd

request]

13 [final version, clarified operation to indicate only based on ComID requested]

1 References

[1] TCG Storage Workgroup: Core Specification 1.0, draft 0.9

[2] TCG Storage Workgroup: Storage Interface Interactions Specification 1.0, draft 0.3

2 Goal

The goal of this proposal is:

• Propose a mechanism to reset the Security Protocol stack for a given ComID. This allows the host to
re-synch with the TPer in case one or both are in an undetermined state while communicating with
each other.

3 Proposal

The Core Spec provides a facility for maintenance and management of ComIDs. A specific version of the
IF-SEND command, called a HANDLE_COMID_REQUEST, is used to inquire about or manage a particular

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 118 of 133

ComID. The result of the command is retrieved via a specific IF-RECV command, called a
GET_COMID_RESPONSE.
This proposal suggests adding a new Request code to the HANDLE_COMID_REQUEST command as
defined in the Communication Layer Protocol (see [1]). The proposed Request code is STACK_RESET
(02h) and its command block payload is defined as:

Bytes 0 to 3 : Extended ComID value
Bytes 4 to 7 : STACK_RESET (00 00 00 02h)
Bytes 8 to TRNSFLEN – 1: Reserved (0s)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 119 of 133

TRNSFLEN is defined as number of bytes transferred via the interface.

The device SHALL return an “Invalid Transfer Length parameter on IF-SEND” TPer Error [2] if less than 8
bytes or more than 512 bytes are sent to the device.

Depending on the SSC, the device MAY return:

an “Invalid ComID parameter on IF-SEND” Error, or

an “Other Invalid CDB parameter” Error [2] if the ComID value in the IF-SEND for the
HANDLE_COMID_REQUEST command represents a non Active ComID (refer to [1] for Active
ComIDs).

Once received, the TPer SHALL reset the Security Protocol stack for the ComID value defined in bytes 0-3
of the command block payload. While resetting the stack, the Tper SHALL NOT process any command for
that ComID received via an IF-SEND on Protocol ID 01h. A Security Protocol stack reset results in:

1. All open sessions for that ComID SHALL be aborted;
2. All uncommitted transactions SHALL be aborted. CloseSession methods SHALL NOT be prepared

by the TPer;
3. All pending session startup activities occurring on that ComID SHALL be aborted;
4. All TCG command and response buffers SHALL be invalidated for that ComID;
5. All related method processing occurring on that ComID SHALL be aborted;
6. The protocol stack SHALL reset to its initial state for that ComID only;
7. All communications properties (set via Properties method) and ComID associated properties for

that ComID SHALL be reset to their default values;
8. No notification of these events SHALL be sent to the host.

The response SHALL be returned via the GET_COMID_RESPONSE (IF-RECV) command. The response
payload is defined as:

Bytes 0 to 3: Extended ComID
Bytes 4 to 7: STACK_RESET (00 00 00 02h)
Bytes 8 to 9: Reserved (00 00h)
Bytes 10 to 11: Available Data Length in bytes (00 04h)
Bytes 12 to 15: Success (00 00 00 00h) / Failure (00 00 00 01h)
Bytes 16 to TRNSFLEN - 1: Reserved (0s)
Success (00h): the protocol stack has been reset for the specified ComID;
Failure (01h): the protocol stack has not been reset for the specified ComID;

A “Pending” payload is defined as:

Bytes 0 to 3: Extended ComID
Bytes 4 to 7: STACK_RESET (00 00 00 02h)
Bytes 8 to 9: Reserved (0s)
Bytes 10 to 11: Available Data Length in bytes (00 00h)
Bytes 12 to TRNSFLEN - 1: Reserved (0s)

A “No Response Available” payload is defined as:

Bytes 0 to 3: Extended ComID
Bytes 4 to 7: ZERO (00 00 00 00h)
Bytes 8 to 9: Reserved (0s)

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 120 of 133

Bytes 10 to 11: Available Data Length in bytes (00 00h)
Bytes 12 to TRNSFLEN - 1: Reserved (0s)

The response SHALL be cleared from the response buffer if one of the following conditions is true:

1. The host retrieves the entire response via the GET_COMID_RESPONSE command;
2. The device is hard-reset or power-cycled.
3. Another HANDLE_COMID_REQUEST is made for that ComID.

If the STACK_RESET is still processing and another HANDLE_COMID_REQUEST is received, the
STACK_RESET SHALL complete but no response for that STACK_RESET command will be available.

Reserved bytes SHOULD be set to zero and SHALL be ignored by both host and device.
The device SHALL return “No Response Available” if:

1. No HANDLE_COMID_REQUEST command preceded the GET_COMID_RESPONSE command;
2. An error is detected in the HANDLE_COMID_REQUEST command payload.

