

TCG Compliance_TNC IF-IMC
Compliance Test Plan

Version 1.0
Revision 0.09
29 January 2008
Published

Contact:

admin@trustedcomputinggroup.org

TCG PUBLISHED
Copyright © TCG 2008

mailto:admin@trustedcomputinggroup.org

TCG Compliance_TNC IF-IMC Compliance Test Plan TCG
Copyright
Version 1.0

Revision 0.09 Published Page ii of 29
29 January 2008 TCG PUBLISHED

Copyright © 2008 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express, implied, by estoppels, or otherwise, to any TCG or TCG member intellectual property
rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TCG Compliance_TNC IF-IMC Compliance Test Plan TCG
Copyright
Version 1.0

Revision 0.09 Published Page iii of 29
29 January 2008 TCG PUBLISHED

Table of Contents

1 Introduction .. 4
1.1 Purpose .. 4
1.2 Intended Audience .. 4

2 Specifications and Components .. 5
2.1 Specifications .. 5
2.2 Components ... 5

3 Specifications Requirements ... 6
3.1 Requirements on IMCs ... 6
3.2 Requirements on TNC Clients .. 11
3.3 Other Requirements ... 17

4 Test Cases ... 19
4.1 Test Cases for IF-IMC Compliance Test for IMCs ... 19
4.2 Test Cases for IF-IMC Compliance Test for TNCCs .. 23

5 References ... 29
Informative References ... 29

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 4 of 29
29 January 2008 TCG PUBLISHED

1 Introduction
This section summarizes the purpose and intended audience for this document.

1.1 Purpose
The purpose of this document is to provide specific requirements for the compliance tests for IF-
IMC v1.1 [2]; in particular, it defines and lists all the compliance test cases that must be passed to
prove Compliance with respect to the IF-IMC v1.1 specification. This document does not contain
any normative statements.

1.2 Intended Audience
The intended audience for this document includes test designers and implementers, as well as
product developers and customers who need to understand the IF-IMC compliance tests.
Readers should be familiar with the TNC Architecture [1], with the Compliance_TNC Compliance
and Interoperability Principles specification [3] and with IF-IMC v1.1.

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 5 of 29
29 January 2008 TCG PUBLISHED

2 Specifications and Components

2.1 Specifications
This document is based on the IF-IMC v1.1 specification [2] and on the Compliance_TNC
Compliance and Interoperability Principles document [3]. The IF-IMC v1.1 specification defines
the IF-IMC interface. The Compliance_TNC Compliance and Interoperability Principles document
provides an overview of the Compliance_TNC testing.

2.2 Components
There are two IF-IMC compliance tests that test the two kinds of components that interface with
IF-IMC: Integrity Measurement Collectors and TNC Clients.

2.2.1 IF-IMC Compliance Test for Integrity Measurement Collectors (IMCs)
The IF-IMC Compliance test for Integrity Measurement Collectors (IMCs) tests that an IMC
properly implements IF-IMC. The Test Target for this test (the component under test) is an IMC.

One difficult aspect of this test is that most IMCs require an active IMV from the same vendor in
order to function properly. Therefore, a test program (a single executable binary) will be
developed that loads a matching IMC and IMV pair then runs through a series of tests with the
IMC, allowing the IMC to communicate with the IMV.

2.2.2 IF-IMC Compliance Test for TNC Clients (TNCCs)
The IF-IMC Compliance test for TNC Clients (TNCCs) tests that a TNCC properly implements IF-
IMC. The Test Target for this test (the component under test) is a TNCC.

To test TNCCs, a test IMC will be developed that exercises the IF-IMC API and verifies that the
TNCC complies with the IF-IMC specification. A matching IMV will also be developed so that the
test IMC has something to talk to.

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 6 of 29
29 January 2008 TCG PUBLISHED

3 Specifications Requirements

The IF-IMC v1.1 specification includes many requirements and recommendations for Integrity
Measurement Collectors and TNC Clients. This section lists only the requirements since the
compliance tests for IF-IMC only test normative requirements (not recommendations).

This section has two subsections. The first one lists requirements upon Integrity Measurement
Collectors, which are tested by the IF-IMC compliance test for IMCs. The second one lists
requirements upon TNC Clients, which are tested by the IF-IMC compliance test for TNCCs.

