TCG Storage Opal SSC Feature Set: Configurable Locking for NVMe Namespaces and SCSI LUNs

Version 1.01
Revision 1.00
September 14, 2021

Contact: admin@trustedcomputinggroup.org

PUBLISHED
DISCLAIMERS, NOTICES, AND LICENSE TERMS

This specification is provided “as is” with no warranties whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

Without limitation, TCG disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this specification and to the implementation of this specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this specification or any information herein.

This document is copyrighted by Trusted Computing Group (TCG), and no license, express or implied, is granted herein other than as follows: You may not copy or reproduce the document or distribute it to others without written permission from TCG, except that you may freely do so for the purposes of (a) examining or implementing TCG specifications or (b) developing, testing, or promoting information technology standards and best practices, so long as you distribute the document with these disclaimers, notices, and license terms.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.
TCG Storage Opal SSC Feature Set: Configurable Locking for NVMe Namespaces and SCSI LUNs

CONTENTS

DISCLAIMERS, NOTICES, AND LICENSE TERMS ... 1

1 Introduction ... 4
 1.1 Document Purpose .. 4
 1.2 Scope and Intended Audience ... 4
 1.3 Conventions ... 4
 1.3.1 Document Precedence ... 4
 1.3.2 Key Words ... 4
 1.3.3 Fonts .. 4
 1.3.4 Statement Type .. 7
 1.3.5 Legend .. 5
 1.3.6 Lists ... 6
 1.3.7 Numbering ... 7
 1.3.8 Bit conventions ... 7
 1.3.9 Number range convention .. 7
 1.4 Document References .. 8
 1.5 Dependencies on Other Feature Sets .. 8
 1.6 Interactions with Other Feature Sets .. 8
 1.7 Definitions of Terms ... 9

2 Namespaces/LUNs Overview .. 10
 2.1 Namespace/LUN Operations Overview .. 10
 2.2 Interactions with the Global Range Locking Object 12
 2.3 NVMe Interactions .. 12
 2.3.1 Examples of Interactions with SIIS Single Namespace and Multiple Namespace Specifications 12
 2.3.2 Interactions with the Namespace Management Command 14
 2.3.3 Interactions with the Format NVM Command .. 17
 2.4 SCSI Interactions .. 17
 2.4.1 Interactions with the SCSI LUNs .. 17
 2.4.2 Interactions with the SCSI Commands that affect multiple LUNs 17

3 SSC Specific Functionality ... 19
 3.1 Methods .. 19
 3.1.1 New Methods .. 19
 3.1.2 Modified Methods .. 31
 3.2 Tables ... 33
 3.2.1 New Tables ... 33
 3.2.2 Modified Tables .. 33

© TCG 202
3.3 Types .. 37
 3.3.1 New Types ... 37
 3.3.2 Modified Types ... 37

4 Feature Set Requirements .. 38
 4.1 Requirements Overview .. 38
 4.2 Level 0 Discovery ... 38
 4.2.1 Configurable Namespace Locking Feature Descriptor (Feature Code = 0x0403) (M) 38
 4.2.2 Namespace Level 0 Discovery .. 40
 4.3 Admin SP .. 43
 4.4 Locking SP .. 43
 4.4.1 Tables ... 43
 4.5 Additional SPs .. 46
 4.6 Single User Mode Feature Set Interactions ... 46
 4.6.1 Overview ... 46
 4.6.2 Modified Methods ... 46
1 Introduction

1.1 Document Purpose

The Storage Workgroup specifications provide a comprehensive architecture for Storage Devices under policy control as determined by the trusted platform host, the capabilities of the Storage Device to conform to the policies of the trusted platform, and the lifecycle state of the Storage Device as a Trusted Peripheral.

1.2 Scope and Intended Audience

This specification defines Configurable Locking for NVMe Namespaces and SCSI LUNs for the Opal Security Subsystem Class (SSC). Any Storage Device that claims Configurable Locking for NVMe Namespaces and SCSI LUNs compatibility SHALL conform to this specification.

The intended audience for this specification is both trusted Storage Device manufacturers and developers that want to use these Storage Devices in their systems.

1.3 Conventions

1.3.1 Document Precedence

In the event of conflict between this specification and other documents, the precedence for requirements is:

1. This specification;
2. TCG Storage Security Subsystem Class: Opal [4];
3. TCG Storage Interface Interactions Specification [3];
4. TCG Storage Architecture Core Specification [2]; and
5. TCG Single User Mode Feature Set [6].

1.3.2 Key Words

Key words are used to signify requirements.

The Key Words “SHALL”, “SHALL NOT”, “SHOULD,” and “MAY” are used in this document. These words are a subset of the RFC 2119 key words used by TCG, and have been chosen since they map to key words used in T10/T13 specifications. These key words are to be interpreted as described in [1].

In addition to the above key words, the following are also used in this document to describe the requirements of particular features, including tables, methods, and usages thereof.

- Mandatory (M): When a feature is Mandatory, the feature SHALL be implemented. A Compliance test SHALL validate that the feature is operational.
- Optional (O): When a feature is Optional, the feature MAY be implemented. If implemented, a Compliance test SHALL validate that the feature is operational.
- Excluded (X): When a feature is Excluded, the feature SHALL NOT be implemented. A Compliance test SHALL validate that the feature is not operational.
- Not Required (N) When a feature is Not Required, the feature MAY be implemented. No Compliance test is required.

1.3.3 Fonts

Names of methods and SP tables are in Courier New font (e.g., the Set method, the Locking table). This convention does not apply to method and table names appearing in headings or captions.

1.3.4 Statement Type

Please note a very important distinction between different sections of text throughout this document. There are two distinctive kinds of text: informative comment and normative statements. Because most of the text in this
specification will be of the kind normative statements, the authors have informally defined it as the default and, as such, have specifically called out text of the kind informative comment. They have done this by flagging the beginning and end of each informative comment and highlighting its text in gray. This means that unless text is specifically marked as of the kind informative comment, it can be considered a kind of normative statements.

EXAMPLE:

Begin Informative Content
This is the first paragraph of 1-n paragraphs containing text of the kind informative comment ...
This is the second paragraph of text of the kind informative comment ...
This is the nth paragraph of text of the kind informative comment ...
To understand the TCG specification the user must read the specification. (This use of MUST does not require any action).
End Informative Content

1.3.5 Legend
The following legend (see Table 1) defines SP table cell coloring coding, with the RGB values for the shading of each cell indicated in parentheses. This color coding is informative only. The table cell content is normative.

<table>
<thead>
<tr>
<th>Table Cell Legend</th>
<th>R-W</th>
<th>Value</th>
<th>Access Control</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial-Narrow</td>
<td>Read-only</td>
<td>Configurable Locking for NVMe Namespaces and SCSI LUNs Feature Set specified</td>
<td>Fixed</td>
<td>• Cell content is Read-Only.</td>
</tr>
<tr>
<td>(230, 230, 230)</td>
<td></td>
<td></td>
<td></td>
<td>• Access control is fixed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Value is specified by the Configurable Locking for NVMe Namespaces and SCSI LUNs Feature Set</td>
</tr>
<tr>
<td>Arial Narrow bold-under</td>
<td>Read-only</td>
<td>VU</td>
<td>Fixed</td>
<td>• Cell content is Read-Only.</td>
</tr>
<tr>
<td>(230, 230, 230)</td>
<td></td>
<td></td>
<td></td>
<td>• Access Control is fixed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Values are Vendor Unique (VU). A minimum or maximum value may be specified.</td>
</tr>
<tr>
<td>Table Cell Legend</td>
<td>R-W</td>
<td>Value</td>
<td>Access Control</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Arial-Narrow</td>
<td></td>
<td>Not Defined</td>
<td>Not Defined</td>
<td>Cell content is (N).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(N)</td>
<td>Not Defined</td>
<td>Access control is not defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any text in table cell is informative only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A Get MAY omit this column from the method response.</td>
</tr>
<tr>
<td>Arial Narrow bold-under</td>
<td>Write</td>
<td>Preconfigured, user personalizable</td>
<td>Preconfigured, user personalizable</td>
<td>Cell content is writable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Access control is personalizable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get: Access Control is not described by this color coding</td>
</tr>
<tr>
<td>Arial-Narrow</td>
<td>Write</td>
<td>Preconfigured, user personalizable</td>
<td>Fixed</td>
<td>Cell content is writable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Access control is fixed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Get: Access Control is not described by this color coding</td>
</tr>
</tbody>
</table>

1.3.6 Lists

1.3.6.1 Lists overview
Lists are associated with an introductory paragraph or phrase, and are numbered relative to that paragraph or phrase (i.e., all lists begin with an a) or 1) entry).

Each item in a list is preceded by an identification with the style of the identification being determined by whether the list is intended to be an ordered list or an unordered list.

If the item in a list is not a complete sentence, the first word in the item is not capitalized. If the item in a list is a complete sentence, the first word in the item is capitalized.

Each item in a list ends with a semicolon, except the last item, which ends in a period. The next to the last entry in the list ends with a semicolon followed by an “and” or an “or” (i.e., “...; and”, or “...; or”). The “and” is used if all the items in the list are required. The “or” is used if only one or more items in the list are required.

1.3.6.2 Unordered lists
An unordered list is one in which the order of the listed items is unimportant (i.e., it does not matter where in the list an item occurs as all items have equal importance). Each list item shall start with a lower case letter followed by a close parenthesis. If it is necessary to subdivide a list item further with an additional unordered list (i.e., have a nested unordered list), then the nested unordered list shall be indented and each item in the nested unordered list shall start with an upper case letter followed by a close parenthesis.

The following is an example of an unordered list with a nested unordered list:

EXAMPLE - The following are the items for the assembly:

 a) a box containing:
 A) a bolt;
B) a nut; and
C) a washer;
b) a screwdriver; and
c) a wrench.

1.3.6.3 Ordered lists
An ordered list is one in which the order of the listed items is important (i.e., item n is required before item n+1). Each listed item starts with a Western-Arabic numeral followed by a close parenthesis. If it is necessary to subdivide a list item further with an additional unordered list (i.e., have a nested unordered list), then the nested unordered list shall be indented and each item in the nested unordered list shall start with an upper case letter followed by a close parenthesis.

