

TCG

TCG TSS 2.0 TPM Command

Transmission Interface (TCTI) API

Specification

Family "2.0"

Version 1.0 Revision 18

24 January 2020

Contact: admin@trustedcomputinggroup.org

PUBLISHED
Copyright © TCG 2013-2020

mailto:admin@trustedcomputinggroup.org

TCG TSS System Level API and TCTI Specification

Page 2 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

Disclaimers, Notices, and License Terms

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this

specification (the “Source Code”) a worldwide, irrevocable, nonexclusive, royalty free,

copyright license to reproduce, create derivative works, distribute, display and perform

the Source Code and derivative works thereof, and to grant others the rights granted

herein.

• The TCG grants to the user of the other parts of the specification (other than the Source

Code) the rights to reproduce, distribute, display, and perform the specification solely for

the purpose of developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of

conditions and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of

conditions and the following disclaimers in the documentation and/or other materials

provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM

OF LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

WITH RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD

PARTIES) THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR

OTHERWISE. Contact TCG Administration (admin@trustedcomputinggroup.org) for

information on specification licensing rights available through TCG membership

agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ACCURACY,

COMPLETENESS, OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY

RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including

liability for infringement of any proprietary rights, relating to use of information in this

specification and to the implementation of this specification, and TCG disclaims all liability

for cost of procurement of substitute goods or services, lost profits, loss of use, loss of

data or any incidental, consequential, direct, indirect, or special damages, whether under

contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this

specification or any information herein.

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 3

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

Any marks and brands contained herein are the property of their respective owners.

Corrections and Comments

Please send comments and corrections to admin@trustedcomputinggroup.org.

Normative-Informative Language

The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”

“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document’s normative statements are to be

interpreted as described in RFC-2119, Key words for use in RFCs to Indicate Requirement Levels.

Revision History

Revision Date Description

Version 0.9 rev 00 05/30/17
• First version of this document – created TCTI information

removed from the SAPI specification.

Version 1.0 rev 01 06/02/17 • Resolved review comments.

Version 1.0 rev 06 03/12/2018
• Add description of standard initialization mechanisms,

data structures and types.

Version 1.0 rev 07 03/13/2018 • Resolve feedback from WG discussion.

Version 1.0 rev 08 03/15/2018
• Reorder new initialization data types and structures in

section 4.

Version 1.0 rev 09 03-15-2018
• Replace “curly quotes” inserted by Microsoft Word with

quote characters usable in C code.

Version 1.0 rev 10 03-16-2018

• Fix formatting issue in section 4.

• Update date, revision number and admin contact email
address on cover page

Version 1.0 rev 11 3-26-2018 • Address TC review comments.

Version 1.0 rev 12 04-06-2018
• Correct inconsistency in definition of

TSS2_TCTI_INIT_FCN type between sections 3.4.1 and
4.2

Version 1.0 rev 18 16-12-2019 • Resolved review comments.

mailto:admin@trustedcomputinggroup.org

TCG TSS System Level API and TCTI Specification

Page 4 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

Acknowledgements

TCG and the TSS Work Group would like to thank the following people for their work on this specification.

• Will Arthur Raytheon

• Brenda Baggaley Security Innovation (OnBoard Security)

• Dave Challener Johns Hopkins University

• Mike Cox Security Innovation (OnBoard Security)

• Andreas Fuchs Fraunhofer SIT

• Ken Goldman IBM

• Jürgen Repp Fraunhofer SIT

• Philip Tricca Intel

• Lee Wilson Security Innovation (OnBoard Security)

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 5

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

Table of Contents
1 Definitions and References ... 7

1.1 Acronyms .. 7
1.2 TCG Software Stack 2.0 (TSS 2.0) Specification Library Structure ... 8
1.3 References .. 9

2 TCTI Introduction ... 10

2.1 TCTI Target Systems .. 10

3 TPM Command Transmission Interface .. 12

3.1 Introduction ... 12

3.1.1 Purpose & Goal .. 12

3.2 TCTI Context data structure ... 12

3.2.1 Magic & Version Fields ... 13
3.2.2 Function Invocation .. 13
3.2.3 Version Area ... 13
3.2.4 Non-opaque Area ... 14
3.2.5 Function Callbacks ... 14
3.2.6 Compatibility ... 18
3.2.7 Opaque Area .. 19

3.3 TCTI Info data structure .. 19

3.3.1 version .. 19
3.3.2 name ... 19
3.3.3 description .. 20
3.3.4 config_help ... 20
3.3.5 init ... 20

3.4 TCTI Initialization .. 20

3.4.1 Static or Dynamic Linking ... 20
3.4.2 Dynamic Loading .. 21

3.5 TCTI Loader Library .. 21

3.5.1 Tss2_TctiLdr_Initialize .. 21
3.5.2 Tss2_TctiLdr_Initialize_Ex ... 22
3.5.3 Tss2_TctiLdr_Finalize .. 23
3.5.4 Tss2_TctiLdr_GetInfo ... 23
3.5.5 Tss2_TctiLdr_FreeInfo ... 23

4 TCTI Header File ... 24

4.1 TCTI Prelude... 24
4.2 TCTI Data Structures .. 24
4.3 TCTI Macros ... 25
4.4 Definitions Which Should Not Be Used by Callers ... 27
4.5 tss2_tcti.h Postlude ... 29

5 TCTI LDR Header File ... 30

TCG TSS System Level API and TCTI Specification

Page 6 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

5.1 TCTI LDR prelude ... 30
5.2 Function Definitions .. 30
5.3 TCTI LDR postlude ... 30

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 7

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

1 Definitions and References

1.1 Acronyms

Term or Acronym Definition

Application Binary
Interface (ABI)

The ABI is the byte-wise layout of data types and function parameters in RAM as

well as symbol definitions used to communicate between applications, shared

objects and the kernel.

Application
Programming
Interface (API)

The API is the software interface defined by the functions and structures in a

high-level programming language used to communicate between layers in the

software stack.

Caller
The caller is the software that invokes a function call or that sends a TCTI

command to the TAB/RM.

Connection
A “connection” to the TAB/RM corresponds to a TCTI context southbound from

the SAPI to the TAB/RM.

ESAPI TSS 2.0 Enhanced System API. This layer is intended to sit on top of the
System API providing enhanced context management and cryptography.

FAPI TSS 2.0 Feature API. This layer sits above the ESAPI and provides a high-
level interface including a policy definition language and key store.

Implementation An implementation is the source code and binary code that embodies a
specification or parts of a specification.

Marshal To marshal data is to convert data from C structures to marshaled data.