As required by the TCG Compliance and Interoperability Guidelines, each requirement listed
below has a unique name composed of the string “CTNC” (for Compliance_TNC), “IFIMC1.1”
(indicating that these are requirements from IF-IMC v1.1), “IMC” or “TNCC” depending on which
component the requirement applies to, a requirement number unique within the preceding prefix,
and compliance classifer (“M” for MUST, “S” for SHOULD, “O” for OPTIONAL or MAY, “X” for
Expressly Forbidden or MUST NOT). Usage classifiers are not included in requirement names at
this time.

3.1 Requirements on IMCs
[CTNC-IFIMC1.1-IMC-REQ-1-M] Vendor-specific functions MUST have a name that

begins with “TNC_XXX_” where XXX is replaced by the

vendor ID of the organization that defined the extension.
(IF-IMC section 2.6) Vendor-specific functions MUST
have a name that begins with “TNC_XXX_” where XXX
is replaced by the vendor ID of the organization that
defined the extension. (IF-IMC section 3.2.4)

[CTNC-IFIMC1.1-IMC-REQ-2-M] If more than one TNC Client may be running at once on
a single machine (rare, but possible) and an IMC is
loaded by both TNC Clients, the IMC MUST work
properly even if the TNC Clients happen to choose the
same network connection ID for different connections.
(IF-IMC section 2.7.2)

[CTNC-IFIMC1.1-IMC-REQ-3-M] WARNING: The message routing and delivery algorithm
just described is not a one-to-one model. A single
message may be received by several recipients (for
example, two IMVs from a single vendor, two copies of
an IMC, or nosy IMVs that monitor all messages). If
several of these recipients respond, this may confuse
the original sender. IMCs and IMVs MUST work properly
in this environment. They MUST NOT assume that only
one party will receive and/or respond to a message. (IF-
IMC section 2.7.4)

[CTNC-IFIMC1.1-IMC-REQ-4-M] On platforms that don’t define a Dynamic Function
Binding mechanism, all optional functions MUST be
implemented, vendor-specific functions MUST NOT be
implemented or used except by private convention, and
provisions must be made to insure that TNCCs and
IMCs that support different version numbers interact
safely. (IF-IMC section 3.2.2) On platforms that don’t
define a Dynamic Function Binding mechanism, all
optional [IF-IMC API] functions MUST be implemented.
(IF-IMC section 3.6)

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 7 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-IMC-REQ-5-M] An IMC or TNC Client MUST work properly if a vendor-
specific function is not implemented by the other party
[…]. (IF-IMC section 3.2.4)

[CTNC-IFIMC1.1-IMC-REQ-6-M] An IMC or TNC Client […] MUST ignore vendor-specific
functions that it does not understand. (IF-IMC section
3.2.4)

[CTNC-IFIMC1.1-IMC-REQ-7-M] The vendor ID is converted to ASCII numbers or the
equivalent, using a decimal representation whose initial
digit MUST NOT be zero (0). (IF-IMC section 3.2.4)

[CTNC-IFIMC1.1-IMC-REQ-8-M] However, since more than one TNC Client may be
running at once on a single machine (rare, but possible),
any IMC DLL MUST be prepared to be loaded in multiple
processes at once and to have these processes issue
overlapping calls to the DLL. (IF-IMC section 3.3)

[CTNC-IFIMC1.1-IMC-REQ-9-M] The TNCC can choose any value for the IMC ID and the
IMC MUST NOT attach any significance to the value
chosen. (IF-IMC section 3.4.2.1)

[CTNC-IFIMC1.1-IMC-REQ-10-M] As described in section 2.10.3 above, it is sometimes
desirable to retry an Integrity Check Handshake (when
remediation is complete, for instance). Some TNCCs will
not support this but all IMCs MUST do so. (IF-IMC
section 3.4.2.2)

[CTNC-IFIMC1.1-IMC-REQ-11-M] [The TNC Client] can even choose a network connection
ID that was used by a previous network connection that
has now been deleted and is invalid. The IMC MUST
NOT attach any significance to the value chosen. (IF-
IMC section 3.4.2.2)

[CTNC-IFIMC1.1-IMC-REQ-12-M] The IMC MUST pass one of the values listed in section
3.5.5. The IMC MUST NOT use any other handshake
retry reason value with this version of the IF-IMC API.
(IF-IMC section 3.4.2.4)