The following is an example of an ordered list with a nested unordered list:

EXAMPLE - The following are the instructions for the assembly:
1) remove the contents from the box;
2) assemble the item;
 A) use a screwdriver to tighten the screws; and
 B) use a wrench to tighten the bolts;
 and
3) take a break.

1.3.7 Numbering
A binary number is represented in this standard by any sequence of digits consisting of only the Western-Arabic numerals 0 and 1 immediately followed by a lower-case b (e.g., 0101b). Underscores or spaces may be included between characters in binary number representations to increase readability or delineate field boundaries (e.g., 00101 1010b or 0_0101_1010b).

A hexadecimal number is represented in this standard by any sequence of digits consisting of only the Western-Arabic numerals 0 through 9 and/or the upper-case English letters A through F immediately preceded by “0x”. Underscores or spaces may be included between characters in hexadecimal number representations to increase readability or delineate field boundaries (e.g., 0xFD8C FA23 or 0x0B_FD8C_FA23). Hexadecimal numbers are in Courier New font.

A decimal number is represented in this standard by any sequence of digits consisting of only the Western-Arabic numerals 0 through 9 not immediately followed by a lower-case b or lower-case h (e.g., 25). This standard uses the following conventions for representing decimal numbers:
 a) the decimal separator (i.e., separating the integer and fractional portions of the number) is a period;
 b) the thousands separator (i.e., separating groups of three digits in a portion of the number) is a space; and
 c) the thousands separator is used in both the integer portion and the fraction portion of a number.

A decimal number represented in this standard with an overline over one or more digits following the decimal point is a number where the overlined digits are infinitely repeating (e.g., 666.6 means 666.666 666… or 666 2/3, and 12.142 857 means 12.142 857 142 857… or 12 1/7).

1.3.8 Bit conventions
Name (n:m), where n is greater than m, denotes a set of bits (e.g., Feature (7:0)). n:m where n is greater than m denotes a bit range in a table.

1.3.9 Number range convention
p..q, where p is less than q, represents a range of numbers (e.g., words 100..103 represents words 100, 101, 102, and 103).
1.4 Document References

[1] IETF RFC 2119, 1997, “Key words for use in RFCs to Indicate Requirement Levels”
[7] T10 INCITS, “SCSI Architecture Model - 6 (SAM-6)”, Revision 05

1.5 Dependencies on Other Feature Sets

This feature set does not depend upon any other feature sets.

1.6 Interactions with Other Feature Sets

This feature set defines the interactions with the Single User Mode feature sets.
1.7 Definitions of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globally-Associated Namespace</td>
<td>any namespace or LUN that is not associated with a Namespace Global Range Locking object, and is thus associated with the Global Range Locking object</td>
</tr>
<tr>
<td>Namespace Global Range Locking object</td>
<td>a Locking object with a NamespaceID column value not equal to zero or 0xFFFF_FFFF and a NamespaceGlobalRange column value of TRUE</td>
</tr>
<tr>
<td>Namespace Non-Global Range Locking object</td>
<td>a Locking object with a NamespaceID column value not equal to zero or 0xFFFF_FFFF and a NamespaceGlobalRange column value of FALSE</td>
</tr>
<tr>
<td>Namespace/LUN</td>
<td>Namespace or LUN</td>
</tr>
<tr>
<td>non-Global Range Locking object</td>
<td>a Locking object other than the Global Range Locking object (Namespace Global Range Locking objects and Namespace Non-Global Range Locking objects are examples of non-Global Range Locking objects)</td>
</tr>
<tr>
<td>Read Locked</td>
<td>the state of a Locking object with a ReadLockEnabled column value of TRUE and a ReadLocked column value of TRUE</td>
</tr>
<tr>
<td>Read Unlocked</td>
<td>the state of a Locking object with a ReadLockEnabled column value of FALSE or a ReadLocked column value of FALSE</td>
</tr>
<tr>
<td>SD</td>
<td>Storage Device</td>
</tr>
<tr>
<td>TPer</td>
<td>The Trusted Peripheral is the subset of a Storage Device for which TCG manages security</td>
</tr>
<tr>
<td>Unused Key Count</td>
<td>the number of media encryption key resources which are not in use and are available for use (see section 4.2.1.7)</td>
</tr>
<tr>
<td>Write Locked</td>
<td>the state of a Locking object with a WriteLockEnabled column value of TRUE and a WriteLocked column value of TRUE</td>
</tr>
<tr>
<td>Write Unlocked</td>
<td>the state of a Locking object with a WriteLockEnabled column value of FALSE or a WriteLocked column value of FALSE</td>
</tr>
</tbody>
</table>
2 Namespaces/LUNs Overview

2.1 Namespace/LUN Operations Overview

The Configurable Namespace/LUN Locking feature set provides a means for a Locking SP to support separate locking management of different namespaces/LUNs, as well as of LBA ranges within a namespace/LUN.

This specification defines the following Locking object usages:

a) A Namespace Global Range Locking object is the first Locking object to be uniquely associated with a namespace/LUN; and

b) A Namespace Non-Global Range Locking object is a Locking object associated with an LBA range within a namespace/LUN.

This specification also defines the relationships of those Locking objects to LBA ranges, the interactions with the Global Range Locking object, and interactions with interface commands.

This specification defines two new methods, Assign (see 3.1.1.1) and Deassign (see 3.1.1.2). These methods associate Locking objects with namespaces/LUNs and, optionally, with LBA ranges in namespaces/LUNs.

This specification adds two columns to the Locking Table, NamespaceID (see 3.2.2.1.1) and NamespaceGlobalRange (see 3.2.2.1.2). The column values determine with which namespace/LUN a Locking object is associated and whether a Locking object is a Namespace Global Range Locking object or a Namespace Non-Global Range Locking object.

Each logical block is associated with exactly one Locking object.

A Globally-Associated Namespace is a namespace/LUN that is associated with the Global Range Locking object.

If the Storage Device supports the NVMe interface, then the Locking SP is in one of three modes:

a) Global LO / Multiple NS: The TPer contains one or more namespaces, all of which are associated many-to-one with the Global Range Locking object;

b) Multiple LO / Single NS: The TPer contains exactly one namespace, which is associated one-to-one with the Global Range Locking object. LBA ranges in the namespace MAY be associated one-to-one with non-Global Range Locking objects, by invoking the Set method; and

c) Multiple LO / Multiple NS: The TPer contains one or more namespaces, each of which is associated either many-to-one with the Global Range Locking object, or using the Assign method one-to-one with a Namespace Global Range Locking object. Each LBA range of a namespace MAY be associated one-to-one with a Namespace Non-Global Range Locking object.

If the Storage Device supports the SCSI interface, then the Locking SP is in one of two modes:

a) Global LO / Multiple NS: The device contains one or more LUNs, all of which are associated many-to-one with the Global Range Locking object; and

b) Multiple LO / Multiple NS: The device contains one or more LUNs, each of which is associated either many-to-one with the Global Range Locking object, or using the Assign method one-to-one with a Namespace Global Range Locking object. Each LBA range of a LUN MAY be associated one-to-one with a Namespace Non-Global Range Locking object.

These modes are shown in Figure 1 and Figure 2.
The uses of the Set method defined in [3] perform the transitions between “Global LO / Multiple NS mode” and “Multiple LO / Single NS mode” as shown above (although the terms “Global LO / Multiple NS mode” and “Multiple LO / Single NS mode” are not used in [3]). Transitions between the Global LO / Multiple NS mode and the Multiple LO / Multiple NS mode are specified in this specification. Transitions directly between the Multiple LO / Single NS mode and the Multiple LO / Multiple NS mode are not allowed.

If the Storage Device supports the NVMe interface and exactly one namespace exists in the TPer, and if no non-Global Range Locking objects have been configured, then the TPer is in the Global LO / Multiple NS mode.

If the Storage Device supports the NVMe interface and exactly one namespace exists in the TPer, and if at least one non-Global Range Locking object has been configured using the Set method, then the TPer is in the Multiple LO / Single NS mode.
In Multiple LO / Single NS mode, requirements are specified in [3] and the only section of this specification that applies is Level 0 Discovery (see 4.2).

In Multiple LO / Multiple NS mode, the requirements in [3] for single namespaces and multiple namespaces are overridden by the requirements in this specification.

2.2 Interactions with the Global Range Locking Object

Begin Informative Content

The following rules specify the errors reported for commands that would violate the Read Locked or Write Locked state of a Globally-Associated namespace.

End Informative Content

If the Global Range Locking object is Read Locked, then any command that reads user data or metadata in a Globally-Associated Namespace SHALL fail with a status of Data Protection Error. See [3] for more information.

If the Global Range Locking object is Write Locked, then any command that modifies user data or metadata in a Globally-Associated Namespace SHALL fail with a status of Data Protection Error. See [3] for more information.

Begin Informative Content

The following rules specify operations on the media encryption keys of Globally-Associated Namespaces.

End Informative Content

The TPer SHALL support a minimum of one media encryption key per namespace. In this case, the K_AES_* object referenced by the ActiveKey column value of the Global Range Locking object SHALL be a collective representation of all the media encryption keys in use for Globally-Associated Namespaces. Any method that modifies the Key column of the K_AES_* object indicated by the ActiveKey column of the Global Range Locking object SHALL be applied individually to each of the keys represented by that K_AES_* object. Successful execution of any method that results in the cryptographic erase of the Global Range Locking object SHALL result in the cryptographic erase of all Globally-Associated Namespaces.

2.3 NVMe Interactions

Begin Informative Content

The following section describes interactions between the Configurable Locking for NVMe Namespaces and SCSI LUNs feature set and the NVMe interface.

End Informative Content

2.3.1 Examples of Interactions with SIIS Single Namespace and Multiple Namespace Specifications

Begin Informative Content

Table 2 illustrates a Locking SP in which all namespaces are implicitly associated with the Global Range Locking object.

Table 2 - Example: Global LO / Multiple NS

<table>
<thead>
<tr>
<th>Locking Object</th>
<th>Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>NS1</td>
</tr>
<tr>
<td></td>
<td>NS2</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>NSn</td>
</tr>
</tbody>
</table>

Table 3 illustrates a Locking SP with only a single namespace, but where invocations of the Set method have associated eight LBA ranges of the namespace with non-Global Range Locking objects. The number of each LBA
range indicates the order in which that range was associated with a Locking object, e.g., NS1 LBA Range 1 was associated with LO1 first, NS1 LBA Range 2 was associated with LO2 second, etc. See [3].