Marshalled Data Marshaled data is the representation of data used to communicate with the
TPM. In order to optimize data communication to and from the TPM, the
smallest amount of data possible is sent to the TPM. For instance, if a structure
starts with a size field and that field is set to 0, none of the other fields in the
structure are sent to the TPM. Another example: if an input structure consists
of a union of data structures, the marshalled representation will be the size of
just the data structure selected from the union (actually the marshalled version
of that structure itself). Also, the marshalled data must be in big-endian format
since this is what the TPM expects.

NV Non-volatile means that data is not lost when the system is powered down.

PCR Platform Configuration Register (see TPM 2.0 Library Specification)

RM The “Resource Manager” is software executing on a system with a TPM that
ensures that the resources necessary to execute TPM commands are present
in the TPM.

SAPI TSS 2.0 System API. This layer is intended to sit on top of the TCTI providing
marshaling/unmarshalling for TPM commands and responses.

TAB The TPM Access Broker is software executing on a system with a TPM
managing concurrent access from multiple applications.

TCG TSS System Level API and TCTI Specification

Page 8 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

TPM Command

Transmission

Interface (TCTI)

The TCTI is an IPC abstraction layer used to send commands to and receive
responses from the TPM or the TAB/RM.

TPM Trusted Platform Module

TPM Resource
Data managed by a TPM that can be referenced by a TPM handle. For TPM 2.0,
this includes TPM objects (keys and data objects), TPM NV indices, TPM PCRs
and TPM reserved handles and hierarchies.

TSS TPM Software Stack

Unmarshal To unmarshal data is to convert data from marshalled format to C structures.

1.2 TCG Software Stack 2.0 (TSS 2.0) Specification Library
Structure

 The documents that are part of the specification of the TSS 2.0 are:

[1] TCG TSS 2.0 Overview and Common Structures Specification

[2] TCG TSS 2.0 TPM Command Transmission Interface (TCTI) API Specification

[3] TCG TSS 2.0 Marshaling/Unmarshaling (MU) API Specification

[4] TCG TSS 2.0 System API (SAPI) Specification

[5] TCG TSS 2.0 Enhanced System API (ESAPI) Specification

[6] TCG TSS 2.0 Feature API (FAPI) Specification

[7] TCG TSS 2.0 TAB and Resource Manager Specification

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 9

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

Figure 1: TSS 2.0 Specification Library

1.3 References

 Documents change over time. The following rules apply to determining the edition of a reference needed

for TSS 2.0. For dated references, only the edition cited applies. For undated references, the latest edition

of the referenced document (including any amendments) applies.

 The following referenced documents are necessary or very useful for understanding the TPM 2.0

specification.

[1] The Trusted Platform Module Library Specification, Family “2.0”
NOTE: More information, the specification, and other documents can be found at
https://trustedcomputinggroup.org/tpm-library-specification/ and
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/.

[i] Part 1: Architecture
[ii] Part 2: Structures

[iii] Part 3: Commands
[iv] Part 3: Commands – Code
[v] Part 4: Supporting Routines

[vi] Part 4: Supporting Routines – Code

https://trustedcomputinggroup.org/tpm-library-specification/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38-code.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-4-Supporting-Routines-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-4-Supporting-Routines-01.38-code.pdf

TCG TSS System Level API and TCTI Specification

Page 10 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

2 TCTI Introduction

The TPM command transmission interface (TCTI) handles all the communication to and from the lower

layers of the TSS software stack. For instance, different interfaces are required for local hardware TPMs,

firmware TPMs, virtual TPMs, remote TPMs, and software TPM simulators.

NOTE: There are two different interfaces to TPMs: the legacy TIS interface and the command/response

buffer (CRB).

Local TPM
TPM

Simulator
Virtual TPM

Remote TPM

TPM Access Broker

 Resource Mgr

Local TPM driver

TPM Access
Broker

Resource Mgr

Local TPM driver

TPM Access Broker

Resource Mgr

Sim TPM driver

TPM Access Broker

 Resource Mgr

Virt TPM driver

 Network

System API

Feature/EnvironmentAPI

Application

TCTI

TCTI

Local TPM
TPM

Simulator
Virtual TPM

Remote TPM

TPM Access Broker

 Resource Mgr

Local TPM driver

TPM Access
Broker

Resource Mgr

Local TPM driver

TPM Access Broker

Resource Mgr

Sim TPM driver

TPM Access Broker

 Resource Mgr

Virt TPM driver

 Network

System API (SAPI)

Feature API (FAPI)

Application

TCTI

TCTI

Enhanced System API (ESAPI)

Figure 2: Using TCTI to Connect to Various Target TPMs

2.1 TCTI Target Systems

 The TCTI API is designed to be used in a large range of computing devices from highly embedded

systems to server OSes.

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 11

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

 The TCTI is a low-level interface intended for expert applications. The SAPI uses the TCTI to

communicate with the TPM. Use of the TCTI requires an understanding of common device driver interfaces.

TCTI provides a generic interface to a wide variety of transport methods that can be used to communicate

to the TPM.

TCG TSS System Level API and TCTI Specification

Page 12 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

3 TPM Command Transmission Interface

The TPM Command Transmission Interface (TCTI) is used to send marshalled commands to and receive

marshalled responses from the TPM (or the underlying software stack that ultimately interacts with a TPM).

It is designed to handle a wide variety of transmission methods.

3.1 Introduction

3.1.1 Purpose & Goal

The TPM Command Transmission Interface is designed to make it possible to switch modules at run time.

An application or the Feature-API may be configurable with regards to the “TCTI-drivers” they offer to a

user. The TCTI is designed specifically for these use cases and provides conventions and helpers to be

runtime-loadable friendly while still allowing compile-time linking without namespace clashes.

All TCTI data structures are included in the header file, tss2_tcti.h. The contents of tss2_tcti.h are specified

in the “TSS 2.0 Header File Specification”.

3.2 TCTI Context data structure

The TCTI Context is an opaque pointer when passed in to the SAPI implementation. It is created by the

caller, typically using a TCTI implementation. However, the SAPI implementation must extract several fields

(typically function callbacks) in order to communicate with the next lower layer.

The SAPI implementation must not write any fields of the TCTI context.

The TCTI context consists of three parts.

