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1 INTRODUCTION 
 

Microcontrollers and SoCs supporting embedded and more complex devices are available with many different feature 
sets. At the high end, microcontrollers may contain sophisticated 32-bit microprocessors, abundant volatile and non-
volatile memories, a large cache, floating point support, protected execution modes, I/O options including support for 
audio, video, networking and DSP. At the low end, there are microcontrollers with 8-bit microprocessors with minimal 
additional support. 

Embedded systems manufacturers, especially those considering use of lower end microcontrollers, may find it difficult 
to build devices that comply with the TCG’s measurement and attestation (M&A) framework. The Roots of Trust that 
protect the resources and mechanisms that support measurement recording and reporting are found in a Trusted 
Platform Module (TPM), but the inclusion in an embedded system of a separate TPM may be untenable due to power, 
space, and cost. Another solution is needed. 

The purpose of Measurement and Attestation RootS (MARS) is to specify the means by which microcontroller 
manufacturers may directly incorporate the required Root of Trust (RoT) logic in their designs in an appealing, low-
overhead manner. The result should be a device that natively supports the “minimum functionality necessary to 
describe characteristics that affect a platform’s trustworthiness” as required by the TCG [1]. 

The performance of measuring, recording, and reporting comprise the essential features of a MARS-equipped device. 

 

1.1 Purpose 
 

The set of use cases and considerations described in this reference document determine the requirements for a 
Measurement and Attestation RootS (MARS) specification. 

 

1.2 Scope 
 

The MARS Charter requires the MARS specification to enable M&A. Other features are considered (per the Charter) 
and may be included in the specification as Recommended or Optional if they are deemed particularly useful to 
embedded systems and add a minimum to the complexity for implementors. The Use Cases presented in this 
reference will help determine the capabilities and commands to be support by MARS in order to meet M&A and “other” 
needs. 

 

1.3 Audience 
 

The intended audience for this reference document is manufacturers of microcontrollers and those considering 
incorporating MARS in their design. Readers are encouraged to understand the Trusted Platform concepts detailed 
in the TPM Architecture specification [1]. 

 

1.4 Document Organization 
 

In this reference, a set of use cases is first laid out in section 2. This is followed by a set of resource constraints in 

section 3. The implementation considerations in section 4 discuss how MARS can satisfy the use cases in light of 

the resource constraints. In general, the subsections in sections 2 and 3 have matching subsections in section 4. 
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2 USE CASES 
 

As the name implies, Measurement and Attestation RootS is intended to support those use cases that thrive on trusted 
measurement and attestation primitives. The umbrella use case for MARS was summed up originally by the TPM 
specification when describing the need for roots of trust – to “describe characteristics that affect a platform’s 
trustworthiness.” [1] That description is reported to a remote challenger for the purpose of providing access control in 
a process known as remote attestation. A small subset of a TPM’s extensive capabilities are essential for ensuring 
that this can be done securely. It is this subset that forms the mandatory capabilities of a MARS-compliant device. 
Other use cases described in this section may be supported in the MARS Specification as either Recommended for 
highly desirable features or Optional for those with minimal impact on design.  

 

2.1 Anti-Counterfeit (Device Identity) 
 

Providing reliable remotely-verifiable device identity for each device, be it large or small, is a prerequisite for most 
security-related use cases. Device Identity may be used as a simple access control mechanism, to prove ownership, 
or to prove that the device is genuine. A device identity is meaningful when the device can prove that the identity 
belongs exclusively to that device. While the identity is not secret, it may be privacy-sensitive. The identity may be 
generated locally or provisioned remotely and stored, as needed, by the host device. Malicious alteration would only 
yield denial of service as the device would be incapable of proving association with a different identity. 

 

2.2 Boot Health for Access Control Decisions 
 

At the moment when two devices begin interaction, each may need to make an access control decision before that 
interaction proceeds. In this use case, that decision is based upon an understanding of the other device’s health. 
Here, that health is understood to reflect the integrity of the components used to boot the device (e.g. boot ROM, 
second stage boot loaders, firmware). Concerns about boot health may be related to the firmware or configuration 
being malicious, unauthorized, obsolete, or unknown. Firmware and configuration need to be measured and recorded 
locally, and eventually reported to another device so that it, or an authorized agent, can make an appropriate health 
assessment of the platform. 