The device SHALL return “Pending” if:

1. The host retrieves the command result via the GET_COMID_RESPONSE command while the stack
reset is in progress for that specific ComID.

Note: Changes suggested to the ordering or the meaning of the bytes in the request (specifically, the re-
ordering of the Reserved and Available Data Length fields) are to be migrated into the Core Specification
for all request codes defined in the Core Specification for the HANDLE_COMID_REQUEST and
GET_COMID_RESPONSE commands.

4 Informative

The host is not required to retrieve the status via GET_COMID_RESPONSE, i.e. successful retrieval of the
STACK_RESET response by the host does not have an effect on the execution of the command itself.

The TCG Core Specification defines HANDLE_COMID_REQUEST as:

Command: IF-SEND
Protocol ID: 02
Transfer Length: nn nn
ComID: Allocated ComID

The TCG Core Specification defines GET_COMID_RESPONSE as:

Command: IF-RECV
Protocol ID: 02
Transfer Length: nn nn
ComID: Allocated ComID

 End Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 121 of 133

10.2.20 Properties Clarification

 Start Proposal

Properties Clarification
Author: Jason Cox, Doug Philips
Revision: 1 Feb 21, 2008
Revision: 2 June 6, 2008

1 Goal

The goal of this proposal is:

• To remove obsolete values from the Properties method response.

• To introduce additional values required to be reported in the Properties response.

• To clarify the intent/purpose/scope of the Properties method.

2 Proposal

2.1 Clarification of Purpose

The purpose of the Properties method and response is to permit the Host and TPer to exchange
information needed for setting up sessions, without having to set up a session first.

2.2 Properties Removed

• SessionVersion

• RealTimeClock

2.3 Properties Added

• MaxPackets

• MaxSubpackets

• MaxMethods

2.4 Core Spec – Properties Method

2.4.1 TPer Properties Method

2.4.1.1 Properties (Method)
The Properties method pertains to the exchange of session-related metadata and settings between the host
and the TPer prior to session start-up. The purpose of the Properties method is to permit the host and the

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 122 of 133

TPer to exchange the information required for session startup and maintenance, without the need to first
start a session.

SMUID.Properties[HostProperties = list [name = value ...]]
=>
SMUID.Properties[Properties : list [name = value ...], HostProperties = list [name =
value ...]]

This Session Manager layer method is used by the host to provide its communication properties to the
TPer, and to retrieve the communication properties of the TPer.

A list of name/value pairs may be provided as the optional HostProperties argument when invoking the
Properties method.

If the method is successfully invoked the response is a list of property names and values from the TPer.

The TPer shall return all property name/value pairs for capabilities that it supports. For capabilities not
supported by the TPer (for instance, Read-Only sessions), the associated property name/value pair (in this
case, MaxReadSessions) shall be omitted from the TPer's response.

The TPer may also respond with additional name/value pairs other than those specified in this document.

The order of the name/value pairs returned by the TPer is not specified.

For the name/value pairs returned by the TPer, the TPer shall return values for the associated names as
described in Table 01 or in the associated SSC (the values in the SSC have precedence). The values
returned shall apply to all sessions started with the currently associated ComID.

All properties that the TPer returns are stored in the Properties table in the Admin SP. The format of this
table is defined in the Admin Template section of this specification (section Error! Reference source not
found.). All of the property name/value pairs, both specified and implementation-defined, shall be stored in
the Properties table. The purpose of the Properties table is not discovery – it is a mechanism to facilitate SP
backup.

If the method is invoked with the optional HostProperties parameter, the list of name/value pairs that the
TPer shall recognize is:

• MaxSubpackets

• MaxPacketSize

• MaxPackets

• MaxComPacketSize

• MaxResponseComPacketSize

• MaxIndTokenSize

• MaxAggTokenSize

These parameters are used to describe the communications capabilities that the host possesses, and apply
to any sessions started using the ComID associated with this Properties method invocation once the TPer
has processed the request

These values may be submitted in any order by the host. Not all values are required to be submitted.
Subsequent submission of these values (in a subsequent invocation of the Properties method) shall
supersede values submitted to previous invocations of the Properties method for that ComID. Submitted
values, if applicable, shall only apply to sessions started after the submission of those values, and not to
sessions that are already open on that ComID.

The TPer may use these host properties when it is constructing responses to be transmitted to the host.
The host may omit properties as necessary, depending on the host’s communications capabilities. If the
host omits a property, or specifies a value for a property that does not meet the minimum requirement as

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 123 of 133

defined in Table 01, then the TPer shall use the minimum value defined in Table 01 in place of the value
supplied by the host.

If the host includes the HostProperties parameter to the Properties method invocation, then the TPer’s
response shall include all communication property value settings, including those it will use during any
subsequently started sessions (both for its communications and the host's). These values reflect the
cumulative modifications of all processed Properties methods for the associated ComID.