• A version area

• A non-opaque area

• An opaque area

The structure definitions look generally like this. They are explained below.

typedef struct TSS2_TCTI_OPAQUE_CONTEXT_BLOB TSS2_TCTI_CONTEXT;

/* current version #1 known to this implementation */

typedef struct {

 uint64_t magic;

 uint32_t version;

 TSS2_RC (*transmit)(TSS2_TCTI_CONTEXT *tctiContext, size_t size,

const uint8_t *command);

 TSS2_RC (*receive) (TSS2_TCTI_CONTEXT *tctiContext, size_t *size,

uint8_t *response, int32_t timeout);

 void (*finalize) (TSS2_TCTI_CONTEXT *tctiContext);

 TSS2_RC (*cancel) (TSS2_TCTI_CONTEXT *tctiContext);

 TSS2_RC (*getPollHandles) (TSS2_TCTI_CONTEXT *tctiContext,

TSS2_TCTI_POLL_HANDLE *handles, size_t *num_handles);

 TSS2_RC (*setLocality) (TSS2_TCTI_CONTEXT *tctiContext, uint8_t locality);

} TSS2_TCTI_CONTEXT_COMMON_V1;

typedef struct {

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 13

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

 TSS2_TCTI_CONTEXT_COMMON_V1 v1;

 TSS2_TCTI_MAKE_STICKY_FCN makeSticky;

} TSS2_TCTI_CONTEXT_COMMON_V2;

typedef TSS2_TCTI_CONTEXT_COMMON_V2 TSS2_TCTI_CONTEXT_COMMON_CURRENT;

3.2.1 Magic & Version Fields

The magic value is some unique number, perhaps simply a random number. The SAPI implementation will

likely not read it. The value is used to perform a sanity check to ensure that a TCTI function is passed

structures that it is capable of handling. Typically a TCTI module will only handle structures that it created.

The version value denotes the version number of the specification that defines a given structure. This value

must monotonically increase from older to newer versions. The first version was 0x1. The current version

is 0x2.

3.2.2 Function Invocation

In order to call any of these functions, an application first needs to check that a given TCTI Context has the

correct version number, which is a version greater or equal to the version at the time that the function was

added to the common function table. The application then needs to check whether the function is also

implemented by the respective driver, that is, whether the function pointer is non-NULL. Only then can the

function be safely called. This process can be encapsulated inside a helper macro such as the following

example:

#define Tss2_Tcti_Transmit(tctiContext, size, command) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_REFERENCE: \

 (((TSS2_TCTI_CONTEXT_VERSION *)tctiContext)->version < 1) ? \

 TSS2_TCTI_RC_WRONG_ABI_VERSION : \

 (((TSS2_TCTI_CONTEXT_V1 *)tctiContext)->transmit == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

 ((TSS2_TCTI_CONTEXT_V1 *)tctiContext)->transmit(tctiContext, size, command))

A similar pattern can be implemented for all TCTI function pointers.

3.2.3 Version Area

The SAPI implementation extracts the version area by casting the opaque context to a

TSS2_TCTI_CONTEXT structure. Each context structure must begin with the same members as the

TSS2_TCTI_CONTEXT structure.

The SAPI implementation supports one or more versions of TCTI.

In the simplest case, the SAPI implementation supports one version. This would not necessarily be the

latest version, but rather the numerically lowest version that contains all fields that the implementation

requires. Using the lowest possible version permits the SAPI implementation to use the largest possible

set of TCTI implementations.

In a more complex case, the SAPI implementation supports multiple TCTI versions. This might be useful

if a version is deprecated, where a callback has been superseded by an improved function.

TCG TSS System Level API and TCTI Specification

Page 14 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

3.2.4 Non-opaque Area

The contents of a non-opaque area are defined by the version. The TCG defines versions and their

contents. Each newer version must contain all fields of the previous version in the same order. Callbacks

must have identical parameters and return values. This permits the SAPI implementation to safely cast a

TCTI context to any version not greater than the value in the version field.

Once the context is cast, structure members can be dereferenced and used. A typical structure member is

a function callback provided by the TCTI implementation.

3.2.5 Function Callbacks

The SAPI implementation extracts these callbacks from the non-opaque area of the TCTI context.

3.2.5.1 transmit

TSS2_RC (*transmit)(

TSS2_TCTI_CONTEXT *tctiContext,

size_t size,

const uint8_t *command

);

This function transmits the command packet of size bytes to next layer below the caller.

Response Codes:

• TSS2_TCTI_RC_NOT_IMPLEMENTED: if the function isn’t implemented

NOTE: this error code would only be used if future versions of this spec deprecated or removed the transmit call.

• TSS2_TCTI_RC_IO_ERROR: underlying IO failed

• TSS2_TCTI_RC_BAD_CONTEXT: bad version and/or magic fields in the TCTI-context

• TSS2_TCTI_RC_BAD_SEQUENCE: if transmit was called more than once without a call to receive

in between

• TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext or command is NULL

• TSS2_TCTI_RC_BAD_VALUE: if a bad value for any parameter is detected

NOTE: Some possible examples of bad values are: size out of range, size not at least 10 bytes, or size doesn’t match commandSize.

3.2.5.2 receive

TSS2_RC (*receive)(

TSS2_TCTI_CONTEXT *tctiContext,

size_t *size,

uint8_t *response,

int32_t timeout

);

This function receives a response packet from the layer below the caller.

If the parameter response is NULL and the size of the TPM response is known, the required size is written

to the size parameter and TSS2_RC_SUCCESS is returned.

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 15

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

On input, size is the maximum allocated byte size of response. On a successful return, size is the actual

used bytes of response. If size is insufficient for the TPM response the required size is returned in size

with TSS2_TCTI_RC_INSUFFICIENT_BUFFER error.

NOTE: in some cases, depending on the communication interface, this will require the TCTI layer to keep track of the data read from

the interface during the unsuccessful call to receive. A subsequent call to receive using the same TCTI context and a larger response

buffer and size could be used to get the response data and clear the interface so that subsequent commands can be sent.

If timeout is TSS2_TCTI_TIMEOUT_BLOCK, the command is synchronous and blocks until a response is

received.

If timeout is TSS2_TCTI_TIMEOUT_NONE, the command returns immediately. size and response are

updated only on a successful return.

If timeout is positive, the command returns after a maximum of timeout msec. size and response are

updated only on a successful return.

receive always returns either the entire TPM response or a return code indicating that the response is not

yet completely available. A TCTI implementation that might receive partial responses can use the response

buffer to assemble the partial responses.

There is one exception to the above: receive may return a return code indicating that the response buffer

is too small to hold the TPM response. In that case, the caller must call receive again with a larger buffer.

Response Codes:

• TSS2_TCTI_RC_NOT_IMPLEMENTED: if the function isn’t implemented

NOTE: this error code would only be used if future versions of this spec deprecated or removed the receive call.

• TSS2_TCTI_RC_BAD_CONTEXT: bad version and/or magic fields in the TCTI-context

• TSS2_TCTI_RC_TRY_AGAIN: if a timeout occurred before the complete response was received.

• TSS2_TCTI_RC_INSUFFICIENT_BUFFER: if the response buffer is too small for the TPM

response. In this case, the returned size indicates the size of the buffer that is needed for the

response.