 

2.2.1 Measuring Device Integrity 
 

The TCG method for representing firmware and configuration modules is hashing their contents to produce digests. 
As a digest is statistically unique, it is said to identify its module. The usage of a module by a device is recorded as 
an event. The collection of digests representing these events is called the Event Log. 

 

2.2.2 Recording Device Integrity 
 

The Event Log generally summarizes a device’s integrity. However, since the Event Log can grow large, it is 
unreasonable to expect that a small RoT would store it. Consequently, its storage has to be managed by the host. As 
this Event Log is a potential target for malware that might like to cover its tracks, the log’s integrity needs to be 
managed by a separate, trusted agent such as MARS. Unauthorized alterations to the Event Log should be detectable, 
rendering the log unusable. See section 4.5.2. 
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2.2.3 Reporting Device Integrity 
 

When two devices need to communicate with each other to access and provide a service or some other peer-to-peer 
relationship, one or both may need to prove their identity and configuration so the other can make an appropriate 
access control decision. The process of preparing a verifiable statement of identity and configuration to be assessed 
by, or on behalf of, a relying party (e.g. service provider) is known as remote attestation. It is also possible for a device 
to assess itself in a process known as local attestation. A form of local attestation is covered in section 2.3. 

 

2.3 Sealed Storage 
 

Software modules that manage sensitive (secret or private) data may need to store that data securely. Like the Event 
Log, it is expected that the data would be stored outside of the RoT and be integrity protected. However, since the 
data is sensitive, that data will also require confidentiality protection. The device should only be able to access 
(decrypt) the data if it is on the same device and in an authorized state. Sealed storage is a form of local attestation. 

An example of sealed storage commonly occurs in a firmware TPM (fTPM). The fTPM needs to be able to seal its 
sensitive state to the host device so that the fTPM can be protected at rest. A MARS equipped host could generate a 
key that is bound to the host device and the host’s state. This key could then be used to by the fTPM to encrypt/decrypt 
its state. 

 

2.4 DICE Emulation 
 

A Device Identifier Composition Engine (DICE, [2]) produces a Compound Device Identifier (CDI) that is derived from 
a Unique Device Secret (UDS) and the digest of the First Mutable Code (FMC). While the specific method to combine 
the values is the manufacturer’s choice, because it does not affect interoperability, it may be implemented with 
methods such as  

CDI = Hash(UDS || Hash(FMC)) 

or 

CDI = HMAC(UDS, Hash(FMC)) 

DICE-based applications subsequently use values derived from the CDI in unique ways specified by the DICE 
Architectures Working Group. If MARS could produce a CDI, then a device equipped with MARS would be compatible 
with DICE infrastructure, so both DICE and MARS would benefit from economy-of-scale. 

 

2.5 Deep Quote 
 

Applications (e.g. virtualized TPM, fTPM, DICE-based applications) that manage secrets outside of a hardware RoT 
may need to prove that these secrets are [still] being used on the correct device in the correct state. A deep quote (or 
deep attestation, [3]) process would enable these applications that already produce attestations of their own to reach 
down to MARS to provide this proof via an additional attestation from a hardware RoT. 

 

2.6 Setting a GPIO, based on device state 
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A General Purpose Input Output (GPIO) output could be wired to signal a peripheral, likely tightly integrated to the 
device, to perform some action – e.g. [un]lock, power-up, blink, etc. Access to the GPIO mechanism would only be 
possible when the device is in an acceptable state. 

 

2.7 Locking external peripherals to a device 
 

A peripheral (external to MARS or the device) could be configured to respond to a stimulus that only a specific device 
can produce, regardless of that device’s state. 

An example of a lockable peripheral would be an SD card encrypted with a key that can only be generated by a 
specific MARS. When separated from that specific MARS, the SD card cannot be read. 

 

2.8 Locking use of peripherals to a device state 
 

A peripheral could be [un]locked by configuring the peripheral to respond when MARS can produce the correct 
stimulus. This stimulus would only be produced by a device with a specific MARS and when the device is in the correct 
state.  