If a host includes property parameters to the Properties method invocation that the TPer does not recognize
or comprehend, the TPer shall ignore those parameters, and shall not return them in its response.

Because of the session-less nature of the Session Manager protocol layer, and the possible different
ordering of responses to Session Manager layer methods, the response to this method is formatted as a
Properties method invocation so as to be identifiable as the response to the Properties method.

Informative Note: It is the host's responsibility to insure that Properties method invocations have processed
prior to invocation of any session startup methods that rely on those invocations. Values for HostProperties
at session startup rely on the Properties method invocations that have been processed by the TPer.

Table 01 Properties Method Response

Property Type Description

MaxMethods uinteger Identifies the maximum number of methods the
TPer shall accept in a single subpacket. A value of 0
indicates no limit.

MaxSubpackets uinteger Identifies the maximum number of subpackets that
the communicator shall accept in a single Packet. A
value of 0 indicates no limit (both a TPer Property
and a Host Property).

MaxPacketSize uinteger The maximum size of a packet (including both data
and header), in bytes, that the communicator is able
to receive. This value shall be at least 512-
ComPacketHeader overhead. A value of 0 indicates
no limit (both a TPer Property and a Host Property).

MaxPackets uinteger Identifies the maximum number of packets that the
communicator shall accept in a single ComPacket.
A value of 0 indicates no limit (both a TPer Property
and a Host Property).

MaxComPacketSize uinteger The maximum size of an IF Command payload
(includes both the ComPacket header and payload)
that the communicator is able to receive. This value
shall be at least 512. A value of 0 indicates no limit
(both a TPer Property and a Host Property).

MaxResponseComPacketSize uinteger The maximum length of an IF Command payload
that the communicator is able to generate. A value
of 0 indicates no limit (both a TPer Property and a
Host Property).

MaxSessions uinteger The maximum number of simultaneous sessions
supported by the TPer. A value of 0 indicates no
limit.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 124 of 133

MaxReadSessions uinteger The maximum number of simultaneous Read-Only
sessions to any one SP supported by the TPer. A
value of 0 indicates no limit.

MaxIndTokenSize uinteger The maximum size of a token (in bytes) in a single
subpacket that the communicator is able to accept.
Token size refers to both the token header and
data. This value shall be at least 256. A value of 0
indicates no limit (both a TPer Property and a Host
Property).

MaxAggTokenSize uinteger The maximum aggregate size of a continued token
after all individual parts of that token are combined
that the communicator is able to accept. Token size
refers to both the token header and data. This value
shall be at least 256. A value of 0 indicates no limit
(both a TPer Property and a Host Property).

MaxAuthentications uinteger The maximum number of simultaneously
authenticated individual authorities per session that
the TPer is able to support. A value of 0 indicates no
limit.

MaxTransactionLimit uinteger The maximum number of concurrently open
transactions that the TPer is able to support in a
single session. A value of 0 indicates no limit.

DefSessionTimeout uinteger The session timeout length (in milliseconds) used by
the TPer by default. A value of 0 indicates no limit.

MaxSessionTimeout uinteger The longest supported session timeout length (in
milliseconds) supported by the TPer. A value of 0
indicates no limit.

MinSessionTimeout uinteger The shortest supported session timeout length (in
milliseconds) supported by the TPer. A value of 0
indicates no limit.

DefTransTimeout uinteger The transmission timeout length (in milliseconds)
used by the TPer by default. A value of 0 indicates
no limit.

MaxTransTimeout uinteger The longest transmission timeout length (in
milliseconds) permitted by the TPer. A value of 0
indicates no limit.

MinTransTimeout uinteger The shortest transmission timeout length (in
milliseconds) permitted by the TPer. A value of 0
indicates no limit.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 125 of 133

MaxComIDTime uinteger The timeout length (in milliseconds) used by the
TPer after it has assigned a ComID. A session using
the associated ComID shall be started within this
interval or the ComID shall transition from Issued to
Inactive. A value of 0 indicates no limit.

MaxComIDCMD uinteger SSC-dependent limit on the number of interface
commands that may be issued using a specific
ComID, including both IF-SEND and IF-RECV
commands. A value of 0 indicates no limit.