• TSS2_TCTI_RC_IO_ERROR: Underlying IO failed.

• TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext or size is NULL

• TSS2_TCTI_RC_BAD_VALUE: if timeout is negative but not -1 (TSS2_TCTI_TIMEOUT_BLOCK)

or response is NULL.

• TSS2_TCTI_RC_BAD_SEQUENCE: if receive called again after first successful receive or if

transmit not called first

3.2.5.3 finalize

void (*finalize) (

TSS2_TCTI_CONTEXT *tctiContext

);

This function performs any actions required when a TCTI connection is terminated and invalidates the TCTI

Context. The TCTI Context cannot be used for subsequent operations after this call. This function should

be called whenever a TCTI Context is not needed anymore. Afterwards the TCTI Context memory can be

freed.

TCG TSS System Level API and TCTI Specification

Page 16 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

3.2.5.4 cancel

TSS2_RC (*cancel) (

TSS2_TCTI_CONTEXT *tctiContext

);

This function causes the TCTI layer to cancel the command: in some TCTI implementations this may include

sending the TPM cancel command. This command can only be called between transmit and receive calls.

NOTE: After calling cancel, receive still needs to be called.

Response Codes:

• TSS2_TCTI_RC_NOT_IMPLEMENTED: if the function isn’t implemented

• TSS2_TCTI_RC_IO_ERROR: if connection to the TPM fails.

• TSS2_TCTI_RC_BAD_SEQUENCE: if not called between transmit and receive.

• TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext is NULL

• TSS2_TCTI_RC_BAD_CONTEXT: bad version and/or magic fields in the TCTI-context

3.2.5.5 getPollHandles

TSS2_RC (*getPollHandles) (

TSS2_TCTI_CONTEXT *tctiContext,

 TSS2_TCTI_POLL_HANDLE *handles,

 size_t *num_handles

);

NOTE: This function was added to support event-loop driven programming. If polling or select aren’t needed, this function isn’t

necessary. Understanding this function requires a detailed understanding of poll and select calls.

This function retrieves the handles that can be used for polling or select. This function returns a set of

handles that can be used to poll for incoming responses from the underlying software stack or TPM. The

type for these handles is platform specific and defined separately in the declaration of

TSS2_TCTI_POLL_HANDLE. In order to query the number of handles that a TCTI module needs to have

monitored, the application may pass NULL for handles; in this case, it returns the number of handles. In

pseudo-code this could be:

*getPollHandles (&tctiContext, NULL,&num);

TSS2_TCTI_POLL_HANDLES handles[num];

 *getPollHandles (&tctiContext, &handles[0], &num);

 poll(&handles[0], num, -1); // Platform specific syscall

Response Codes:

• TSS2_TCTI_RC_NOT_IMPLEMENTED: if the function isn’t implemented

• TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext, handles, or num_handles is NULL

• TSS2_TCTI_RC_INSUFFICIENT_BUFFER: if num_handles is too small

• TSS2_TCTI_RC_BAD_CONTEXT: bad version and/or magic fields in the TCTI-context

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 17

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

3.2.5.6 setLocality

TSS2_RC (*setLocality) (

TSS2_TCTI_CONTEXT *tctiContext,

uint8_t locality

);

This function sets the locality for the TPM.

The locality cannot be changed between transmit and receive

Response Codes:

• TSS2_TCTI_RC_NOT_IMPLEMENTED: if the function isn’t implemented

• TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext is NULL

• TSS2_TCTI_RC_IO_ERROR: if command fails due to an IO error

• TSS2_TCTI_RC_BAD_SEQUENCE: if locality is changed between transmit and receive calls

• TSS2_TCTI_BAD_VALUE: if TCTI can’t support the locality, e.g. the locality doesn’t even exist.

• TSS2_TCTI_RC_NOT_PERMITTED: if the change in locality is not permitted, e.g. the locality is

supported by the TPM, but the lower layer doesn’t allow changing the locality.

• TSS2_TCTI_NOT_SUPPORTED: if the lower layer doesn’t support changing localities at all.

• TSS2_TCTI_RC_BAD_CONTEXT: bad version and/or magic fields in the TCTI-context

3.2.5.7 makeSticky

TSS2_RC (*makeSticky) (

TSS2_TCTI_CONTEXT *tctiContext,

TPM_HANDLE *handle,

uint8_t sticky

);

If sticky is 1, this function allows an application to request the underlying resource manager to make sure

that a certain session, sequence or object is loaded in TPM memory. Making a handle sticky means that it

will stay loaded in TPM memory, meaning the RM won’t unload it. This allows another process (typically a

kernel) to use the object without concern about whether it's loaded in TPM memory.

If sticky is 0, and makeSticky is called with the physical handle returned when it was made sticky, the object

is made unsticky. Making a handle unsticky means that the RM is free to manage it as it desires.

If a session, sequence, or object is made sticky, it can only be made unsticky by the same tctiContext.

NOTE: If the finalize call to TCTI context is called, the associated connection breaks, or the application process exits, all sticky

sessions, sequences, and objects will be flushed from the TPM.

This function is optional for TCTI and will only be implemented, i.e. non-NULL and not returning

TSS2_TCTI_RC_NOT_IMPLEMENTED, if the TCTI layer is communicating with a resource manager.

Due to the nature of this function - being able to do a denial of service attack on the TPM - it should be

restricted for usage by privileged applications and/or users only. Details on how to identify those or what

privileged means are platform and stack specific and thereby out of scope for this specification.

The handle parameter is an input and output parameter. If sticky is 1, on input, handle is a virtual handle

which is going to be made sticky; on output, handle is the real handle. If sticky is 0, on input, handle is a

real handle which is going to be made unsticky; on output, handle is the virtual handle.

TCG TSS System Level API and TCTI Specification

Page 18 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

NOTE: In order to use “trusted key ring” from the Linux kernel, an application must be able to pass a real handle for a loaded object

to the kernel. It can’t pass a virtual handle because the kernel is bypassing the RM which means that no virtual to physical handle

translation is possible.

When a session, sequence, or object is sticky, its previous virtual handle can’t be used.

NOTE: for sessions this is required to avoid application/kernel conflicts because session state changes whenever it’s used. For

sequences and objects, this isn’t strictly required, but it was specified this way for the sake of consistency.

Response Codes:

• TSS2_TCTI_RC_NOT_IMPLEMENTED: if the function isn’t implemented

• TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext or handle is NULL

• TSS2_TCTI_RC_IO_ERROR: if command fails due to an IO error

• TSS2_TCTI_RC_BAD_SEQUENCE: if function is called between transmit and receive calls

• TSS2_TCTI_RC_BAD_CONTEXT: bad version and/or magic fields in the TCTI-context

• TSS2_TCTI_RC_BAD_HANDLE: if the handle does not exist or is not owned by the TCTI context.