[CTNC-IFIMC1.1-IMC-REQ-13-M] An IMC MUST NOT send messages whose message
type includes one of these reserved values. (IF-IMC
section 3.4.2.5) The vendor ID TNC_VENDORID_ANY
(0xffffff) and the subtype TNC_SUBTYPE_ANY (0xff)
are reserved as wild cards as described in section 3.8.1.
An IMC MUST NOT send messages whose message
type includes one of these reserved values. (IF-IMC
section 3.4.2.5)

[CTNC-IFIMC1.1-IMC-REQ-14-M] The message type TNC_VENDORID_ANY (0xffffff) is
reserved as a wild card as described in section 3.8.1.
IMCs may request messages with this vendor ID to
indicate that they want to receive messages whose
message type includes any vendor ID. However, an IMC
MUST NOT send messages whose message type
includes this reserved value and a TNCC MUST NOT
deliver such messages. (IF-IMC section 3.4.2.7)

[CTNC-IFIMC1.1-IMC-REQ-15-M] The message subtype TNC_SUBTYPE_ANY (0xff) is
reserved as a wild card as described in section 3.8.1.
IMCs may request messages with this message subtype
to indicate that they want to receive messages whose

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 8 of 29
29 January 2008 TCG PUBLISHED

message subtype has any value. However, an IMC
MUST NOT send messages whose message subtype
includes this reserved value and a TNCC MUST NOT
deliver such messages. (IF-IMC section 3.4.2.8)

[CTNC-IFIMC1.1-IMC-REQ-16-M] IMCs and TNCCs MUST be prepared for any function to
return any result code. (IF-IMC section 3.4.2.10 and
3.5.1)

[CTNC-IFIMC1.1-IMC-REQ-17-M] The reserved value TNC_CONNECTIONID_ANY MUST
NOT be used as a normal network connection ID.
Instead, it may be passed to
TNC_TNCC_RequestHandshakeRetry to indicate that
handshake retry is requested for all current network
connections. (IF-IMC section 3.5.3)

[CTNC-IFIMC1.1-IMC-REQ-18-M] Some of the functions in the IF-IMC API are marked as
mandatory below. Mandatory [IF-IMC API] functions
MUST be implemented. (IF-IMC section 3.6)

[CTNC-IFIMC1.1-IMC-REQ-19-M] An IMC or TNC Client MUST work properly if one or
more optional [IF-IMC API] functions are not
implemented by the other party. (IF-IMC section 3.6)
[Note that there are no optional TNCC functions in IF-
IMC 1.1 so no test case is needed for this requirement at
this time.]

[CTNC-IFIMC1.1-IMC-REQ-20-M] All IMCs MUST implement TNC_IMC_Initialize (IF-IMC
section 3.7.1)

[CTNC-IFIMC1.1-IMC-REQ-21-M] The IMC MUST check these [minVersion and
maxVersion] to determine whether there is an API
version number that it supports in this range. (IF-IMC
Section 3.7.1)

[CTNC-IFIMC1.1-IMC-REQ-22-M] If not [if the API version number specified is not
supported], the IMC MUST return
TNC_RESULT_NO_COMMON_VERSION. (IF-IMC
Section 3.7.1)

[CTNC-IFIMC1.1-IMC-REQ-23-M] If the state is TNC_CONNECTION_STATE_DELETE,
the IMC MUST NOT pass this network connection ID to
the TNC Client after this function
[TNC_IMC_NotifyConnectionChange] returns (unless
the TNCC later creates another network connection with
the same network connection ID). (IF-IMC Section 3.7.2)

[CTNC-IFIMC1.1-IMC-REQ-24-M] All IMCs MUST implement this function
[TNC_IMC_BeginHandshake] (IF-IMC Section 3.7.3)

[CTNC-IFIMC1.1-IMC-REQ-25-M] [TNC_IMC_ReceiveMessage is an optional function] The
IMC MUST NOT ever modify the buffer contents [passed
into TNC_IMC_ReceiveMessage function] (IF-IMC
Section 3.7.4)

[CTNC-IFIMC1.1-IMC-REQ-26-M] [TNC_IMC_ReceiveMessage is an optional function] The
IMC MUST NOT access the buffer [passed in the
TNC_IMC_ReceiveMessage function] after
TNC_IMC_ReceiveMessage has returned. (IF-IMC
Section 3.7.4)