Another example of a lockable peripheral is a fingerprint reader that can only be used if the host firmware that will 
verify the fingerprint is in an expected state on the expected host. 

 

2.9 Identifying how long a system has been booted 
 

An enterprise might want to know how long a device has been running. If that device can relay its boot time accurately, 
an enterprise with concerns such as device stability or measurement staleness (the likelihood that the digests of what 
booted no longer represent what remains running or what will boot again) can make well-informed decisions. 

 

2.10 Verified Boot 
 

The TCG emphasis on measured boot defers verification to an external entity trusted by the relying party. However, 
in a verified boot (sometimes called “secure boot”), the verification is performed locally. The “known good” or “golden 
measurement” for a module is attached to (or associated with) that module in the form of a digital signature. During 
boot, the module is measured and compared to the decrypted signature. If equal (and the signer is trusted) the module 
is verified. A similar mechanism could be supported by MARS. 

 

2.11 Verified Update 
 

Many devices have upgradable firmware. Signed firmware can be authenticated before applying it as an update. As 
with the Verified Boot use case, MARS could provide some local verification support. Both Verified Boot and Verified 
Update are useful layers of security in preventing and detecting unauthorized modifications. 

 

2.12 Update Protection 
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When a device prepares for an update, it should only be able to overwrite sensitive firmware (e.g. from section 2.2.1) 
when executing the First Update Engine (FUE, [4]). Attempts to overwrite protected firmware outside of FUE’s context 
should not be possible. 

 

2.13 Securely Proving Knowledge of a Password 
 

A password control mechanism can be used to authenticate local administrators or other users. A Shadow Password 
table, implemented on many platforms, typically contains: 

Userid, HashAlgorithm, number of iterations, salt, Hashinterations(salt || password) 

The table contains all the information necessary to perform a remote dictionary or hammering attack on the passwords. 
A stronger mechanism that guards against these attacks is needed. See section 4.10. 

 

2.14 Chain of Custody 
 

A distributed ledger technology (any kind of append-only database - with immutable records) may be used to track 
change in ownership transactions for a particular device. A device that presents its ID to a relying party can be verified 
by locating its most recent owner from the ledger. If that owner is trusted, a verifier can challenge the device to quote 
its identity or derive a new attestation key. The device should be capable of supporting the change in ownership and 
be verifiable to its new owner. 
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3 RESOURCE CONSIDERATIONS 

3.1 Cryptographic Services 
 

As MARS seeks to provide a trusted computing solution for resource constrained devices, MARS must reflect the fact 
that asymmetric cryptography is virtually non-existent in this space. Asymmetric cryptography, typically RSA and ECC, 
is universally accepted as the preferred means to support digital signatures and key exchange. However, constrained 
devices effectively lack the computing power needed to generate keys or to use them in encryption and signing 
applications. They also typically lack hardware acceleration for asymmetric operations, due in part to RSA hardware 
implementations being larger than the microprocessor itself. 

In this limited trusted computing context, hashing and signing are required for measurement and attestation. 
Encryption/decryption services may also be needed to support related, highly desirable features. Standard symmetric 
algorithms are lightweight enough to implement measurement, attestation, and encryption/decryption on even 
severely resource constrained devices. 

 

3.2 Die Area 
 

Conventional TPMs are essentially specialized firmware running on an isolated microcontroller. However, in a very 
small embedded device, integrating another microcontroller may be infeasible due in part to die area minimization 
requirements. 

 

3.3 Non-Volatile Memory 
 

A MARS-enabled device, at a minimum, must support non-volatile memory (NVM) required to retain cryptographic 
secrets, such as seeds or keys, needed for mandatory features. NVM options may be programmable (such as 
conventional or embedded flash) or read-only (e.g. fuse, mask, PUF). The decision to adopt a particular type of NVM 
may be influenced by fab availability, manufacturing cost and die area vs device features. To the extent possible, the 
choice in type and amount of such memory should be left to the manufacturer. 

