How to Build Secure, Highly Reliable Critical Systems and Networks for the IoT

Trusted Computing Group Seminar at IoT SWC 2017
Agenda

0930 Check-in, Networking, and Demos
1000 TCG Welcome and Overview
1005 Key Concepts of Trust and Application for IoT Security
1040 A Foundation for Trust in the IoT
1110 Industrial IoT Security: a New TCG Approach
1135 Q&A with the Speakers
1200 Networking and Demos
Who is the Trusted Computing Group?

The Trusted Computing Group (TCG) is an international industry standards group focused on Trusted Computing since its founding in 2003.

• You may know TCG for our technical specs & guidance such as:
 – Trusted Platform Module (TPM 2.0)
 – Self Encrypting Drive (SED)
 – Trusted Network Communications (TNC)
What is a Trusted Platform Module (TPM)?

- **Standard Security Module**
 - Supports TPM standards

- **Features**
 - Authentication
 - Encryption
 - Attestation

- **Benefits**
 - Foundation for secure software
 - Resistant to attacks/hacks
 - Built-in virtual smart card

ISO/IEC 11889
What is a Self-Encrypting Drive (SED)?

- **Standard Secure Storage Device**
 - Supports SED standards
- **Features**
 - Encryption
- **Benefits**
 - Always on encryption
 - No performance impact
 - Protection against Physical Attacks, loss and theft
 - Cryptographic instant erase/Wipe

Works with SCSI and SATA
What is Trusted Network Communications (TNC)?

- **Security Automation Standards**
- **Features**
 - Manage Network Endpoints
 - Enable New Capabilities
- **Benefits**
 - Automation for All Phases of Cybersecurity
 - Preparation
 - Detection
 - Analysis
 - Response
KEY CONCEPTS OF TRUST AND APPLICATION FOR IOT SECURITY
Today’s Speakers

Steve Hanna
Infineon Technologies

Monty Wiseman
General Electric Company

Lee Wilson
Onboard Security

Dennis Mattoon
Microsoft
Key Concepts of Trust and Applications for IoT Security

Steve Hanna, Infineon Technologies
Monty Wiseman, General Electric Company
Lee Wilson OnBoard Security
A Foundation for Trust in the Internet of Things

Dennis Mattoon, Microsoft
INTRODUCTION

• Today’s cyber-attackers are sophisticated and relentless in their continual efforts to seek out and exploit vulnerabilities.

• At the same time, market segments like IoT are driving architectures and solutions with challenging power, security, resource, and other constraints.
INTRODUCTION

• To effectively address these challenges a security architecture must be:
 • Free or very cheap, and not just in BOM cost
 • Adaptable, with minimal silicon requirements
 • Scalable to millions of endpoints per solution
 • Standards-based, i.e., interoperable
• And most importantly, it takes a combination of hardware support and software techniques
WHY HARDWARE SUPPORT?

• There are problems with software-only solutions

• Device Identity
 • If a bug leads to disclosure of Device Identity secret then how do we securely (and remotely) recover and re-provision a device?

• Device State and Attestation
 • Cannot trust software to report its own health

• Roots of Trust, data encryption, entropy, etc.
 • How do we securely extend trust chain, store keys, etc.?
BEWARE SIMPLISTIC HW SOLUTIONS

• Why not just store Device Identity key/secrets in fuses?
 • If malware can manage to read the fused key then you are no better off than with a software-based key

• TPMs are great but, especially in IoT solutions, systems and components probably won’t have TPMs or similar silicon-based capabilities (cost, complexity, physical space on the MCU/SoC)

• We need something different
DICE AND RIOT

• Device Identifier Composition Engine (DICE, TCG)
• Robust, Resilient, Recoverable IoT (RIoT, MSFT)
• New specification from the Root of Trust for Measurement subgroup in the Trusted Computing Group (TCG)
• Foundational security for IoT at near zero cost
• Simple hardware requirements mean DICE is adaptable to most any system or component
• Provides HW-based identity and attestation, and a foundation for sealing, data integrity, device recovery and update
THE DICE MODEL

• In a DICE Architecture device startup (boot) is layered
• Beginning with a Unique Device Secret (UDS), secrets/keys are created that are unique to the device and each layer and configuration
• This derivation method means that if different code or configuration is booted, secrets are different
• If a vulnerability exists and a secret is disclosed, patching the code automatically re-keys the device
THE DICE MODEL

Traditional Security Processor

- Device Firmware
- Boot Loader
- CPU

HSM
- Fuse/NV-key

Boot steps / time

DICE Architecture

- OS Loader, OS, Apps...
- RIoT Core

Keys and Certificates for Device Identity, Attestation, sealing, etc.