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 9 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-IMC-REQ-27-M] [TNC_IMC_ReceiveMessage is an optional function] In
the imcID, the IMC MUST pass the value provided to

TNC_IMC_Initialize. (IF-IMC Section 3.8.1)

[CTNC-IFIMC1.1-IMC-REQ-28-M] An IMC calls this function [TNC_TNCC_SendMessage]
to give a message to the TNCC for delivery. The imcID
parameter [passed to the TNC_TNCC_SendMessage
function] MUST contain the value provided to
TNC_IMC_Initialize. (IF-IMC Section 3.8.2)

[CTNC-IFIMC1.1-IMC-REQ-29-M] An IMC calls this function [TNC_TNCC_SendMessage]
to give a message to the TNCC for delivery. The
connectionID parameter [passed to the
TNC_TNCC_SendMessage function] MUST contain a
valid network connection ID. (IF-IMC Section 3.8.2)

[CTNC-IFIMC1.1-IMC-REQ-30-M] The IMC MUST NOT call this function
[TNC_TNCC_SendMessage] unless it has received a
call to TNC_IMC_BeginHandshake, TNC_IMC_Receive
Message, or TNC_IMC_BatchEnding for this connection
and the IMC has not yet returned from that function. (IF-
IMC Section 3.8.2)

[CTNC-IFIMC1.1-IMC-REQ-31-M] The IMC MUST NOT specify a message type whose
vendor ID is 0xffffff or whose subtype is 0xff [when
calling TNC_TNCC_SendMessage]. (IF-IMC Section
3.8.2)

[CTNC-IFIMC1.1-IMC-REQ-32-M] An IMC calls this function
[TNC_TNCC_RequestHandshakeRetry] to ask a TNCC
to retry an Integrity Check Handshake. The IMC MUST
pass its IMC ID as the imcID parameter, a network
connection ID as the connectionID parameter, and one
of the handshake retry reasons listed in section 3.5.5, as
the reason parameter. (IF-IMC Section 3.8.3) The
following is the complete set of permissible values for
the TNC_Retry_Reason type in this version of the IF-
IMC API.
TNC_RETRY_REASON_IMC_REMEDIATION_COMPL
ETE, TNC_RETRY_REASON_IMC_SERIOUS_EVENT,
TNC_RETRY_REASON_IMC_INFORMATIONAL_EVE
NT, TNC_RETRY_REASON_IMC_PERIODIC.

[CTNC-IFIMC1.1-IMC-REQ-33-M] [Windows Platform Binding] Since more than one TNC
Client may be running at once on a single machine (rare,
but possible), any IMC DLL MUST be prepared to be
loaded in multiple processes at once and to have these
processes issue overlapping calls to the DLL. (IF-IMC
Section 4.1.3) [UNIX/Linux Platform Binding] Since more
than one TNC Client may be running at once on a single
machine (rare, but possible), any IMC MUST be
prepared to be loaded in multiple processes at once and
to have these processes issue overlapping calls to the
IMC. (IF-IMC Section 4.2.4)

[CTNC-IFIMC1.1-IMC-REQ-34-M] [Windows Platform Binding] The Microsoft Windows DLL
platform binding for the IF_IMC API defines one
additional function that MUST be implemented by IMCs
implementing this platform binding. (IF-IMC Section

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 10 of 29
29 January 2008 TCG PUBLISHED

4.1.7) IMCs implementing the Microsoft Windows DLL
platform binding MUST define this additional platform-
specific function [TNC_IMC_ProvideBindFunction]. (IF-
IMC Section 4.1.7.1)

[CTNC-IFIMC1.1-IMC-REQ-35-M] [Windows Platform Binding] The IMC MUST set the
imcID parameter [passed to TNC_TNCC_BindFunction
function] to the IMC ID value provided to
TNC_IMC_Initialize. (IF-IMC Section 4.1.8.1)

[CTNC-IFIMC1.1-IMC-REQ-36-M] [Windows Platform Binding] The IMC MUST set the
functionName parameter [passed to
TNC_TNCC_BindFunction function] to a pointer to a C
string identifying the function whose pointer is desired
(i.e., “TNC_TNCC_SendMessage”) (IF-IMC Section
4.1.8.1)

[CTNC-IFIMC1.1-IMC-REQ-37-M] [Windows Platform Binding] The IMC MUST set the
pOutFunctionPointer parameter [passed to the
TNC_TNCC_BindFunction function] to a pointer to
storage into which the desired function pointer will be
stored. (IF-IMC Section 4.1.8.1)