Table 3 - Example: Multiple LO / Single NS

<table>
<thead>
<tr>
<th>Locking Object</th>
<th>Namespace</th>
<th>Range within Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>NS1</td>
<td>NS1 Global</td>
</tr>
<tr>
<td>LO1</td>
<td>NS1</td>
<td>NS1 LBA Range 1</td>
</tr>
<tr>
<td>LO2</td>
<td>NS1</td>
<td>NS1 LBA Range 2</td>
</tr>
<tr>
<td>LO3</td>
<td>NS1</td>
<td>NS1 LBA Range 8</td>
</tr>
<tr>
<td>LO4</td>
<td>NS1</td>
<td>NS1 LBA Range 4</td>
</tr>
<tr>
<td>LO5</td>
<td>NS1</td>
<td>NS1 LBA Range 6</td>
</tr>
<tr>
<td>LO6</td>
<td>NS1</td>
<td>NS1 LBA Range 5</td>
</tr>
<tr>
<td>LO7</td>
<td>NS1</td>
<td>NS1 LBA Range 7</td>
</tr>
<tr>
<td>LO8</td>
<td>NS1</td>
<td>NS1 LBA Range 3</td>
</tr>
</tbody>
</table>

Table 4 illustrates a Locking SP in which invocations of the Assign method have associated each of four namespaces with a different non-Global Range Locking object. Three other namespaces remain implicitly associated with the Global Range Locking object.

Table 4 - Example: Multiple LO / Multiple NS

<table>
<thead>
<tr>
<th>Locking Object</th>
<th>Namespace</th>
<th>Range within Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>NS1</td>
<td>NS1 Global</td>
</tr>
<tr>
<td></td>
<td>NS3</td>
<td>NS3 Global</td>
</tr>
<tr>
<td></td>
<td>NS5</td>
<td>NS5 Global</td>
</tr>
<tr>
<td>LO1</td>
<td>NS6</td>
<td>NS6 Global</td>
</tr>
<tr>
<td>LO2</td>
<td>NS6</td>
<td>NS6 LBA Range 1</td>
</tr>
<tr>
<td>LO3</td>
<td>NS2</td>
<td>NS2 Global</td>
</tr>
<tr>
<td>LO4</td>
<td>NS4</td>
<td>NS4 Global</td>
</tr>
<tr>
<td>LO5</td>
<td>NS7</td>
<td>NS7 Global</td>
</tr>
<tr>
<td>LO6</td>
<td>NS7</td>
<td>NS7 LBA Range 2</td>
</tr>
<tr>
<td>LO7</td>
<td>NS7</td>
<td>NS7 LBA Range 1</td>
</tr>
</tbody>
</table>

The association of a namespace and its LBA ranges with one or more Locking objects is shown in Figure 3. When a namespace is first created, it is associated by default with the Global Range Locking object. When the Assign method is first invoked on a namespace, it selects a non-Global Range Locking object in the Locking table with a NamespaceID column value of zero (i.e., is not associated with a namespace), configures the new Locking object as a Namespace Global Range Locking object, and associates the namespace with the new Locking object.

When the Assign method is invoked on a namespace which is associated with a Namespace Global Range Locking object, it selects a non-Global Range Locking object in the Locking table with a NamespaceID column value of zero, configures the new Locking object as a Namespace Non-Global Range Locking object, and associates the specified
LBA range of that namespace with the new Locking object. Multiple LBA ranges within a namespace may be associated with different Locking objects. LBA ranges that have not been associated with Namespace Non-Global Range Locking objects are by default associated with the Namespace Global Range Locking object.

![Diagram](image)

Figure 3 - Flows in Namespace Associations with Locking Objects

Invocation of the Deassign method on a Namespace Non-Global Range Locking object returns the LBA range associated with the Namespace Global Range Locking object. When there are no Namespace Non-Global Range Locking objects associated with a namespace, then the Deassign method may be invoked on the Namespace Global Range Locking object. This causes the namespace (and implicitly all its LBA ranges) to be associated with the Global Range Locking object.

End Informative Content

2.3.2 Interactions with the Namespace Management Command

The Namespace Management command (see [5]) MAY be supported on a TPer that supports the Configurable Locking for NVMe Namespaces and SCSI LUNs feature set.

Begin Informative Content

The following rule specifies normal operation of namespace creation.

End Informative Content
If:
 a) the Select (SEL) field of the command is Create;
 b) the Global Range Locking object is Read Unlocked;
 c) the Global Range Locking object is Write Unlocked; and
 d) the Unused Key Count is greater than or equal to one,

then:
 1) the Namespace Management command SHALL be processed as defined in [5]; and
 2) if the Namespace Management command succeeds in any life cycle state of the SPs, then:
 a. the Unused Key Count SHALL be decremented by one; and
 b. the new namespace SHALL be associated with an unused media encryption key.

Begin Informative Content
The following rule prevents creation of a namespace if there is no media encryption key resource available.
End Informative Content

If:
 a) the Select (SEL) field of the command is Create;
 b) the Global Range Locking object is Read Unlocked;
 c) the Global Range Locking object is Write Unlocked;
 d) the command would otherwise succeed; and
 e) the Unused Key Count is zero,

then:
 a) the Namespace Management command SHALL fail with a status of Operation Denied; and
 b) the Unused Key Count SHALL NOT be changed.

Begin Informative Content
The following rule prevents creation of a namespace if the Global Range Locking Object is Read Locked or Write Locked.
End Informative Content

If:
 a) the Select (SEL) field of the command is Create;
 b) the Unused Key Count is greater than or equal to one;
 c) the command would otherwise succeed; and
 d) the Global Range Locking object is:
 a. Read Locked; or
 b. Write Locked,

then:
a) the Namespace Management command SHALL fail with a status of Operation Denied; and
b) the Unused Key Count SHALL NOT be changed.

Begin Informative Content
The following rule specifies normal operation of namespace deletion. If the Namespace Identifier (NSID) field of the command indicates all namespaces (i.e., 0xFFFF_FFFF), then all namespaces must be associated with the Global Range Locking object.
End Informative Content

If:
 a) the Select (SEL) field of the command is Delete;
 b) the Global Range Locking object is Read Unlocked;
 c) the Global Range Locking object is Write Unlocked; and
 d) the Namespace Identifier (NSID) field of the command does not specify any namespace associated with a Namespace Global Range Locking object;

then:
1. the Namespace Management command SHALL be processed as defined in [5]; and
2. if the Namespace Management command succeeds in any life cycle state of the SPs, then:
 a. the Unused Key Count SHALL be incremented by the number of namespaces that were deleted; and
 b. the media encryption key associated with any deleted namespace SHALL be eradicated.

Begin Informative Content
The following rule prevents deletion of a namespace that is not associated with the Global Range Locking object.
End Informative Content

If:
 a) the Select (SEL) field of the command is Delete;
 b) the Global Range Locking object is Read Unlocked;
 c) the Global Range Locking object is Write Unlocked;
 d) the command would otherwise succeed; and
 e) the Namespace Identifier (NSID) field of the command specifies one or more namespaces associated with a Namespace Global Range Locking object;

then the Namespace Management command SHALL fail with a status of Operation Denied.

Begin Informative Content
The following rule prevents deletion of a namespace associated with the Global Range Locking object if the Global Range Locking object is Read Locked or Write Locked.
End Informative Content

If:
 a) the Select (SEL) field of the command is Delete;
b) the Namespace Identifier (NSID) field of the command does not specify any namespace associated with a Namespace Global Range Locking object;

c) the command would otherwise succeed; and

d) the Global Range Locking object is:
 a. Read Locked; or
 b. Write Locked,

then the Namespace Management command SHALL fail with a status of Operation Denied.

2.3.3 Interactions with the Format NVM Command

The Format NVM command specifies that either one namespace or all namespaces (i.e., namespace ID 0xFFFF_FFFF) are to be formatted.

If all Locking objects assigned to namespaces specified by the Format NVM command are Write Unlocked, then the Format NVM command SHALL be processed as specified in [5].

If any Locking object assigned to any namespace specified by the Format NVM command is Write Locked, then the Format NVM command SHALL fail with a status of Invalid Security State.

2.4 SCSI Interactions

The following section describes interactions between the Configurable Locking for NVMe Namespaces and SCSI LUNs feature set and the SCSI interface.

2.4.1 Interactions with the SCSI LUNs

The following rules specify configuration requirements for SCSI LUNs (see [7] for details).

The Storage Device SHALL support a minimum of 2 LUNs.

The Storage Device SHALL NOT support LUN ID values that cannot be independently addressed using only the first four bytes of the LUN ID as described in section 3.2.2.1.1.

The Storage Device SHALL NOT support a LUN ID that maps to a NamespaceID column value of 0xFFFF_FFFF as described in section 3.2.2.1.1.

2.4.2 Interactions with the SCSI Commands that affect multiple LUNs

SCSI commands may affect one or more LUNs on the Storage Device (see [7] for details).

The following rules specify the behavior when a command affects multiple LUNs.

If:

a) the command affects two or more LUNs;
b) the command is a Read Command (see [3]); and

c) one or more of the Locking objects associated with any of the affected LUNs is Read Locked,

then the command SHALL behave as defined in the SCSI command interactions with the Locking SP table (see [3]).

If:

a) the command affects two or more LUNs;

b) the command is a Write Command (see [3]); and

c) one or more of the Locking objects associated with any of the affected LUNs is Write Locked,

then the command SHALL behave as defined in the SCSI command interactions with the Locking SP table (see [3]).
3 SSC Specific Functionality

This section specifies the additional SSC-specific functionality (not contained in [2] or [4]) required to support the Configurable Locking for NVMe Namespaces and SCSI LUNs feature set.

3.1 Methods

This section defines new methods and modifications to existing methods required for this feature set.

3.1.1 New Methods

This section defines the new methods that are required to support this feature set.

3.1.1.1 Assign (M)

The Assign method is a Locking Template-specific method.

Begin Informative Content

The Assign method selects a non-Global Range Locking object in the Locking table that has a NamespaceID column value of zero or 0xFFFF_FFFF (i.e., that is not associated with a namespace/LUN), and sets multiple column values in a single operation. The Assign method returns the UID column value of the selected Locking object and the NamespaceGlobalRange column value.

The Assign method is invoked upon a Locking SP that is in either the Global LO / Multiple NS mode or the Multiple LO / Multiple NS mode (see Figure 1).