• TSS2_TCTI_RC_BAD_VALUE: if sticky is not 0 or 1.

3.2.6 Compatibility

This design anticipates that the non-opaque area might change over time, with new functions added and

existing functions deprecated or even deleted (set to NULL). The section lists a few such use cases.

The SAPI implementation might receive an old but still completely useful context. Assuming it has a

structure definition for this version (which is why it was recommended that the implementation use the

oldest suitable structure), it casts to that version and continues.

3.2.6.1 Old and Not Useful Version

The SAPI implementation can receive an old TCTI context version that it cannot use because it requires a

callback not available in the old version. The implementation detects the down level version (by detecting

that it’s less than required version) and returns an error.

The TCTI implementation must be updated to support the new requirements.

3.2.6.2 New but Useful Version

If the SAPI implementation receives a newer version than the one compiled in, it can cast the TCTI context

to its down level version and use existing structure members. The cast is safe because new members are

added at the end of the structure and existing members are never removed.

The implementation cannot access new members, but it was not coded to use them anyway.

3.2.6.3 New and Not Useful Version

The implementation might receive a newer context version where structure members that it requires have

been superseded by newer members. For example, the TCTI implementation might provide a new callback

with a different parameter list.

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 19

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

The TCTI implementation flags this situation by setting an older, now unimplemented function callback to

NULL. After the cast, the SAPI implementation detects the NULL. It cannot continue because a function it

requires is no longer available.

The SAPI implementation must be updated to use the new callback.

3.2.6.4 New Version with Deprecated Functions

If the SAPI implementation receives a context version with both deprecated and recommended function

callbacks, it can handle it one of two ways.

If it was compiled to only handle a down level context, it will cast and use only the deprecated callbacks.

If it was compiled to handle several context versions, it can cast to a more recent version and use the

recommended callbacks.

3.2.7 Opaque Area

The SAPI implementation cannot access the opaque area of the TCTI context. The TCTI implementation

can add any implementation specific fields as needed to the opaque area.

The TCTI is expected to cast the context to its implementation specific context type based on the version

number. Since the TCTI both creates and consumes the context, no incompatibility is expected.

The TCTI implementation may also validate that the magic value is as expected. This sanity check ensures

that the pointer passed in is indeed a TCTI context known to the TCTI implementation.

3.3 TCTI Info data structure

typedef struct {

 uint32_t version;

 const char *name;

 const char *description;

 const char *config_help;

 TSS2_TCTI_INIT_FCN init;

} TSS2_TCTI_INFO;

Each field in the TCTI info structure provides information to the caller about the TCTI module and its

initialization mechanism. The intended purpose of each field is described in the following subsections:

3.3.1 version

The ‘version’ field is used to hold the version value described in section Error! Reference source not f

ound..

3.3.2 name

The ‘name’ field holds the unique name of the TCTI module and MUST NOT contain the ‘:’ character. The

TCTI implementation should assume that this string will be displayed to users.

TCG TSS System Level API and TCTI Specification

Page 20 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

3.3.3 description

The ‘description’ field is a human readable string describing the TCTI module. The TCTI implementation

should assume that this string will be displayed to users as a way to communicate information about the

TCTI.

3.3.4 config_help

The ‘config_help’ field is a human readable string describing the format of a configuration string that may

be passed into the TCTI initialization function. The TCTI implementation should assume that this string will

be displayed in informative messages to users.

3.3.5 init

The ‘init’ field holds a reference to an initialization function of type TSS2_TCTI_INIT_FCN. This reference

is used to initialize a TCTI context structure.

3.4 TCTI Initialization

TCTI modules must be initialized by the caller. The initialization process consists of two steps: instantiating

a TCTI context structure and initializing this structure such that it is usable by the caller. This specification

defines two methods for initializing TCTI modules. The first is through the invocation of an initialization

function with a standard prototype and TCTI specific name. This method is intended for software initializing

a statically or dynamically linked TCTI module. The second method relies on platform specific dynamic

loading mechanisms like dlopen on *nix OSs or LoadLibrary on Microsoft Windows.

3.4.1 Static or Dynamic Linking

Initialization of a TCTI context structure through static or dynamic linking is accomplished through a library

specific initialization function. The type of the function is defined in tss2_tcti.h as:

typedef TSS2_RC (*TSS2_TCTI_INIT_FCN) (TSS2_TCTI_CONTEXT *tctiContext,

 size_t *size,

 const char *conf);

To prevent conflicts between symbols in applications that link against multiple TCTI libraries the symbol

name SHOULD follow this naming convention:

Tss2_Tcti_<name>_Init

Libraries exporting an initialization function for static or dynamic linking MUST provide an implementation

of the type TSS2_TCTI_INIT_FCN. The name of the symbol exporting this function MUST replace <name>

with the name of their TCTI module. This string SHOULD be the same as the ‘name’ field in the

TSS2_TCTI_INFO structure.

Initialization functions of this type MUST initialize the provided TCTI context ‘tctiContext’ of size ‘size’

according to the configuration string in ‘conf‘. The format of the configuration string is implementation

specific. When provided with a NULL context this function MUST return the minimum size of the caller
supplied TCTI context structure in the ‘size’ parameter. When provided with a NULL configuration string

the TCTI module MUST initialize the provided ‘context’ with default values. These defaults are

implementation specific. In the event that the caller provides a non-NULL context and a value in the size
parameter that is inaccurate (a ‘size’ field larger than the buffer referenced in the ‘context’ field) then the

behavior of the initialization function is undefined.

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 21

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

Response Codes:

• TSS2_TCTI_RC_BAD_VALUE is returned if any parameters contain unexpected values.

• TSS2_TCTI_RC_BAD_REFERENCE is returned if any parameters are NULL when they should

not be.

• TSS2_TCTI_RC_BAD_CONTEXT is returned if the size of the TCTI context provided is insufficient.

3.4.2 Dynamic Loading

The static or dynamic linking initialization method requires that the application program know which TCTI

module it is being linked against when the application is compiled. To support the dynamic loading of TCTI

modules and to allow application code to dynamically load multiple TCTI’s the library provides two

mechanisms. The first mechanism described below provides a well-known symbol to expose information

about the TCTI module, and the second is provided by TCTI Loader Library described in 3.5.