[CTNC-IFIMC1.1-IMC-REQ-38-M] [Windows Platform Binding] A well-known registry key is
used by the TNCC to load IMCs. […] Additional values
or keys may be present within the keys listed above. […]
TNC Clients and IMCs MUST ignore unrecognized
values and keys. (IF-IMC Section 4.1.9)

[CTNC-IFIMC1.1-IMC-REQ-39-M] [UNIX/Linux Platform Binding] Both the IMC and the
TNC Client MUST use POSIX threads (pthreads) for
threading and synchronization to ensure compatibility.
[However, since the IMC is not required to use threads
or be thread-safe, it is not possible to test this
requirement.] (IF-IMC Section 4.2.4)

[CTNC-IFIMC1.1-IMC-REQ-40-M] [UNIX/Linux Platform Binding] The UNIX/Linux Dynamic
Linkage platform binding for the IF-IMC API defines one
additional function that MUST be implemented by IMCs
implementing this platform binding. (IF-IMC Section
4.2.8) IMCs implementing the UNIX/Linux Dynamic
Linkage platform binding MUST define this additional
platform-specific function
[TNC_IMC_ProvideBindFunction]. (IF-IMC Section
4.2.8.1)

[CTNC-IFIMC1.1-IMC-REQ-41-M] [UNIX/Linux Platform Binding] The IMC MUST set the
imcID parameter [passed to the
TNC_TNCC_BindFunction] to the IMC ID value provided
to TNC_IMC_Initialize. (IF-IMC Section 4.2.9.1)

[CTNC-IFIMC1.1-IMC-REQ-42-M] [UNIX/Linux Platform Binding] The IMC MUST set the
functionName parameter [passed to the
TNC_TNCC_BindFunction] to a pointer to a C string
identifying the function whose pointer is desired (i.e.,
“TNC_TNCC_SendMessage”). (IF-IMC Section 4.2.9.1)

[CTNC-IFIMC1.1-IMC-REQ-43-M] [UNIX/Linux Platform Binding] The IMC MUST set the
pOutFunctionPointer parameter [passed to the
TNC_TNCC_BindFunction] to a pointer to storage into

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 11 of 29
29 January 2008 TCG PUBLISHED

which the desired function pointer will be stored. (IF-IMC
Section 4.2.9.1)

3.2 Requirements on TNC Clients

[CTNC-IFIMC1.1-TNCC-REQ-1-M] Vendor-specific functions MUST have a name that

begins with “TNC_XXX_” where XXX is replaced by the

vendor ID of the organization that defined the extension.
(IF-IMC section 2.6) Vendor-specific functions MUST
have a name that begins with “TNC_XXX_” where XXX
is replaced by the vendor ID of the organization that
defined the extension. (IF-IMC section 3.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-2-M] The TNCC MUST use the same connection ID for all
IMCs when referring to a particular connection. (IF-IMC
section 2.7.2)

[CTNC-IFIMC1.1-TNCC-REQ-3-M] A zero length message is perfectly valid and MUST be
properly delivered by the TNCC and TNCS just as any
other IMC-IMV message would be. (IF-IMC section
2.7.3)

[CTNC-IFIMC1.1-TNCC-REQ-4-M] On platforms that don’t define a Dynamic Function
Binding mechanism, all optional functions MUST be
implemented, vendor-specific functions MUST NOT be
implemented or used except by private convention, and
provisions must be made to insure that TNCCs and
IMCs that support different version numbers interact
safely. (IF-IMC section 3.2.2) On platforms that don’t
define a Dynamic Function Binding mechanism, all
optional [IF-IMC API] functions MUST be implemented.
(IF-IMC section 3.6).