End Informative Content

The following pseudo-code is the signature of the Assign method (see [2] for more information).

```plaintext
LockingTableUID.Assign [ 
    NamespaceID : bytes_4, 
    RangeStart   = uinteger_8, 
    RangeLength  = uinteger_8 ] 
=> [ UID : uidref, 
      NamespaceGlobalRange : boolean ]
```

Method UID: 00 00 00 06 00 00 08 04

3.1.1.1.1 Parameter Descriptions

3.1.1.1.1.1 NamespaceID

The NamespaceID parameter specifies the value to which the NamespaceID column of the Locking object (see 3.2.2.1.1) SHALL be set.

3.1.1.1.1.2 RangeStart

The RangeStart parameter (if present) specifies the value to which the RangeStart column of the Locking object SHALL be set.

3.1.1.1.1.3 RangeLength

The RangeLength parameter (if present) specifies the value to which the RangeLength column of the Locking object SHALL be set.

3.1.1.2 Returned Value Descriptions

3.1.1.2.1 UID

The UID value is the UID column value of the selected Locking object.
3.1.1.2.2 NamespaceGlobalRange
The NamespaceGlobalRange value is the NamespaceGlobalRange column value of the selected Locking object (see 3.2.2.1.2).

3.1.1.3 Assign Method Operation
The operation of the Assign method depends in part upon whether a Locking object is associated with the namespace/LUN specified by the method and whether the Storage Device supports Namespace Non-Global Range Locking objects:

a) If the Locking table contains no Locking objects associated with the specified namespace, then Assign configures the Namespace Global Range Locking object for that namespace; and

b) If the Locking table contains a Namespace Global Range Locking object associated with the specified namespace and the RANGE_C bit is set to one in the Configurable Namespace Locking Feature Descriptor (see 4.2.1), then Assign configures a Namespace Non-Global Range Locking object for that namespace. If the RangeLength parameter is set to zero, then no logical blocks are associated with that Locking object. Subsequently, the Set method MAY be invoked to associate logical blocks with that Locking object.

In order to prevent invalid configurations of the Locking SP, the following uses of Assign are not allowed:

a) configuring a Namespace Non-Global Range Locking object in a Storage Device that does not support Non-Global Range Locking objects; and

b) configuring a Namespace Non-Global Range Locking object for a range of a namespace that overlaps a range specified by another Namespace Non-Global Range Locking object for the same namespace.

The invocation of the Assign method (see 3.1.1.1) on a Globally-Associated Namespace associates a Namespace Global Range Locking object with that namespace/LUN. If Assign is invoked again on that namespace, then it associates a Namespace Non-Global Range Locking object with a (possibly zero-length) range of LBAs within that namespace/LUN.

If a namespace/LUN has LBAs that are not associated with any of the Namespace Non-Global Range Locking objects for that namespace/LUN, then those LBAs are associated with the Namespace Global Range Locking object.

A Namespace Non-Global Range Locking object with a RangeLength column value of zero is considered to not overlap with any other LBA range, regardless of the RangeStart column value.

3.1.1.3.1 Assigning a Namespace Global Range Locking object

Begin Informative Content

The following rule specifies successful operation of the Assign method when assigning a Namespace Global Range Locking object.

End Informative Content

If:

a) the Storage Device supports the NVMe interface
b) the NamespaceID parameter:
 a. is not equal to zero;
 b. is not equal to 0xFFFF_FFFF; and
 c. specifies a value that is not equal to the NamespaceID column value in any Locking object;

c) the RangeStart parameter, if present, is set to zero;

d) the RangeLength parameter, if present, is set to zero;
e) the Global Range Locking object is Write Unlocked; and
f) the Global Range Locking object is Read Unlocked,
then the Assign method SHALL:

1. select a non-Global Range Locking object in the Locking table with a NamespaceID column value of zero;
2. set the NamespaceID column value to the value of the NamespaceID parameter;
3. set the RangeStart column value to zero;
4. set the RangeLength column value to zero;
5. set the NamespaceGlobalRange column value to TRUE;
6. keep the current Unused Key Count;
7. transfer control of the media encryption key associated with the namespace to the K_AES_* object indicated by the ActiveKey column value of the selected Locking object; and
8. return:
 a) the UID of the selected Locking object;
 b) the NamespaceGlobalRange column value; and
 c) a status code of SUCCESS.

If:

a) the Storage Device supports the SCSI interface;

b) the NamespaceID parameter:
 a. is not equal to 0xFFFF_FFFF; and
 b. specifies a value that is not equal to the NamespaceID column value in any Locking object;

c) the RangeStart parameter, if present, is set to zero;

d) the RangeLength parameter, if present, is set to zero;

e) the Global Range Locking object is Write Unlocked; and

f) the Global Range Locking object is Read Unlocked,

then the Assign method SHALL:

1. select a non-Global Range Locking object in the Locking table with a NamespaceID column value of zero;
2. set the NamespaceID column value to the value of the NamespaceID parameter;
3. set the RangeStart column value to zero;
4. set the RangeLength column value to zero;
5. set the NamespaceGlobalRange column value to TRUE;
6. keep the current Unused Key Count;
7. transfer control of the media encryption key associated with the LUN to the K_AES_* object indicated by the ActiveKey column value of the selected Locking object; and
8. return:
 a. the UID of the selected Locking object;
 b. the NamespaceGlobalRange column value; and
 c. a status code of SUCCESS.
Assigning a Namespace Global Range Locking object SHALL NOT cause a cryptographic erase of that namespace/LUN.

Begin Informative Content

The following rule prevents assignment of a Namespace Global Range Locking object if the Global Range Locking object is Write Locked or Read Locked.

End Informative Content

If:

a) the Storage Device supports the NVMe interface
b) the NamespaceID parameter:
 a. is not equal to zero;
 b. is not equal to 0xFFFF_FFFF; and
 c. specifies a value that is not equal to the NamespaceID column value in any Locking object;
 and

 c) the Global Range Locking object is Write Locked or Read Locked,

then the Assign method SHALL fail with a status of FAIL.

If:

a) the Storage Device supports the SCSI interface
b) the NamespaceID parameter:
 a. is not equal to 0xFFFF_FFFF; and
 b. specifies a value that is not equal to the NamespaceID column value in any Locking object;
 and

 c) the Global Range Locking object is Write Locked or Read Locked,

then the Assign method SHALL fail with a status of FAIL.

Begin Informative Content

The following rule prevents assignment of a Namespace Global Range Locking object that specifies an LBA range.

End Informative Content

If:

a) the Storage Device is supports the NVMe interface
b) the NamespaceID parameter:
 a. is not equal to zero;
 b. is not equal to 0xFFFF_FFFF; and
 c. specifies a value which is not equal to the NamespaceID column value in any Locking object;
 and

 c) other parameters are set as follows:
a. the RangeStart parameter is set to a nonzero value; or
b. the RangeLength parameter is set to a nonzero value,
then the Assign method SHALL fail with a status of INVALID_PARAMETER.

If:
 a) the Storage Device supports the SCSI interface
 b) the NamespaceID parameter:
 a. is not equal to \(0xFFFF_FFFF\); and
 b. specifies a value that is not equal to the NamespaceID column value in any Locking object;
 and
 c) other parameters are set as follows:
 a. the RangeStart parameter is set to a nonzero value; or
 b. the RangeLength parameter is set to a nonzero value,
then the Assign method SHALL fail with a status of INVALID_PARAMETER.

3.1.1.1.3.2 Assigning a Namespace Non-Global Range Locking object

The following rule specifies successful operation of the Assign method when assigning a Namespace Non-Global Range Locking object.

If:
 a) the Storage Device reports a value of one in the Range Capable (Range_C) field of the Configurable Namespace Locking Feature Descriptor (see 4.2.1);
 b) the NamespaceID parameter specifies a value that is equal to the NamespaceID column value in a Namespace Global Range Locking object;
 c) the RangeStart parameter and the RangeLength parameter, if present, specify an LBA range in which no logical blocks are assigned to any Namespace Non-Global Range Locking object having a NamespaceID column value equal to the NamespaceID parameter;
 d) the Maximum Ranges Per Namespace field of the Configurable Namespace Locking Feature Descriptor (see 4.2.1) specifies:
 a. a value of \(0xFFFF_FFFF\); or
 b. a value less than \(0xFFFF_FFFF\) and that value is greater than the number of Namespace Non-Global Range Locking objects that have a NamespaceID column value equal to the NamespaceID parameter;
 and
 e) the Unused Key Count is greater than or equal to one,
then the Assign method SHALL:
 1. select a non-Global Range Locking object in the Locking table with a NamespaceID column value of zero or \(0xFFFF_FFFF\);
 2. set the NamespaceID column value to the value of the NamespaceID parameter;
 3. set the RangeStart column value to the specified value or to zero if not specified;
4. set the RangeLength column value to the specified value or to zero if not specified;
5. set the NamespaceGlobalRange column value to FALSE;
6. decrement the Unused Key Count by one; and
7. return:
 a. the UID of the selected Locking object;
 b. the NamespaceGlobalRange column value; and
 c. a status code of SUCCESS.

Begin Informative Content

The following rule prevents assignment of a Namespace Non-Global Range Locking object if the Range Capable bit is set to 0 in the Level 0 Discovery response data.

End Informative Content

If:

a) the Storage Device reports a value of zero in the Range Capable (Range_C) field of the Namespace Feature Descriptor; and

b) the Assign method specifies a NamespaceID parameter value that is equal to the NamespaceID column value in a Namespace Global Range Locking object,

then the Assign method SHALL fail with a status of INVALID_PARAMETER.

Begin Informative Content

The following rule prevents assignment of a Namespace Non-Global Range Locking object with an LBA range that overlaps the LBA range in another Namespace Non-Global Range Locking object for the same namespace/LUN. A zero-length LBA range (i.e., the RangeLength parameter is zero) does not overlap any LBA range, regardless of the value of the RangeStart parameter.

End Informative Content

If the Assign method specifies:

a) a NamespaceID parameter equal to the NamespaceID column value in any Namespace Non-Global Range Locking object; and

b) an LBA range in which one or more logical blocks are assigned to that Namespace Non-Global Range Locking object,

then the Assign method SHALL fail with a status of INVALID_PARAMETER.