 

3.4 Random Number Generator 
 

A good source of entropy and a strong RNG are foundational to reliable cryptography. While common practices require 
(and MARS is no exception) the generation of a secret seed, that generation may occur on an external provisioner. 
Other secrets on MARS could be derived from the seed. In both cases, an on-chip RNG is unnecessary. 
Consequently, an RNG should not be required as it might needlessly increase complexity, area and manufacturing 
cost. Nevertheless, a manufacturer may include an RNG at their discretion and offer interesting and useful services 
around it. 

 

3.5 Clock 
 

Readers familiar with TPM attestation structures know that each includes the TPM’s clock. Moreover, implementations 
of the clock require NVM. In keeping with the NVM constraints of 3.3, MARS attestations should not require a clock. 
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4 IMPLEMENTATION CONSIDERATIONS 
 

This section describes considerations for building a MARS device that satisfy the use cases in light of the resource 
constraints. 

 

4.1 Provisioned Seed 
 

Though MARS’ scope excludes the provisioning of secrets, MARS cannot avoid the necessity of exclusive access to 
a securely generated secret known as the Provisioned Seed (PS). The PS is analogous to a TPM’s Primary Seed that 
serves as the root of a key hierarchy. PS, which will ultimately be used to derive other keys, must itself be generated 
as a cryptographic key. During startup, MARS would use the PS and possibly other manufacturer-determined values 
to derive a Derivation Parent (DP). The DP would be the key used for subsequent derivations to fulfill MARS use 
cases, including [re]generation of the Attestation Key (AK). 

During the provisioning process, a provisioner would generate the AK as a secret key shared between the device and 
an Endorser. The Endorser [5] would be responsible for verifying attestation signatures. This is detailed more in 4.5.3. 

 

4.2 Lightweight Cryptographic Services 
 

Symmetric cryptography provides a viable, though less flexible, solution for digital signatures. Though key generation 
is simple, key management is complicated because symmetric keys must be shared. MARS devices would require 
three cryptographic primitives: hash – for recording device integrity, MAC – for signing attestation claims, and KDF – 
for deriving keys and other values for other use cases. 

Within the TPM, a variety of hash algorithms are supported, including those from SHA-2 and SM3. The TPM supports 
a variety of MACs, but for signing attestation claims and verifying signatures, the only symmetric algorithm supported 
is HMAC (over the available hash algorithms). Three KDFs are supported, including SP800-108 Counter Mode (based 
on HMAC). 

While these algorithms may be reasonable to implement on resource constrained devices, there are efforts to find 
lighter weight alternatives. While TCG develops MARS, NIST is conducting a Lightweight Cryptography 
Standardization Process [6]. The scope of this process is to produce “Authenticated Encryption with Associated Data 
(AEAD), with optional hashing.” The tag produced from AEAD is a type of a MAC. NIST expects that their process will 
yield a single primitive that can be used for encryption, hashing, message authentication, key derivation, DRBG, etc. 
MARS should be crypto agile and incorporate these new NIST recommendations where applicable. 

 

4.3 Die Area 
 

To reduce the impact on microcontroller manufacturers, a MARS device should be capable of being integrated without 
the use of an additional microprocessor. That is, MARS may be implemented as a hardware state machine with few, 
but valuable, capabilities. Manufacturers that are already integrating cryptographic accelerators should find that 
adding a small state machine around accelerators designed specifically for lightweight environments will impose little 
overhead.  
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4.4 Anti-Counterfeit (Device Identity) 
 

Proof of the association between an identifier and a device is typically done via a cryptographic binding using a secret 
managed by a trusted agent (the TPM’s Root of Trust for Reporting). Verification of that proof may determine 
ownership, that the device is genuine, or some other relationship based on a trusted identity. In the case of more 
capable systems that can perform asymmetric cryptography, a certificate can be used to claim an identity. The public 
portion of an attestation key is used as an identity. A private key, paired with the public key signed in that certificate, 
is used to prove that identity. 

In resource constrained devices, asymmetric cryptography is either impossible or impractical. Symmetric cryptography 
should be used. In this case, the trusted agent (MARS) possesses a secret shared between itself and a verifier. The 
secret and the identity are created together – one possibly derived from the other, or the identity is simply assigned. 
A signature produced via a shared secret must be verified by the verifier who possesses that shared secret for that 
identity. 