The interface for the first mechanism is defined in tss2_tcti.h as:

typedef const TSS2_TCTI_INFO* (*TSS2_TCTI_INFO_FCN) (void);

TCTI libraries implementing the dynamic loading scheme MUST implement a function of type
TSS2_TCTI_INFO_FCN and it MUST be exposed through the symbol Tss2_Tcti_Info. For convenience this

string is provided in tss2_tcti.h:

#define TSS2_TCTI_INFO_SYMBOL "Tss2_Tcti_Info"

The TSS2_TCTI_INFO_SYMBOL constant is defined for use by application developers for discovering this

function at runtime. Application writers are advised against linking to this symbol.
TSS2_TCTI_INFO_SYMBOL symbol should only be used for dynamic loading (‘dlopen’ or equivalent).

Functions of type TSS2_TCTI_INFO_FCN take no parameters and MUST return a constant reference to a

populated TSS2_TCTI_INFO structure. The pointer returned is a const reference and should never be

modified or freed by the caller. Once the caller has obtained the TSS2_TCTI_INFO structure they may use
the function pointer in the ‘init’ field to initialize a TCTI context structure.

3.5 TCTI Loader Library

While the goal of the TCTI is to abstract away the details of the transport mechanism used to move

command and response buffers between the application and the TPM, the application must still know which

TCTI to use in a given context. Selection of a TCTI library in many cases will depend on the platform

executing the application. Expecting all applications to implement a TCTI loading protocol as well as

encoding the context required to select a TCTI appropriate for the platform / circumstance is not practical.

The TCTI loader library is described here to assist applications in the management of the TCTI lifecycle.

3.5.1 Tss2_TctiLdr_Initialize

TSS2_RC Tss2_TctiLdr_Initialize (

 const char *nameConf,

 TSS2_TCTI_CONTEXT **tctiContext

);

The Tss2_TctiLdr_Initialize function allocates and initializes a TCTI context structure. The TCTI library

used and its configuration are determined by the ‘nameConf’ string parameter. This string is the

concatenation of two substrings:

TCG TSS System Level API and TCTI Specification

Page 22 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

- ‘name’: a string identifying the TCTI library used to initialize the TCTI context

- ‘conf’: a TCTI specific string encoding configuration values for the TCTI. This string is constrained

by the same requirements as the ‘conf’ parameter of the ‘TSS2_TCTI_INIT_FCN’ function as

described in 3.4.1 and MUST be passed to the underlying TCTI unmodified.

When combined in the ‘nameConf’ parameter these two substrings MUST be separated by the ‘:’ character

(e.g. “name:conf”).

If the caller provides a NULL ‘nameConf’ then Tss2_TctiLdr_Initialize MUST select a default TCTI for

the caller and pass a NULL configuration string to this TCTI’s initialization function. Individual components
of the ‘nameConf’ string may be omitted by the caller in which case the Tss2_TctiLdr_Initialize MUST

handle the following situations:

- If no ‘:’ separator is present in ‘nameConf’ then Tss2_TctiLdr_Initialize MUST treat the string as

the TCTI name. When instantiating this TCTI Tss2_TctiLdr_Initialize MUST provide a NULL

string as the conf parameter.

- If the ‘:’ separator is the first character in the nameConf string then Tss2_TctiLdr_Initialize MUST

select a default TCTI module for the caller. The initialization function for this TCTI module MUST

be passed the substring from nameConf following the separator as the conf parameter.

- If the ‘:’ separator is the last character in the nameConf string then Tss2_TctiLdr_Initialize MUST

pass the requested TCTI initialization function a NULL string as the conf parameter.

The memory required for the TCTI context is allocated by this function and returned to the caller through

the ‘tctiContext’ parameter.

Response Codes:

This function MUST return all response codes generated by the underlying TCTI as part of the initialization

process. Additionally it MUST return the following values:

• TSS2_TCTI_RC_MEMORY is returned if memory allocation fails

• TSS2_TCTI_RC_NOT_SUPPORTED is returned if the loader is unable to locate a TCTI library

associated with ‘name’

• TSS2_TCTI_RC_IO_ERROR is returned for failures in the underlying loading mechanism

• TSS2_TCTI_RC_BAD_REFERENCE is returned if the ‘tctiContext’ parameter is NULL

3.5.2 Tss2_TctiLdr_Initialize_Ex

TSS2_RC Tss2_TctiLdr_Initialize_Ex (

 const char *name,

 const char *conf,

 TSS2_TCTI_CONTEXT **tctiContext

);

The Tss2_TctiLdr_Initialize_Ex function allocates and initializes a TCTI context structure. The TCTI

library used and its configuration are determined by the ‘name’ and ‘conf’ parameters. The ‘name’

parameter is a string identifying the TCTI library used to initialize the TCTI context. The mechanism used

to locate and load this library is platform specific. If the provided ‘name’ is a NULL pointer then the TCTI

loader library MUST select a default TCTI on behalf of the caller. The ‘conf’ parameter is constrained by

the same requirements as the ‘conf’ parameter of the ‘TSS2_TCTI_INIT_FCN’ function as described in

3.4.1 and MUST be passed to the underlying TCTI initialization function unmodified.

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 23

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

The memory required for the TCTI context is allocated by this function and returned to the caller through

the ‘tctiContext’ parameter.

Response Codes:

This function MUST return all response codes generated by the underlying TCTI as part of the initialization

process. Additionally it MUST return the following values:

• TSS2_TCTI_RC_MEMORY is returned if memory allocation fails

• TSS2_TCTI_RC_NOT_SUPPORTED is returned if the loader is unable to locate a TCTI library

associated with ‘name’

• TSS2_TCTI_RC_IO_ERROR is returned for failures in the underlying loading mechanism

• TSS2_TCTI_RC_BAD_REFERENCE is returned if the ‘tctiContext’ parameter is NULL

3.5.3 Tss2_TctiLdr_Finalize

void Tss2_TctiLdr_Finalize (TSS2_TCTI_CONTEXT **ctx);

The Tss2_TctiLdr_Finalize function performs any necessary clean-up for the allocated TCTI context and

any other implementation specific considerations. This includes the deallocation of all memory allocated by
the Tss2_TctiLdr_Initialize function.

Response Codes: none

3.5.4 Tss2_TctiLdr_GetInfo

TSS2_RC Tss2_TctiLdr_GetInfo (const char *name, TSS2_TCTI_INFO **info);

The Tss2_TctiLdr_GetInfo function allows callers to query the TCTI loading mechanism for supported

TCTIs. This function MUST allocate a TSS2_TCTI_INFO structure for the caller and it MUST be populated

with data from the TCTI library associated with the ‘name’. Data in the TSS2_TCTI_INFO structure that the

underlying implementation is unable to populate MUST be set to NULL.