Begin Informative Content

The following rule prevents assignment of a Namespace Non-Global Range Locking object if there are no resources to store a new media encryption key.

End Informative Content

If:

a) the Storage Device reports a value of one in the Range Capable (Range_C) field of the Configurable Namespace Locking Feature Descriptor (see 4.2.1); and

b) the NamespaceID parameter specifies a value that is equal to the NamespaceID column value in a Namespace Global Range Locking object;
c) the RangeStart parameter and the RangeLength parameter, if present, specify an LBA range in which no logical blocks are assigned to any Namespace Non-Global Range Locking object having a NamespaceID column value equal to the NamespaceID parameter; and
d) the Unused Key Count is equal to zero,

then the Assign method SHALL fail with a status of FAIL.

Begin Informative Content
The following rule prevents assignment of more Namespace Non-Global Range Locking objects to a namespace/LUN than are indicated by the Maximum Ranges Per Namespace field of the Namespace Feature Descriptor.
End Informative Content

If:

a) the Maximum Ranges Per Namespace field of the Configurable Namespace Locking Feature Descriptor (see 4.2.1) specifies a value less than 0xFFFF_FFFF;
b) the Unused Key Count is greater than zero; and
c) the value of the Maximum Ranges Per Namespace field is equal to the number of Namespace Non-Global Range Locking objects that have a NamespaceID column value equal to the NamespaceID parameter,

then the Assign method SHALL fail with a status of INVALID_PARAMETER.

3.1.1.1.3.3 General requirements

Begin Informative Content
The following rule describes the condition in which the Locking SP is in the Global LO / Multiple NS mode and is thus allowed to transition to the Multiple LO / Multiple NS mode. This condition is not the only condition in which the Assign method may be invoked.
End Informative Content

If:

a) the Storage Device supports the NVMe interface;
b) the TPer contains one or more namespaces; and
c) the Locking table does not contain any non-Global Range Locking objects, then the Assign method MAY succeed with a status of SUCCESS.

Begin Informative Content
The following rule prevents successful operation of the Assign method if the Locking SP is in the Multiple LO / Single NS mode.
End Informative Content

If the Locking table contains any Locking object with a NamespaceID column value of zero or 0xFFFF_FFFF; and
 a) the Storage Device supports the NVMe interface;
 b) the value of the RangeStart column is not equal to zero; or
 c) the value of the RangeLength column is not equal to zero,
then the Assign method SHALL fail with a status of INVALID_PARAMETER.

If the Locking table contains any Locking object with a NamespaceID column value of 0xFFFF_FFFF; and
 a) the Storage Device supports the SCSI interface;
 b) the value of the RangeStart column is not equal to zero; or
 c) the value of the RangeLength column is not equal to zero,
then the Assign method SHALL fail with a status of INVALID_PARAMETER.

3.1.1.3.5 Insufficient Unassigned Locking Objects
Begin Informative Content
The following rule prevents successful operation of the Assign method when there are no Namespaces or LUNs available for assignment.
End Informative Content

If the Storage Device supports the NVMe interface and the Locking table contains no non-Global Range Locking object with the NamespaceID column value equal to zero or 0xFFFF_FFFF, then the Assign method SHALL fail with a status of INSUFFICIENT_ROWS (see [2]).

If the Storage Device supports the SCSI interface and the Locking table contains no non-Global Range Locking object with the NamespaceID column value equal to 0xFFFF_FFFF, then the Assign method SHALL fail with a status of INSUFFICIENT_ROWS (see [2]).
3.1.1.2 Deassign (M)

The Deassign method is a Locking Template-specific method.

Begin Informative Content

The Deassign method removes a Locking object’s association with a namespace/LUN or namespace/LUN LBA range and resets multiple column values in a single operation.

The Deassign method is invoked upon a Locking SP which is in the Multiple LO / Multiple NS mode (see Figure 1).

End Informative Content

The following pseudo-code is the signature of the Deassign method (see [2] for more information).

```plaintext
[LockingTableUID.Deassign[
    UID : uidref,
    KeepNamespaceGlobalRangeKey = boolean ]
=>
[]
```

Method UID: 00 00 00 06 00 00 08 05

3.1.1.2.1 Parameter Descriptions

3.1.1.2.1.1 UID

The UID parameter specifies the Locking object that is to be deassigned.

3.1.1.2.2 KeepNamespaceGlobalRangeKey

The KeepNamespaceGlobalRangeKey parameter specifies whether the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value is eradicated when a Namespace Global Range Locking object is deassigned.

A TRUE value for the KeepNamespaceGlobalRangeKey parameter is allowed only when the Deassign method is called on a Namespace Global Range Locking object.

3.1.1.2.3 Deassign Method Operation

Begin Informative Content

The Deassign method is used to remove the association between an LBA range and a Namespace Non-Global Range Locking object or between a namespace/LUN and a Namespace Global Range Locking object. Logical blocks associated with the deassigned Locking object are then associated with another Locking object:

a) Deassigning a Namespace Non-Global Range Locking object:

 a. associates the logical blocks in the LBA range indicated by the Locking object with the Namespace Global Range Locking object associated with the namespace/LUN; and

 b. cryptographically erases the LBA range indicated by the Locking object with the Namespace Non-Global Range Locking object associated with the Namespace/LUN

b) Deassigning a Namespace Global Range Locking object:

 a. associates the logical blocks in the namespace/LUN with the Global Range Locking object; and

 b. cryptographically erases the LBA range indicated by the Locking object with the Namespace Global Range Locking object associated with the Namespace/LUN if specified by the KeepNamespaceGlobalRangeKey parameter.

End Informative Content

The Deassign method is subject to constraints that prevent invalid configurations of the Locking SP. The following uses of Deassign are not allowed:
a) Deassigning a Namespace Global Range Locking object when there exist one or more Namespace Non-Global Range Locking objects associated with that namespace/LUN; and
b) Deassigning a Namespace Non-Global Range Locking object and retaining the media encryption key.

The constraint in a) above requires that the Deassign method be invoked successfully on all of the Namespace Non-Global Range Locking objects associated with the namespace/LUN before the Deassign method is invoked on the Namespace Global Range Locking object associated with the namespace/LUN.

It is required that the Namespace Global Range Locking object be deassigned from a namespace/LUN before the Namespace Management command is invoked to delete the namespace/LUN. For the details of using the Namespace Management command for this purpose, see 2.3.2 and [3].

End Informative Content

If the Deassign method succeeds, then:

1. the method SHALL set all column values in the selected Locking object to original factory values; and
2. if the Locking object is a Namespace Global Range Locking object, the method SHALL process the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value as specified by the KeepNamespaceGlobalRangeKey parameter.

Note that upon successful completion of the Deassign method, the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value is not in use for any logical blocks.

Begin Informative Content

The following rule specifies successful operation of the Deassign method on a Namespace Non-Global Range Locking object.

End Informative Content

If:

a) the Storage Device supports the NVMe interface;
b) the Locking object indicated by the UID parameter:
 a. is Read Unlocked and Write Unlocked;
 b. has the NamespaceGlobalRange column value set to FALSE; and
 c. has the NamespaceID column value set to a value other than zero or 0xFFFF_FFFF;
 and
 c) the KeepNamespaceGlobalRangeKey parameter is FALSE,
then the Deassign method SHALL:

1. eradicate the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value;
2. increment the Unused Key Count by one; and
3. return a status code of SUCCESS.

If:

a) the Storage Device supports the SCSI interface;
b) the Locking object indicated by the UID parameter:
 a. is Read Unlocked and Write Unlocked;
 b. has the NamespaceGlobalRange column value set to FALSE; and
c. has the NamespaceID column value set to a value other than 0xFFFF_FFFF;

and

(c) the KeepNamespaceGlobalRangeKey parameter is FALSE,

then the Deassign method SHALL:

1. eradicate the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value;

2. increment the Unused Key Count by one; and

3. return a status code of SUCCESS.

Begin Informative Content

The following rule prevents successful operation of the Deassign method on a Namespace Non-Global Range Locking object with the KeepNamespaceGlobalRangeKey parameter set to TRUE.

End Informative Content

If:

a) the Locking object indicated by the UID parameter has the NamespaceGlobalRange column value set to FALSE; and

b) the KeepNamespaceGlobalRangeKey parameter is TRUE,

then the Deassign method SHALL fail with a status of INVALID_PARAMETER.

Begin Informative Content

The following rule prevents deassignment of a Namespace Non-Global Range Locking object when that Locking object is Read Locked or Write Locked.

End Informative Content

If the Locking object indicated by the UID parameter:

a) has the NamespaceGlobalRange column value set to FALSE; and

b) is Read Locked or Write Locked,

then the Deassign method SHALL fail with a status of FAIL.

Begin Informative Content

The following rule specifies successful operation of the Deassign method on a Namespace Global Range Locking object when the KeepNamespaceGlobalRangeKey parameter is set to TRUE.

End Informative Content

If:

1. the Global Range Locking object is Read Unlocked and Write Unlocked;

2. the Locking object indicated by the UID parameter:

 a. has the NamespaceGlobalRange column value set to TRUE;

 b. is Read Unlocked and Write Unlocked; and

 c. has a NamespaceID column value that is not equal to the NamespaceID column value in any other Locking object in the Locking SP;

and
3. the KeepNamespaceGlobalRangeKey parameter is set to TRUE,
then the Deassign method:

1. SHALL NOT perform a cryptographic erase of the LBAs in that namespace/LUN;
2. SHALL NOT change the Unused Key Count;
3. SHALL transfer control of the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value of the Namespace Global Range Locking object to the K_AES_* object indicated by the ActiveKey column value of Global Range Locking object;
4. SHALL change the value of the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value of the Namespace Global Range Locking object; and
5. SHALL return a status code of SUCCESS.

Begin Informative Content
The following rule specifies successful operation of the Deassign method on a Namespace Global Range Locking object when the KeepNamespaceGlobalRangeKey parameter is set to FALSE.
End Informative Content

If:

a) the Global Range Locking object is Read Unlocked and Write Unlocked;
b) the Locking object indicated by the UID parameter:
 a. has the NamespaceGlobalRange column value set to TRUE;
 b. is Read Unlocked and Write Unlocked; and
 c. has a NamespaceID column value that is not equal to the NamespaceID column value in any other Locking object in the Locking SP;

and

a) the KeepNamespaceGlobalRangeKey parameter is set to FALSE,
then the Deassign method:

1. SHALL eradicate the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value;
2. SHALL fill in the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value of the Namespace Global Range Locking object with new key material;
3. SHALL transfer control of the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value of the Namespace Global Range Locking object to the K_AES_* object indicated by the ActiveKey column value of Global Range Locking object;
4. SHALL fill in the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value of the Namespace Global Range Locking object with new key material;
5. SHALL NOT change the Unused Key Count; and
6. SHALL return a status code of SUCCESS.