[CTNC-IFIMC1.1-TNCC-REQ-5-M] An IMC or TNC Client MUST work properly if a vendor-
specific function is not implemented by the other party
[…]. (IF-IMC section 3.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-6-M] An IMC or TNC Client […] MUST ignore vendor-specific
functions that it does not understand. (IF-IMC section
3.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-7-M] The vendor ID is converted to ASCII numbers or the
equivalent, using a decimal representation whose initial
digit MUST NOT be zero (0). (IF-IMC section 3.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-8-M] The TNCC MUST be reentrant (able to receive and
process a function call even when one is already
underway). (IF-IMC section 3.3)

[CTNC-IFIMC1.1-TNCC-REQ-9-M] IMC DLLs are not required to be reentrant. Therefore,
the TNC Client MUST NOT call an IMC DLL from a
callback function (like TNC_TNCC_SendMessage) [...].
(IF-IMC section 3.3)

[CTNC-IFIMC1.1-TNCC-REQ-10-M] [For the network connection state value,] the TNCC
MUST pass one of the values listed in section 3.5.3. The
TNCC MUST NOT use any other network connection

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 12 of 29
29 January 2008 TCG PUBLISHED

state value with this version of the IF-IMC API. (IF-IMC
section 3.4.2.3)

The TNC Client calls this function
[TNC_IMC_NotifyConnectionChange] to inform the IMC
that the state of the network connection identified by
connectionID has changed to newState. Section 3.5.41
lists all the possible values of newState for this version.
The TNCC MUST NOT use any other values with this
version of IF-IMC (IF-IMC Section 3.7.2)

The newState parameter (passed in to
TNC_IMC_NotifyConnectionChange function) MUST
contain one of the values in section 3.5.42.

 [Section 3.5.4 Network Connection State Values: The
complete set of permissible values for the
TNC_Connection_State type includes:
TNC_CONNECTION_STATE_CREATE,
TNC_CONNECTION_STATE_HANDSHAKE,
TNC_CONNECTION_STATE_ACCESS_ALLOWED,
TNC_CONNECTION_STATE_ACCESS_ISOLATED,
TNC_CONNECTION_STATE_ACCESS_NONE, and
TNC_CONNECTION_STATE_DELETE]

[CTNC-IFIMC1.1-TNCC-REQ-11-M] TNC Clients and TNC Servers MUST properly deliver
messages with any message type (as described in
section 2.7.4). (IF-IMC section 3.4.2.5) [Note that this
requirement contradicts [CTNC-IFIMC1.1-TNCC-REQ-
12-M] and [CTNC-IFIMC1.1-TNCC-REQ-13-M]. The
TNC-WG has decided to resolve this conflict by
changing this requirement to say that “TNC Clients and
TNC Servers MUST properly deliver messages with any
message type that does not include a wild card”. This
change will be made in future versions of the IF-IMC
specification.]

[CTNC-IFIMC1.1-TNCC-REQ-12-M] The message type TNC_VENDORID_ANY (0xffffff) is
reserved as a wild card as described in section 3.8.1.
IMCs may request messages with this vendor ID to
indicate that they want to receive messages whose
message type includes any vendor ID. However, an IMC
MUST NOT send messages whose message type
includes this reserved value and a TNCC MUST NOT
deliver such messages. (IF-IMC section 3.4.2.7)

[CTNC-IFIMC1.1-TNCC-REQ-13-M] The message subtype TNC_SUBTYPE_ANY (0xff) is
reserved as a wild card as described in section 3.8.1.
IMCs may request messages with this message subtype
to indicate that they want to receive messages whose
message subtype has any value. However, an IMC
MUST NOT send messages whose message subtype
includes this reserved value and a TNCC MUST NOT
deliver such messages. (IF-IMC section 3.4.2.8)

1 IF-IMC v1.1 specification references section 3.5.3. However, section 3.5.4 lists the complete set
of permissible values for TNC_Connection_State type.
2 IF-IMC v1.1 specification references section 3.5.3. However, section 3.5.4 lists the complete set
of permissible values for TNC_Connection_State type.

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 13 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-TNCC-REQ-14-M] IMCs and TNCCs MUST be prepared for any function to
return any result code. (IF-IMC section 3.4.2.10 and
3.5.1)

[CTNC-IFIMC1.1-TNCC-REQ-15-M] The reserved value TNC_CONNECTIONID_ANY MUST
NOT be used as a normal network connection ID.
Instead, it may be passed to
TNC_TNCC_RequestHandshakeRetry to indicate that
handshake retry is requested for all current network
connections. (IF-IMC section 3.5.3)

[CTNC-IFIMC1.1-TNCC-REQ-16-M] Some of the functions in the IF-IMC API are marked as
mandatory below. Mandatory [IF-IMC API] functions
MUST be implemented. (IF-IMC section 3.6)