The association between a device’s identity and its signing key is maintained by the verifier. If needed, possibly to 
protect against corruption or deletion, MARS can generate a value suitable as an identity via a KDF. 

 

4.5 Boot Health for Access Control Decisions 
 

4.5.1 Measuring Device Integrity 
 

A Root of Trust for Measurement (RTM) initiates the creation of the first digest, delivers that digest to MARS, and 
optionally populates the Event Log. Though RTM is not part of MARS, both are required to build a trusted platform. 

 

4.5.2 Recording Device Integrity 
 

The Root of Trust for Storage (RTS) is the TCG’s solution to recording device integrity. The RTS maintains a set of 
Platform Configuration Registers (PCRs) that represent a collection of events, and are used as integrity checks of 
subsets of the Event Log. The PCRs and Event Log are updated immediately after a module is measured and before 
it is used. The first digest is produced and delivered to the MARS RTS by the host’s RTM. MARS allows for resource 
constrained devices to implement only a single PCR. More PCRs are allowed and useful (see section 4.7.1).  

 

4.5.3 Reporting Device Integrity 
 

Reporting device integrity can be accomplished by relaying the device identity, PCRs and Event Log with integrity and 
freshness proved by a digital signature. Digitally signing a claim is the role designed by the TCG for the Root of Trust 
for Reporting. The RTR signs a digest of the PCR(s) and a challenge nonce using an appropriate asymmetric private 
key or symmetric shared secret. 

With asymmetric attestation, the signature is accompanied by an attestation certificate that itself contains a signature 
of the signing key. Assuming that the relying party already trusts a certificate authority that chains to the attestation 
certificate, the signature on the integrity claims can be trusted and the claims themselves are considered accurate. 

With symmetric attestation, there is no public key to be signed in an attestation certificate. Instead, the claim includes 
the location of an Endorser who, given the device identity, can retrieve the shared signing secret to verify the signature. 
The verifier’s determination can be trusted by the recipient over an asymmetrically negotiated channel, assuming that 
the recipient trusts the verifier. Then, the process of assessing the claims can begin. 
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As the PS is being installed on a MARS device, the provisioner may derive the attestation key (AK) used for signing 
attestations and provide the AK to the Endorser. During a quote operation, the AK could be recomputed in MARS via 
the KDF, and used immediately to sign a challenge nonce via the MAC. 

 

4.6 Deep Quote 
 

An application, such as one described in section 2.5, would have a certificate that certifies its signing key. The 
certificate could also indicate that the key can only be unsealed on a specific platform in a specific state, and that this 
process is backed by an active RoT that can be queried for proof. 

The quoted PCR and Event Log should be examined to show that the device was in the correct state to allow the key 
to be unsealed. If the key and certificate had been leaked and used on a different device, that device would be unable 
to perform a deep quote correctly. 

 

4.7 Bound Derivations 
 

The following use cases can be implemented using a secure, deterministic mechanism that derives bits from the PS, 
PCR and some context from the root of trust and the caller. The result of such a derivation is cryptographically bound 
to the inputs provided, and is referred to as a “bound derivation.” Methods to do so will be available in MARS to support 
other mandatory algorithms, e.g. to derive keys (KDF) and quote PCRs (MAC). MARS would provide an API giving 
secure access to KDF and/or MAC to support a caller’s “derive” needs. Repurposing these functions for other use 
cases fits within the MARS scope (see section 1.2) as the extra logic required would add a small and acceptable 
amount of complexity. 

 

4.7.1 Sealed Storage 
 

The TPM natively supports up to 128 bytes of sealed storage. For larger amounts of sealed storage, the same service 
could be used to hold a cipher key. That key could then be used to encrypt/decrypt much larger amounts of external 
data. Instead of supporting two mechanisms for sealed storage, MARS could employ the latter because that can 
handle large and small amounts of data. 

Instead of using the TPM to store and unseal data or a key, the KDF mechanism can be used directly to generate a 
key. The label input to the KDF would indicate the type of key to create, e.g. “seal” or “key1”, etc. If the device state 
unexpectedly changes because either the configuration of the device changed, or the data was moved to a different 
device, a useless key would be generated and unsealing would not be possible. 