Begin Informative Content
The following rule prevents deassignment of a Namespace Global Range Locking range when a Namespace Non-Global Range Locking object is associated with that namespace/LUN.
End Informative Content

If the Locking object indicated by the UID parameter:
a) has the NamespaceGlobalRange column value set to TRUE; and
b) has a NamespaceID column value equal to the NamespaceID column value in another assigned Locking object in the Locking SP,

then the Deassign method SHALL fail with a status of INVALID_PARAMETER.

Begin Informative Content
The following rule prevents deassignment of a Namespace Global Range Locking object when that Locking object or the Global Range Locking object is Read Locked or Write Locked.
End Informative Content

If:

a) the Locking object indicated by the UID parameter:
 a. has the NamespaceGlobalRange column value set to TRUE; and
 b. is Read Locked or Write Locked;
 or
b) the Global Range Locking object is Read Locked or Write Locked,

then the Deassign method SHALL fail with a status of FAIL.

Begin Informative Content
The following rule specifies the error to report when Deassign is invoked on a non-existent or unassigned Namespace Global Range Locking object. The rule also specifies the error to report when Deassign is invoked on the Global Range Locking object.
End Informative Content

If the Storage Device supports the NVMe interface and the Locking object indicated by the UID parameter:

a) does not exist; or
b) has a NamespaceID column value of zero or 0xFFFF_FFFF,

then the Deassign method SHALL fail with a status of INVALID_PARAMETER.

If the Storage Device supports the SCSI interface and the Locking object indicated by the UID parameter:

a) does not exist; or
b) has a NamespaceID column value of 0xFFFF_FFFF,

then the Deassign method SHALL fail with a status of INVALID_PARAMETER.

3.1.2 Modified Methods
This feature set modifies the following methods:

a) Set;

b) Revert; and

c) RevertSP.

3.1.2.1 Set
Begin Informative Content
The Set method is subject to constraints that prevent invalid configurations of the Locking SP. The following uses of Set are not allowed, based on access control settings:

Begin Informative Content
End Informative Content

End Informative Content
a) Changing which namespace/LUN is associated with a Locking object (i.e., changing the NamespaceID column value);

b) Changing a Namespace Global Range Locking object into a Namespace Non-Global Range Locking object (i.e., changing the NamespaceGlobalRange column value);

c) Changing a Namespace Non-Global Range Locking object into a Namespace Global Range Locking object (i.e., changing the NamespaceGlobalRange column value); and

d) Assigning more than one Namespace Global Range Locking object for the same namespace/LUN.

Because the constraints described in this section apply to Namespace Global Range Locking objects and Namespace Non-Global Range Locking objects, they are meaningful only when the Locking SP is in the Multiple LO / Multiple NS mode (see 2.1).

The constraints described in this section are enforced by the access control list for the Locking SP, which does not permit the Set method to modify either the NamespaceID column value or NamespaceGlobalRange column value.

The following rule prevents the modification of a Namespace Non-Global Range Locking object to cause its LBA range to overlap the LBA range of another Namespace Non-Global Range Locking object.

End Informative Content

If the Set method is invoked on a Namespace Non-Global Range Locking object and specifies an LBA range in which one or more logical blocks are associated with a different non-Global Range Locking object specifying the same NamespaceID column value, then the Set method SHALL fail with a status of INVALID_PARAMETER.

Begin Informative Content

The following rule prevents the modification of the RangeStart and RangeLength columns on Namespace Global Range Locking objects.

End Informative Content

If the Set method is invoked on a Namespace Global Range and specifies values for the RangeStart or RangeLength columns, then the Set method SHALL fail with a status of INVALID_PARAMETER.

3.1.2.1 Interaction with the namespace management model specified in SIIS

Begin Informative Content

The namespace management model specified in SIIS applies when the Locking SP is in either the Global LO / Multiple NS mode or the Multiple LO / Single NS mode (see 2.1), i.e., the Locking table does not contain a Namespace Global Range Locking object or a Namespace Non-Global Range Locking object. The Configurable Locking for NVMe Namespaces and SCSI LUNs feature set functionality is disallowed when the Locking SP is in the Global LO / Multiple NS mode.

End Informative Content

If the Storage Device supports the NVMe interface and any Locking object has a non-zero NamespaceID column value and the Set method is invoked on any Locking object with a NamespaceID column value of zero, other than the Global Range Locking object, then the Set method SHALL fail with a status of INVALID_PARAMETER.

3.1.2 Revert

Upon a successful invocation of the Revert method that results in reverting the Locking SP, the method SHALL:

a) Increment the Unused Key Count by the number of Namespace Non-Global Range Locking objects that had a non-zero NamespaceID column value when the method was invoked.

The Unused Key Count SHALL NOT be otherwise affected by the Revert Method invocation, i.e. the Unused Key Count should not be returned to its OFS values.

3.1.2.3 RevertSP

Begin Informative Content
If a namespace is associated with a Namespace Non-Global Range Locking object when the RevertSP method is invoked, then the media encryption key of that namespace is eradicated, regardless of whether the KeepGlobalRangeKey parameter is set to TRUE or FALSE.

If the Deassign method is successfully invoked on a Namespace Global Range Locking object before the RevertSP method is invoked, then the media encryption key of that namespace/LUN is represented by the K_AES_* object of the Global Range Locking object and is processed as specified by the KeepGlobalRangeKey parameter.

End Informative Content

Upon successful invocation of the RevertSP method, the method SHALL increment the Unused Key Count by the number of Namespace Non-Global Range Locking objects that had a nonzero NamespaceID column value when the method was invoked.

If the RevertSP method is invoked with the KeepGlobalRangeKey parameter set to TRUE, then the TPer SHALL:

a) continue to use the media encryption key for each namespace/LUN that was associated with the Global Range Locking object; and

b) eradicate the media encryption key associated with the K_AES_* object indicated by the ActiveKey column value of each non-Global Locking object.

The Unused Key Count SHALL NOT be otherwise affected by the RevertSP Method invocation, i.e. the Unused Key Count should not be returned to its OFS values.

3.2 Tables

This section defines new tables and modifications to existing tables required for this feature set.

3.2.1 New Tables

There are no new tables defined by this feature set.

3.2.2 Modified Tables

This feature set modifies the following tables:

a) Locking.

3.2.2.1 Locking SP

This feature set modifies the Locking Table by adding the following columns (see Table 5), in addition to those defined in [2]:

<table>
<thead>
<tr>
<th>Column Number</th>
<th>Column Name</th>
<th>IsUnique</th>
<th>Column Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x14</td>
<td>NamespaceID</td>
<td></td>
<td>bytes 4</td>
</tr>
<tr>
<td>0x15</td>
<td>NamespaceGlobalRange</td>
<td></td>
<td>boolean</td>
</tr>
</tbody>
</table>

The behavior of the Global Range Locking object is modified (see 4.4.1.1.1).

3.2.2.1.1 NamespaceID (M)

Begin Informative Content

The NamespaceID column name was defined prior to SCSI LUNs being included in this feature set. The name was retained to maintain backward compatibility.

End Informative Content

The NamespaceID column value indicates which namespace/LUN is associated with this Locking object.
If the Storage Device supports the NVMe interface, the NamespaceID column value of the Global Range Locking object SHALL be set to 0x0000_0000 or 0xFFFF_FFFF.

If the Storage Device supports the SCSI interface, the NamespaceID column value of the Global Range Locking object SHALL be set to 0xFFFF_FFFF.

If the Storage Device supports the SCSI interface, the Storage Device SHALL map LUN ID values (eight bytes) to NamespaceID column values (4 bytes) by taking the value of the first four bytes (i.e., 0-3) of the LUN ID.

3.2.2.1.2 NamespaceGlobalRange (M)

Begin Informative Content

The NamespaceGlobalRange column name was defined prior to SCSI LUNs being included in this feature set. The name was kept to maintain backward compatibility.

End Informative Content

The NamespaceGlobalRange column value indicates whether the Locking object is associated with:

- a) a designated LBA range in the namespace/LUN; or
- b) all logical blocks in the namespace/LUN that are not associated with any other Locking object.

If the NamespaceGlobalRange column value is FALSE, then the Locking object is associated with the LBA range indicated by the RangeStart and RangeLength column values, in the namespace/LUN indicated by the NamespaceID column value.

If the NamespaceGlobalRange column value is TRUE, then the Locking object is associated with all logical blocks in the namespace/LUN that are not associated with any other Locking object.

The NamespaceGlobalRange column value of the Global Range Locking object SHALL be ignored.

3.2.2.2 Access Control (M)

The Configurable Locking for NVMe Namespaces and SCSI LUNs feature set modifies the AccessControl Table by adding and modifying the following rows defined in [4]:

<table>
<thead>
<tr>
<th>Table Association</th>
<th>UID</th>
<th>InvokingID</th>
<th>InvokingID Name</th>
<th>MethodID</th>
<th>CommonName</th>
<th>AddACEACL</th>
<th>RemoveACEACL</th>
<th>GetACLACL</th>
<th>DeleteMethodACL</th>
<th>AddACELog</th>
<th>RemoveACELog</th>
<th>GetACLLog</th>
<th>DeleteMethodLog</th>
<th>LogTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 08</td>
<td>00 03 80 02</td>
<td>ACE_Locking_Namespace_IdtoGlbRng</td>
<td>Set</td>
<td>ACE_ACE_ACE_Set_BooleanExpression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 08</td>
<td>00 03 80 02</td>
<td>ACE_Locking_Namespace_IdtoGlbRng</td>
<td>Get</td>
<td>ACE_ACE_ACE_Get_All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Association

<table>
<thead>
<tr>
<th>UID</th>
<th>InvokingID</th>
<th>InvokingID Name</th>
<th>MethodID</th>
<th>CommonName</th>
<th>ACL</th>
<th>Log</th>
<th>AddACEACL</th>
<th>RemoveACEACL</th>
<th>GetACLACL</th>
<th>DeleteMethodACL</th>
<th>AddACELog</th>
<th>RemoveACELog</th>
<th>GetACLLog</th>
<th>DeleteMethodLog</th>
<th>LogTo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Locking

<table>
<thead>
<tr>
<th>Locking</th>
<th>MethodID</th>
<th>CommonName</th>
<th>ACL</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACE_Anybody</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locking</th>
<th>MethodID</th>
<th>CommonName</th>
<th>ACL</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACE_Anybody</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2.3 ACE (M)

The Configurable Locking for NVMe Namespaces and SCSI LUNs feature set modifies the ACE Table by adding the following rows, in addition to those defined in [4]:

<table>
<thead>
<tr>
<th>Table Association</th>
<th>UID</th>
<th>Name</th>
<th>BooleanExpr</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 Types

This section defines new types and modifications to existing types required for this feature set.