Response Codes:

• TSS2_TCTI_RC_MEMORY is returned if memory allocation fails

• TSS2_TCTI_RC_NOT_SUPPORTED is returned if the loader is unable to locate a TCTI library

associated with ‘name’

• TSS2_TCTI_RC_IO_ERROR is returned for failures in the underlying loading mechanism

• TSS2_TCTI_RC_BAD_REFERENCE is returned if the ‘info’ parameter is NULL

3.5.5 Tss2_TctiLdr_FreeInfo

void Tss2_TctiLdr_FreeInfo (TSS2_TCTI_INFO *info);

The Tss2_TctiLdr_FreeInfo function is intended to free all resources allocated by the Tss2_TctiLdr_GetInfo

function. Its only parameter is a TSS2_TCTI_INFO instance previously allocated by Tss2_TctiLdr_GetInfo.

Response Codes: none

TCG TSS System Level API and TCTI Specification

Page 24 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

4 TCTI Header File
tss2_tcti.h

4.1 TCTI Prelude

#ifndef TSS2_TCTI_H

#define TSS2_TCTI_H

#include <stdint.h>

#include <stddef.h>

#include "tss2_common.h"

#include "tss2_tpm2_types.h"

#ifndef TSS2_API_VERSION_1_2_1_108

#error Version mismatch among TSS2 header files.

#endif

4.2 TCTI Data Structures

TSS2_TCTI_POLL_HANDLE: The TCTI supports an asynchronous mode of operation for processing TPM

commands. After transmission of a command, the application can request to be notified when the response

is available for reception. The TSS2_TCTI_POLL_HANDLE type is used as a data type for the handles that

are used when querying for this notice. Since these handles are highly platform specific, they will change

depending on the type of platform. For some platforms the handles are defined in the following; further

handle types will be defined in future revisions of this specification. Note that not all TCTI-drivers have

support for this function.

/*

 * "Public" TCTI definitions and operations.

 */

/* Define OS-specific TSS2_TCTI_POLL_HANDLE */

#if defined(WIN32)

#include <windows.h>

typedef HANDLE TSS2_TCTI_POLL_HANDLE;

#elif defined(_POSIX_C_SOURCE)

#include <poll.h>

typedef struct pollfd TSS2_TCTI_POLL_HANDLE;

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 25

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

#else

typedef void TSS2_TCTI_POLL_HANDLE;

#ifndef TSS2_TCTI_SUPPRESS_POLL_WARNINGS

#pragma message "Info: Platform not suported for TCTI_POLL_HANDLES"

#endif /* TSS2_TCTI_SUPPRESS_POLL_WARNINGS */

#endif /* OS selection */

/* Constants used to control timeout behavior */

#define TSS2_TCTI_TIMEOUT_BLOCK -1

#define TSS2_TCTI_TIMEOUT_NONE 0

#define TSS2_TCTI_INFO_SYMBOL "Tss2_Tcti_Info"

/* TSS2_TCTI_CONTEXT is a data structure opaque to the caller. */

typedef struct TSS2_TCTI_OPAQUE_CONTEXT_BLOB TSS2_TCTI_CONTEXT;

/* Type of TCTI initialization function. */

typedef TSS2_RC (*TSS2_TCTI_INIT_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext,

 size_t *size,

 const char *conf);

/* Descriptive data for a TCTI library and its init function */

typedef struct {

 uint32_t version;

 const char *name;

 const char *description;

 const char *conf_help;

 TSS2_TCTI_INIT_FCN init;

} TSS2_TCTI_INFO;

/* Function to expose TCTI library TSS2_TCTI_INFO structure */

typedef const TSS2_TCTI_INFO* (*TSS2_TCTI_INFO_FCN)(

 void);

4.3 TCTI Macros

The following macros simplify some basic TCTI tasks.

TCG TSS System Level API and TCTI Specification

Page 26 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

/* Macros to simplify invocation of functions from the common TCTI structure */

#define Tss2_Tcti_Transmit(tctiContext, size, command) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT: \

 (TSS2_TCTI_VERSION(tctiContext) < 1) ? \

 TSS2_TCTI_RC_ABI_MISMATCH: \

 (TSS2_TCTI_TRANSMIT(tctiContext) == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

 TSS2_TCTI_TRANSMIT(tctiContext)(tctiContext, size, command))

#define Tss2_Tcti_Receive(tctiContext, size, response, timeout) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT: \

 (TSS2_TCTI_VERSION(tctiContext) < 1) ? \

 TSS2_TCTI_RC_ABI_MISMATCH: \

 (TSS2_TCTI_RECEIVE(tctiContext) == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

 TSS2_TCTI_RECEIVE(tctiContext)(tctiContext, size, response, timeout))

#define Tss2_Tcti_Finalize(tctiContext) \

 do { \

 if ((tctiContext != NULL) && \

 (TSS2_TCTI_VERSION(tctiContext) >= 1) && \

 (TSS2_TCTI_FINALIZE(tctiContext) != NULL)) \

 { \

 TSS2_TCTI_FINALIZE(tctiContext)(tctiContext); \

 } \

 } while (0)

#define Tss2_Tcti_Cancel(tctiContext) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT: \

 (TSS2_TCTI_VERSION(tctiContext) < 1) ? \

 TSS2_TCTI_RC_ABI_MISMATCH: \

 (TSS2_TCTI_CANCEL(tctiContext) == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

 TSS2_TCTI_CANCEL(tctiContext)(tctiContext))

#define Tss2_Tcti_GetPollHandles(tctiContext, handles, num_handles) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT: \

 (TSS2_TCTI_VERSION(tctiContext) < 1) ? \

 TSS2_TCTI_RC_ABI_MISMATCH: \

 (TSS2_TCTI_GET_POLL_HANDLES(tctiContext) == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 27

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

 TSS2_TCTI_GET_POLL_HANDLES(tctiContext)(tctiContext, handles,

num_handles))

#define Tss2_Tcti_SetLocality(tctiContext, locality) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT: \

 (TSS2_TCTI_VERSION(tctiContext) < 1) ? \

 TSS2_TCTI_RC_ABI_MISMATCH: \

 (TSS2_TCTI_SET_LOCALITY(tctiContext) == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

 TSS2_TCTI_SET_LOCALITY(tctiContext)(tctiContext, locality))

#define Tss2_Tcti_MakeSticky(tctiContext, handle, sticky) \

 ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT: \

 (TSS2_TCTI_VERSION(tctiContext) < 2) ? \

 TSS2_TCTI_RC_ABI_MISMATCH: \

 (TSS2_TCTI_MAKE_STICKY(tctiContext) == NULL) ? \

 TSS2_TCTI_RC_NOT_IMPLEMENTED: \

 TSS2_TCTI_MAKE_STICKY(tctiContext)(tctiContext, handle, sticky))

4.4 Definitions Which Should Not Be Used by Callers

All TCTI features can be accessed via the definitions above. It is strongly recommended that the following
definitions not be used directly by callers.