For example, a MARS equipped host could seal data for a firmware TPM (fTPM). The key would be sealed (bound) 
to the host device and the host’s state. This key could then be used to by the fTPM to encrypt/decrypt its state 

 

4.7.2 DICE Emulation 
 

The requirement from DICE that a CDI be derived from a device secret and the digest of the First Mutable Code (FMC) 
can also be handle by a KDF function. Since the PCR would be a reflection of the FMC’s digest once extended, a 
KDF that incorporates the PCR (i.e. a bound derivation) would generate a compliant CDI. Once generated, the PCR 
should be capped so that the CDI can no longer be generated. After capping, then FMC can be executed. 
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4.7.3 Locking external peripherals to a device 
 

MARS can be used to create a bound derivation that excludes non-deterministic PCRs. That can be accomplished by 
using PCRs with a fixed value (e.g. zero, before extended) or by using no PCRs in the bound derivation / KDF. A label 
input to the KDF representing the peripheral in question would be reasonable. The resulting value can be used as the 
key to the peripheral’s lock. 

 

4.7.4 Locking external peripherals to a device state 
 

This use case is much like the previous (4.7.3) except that extended PCRs are used in the KDF when creating the 
lock’s key. This key would be bound to the device and its state. 

 

4.8 Setting a GPIO, based on device state 
 

A GPIO subsystem can be configured to react when a specific access value is provided. When that GPIO subsystem 
is integrated with MARS, that access value could be linked exclusively to the PCR. Access to the GPIO only succeeds 
when the device is in the correct state.  

 

4.9 Identifying how long a system has been booted 
 

The TPM records time in a 64-bit count of elapsed milliseconds since being powered on. This value is included in 
every attestation structure signed by the TPM (in addition to the clock, see 3.5). In a lightweight implementation, this 
could instead be achieved by dedicating one of the “PCRs” to contain time. Obviously, the PCR would not be 
extendable, but it could be MAC’d. 

 

4.10 Securely Proving Knowledge of a Password 
 

The shadow password table, shown in 2.13, could be implemented with a MAC instead of hash, as in: 

Userid, MAC_Algorithm (using MARS resident key), 1, salt, MACkey(salt || password) 

This could counter an offline dictionary attack as the MARS key is unavailable to an attacker. 

 

4.11 Verified Boot 
 

Assuming that the verifier possesses a known good measurement that matches the event being attested, the verifier 
can sign the measurement using an appropriate symmetric algorithm and signing key shared with the device. The 
signature is then given to the device. On subsequent boots, the signature is used locally to verify the image prior to 
its usage. 

 

4.12 Verified Update 
 

This use case reuses the verifier logic from Verified Boot, but prior to the update being applied. 
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4.13 Protected Update 
 

A MARS-enabled device could support the “Restrict updates to minimal FUE” use case via the GPIO mechanism. 
Refer to [4]. 

 

4.14 Chain of Custody 
 

The AK shared between the current owner and the device can be derived from the set of previous owners’ device IDs 
on the device, and independently derived by owners. The most recent previous owner essentially becomes the AK 
provisioner for the next owner by sharing updating the ledger. A device that can produce the correct attestation key 
from the (optionally cached) ledger can be verified by its owner and confirm the ledger. 
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5 ACRONYMS 
 

The table below defines acronyms used in this document. See the TCG Glossary [7] for definitions of TCG terms. 

 

AEAD Authenticated Encryption with Associated Data 

AK Attestation Key 

CDI Compound Device Identifier 

DICE Device Identifier Composition Engine 

DRBG Deterministic Random Bit Generator 

ECC Elliptic Curve Cryptography 

FUE First Update Engine 

GPIO General Purpose Input Output 

HMAC Hash-based Message Authentication Code 

ID Identity 

KDF Key Derivation Function 

M&A Measurement and Attestation 

MAC Message Authentication Code 

MARS Measurement and Attestation RootS 

NVM Non-Volatile Memory 

PCR Platform Configuration Register 

PS Provisioned Seed 

PUF Physical Unclonable Function 

RoT Root of Trust 

RTM Root of Trust for Measurement 

RTR Root of Trust for Reporting 

RTS Root of Trust for Storage 

SD Secure Digital 

TPM Trusted Platform Module 
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