Compound Device Identity

- HW/SoC
- Fuse/NV-key

Boot steps / time

©2017 Trusted Computing Group
THE DICE MODEL

- Power-on (reset) unconditionally starts the DICE
- DICE has exclusive access to the UDS
- Each layer computes the secret for next layer (via OWF)
- In this derivation chain, each layer must protect the secret it receives
WHEN SOMETHING CHANGES

• The branch illustrates the result of a code/config change

• Updates provide a way to recover a device or component if bad code leaks a secret.
A DICE ARCHITECTURE (RIOT)

- Underlying architecture for HW-based Device Identity and Attestation (Azure)
- DeviceID – Stable and well protected long term identifier for a device or component
- Alias Key – Derived from combination of unique device identity (HW) and identity of Device Firmware (SW)
- Integrates DICE-enabled HW with existing infrastructure
BUT THAT’S JUST ONE EXAMPLE

- We can build on DICE to enable many high-value scenarios
- Secure remote device recovery (Cyber Resilient Platform Initiative)
 - Recover unresponsive (i.e., p0wned, hung, etc.) devices
 - Greatly reduced cost: no need for physical device interaction
- Supply chain management
 - Several recent damaging cyber-attacks were the result of malware introduced in the supply chain
 - DICE attestation lets end-customers trust far less of the supply-chain, e.g., just the storage-subsystem or flash vendor
- Component identity, authenticity, licensing, and many more
DICE TAKEAWAYS

• Flexible security framework, not one size fits all
• Minimal silicon requirements, low barrier to entry
• Foundation for strong cryptographic HW-based device identity and attestation, data at rest protection (sealing), and secure device update and recovery
• Public announcements from SoC, MCU, and flash memory vendors so far with more on the way
• Represents the ongoing work of the DICE Architectures Workgroup (DiceArch WG) in TCG. Come join us!
REFERENCES

- Device Identifier Composition Engine (DICE) specification
- DICE Architectures Workgroup (TCG)
- RIoT – A Foundation for Trust in the Internet of Things
- Cyber-Resilient Platform Initiative
- Partners and Demos:
 - Microchip CEC1702 and SecureIoT1702
 - Micron Authenta
 - Azure IoT:
 - Strengthening IoT Security
 - Zero-Touch Provisioning with Azure IoT
 - Sequitur Labs (i.MX6, SAMA5D2)
 - STMicroelectronics (STM32L4xx)
Industrial IoT Security: Overview of a New TCG Approach

Monty Wiseman, General Electric Company
Agenda

• Introduction to Industrial Security

• TCG and Industrial Security Today

• New Industrial Sub Group

• Call to Action
IoT Attacks Growing
Introduction to Industrial Security
Industrial Automation
Industrial IoT Brings Changes

Smart Factories / Industrial IoT / Industry 4.0

› "Lot size 1": Ability to produce highly individualized products
› **Cloud analysis**: Enabling data mining, deep learning and cost reduction
› **Predictive maintenance**: Based on sensor data gathered and analyzed as big data

Implications

› Greater communication within the plant and beyond
› Reconfigurable, smart manufacturing equipment
› New business models and opportunities
› New security risks
Security Effects of Industrial IoT

New security paradigms

› "Closed shop floor" paradigm not applicable anymore
› Security risks touch all machines with greater potential impact
› Industrial security is becoming part of corporate strategies

Implications

› Strong protection required
› Availability has higher priority than Confidential or Integrity
› System-wide security approach required
Industrial IoT Countermeasures

Source: Industrial Internet Security Framework
https://www.iiconsortium.org/IISF.htm
graphics are courtesy of Industrial Internet Consortium
TCG and Industrial Security Today
TCG Industrial IoT Security Resources

• TNC IF-MAP Metadata for ICS Security
https://trustedcomputinggroup.org/tnc-if-map-metadata-ics-security/

• Architects Guide: ICS Security Using TNC Technology
https://trustedcomputinggroup.org/architects-guide-ics-security-using-tnc-technology/

• Industrial Internet Security Framework: https://www.iiconsortium.org/IISF.htm
Industrial Internet Consortium’s IISF
References TPM

Source: Industrial Internet Security Framework
https://www.iiconsortium.org/IISF.htm
graphics are courtesy of Industrial Internet Consortium
TCG’s New Industrial Sub Group
Purpose of Industrial SG

• Provide specifications and guidance to implementers and users regarding the use of Trusted Computing technologies for Industrial applications
• Deliver:
 – Reference Documents
 • Guidance, ...
 – TCG Specifications
 • Industrial Platform Firmware Profile,
 • TPM Profile?,
 • ...
 – Marketing and Educational Materials
 • Architects Guides
 • Webinars
Which TCG Technologies?

• TPM
• TNC
• OPAL
• Etc.
Call to Action

1. Join TCG and then Industrial Sub Group
 - https://trustedcomputinggroup.org/membership

2. Help Create Deliverables
 - Guidance for Securing Industrial Equipment
 - Platform Firmware Profile

For more information, email admin@trustedcomputinggroup.org
Q&A with Our Speakers

Steve Hanna
Infineon Technologies

Monty Wiseman
General Electric Company

Lee Wilson
Onboard Security

Dennis Mattoon
Microsoft
Networking and Demos with

- GE
- Infineon
- OnBoard Security
- Micron
- Microsoft
- WIBU Systems
Thank You For Joining Us Today
Learn More at
www.trustedcomputinggroup.org