 End Proposal

10.2.21 Inactive or Unsupported ComID in CDB Proposal

 Start Proposal

Inactive or Unsupported ComID in CDB Proposal

Authors: Darren Lasko (Fujitsu)
Revision
v0.1: 04/11/2008 start of the document
v0.2: 05/01/2008 incorporated feedback:

� Reconsidered how to handle “reserved” ComIDs

� Added reserved values for the 2 least significant bytes of Extended ComIDs

v0.3: 05/08/2008 incorporated feedback from the 05/02/2008 SWG teleconference:

� Separated the conditions for TPers that support dynamic ComID allocation and those that do
not

� Reference the “Other Invalid CDB parameter” in SIIF instead of spelling out the behavior in this

proposal

� Indicated the bit positions of the ExtendedComID field instead of “least significant two bytes”

� Only reserve the value of FFFFh for bits 15 through 0 of the ExtendedComID field instead of

FF00h - FFFFh

v0.4: 05/15/2008 clarified “unsupported, reserved ComID”

1 Goal

The goal of this proposal is to specify a mechanism for the TPer to report to the host that the host is using
an inactive or unsupported ComID.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 126 of 133

2 Background

The Core Specification currently does not specify TPer behavior when the host issues an IF-SEND or IF-
RECV command with an invactive or unsupported ComID in the CDB (SP_Specific field). This proposal
specifies the behavior.

3 Proposal

3.1 IF-SEND to inactive or unsupported reserved ComID

If the host sends an IF-SEND command to the TPer with a ComID value in the non-reserved range (1000h
– FFFFh), and the ComID is in the Inactive state:

• If the TPer supports dynamic ComID allocation, the TPer SHALL:

o Accept all data in the payload of the IF-SEND command and complete the command

normally with good status (provided there are no other errors which would cause the
command to abort at the interface level)

o Ignore and discard the entire payload of the IF-SEND command.

• If the TPer does not support dynamic ComID allocation, the TPer SHALL:

o Report “Other Invalid CDB parameter” (as specified in the SIIF document)

OR

o Perform the action described above for TPers that support dynamic ComID allocation

If the host sends an IF-SEND command to the TPer with a ComID value in the reserved range (0000h –
0FFFh), and the ComID is not supported by the TPer, the TPer SHALL:

• Report “Other Invalid CDB parameter” (as specified in the SIIF document)

3.2 IF-RECV to inactive or unsupported reserved ComID

If the host sends an IF-RECV command to the TPer with a ComID value in the non-reserved range (1000h
– FFFFh), and the ComID is in the Inactive state:

• If the TPer supports dynamic ComID allocation, the TPer SHALL:

o Respond to the IF-RECV with a zero-length ComPacket (a ComPacket header only) in the

IF-RECV payload. The fields in the ComPacket header SHALL contain:

� ExtendedComID = {<ComID from SP_Specific field of CDB>, FFFFh}

• Note: The value of FFFFh in bits 15 through 0 of the ExtendedComID field is
an indication to the host that the ComID it is attempting to use is inactive,
and that it should not expect to receive any data on that ComID.

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 127 of 133

� OutstandingData = 00000000h

� MinTransfer = 00000000h

� Length = 00000000h

o Complete the command normally with good status (provided there are no other errors which

would cause the command to abort at the interface level)

• If the TPer does not support dynamic ComID allocation, the TPer SHALL:

o Report “Other Invalid CDB parameter” (as specified in the SIIF document)

OR

o Perform the action described above for TPers that support dynamic ComID allocation

If the host sends an IF-RECV command to the TPer with a ComID value in the reserved range (0000h –
0FFFh), and the ComID is not supported by the TPer, the TPer SHALL:

• Report “Other Invalid CDB parameter” (as specified in the SIIF document)

3.3 Reserved values for Extended ComIDs (to be added to section
3.3.3.1 and/or section 3.3.5.3.1 of the Core Spec)

The value of FFFFh in bits 15 through 0 of the ExtendedComID field is reserved to indicate that the host
has attempted to communicate using an inactive ComID.

When assigning Extended ComIDs via the GET_COMID command on Protocol ID 02h, the TPer SHALL
NOT assign the value of FFFFh in bits 15 through 0 of the ExtendedComID field.

 End Proposal

Specification Version 1.0 TCG Copyright

Revision 1.0 Page 128 of 133

11 Appendix –ParamCheck examples - Informative

11.1 Set Method Example

Using the LRC to protect a Set operation on a PIN

MSID_UID.Set[Values = [[(“PIN”, “ThisIsMyPin”)]], ParamCheck = 0x2851]

Where ParamCheck is obtained by:

List of Values = [“ThisIsMyPin”]
ParamCheck = LRC(Pad(“ThisIsMyPin”))
 = LRC (0x00 0x54 0x68 0x69 0x73 0x49 0x73 0x4D 0x79 0x50 0x69 0x6E)
 = 0x2851

11.2 Get Method Example

Using the LRC when retrieving a PIN

MSID_UID.Get[[(“startCol”,“PIN”), (“endCol”,“PIN”)], ParamCheck = 1]
 =>
[
 [[(“PIN”, “ThisIsMyPin”)]],
 (ParamCheck, 0x2851)
]

Where the LRC value is calculated using the same procedure as in “Using the LRC to protect a Set
operation on a PIN”.