/*

 * "Private" TCTI definitions.

 *

 * All TCTI features can be accessed via the definitions above. It is

 * strongly recommended that the following definitions not be used

 * directly by callers. These are made public in order to enable

 * implementation of the macros above.

 */

/* Function pointer types for the TCTI operations. */

typedef TSS2_RC (*TSS2_TCTI_TRANSMIT_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext,

 size_t size,

 uint8_t const *command);

typedef TSS2_RC (*TSS2_TCTI_RECEIVE_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext,

TCG TSS System Level API and TCTI Specification

Page 28 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

 size_t *size,

 uint8_t *response,

 int32_t timeout);

typedef void (*TSS2_TCTI_FINALIZE_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext);

typedef TSS2_RC (*TSS2_TCTI_CANCEL_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext);

typedef TSS2_RC (*TSS2_TCTI_GET_POLL_HANDLES_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext,

 TSS2_TCTI_POLL_HANDLE *handles,

 size_t *num_handles);

typedef TSS2_RC (*TSS2_TCTI_SET_LOCALITY_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext,

 uint8_t locality);

typedef TSS2_RC (*TSS2_TCTI_MAKE_STICKY_FCN)(

 TSS2_TCTI_CONTEXT *tctiContext,

 TPM2_HANDLE *handle,

 uint8_t sticky);

typedef struct {

 uint64_t magic;

 uint32_t version;

 TSS2_TCTI_TRANSMIT_FCN transmit;

 TSS2_TCTI_RECEIVE_FCN receive;

 TSS2_TCTI_FINALIZE_FCN finalize;

 TSS2_TCTI_CANCEL_FCN cancel;

 TSS2_TCTI_GET_POLL_HANDLES_FCN getPollHandles;

 TSS2_TCTI_SET_LOCALITY_FCN setLocality;

} TSS2_TCTI_CONTEXT_COMMON_V1;

typedef struct {

 TSS2_TCTI_CONTEXT_COMMON_V1 v1;

 TSS2_TCTI_MAKE_STICKY_FCN makeSticky;

} TSS2_TCTI_CONTEXT_COMMON_V2;

typedef TSS2_TCTI_CONTEXT_COMMON_V2 TSS2_TCTI_CONTEXT_COMMON_CURRENT;

TCG TSS System Level API and TCTI Specification

Family "2.0" TCG PUBLISHED Page 29

Level 1.0, Revision 18 Copyright © TCG 2013-2020 24 January 2020

/* Macros to simplify access to values in common TCTI structure */

#define TSS2_TCTI_MAGIC(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->magic

#define TSS2_TCTI_VERSION(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->version

#define TSS2_TCTI_TRANSMIT(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->transmit

#define TSS2_TCTI_RECEIVE(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->receive

#define TSS2_TCTI_FINALIZE(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->finalize

#define TSS2_TCTI_CANCEL(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->cancel

#define TSS2_TCTI_GET_POLL_HANDLES(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->getPollHandles

#define TSS2_TCTI_SET_LOCALITY(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext)->setLocality

#define TSS2_TCTI_MAKE_STICKY(tctiContext) \

 ((TSS2_TCTI_CONTEXT_COMMON_V2*)tctiContext)->makeSticky

4.5 tss2_tcti.h Postlude

#endif /* TSS2_TCTI_H */

TCG TSS System Level API and TCTI Specification

Page 30 TCG PUBLISHED Family "2.0"

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18

5 TCTI LDR Header File

tss2_tctildr.h

5.1 TCTI LDR prelude

#ifndef TSS2_TCTILDR_H

#define TSS2_TCTILDR_H

#include “tss2_tpm2_types.h”

#include “tss2_tcti.h”

5.2 Function Definitions

TSS2_RC Tss2_TctiLdr_Initialize (

 const char *nameConf,

 TSS2_TCTI_CONTEXT **tctiContext);

TSS2_RC Tss2_TctiLdr_Initialize_Ex (

 const char *name,

 const char *conf,

 TSS2_TCTI_CONTEXT **tctiContext);

TSS2_RC Tss2_TctiLdr_Finalize (

 TSS2_TCTI_CONTEXT **tctiContext);

TSS2_RC Tss2_TctiLdr_GetInfo (

 const char *name,

 TSS2_TCTI_INFO **info);

TSS2_RC Tss2_TctiLdr_FreeInfo (

 TSS2_TCTI_INFO **info);

5.3 TCTI LDR postlude

#endif /* TSS2_TCTILDR_H */

	1 Definitions and References
	1.1 Acronyms
	1.2 TCG Software Stack 2.0 (TSS 2.0) Specification Library Structure
	1.3 References

	2 TCTI Introduction
	2.1 TCTI Target Systems

	3 TPM Command Transmission Interface
	3.1 Introduction
	3.1.1 Purpose & Goal

	3.2 TCTI Context data structure
	3.2.1 Magic & Version Fields
	3.2.2 Function Invocation
	3.2.3 Version Area
	3.2.4 Non-opaque Area
	3.2.5 Function Callbacks
	3.2.5.1 transmit
	3.2.5.2 receive
	3.2.5.3 finalize
	3.2.5.4 cancel
	3.2.5.5 getPollHandles
	3.2.5.6 setLocality
	3.2.5.7 makeSticky

	3.2.6 Compatibility
	3.2.6.1 Old and Not Useful Version
	3.2.6.2 New but Useful Version
	3.2.6.3 New and Not Useful Version
	3.2.6.4 New Version with Deprecated Functions

	3.2.7 Opaque Area

	3.3 TCTI Info data structure
	3.3.1 version
	3.3.2 name
	3.3.3 description
	3.3.4 config_help
	3.3.5 init

	3.4 TCTI Initialization
	3.4.1 Static or Dynamic Linking
	3.4.2 Dynamic Loading

	3.5 TCTI Loader Library
	3.5.1 Tss2_TctiLdr_Initialize
	3.5.2 Tss2_TctiLdr_Initialize_Ex
	3.5.3 Tss2_TctiLdr_Finalize
	3.5.4 Tss2_TctiLdr_GetInfo
	3.5.5 Tss2_TctiLdr_FreeInfo

	4 TCTI Header File
	4.1 TCTI Prelude
	4.2 TCTI Data Structures
	4.3 TCTI Macros
	4.4 Definitions Which Should Not Be Used by Callers
	4.5 tss2_tcti.h Postlude

	5 TCTI LDR Header File
	5.1 TCTI LDR prelude
	5.2 Function Definitions
	5.3 TCTI LDR postlude