3.3.1 New Types

There are no new types defined by this feature set.

3.3.2 Modified Types

There are no types modified by this feature set.
4 Feature Set Requirements

This section defines the Mandatory (M) and Optional (O) requirements for the Configurable Locking for NVMe Namespaces and SCSI LUNs feature set.

4.1 Requirements Overview

The Configurable Locking for NVMe Namespaces and SCSI LUNs Locking feature set consists of namespace/LUN specific capabilities that MAY be implemented in a TPer. A Host discovers the namespace/LUN specific capabilities and properties of a TPer by examining its Namespace Feature Descriptor.

4.2 Level 0 Discovery

A Storage Device implementing the Configurable Locking for NVMe Namespaces and SCSI LUNs Locking feature set SHALL:

a) return the Configurable Namespace Locking Feature Descriptor as defined in 4.2.1; and

b) support the Level 0 Discovery response requirements defined in [4].

4.2.1 Configurable Namespace Locking Feature Descriptor (Feature Code = 0x0403) (M)

The Configurable Namespace Locking Feature Descriptor feature descriptor SHALL be returned when the Storage Device supports the Configurable Namespace Locking feature set. The contents of the feature descriptor are defined in Table 6.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(MSB)</td>
<td>Feature Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(LSB)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Range_C</td>
<td>Range_P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>5–7</td>
<td></td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(MSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum Key Count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(LSB)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unused Key Count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(LSB)</td>
</tr>
<tr>
<td>12</td>
<td>(MSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum Ranges Per Namespace</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(LSB)</td>
</tr>
</tbody>
</table>

4.2.1.1 Feature Code

The Feature Code field value SHALL be set to 0x0403.

4.2.1.2 Version

The Version field indicates 0x1 or any version that supports the features described in this specification.

4.2.1.3 Length

The Length field indicates the number of bytes in the descriptor following byte 3. The value of the Length field SHALL be set to 0x10.
4.2.1.4 Range_C
The Range Capable (Range_C) field is set to one to indicate that the Storage Device supports Namespace Non-Global Range Locking objects. The Range_C field is set to zero to indicate that the Storage Device does not support Namespace Non-Global Range Locking objects.

If the Range_C field is set to one, then the Storage Device SHALL support Namespace Level 0 Discovery as defined in 4.2.2.

If the Range_C field is set to zero, then the Storage Device SHOULD support Namespace Level 0 Discovery as defined in 4.2.2.

4.2.1.5 Range_P
The Range Present (Range_P) field is set to one to indicate that the Locking table contains one or more Namespace Non-Global Range Locking objects. The Range_P field is set to zero to indicate that the Locking table does not contain any Namespace Non-Global Range Locking objects.

4.2.1.6 Maximum Key Count
The Maximum Key Count field indicates the maximum number of media encryption keys the Storage Device supports concurrently.

The value of the Maximum Key Count field SHALL be set during the Storage Device manufacturing process and be greater than or equal to the Number of Namespaces (see [5]). The value of the Maximum Key Count field MAY be less than the Number of Namespaces multiplied by the value of the Maximum Ranges Per Namespace field.

4.2.1.7 Unused Key Count
The Unused Key Count field indicates how many media encryption keys are unused and are thus available for use.

If the Locking SP is in the Multiple LO / Single NS mode, the value of the Maximum Key Count field and the value of the Unused Key Count field are related according to the following equation:

\[
\text{Unused Key Count} = \text{Maximum Key Count} - (\text{number of existing namespaces/LUNs in the TPer (i.e., one)} + \text{number of configured non-Global Range Locking objects})
\]

If the Locking SP is in the Global LO / Multiple NS mode or in the Multiple LO / Multiple NS mode, the value of the Maximum Key Count field and the value of the Unused Key Count field are related according to the following equation:

\[
\text{Unused Key Count} = \text{Maximum Key Count} - (\text{number of existing namespaces/LUNs in the TPer} + \text{number of configured Namespace Non-Global Range Locking objects})
\]

4.2.1.8 Maximum Ranges Per Namespace
The Maximum Ranges Per Namespace field indicates the maximum number of Namespace Non-Global Range Locking objects that can be configured for each namespace/LUN. If the Maximum Ranges Per Namespace field is set to a value less than \(0xFFFF_FFFF\), then that value is the maximum number of Namespace Non-Global Range Locking objects that are able to be assigned to any namespace/LUN.

If the Maximum Ranges Per Namespace field is set to \(0xFFFF_FFFF\), then a limit set by this field SHALL NOT apply.

If the Range_C field is set to one, then the Maximum Ranges Per Namespace field SHALL be set to a nonzero value.

If the Range_C field is set to zero, then the Maximum Ranges Per Namespace field SHALL be set to zero.
4.2.2 Namespace Level 0 Discovery

4.2.2.1 Overview
The Namespace Level 0 Discovery command provides a host with basic information about TPer capabilities both current and potential, for a specific Namespace.

4.2.2.2 IF-SEND Command

There is no IF-SEND command defined for Namespace Level 0 Discovery, so if IF-SEND is invoked with a Protocol ID of 0x01 and a ComID of 0x0002, then the TPer SHALL:

1. transfer all of the data from the host;
2. discard the data; and
3. return 'good' status to the host.

4.2.2.3 IF-RECV Command
Namespace Level 0 Discovery is invoked by sending an IF-RECV command with:

- Protocol ID = 0x01
- ComID = 0x0002
- Transfer Length = maximum length of the Namespace Level 0 Discovery response data that the host elects to receive.
- NamespaceID = identifier for a namespace/LUN.

The Namespace Level 0 Discovery IF-RECV command MAY be processed at any time, without regard to sessions or prior authentication.

If the Transfer Length parameter is less than the size of the Namespace Level 0 Discovery response data that is available, then the TPer SHALL return the requested amount of data, even if it is truncated.

If the Transfer Length parameter is greater than the size of the Namespace Level 0 Discovery response data, then the device SHALL pad according to the rules specified in the transport.

If the NamespaceID parameter [3] specifies:

a) an allocated namespace/LUN identifier (i.e., a value that corresponds to an existing namespace/LUN), then the TPer SHALL return Namespa

b) a value of 0xFFFF_FFFF, then the TPer SHALL return the Namespace Level 0 Discovery header and zero feature descriptors;

c) any other value, then the TPer SHALL fail the command with a status of Other Invalid Command Parameter.

The Namespace Level 0 Discovery response data (see Table 7) consists of a header field and zero or more variable length feature descriptors. A TPer SHALL NOT include feature descriptors for namespace/LUN features that it does not implement. The data is not packetized.

Table 7 - Namespace Level 0 Discovery Response Data Format

<table>
<thead>
<tr>
<th>Bit</th>
<th>Byte</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48–n</td>
<td></td>
<td>Namespace Level 0 Discovery Header (see Table 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feature Descriptor(s) (see 4.2.2.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Namespace Level 0 Discovery Header format is defined in Table 8.
Table 8 - Namespace Level 0 Discovery Header Format

<table>
<thead>
<tr>
<th>Bit Byte</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MSB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.2.3.1 Length of Parameter Data
The Length of the Parameter Data field indicates the total number of bytes that are valid in the Namespace Level 0 Discovery header and all of the feature descriptors returned, not including this field. If no feature descriptors are returned, then this field SHALL be set to 0x0000_002C.

4.2.2.3.2 Data Structure Revision
The Data Structure Revision field describes the format of the Namespace Level 0 Discovery header returned. The value SHALL be 0x0000_0001.

4.2.2.4 Namespace Level 0 Discovery Feature Descriptors
The Namespace Feature Descriptors SHALL be returned in the Namespace Level 0 Discovery response data in order of increasing namespace/LUN feature code values. Namespace features that are not implemented SHALL NOT be returned.

Table 9 contains the feature code for Namespace Level 0 Discovery.

Table 9 - Namespace Level 0 Discovery Feature Codes

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Feature Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0405</td>
<td>Namespace Geometry Reporting Feature</td>
<td>See 4.2.2.5</td>
</tr>
</tbody>
</table>
4.2.2.5 Namespace Geometry Reporting Feature (Feature Code = 0x0405)

The Namespace Geometry Reporting Feature (see Table 10) indicates the logical block and physical block geometry supported within the namespace/LUN indicated by the NamespaceID parameter of the IF-RECV command. The Namespace Geometry Reporting Feature Descriptor feature MAY be returned in the Namespace Level 0 Discovery response. See [2] for additional information.

Table 10 - Level 0 Discovery – Namespace Geometry Reporting Feature Descriptor

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.2.5.1 Namespace Geometry Feature Code

The Namespace Geometry Feature Code field SHALL be set to 0x0405.

4.2.2.5.2 Version

The Version field indicates 0x1 or any version that supports the features described in this specification.

4.2.2.5.3 Length

The Length field indicates the number of bytes in the descriptor following byte 3. The value SHALL be set to 0x1C.

4.2.2.5.4 Align

The Align field indicates whether the TPer requires ranges in the specified namespace/LUN to be aligned. If Align is TRUE then the TPer requires ranges in the specified Namespace to be aligned. If Align is FALSE, then the TPer does not require ranges to be aligned.

4.2.2.5.5 LogicalBlockSize

The LogicalBlockSize field indicates the number of bytes in a logical block for the specified Namespace.

4.2.2.5.6 AlignmentGranularity

The AlignmentGranularity field indicates the number of logical blocks in a group, for alignment purposes within the specified Namespace. (For details about access granularity see [4].)