[CTNC-IFIMC1.1-TNCC-REQ-17-M] An IMC or TNC Client MUST work properly if one or
more optional [IF-IMC API] functions are not
implemented by the other party. (IF-IMC section 3.6)

[CTNC-IFIMC1.1-TNCC-REQ-18-M] The TNC Client MUST NOT call any other IF-IMC API
functions for an IMC until it has successfully completed a
call to TNC_IMC_Initialize() (IF-IMC Section 3.7.1)

a. [Windows Platform Binding] The TNCC MUST always
call the TNC_IMC_Initialize function first. (IF-IMC
Section 4.1.1)

b. [UNIX/Linux Platform Binding] The TNCC MUST always
call the TNC_IMC_Initialize function first. (IF-IMC
Section 4.2.1)

[CTNC-IFIMC1.1-TNCC-REQ-19-M] Once a call to this function [TNC_IMC_Initialize]
completed successfully, this function MUST NOT be
called again for a particular IMC-TNCC pair until a call to
TNC_IMC_Terminate has completed successfully. (IF-
IMC Section 3.7.1)

[CTNC-IFIMC1.1-TNCC-REQ-20-M] The TNC Client MUST set minVersion to the minimum
IF-IMC API version number that it supports (IF-IMC
Section 3.7.1.)

[CTNC-IFIMC1.1-TNCC-REQ-21-M] The TNC Client MUST set maxVersion to the maximum
API version number that it supports. (IF-IMC Section
3.7.1)

[CTNC-IFIMC1.1-TNCC-REQ-22-M] The TNC Client also MUST set pOutActualVersion so
that the IMC can use it as an output parameter to
provide the actual API version number to be used. With
the C binding, this would involve setting
pOutActualVersion to point to a suitable storage location.
(IF-IMC Section 3.7.1)

[CTNC-IFIMC1.1-TNCC-REQ-23-M] The imcID parameter (passed in to
TNC_IMC_NotifyConnectionChange function) MUST
contain the IMC ID value provided to
TNC_IMC_Initialize. (IF-IMC Section 3.7.2)

[CTNC-IFIMC1.1-TNCC-REQ-24-M] The connectionID parameter (passed in to
TNC_IMC_NotifyConnectionChange function) MUST
contain a valid network connection ID. (IF-IMC Section
3.7.2)

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 14 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-TNCC-REQ-25-M] The imcID parameter [passed in to the
TNC_IMC_BeginHandshake function] MUST contain the
IMC ID value provided to TNC_IMC_Initialize. (IF-IMC
Section 3.7.3)

[CTNC-IFIMC1.1-TNCC-REQ-26-M] The connectionID parameter [passed in to the
TNC_IMC_BeginHandshake function] MUST contain a
valid network connection ID. (IF-IMC Section 3.7.3)

[CTNC-IFIMC1.1-TNCC-REQ-27-M] [TNC_IMC_ReceiveMessage is an optional function] The
imcID parameter [passed into
TNC_IMC_ReceiveMessage function] MUST contain the
IMC ID value provided to TNC_IMC_Initialize. (IF-IMC
Section 3.7.4)

[CTNC-IFIMC1.1-TNCC-REQ-28-M] [TNC_IMC_ReceiveMessage is an optional function] The
connectionID parameter [passed into the
TNC_IMC_ReceiveMessage function] MUST contain a
valid network connection ID. (IF-IMC Section 3.7.4)

[CTNC-IFIMC1.1-TNCC-REQ-29-M] [TNC_IMC_ReceiveMessage is an optional function] The
message parameter [passed into
TNC_IMC_ReceiveMessage function] MUST contain a
reference to a buffer containing the message being
delivered to the IMC. (IF-IMC Section 3.7.4)

[CTNC-IFIMC1.1-TNCC-REQ-30-M] [TNC_IMC_ReceiveMessage is an optional function] The
messageLength parameter [passed into
TNC_IMC_ReceiveMessage function] MUST contain the
number of octets in the message. (IF-IMC Section 3.7.4)

[CTNC-IFIMC1.1-TNCC-REQ-31-M] [TNC_IMC_ReceiveMessage is an optional function] The
messageType parameter [passed into
TNC_IMC_ReceiveMessage function] MUST contain the
type of the message. It MUST match one of the
TNC_MessageType values previously supplied by the
IMC to the TNCC in the IMC’s most recent call to
TNC_TNCC_ReportMessageTypes. (IF-IMC Section
3.7.4)

[CTNC-IFIMC1.1-TNCC-REQ-32-M] [The TNC_IMC_ReceiveMessage is an optional function]
The TNC Client calls this function
[TNC_IMC_ReceiveMessage] to deliver a message to
the IMC. The message is contained in the buffer
referenced by message and contains the number of
octets (bytes) indicated by messageLength. The type of
message is indicated by messageType. The message
MUST be from an IMV (or a TNCS or other party acting
as an IMV). (IF-IMC Section 3.7.4) [Note that compliance
with this requirement is hard to test.]