4.2.2.5.7 LowestAlignedLBA

The LowestAlignedLBA field indicates the lowest logical block address that is located at the beginning of an alignment granularity group for the specified Namespace. (For details about access granularity see [4].)
4.3 Admin SP

This feature set modifies the behavior of the Revert method (see 3.1.2.2).

4.4 Locking SP

A Storage Device implementing this feature set SHALL support the additions to the Locking SP specified in this section, in addition to the Locking SP requirements defined in [4].

This feature set modifies the behavior of the RevertSP method (see 3.1.2.3).

4.4.1 Tables

4.4.1.1 Locking table (M)

4.4.1.1.1 Global Range (M)

The Global Range Locking object SHALL apply to all namespace/LUNs that are not associated with any other Locking object.

If the Storage Device supports the NVMe interface, the NamespaceID column value of the Global Range Locking object SHALL be set to 0x0000_0000 or 0xFFFF_FFFF.

If the Storage Device supports the SCSI interface, the NamespaceID column value of the Global Range Locking object SHALL be set to 0xFFFF_FFFF.

The NamespaceGlobalRange column value of the Global Range Locking object SHALL be set to TRUE.

4.4.1.2 Preconfiguration

In addition to the requirements in [4], the MethodID table preconfiguration SHALL be modified as specified in Table 11:

<table>
<thead>
<tr>
<th>UID</th>
<th>Name</th>
<th>CommonName</th>
<th>TemplateID</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 00 06 00 00 08 04</td>
<td>“Assign”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 00 00 06 00 00 08 05</td>
<td>“Deassign”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to the requirements in [4], the AccessControl Table SHALL be preconfigured as specified in Table 12:

<table>
<thead>
<tr>
<th>Table Association</th>
<th>UID</th>
<th>InvokingID</th>
<th>InvokingID Name</th>
<th>MethodID</th>
<th>CommonName</th>
<th>ACL</th>
<th>AddACEACL</th>
<th>RemoveACEACL</th>
<th>GetACLACL</th>
<th>DeleteMethodACL</th>
<th>AddACELog</th>
<th>RemoveACELog</th>
<th>GetACLLog</th>
<th>DeleteMethodLog</th>
<th>LogTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 08 02</td>
<td>00 00 00</td>
<td>LockingTableUI</td>
<td>Assign</td>
<td>ACE.Assign</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 08 00</td>
<td>00 00 00</td>
<td></td>
<td>ACE.Anybody</td>
<td></td>
</tr>
<tr>
<td>Table Association – informative only</td>
<td>UID</td>
<td>InvokingID</td>
<td>InvokingID Name – informative only</td>
<td>MethodID</td>
<td>CommonName</td>
<td>Log</td>
<td>AddACEACL</td>
<td>RemoveACEACL</td>
<td>GetACLACL</td>
<td>DeleteMethodACL</td>
<td>AddACELog</td>
<td>RemoveACELog</td>
<td>GetACLLog</td>
<td>DeleteMethodLog</td>
<td>LogTo</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>------------</td>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>LockingTableUI</td>
<td>00 00 08 02 00 00 00 00</td>
<td>Deassign</td>
<td>ACE_Deassign</td>
<td>ACE</td>
<td>AddACEACL</td>
<td>RemoveACEACL</td>
<td>GetACLACL</td>
<td>DeleteMethodACL</td>
<td>AddACELog</td>
<td>RemoveACELog</td>
<td>GetACLLog</td>
<td>DeleteMethodLog</td>
<td>LogTo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE_Assign</td>
<td>00 00 00 08 00 03 F9 01</td>
<td>Get</td>
<td>ACE_ACE_Get_ACL</td>
<td>ACE_Anybody</td>
<td></td>
</tr>
<tr>
<td>ACE_Assign</td>
<td>00 00 00 08 00 03 F9 01</td>
<td>Set</td>
<td>ACE_ACE_Set_BooleanExpression</td>
<td>ACE_Anybody</td>
<td></td>
</tr>
<tr>
<td>ACE_Deassign</td>
<td>00 00 00 08 00 03 F9 02</td>
<td>Get</td>
<td>ACE_ACE_Get_ACL</td>
<td>ACE_Anybody</td>
<td></td>
</tr>
</tbody>
</table>
In addition to the requirements in [4], the ACE Table SHALL be preconfigured as specified in Table 13:

Table 13 - Locking SP – ACE Table Preconfiguration

<table>
<thead>
<tr>
<th>Table Association - informative only</th>
<th>UID</th>
<th>Name</th>
<th>CommonName</th>
<th>BooleanExpr</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td></td>
<td>“ACE_Assign”</td>
<td>Admins</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 08</td>
<td>00 03 F9 01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 08</td>
<td>00 03 F9 02</td>
<td>“ACE_Deassign”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 08</td>
<td>00 03 F9 01</td>
<td>Admins</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00 00 00 08</td>
<td>00 03 F9 02</td>
<td>“ACE_Deassign”</td>
<td>Admins</td>
<td>All</td>
</tr>
</tbody>
</table>

In addition to the requirements in [4], the added columns in the Locking Table SHALL be preconfigured as specified in Table 14.

LT1 = indirectly writeable using the Assign method and the Deassign method.
Table 14 - Locking SP – Locking Table Preconfiguration

<table>
<thead>
<tr>
<th>UID</th>
<th>Name</th>
<th>NamespaceID</th>
<th>NamespaceGlobalRange</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 00 08 02</td>
<td>"Locking_GlobalRange"</td>
<td>0x0000_0000</td>
<td>T</td>
</tr>
<tr>
<td>00 00 08 02</td>
<td>"Locking_Range1"</td>
<td>0x0000_0000</td>
<td>*LT1</td>
</tr>
<tr>
<td>00 00 08 02</td>
<td>"Locking_RangeNNNN"</td>
<td>0x0000_0000</td>
<td>*LT1</td>
</tr>
</tbody>
</table>

4.5 Additional SPs

This feature set requires no additional SPs.

4.6 Single User Mode Feature Set Interactions

4.6.1 Overview

The Single User Mode Feature Set (see [6]) MAY be supported on a TPer that supports the Configurable Locking for NVMe Namespaces and SCSI LUNs Locking feature set.

This section describes the interactions when the Configurable NS Locking FS and the Single User Mode FS are both supported and present (enabled or disabled).

User authorities that are Single User Mode Locking object owners SHALL NOT be permitted to be added to ACE_Assign and ACE_Deassign.

4.6.2 Modified Methods

This section defines modifications to methods that are required to support the Single User Mode FS in addition to the Configurable Locking for NVMe Namespaces and SCSI LUNs Locking feature set.

4.6.2.1 Assign

Begin Informative Content

The following rule prevents assignment of a Namespace Global Range Locking object if the Global Locking object is under exclusive control of a user authority.

End Informative Content

if:

- a) the method would otherwise succeed;
- b) the NamespaceID parameter specifies a value that is not equal to the NamespaceID column value of any Locking object;
- c) the RangeStartLengthPolicy column value of the LockingInfo table is 0; and
- d) the Global Range Locking object is included in the single_user_ranges list in the SingleUserModeRanges column of the LockingInfo Table,

then the Assign method SHALL fail with a status of NOT_AUTHORIZED.

Begin Informative Content

The following rule prevents assignment of a Namespace Non-Global Range Locking object if the Namespace Global Locking object is under exclusive control of a user authority.

End Informative Content
If:
 a) the method would otherwise succeed;
 b) the RangeStartLengthPolicy column value of the LockingInfo table is 0; and
 c) the NamespaceID parameter specifies a value that is equal to the NamespaceID column value in a Namespace Global Range Locking object that is included in the single_user_ranges list in the SingleUserModeRanges column of the LockingInfo Table,
then the Assign method SHALL fail with a status of NOT_AUTHORIZED.

4.6.2.2 Deassign

Begin Informative Content
The following rule prevents deassignment of a Locking object if that Locking object is under exclusive control of a user authority.
End Informative Content

If:
 a) the method would otherwise succeed;
 b) the RangeStartLengthPolicy column value of the LockingInfo table is 0; and
 c) the Locking object indicated by the UID parameter is included in the single_user_ranges list in the SingleUserModeRanges column of the LockingInfo Table,
then the Deassign method SHALL fail with a status of NOT_AUTHORIZED.

Begin Informative Content
The following rule prevents deassignment of a Namespace Non-Global Range Locking object if the corresponding Namespace Global Range Locking object is under exclusive control of a user authority.
End Informative Content

If:
 a) the method would otherwise succeed;
 b) the RangeStartLengthPolicy column value of the LockingInfo table is 0;
 c) the Locking object indicated by the UID parameter is a Namespace Non-Global Range Locking object; and
 d) the NamespaceID column value of this Namespace Non-Global Range Locking object is equal to the NamespaceID column value in a Namespace Global Range Locking object that is included in the single_user_ranges list in the SingleUserModeRanges column of the LockingInfo Table,
then the Deassign method SHALL fail with a status of NOT_AUTHORIZED.

Begin Informative Content
The following rule prevents deassignment of a Namespace Global Range Locking object if the Global Range Locking object is under exclusive control of a user authority.
End Informative Content

If:
a) the method would otherwise succeed;
b) the RangeStartLengthPolicy column value of the LockingInfo table is 0,
c) the Global Range Locking object is included in the single_user_ranges list in the SingleUserModeRanges column of the LockingInfo Table; and
d) the Locking object indicated by the UID parameter is a Namespace Global Range Locking object,
then the Deassign method SHALL fail with a status of NOT_AUTHORIZE.

4.6.2.3 Reactivate Method

Upon successful invocation of the Reactivate method:

a) The NamespaceID and NamespaceGlobalRange column values SHALL remain at their current values.
b) User authorities that are owners of Single User Mode Locking objects SHALL be removed from the BooleanExpr column values of the ACE_Assign and the ACE_Deassign ACEs.

4.6.2.4 Set Method

Begin Informative Content

The following rule prevents the addition of Single User Mode Locking object owners to the ACE_Assign or ACE_Deassign ACEs.

End Informative Content

If:

a) the Set method is invoked on the ACE_Assign or the ACE_Deassign ACEs;
b) the BooleanExpr column is included in the Set method parameters; and
c) the value of the BooleanExpr column parameter includes one or more User authorities that are Single User Mode Locking object owners,
then the TPer SHALL fail the Set method invocation with status INVALID_PARAMETER.