[CTNC-IFIMC1.1-TNCC-REQ-33-M] [TNC_IMC_BatchEnding is an optional function.] The
imcID parameter [passed to the TNC_IMC_BatchEnding
function] MUST contain the IMC ID value provided to
TNC_IMC_Initialize. (IF-IMC Section 3.7.5)

[CTNC-IFIMC1.1-TNCC-REQ-34-M] [TNC_IMC_BatchEnding is an optional function.] The
connectionID parameter [passed to the
TNC_IMC_BatchEnding function] MUST contain a valid
network connection ID. (IF-IMC Section 3.7.5)

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 15 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-TNCC-REQ-35-M] [TNC_IMC_Terminate is an optional function.] The TNC
Client calls this function to close down the IMC when all
work is complete or the IMC reports
TNC_RESULT_FATAL. Once a call to
TNC_IMC_Terminate is made, the TNC Client MUST
NOT call the IMC except to call TNC_IMC_Initialize
(which may not succeed if the IMC cannot reinitialize
itself). (IF-IMC Section 3.7.6)

[CTNC-IFIMC1.1-TNCC-REQ-36-M] [TNC_IMC_Terminate is an optional function.] The imcID
parameter [passed to the TNC_IMC_Terminate function]
MUST contain the IMC ID value provided to
TNC_IMC_Initialize. (IF-IMC Section 3.7.6)

[CTNC-IFIMC1.1-TNCC-REQ-37-M] An IMC calls this function
[TNC_TNCC_ReportMessageTypes] to inform a TNCC
about the set of message types the IMC is able to
receive. All TNC Clients MUST implement this function
(IF-IMC Section 3.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-38-M] The TNC Client MUST NOT ever modify the list of
message types [passed to
TNC_TNCC_ReportMessageTypes]. (IF-IMC Section
3.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-39-M] The TNC Client MUST NOT access [the list of message
types passed to TNC_TNCC_ReportMessageTypes]
after TNC_TNCC_ReportMessageTypes has returned.
(IF-IMC Section 3.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-40-M] TNC Clients MUST support any message type [for the
TNC_TNCC_ReportMessageTypes function]. (IF-IMC
Section 3.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-41-M] An IMC calls this function
[TNC_TNCC_ReportMessageTypes] to inform a TNCC
about the set of message types the IMC is able to
receive. Note that although all TNC Clients must
implement this function, some IMCs may never call it if
they don’t support receiving any message types. This is
acceptable. In such a case, the TNC Client MUST NOT
deliver any messages to the IMC. (IF-IMC Section 3.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-42-M] All TNC Clients MUST implement this function
[TNC_TNCC_SendMessage] (IF-IMC Section 3.8.2)

[CTNC-IFIMC1.1-TNCC-REQ-43-M] The TNC Client MUST NOT ever modify the buffer
contents [passed to TNC_TNCC_SendMessage] (IF-
IMC Section 3.8.2)

[CTNC-IFIMC1.1-TNCC-REQ-44-M] The TNC Client MUST NOT access the buffer [passed to
TNC_TNCC_SendMessage] after
TNC_TNCC_SendMessage has returned (IF-IMC
Section 3.8.2)

[CTNC-IFIMC1.1-TNCC-REQ-45-M] The TNC Client MUST support any message type [for
the function TNC_TNCC_SendMessage]. (IF-IMC
Section 3.8.2)

[CTNC-IFIMC1.1-TNCC-REQ-46-M] [Windows Platform Binding] IMC DLLs are not required
to be thread-safe. Therefore, the TNC Client MUST NOT

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 16 of 29
29 January 2008 TCG PUBLISHED

call an IMC DLL from one thread when another TNC
Client thread is in the middle of a call to the same IMC
DLL. (IF-IMC Section 4.1.3)

a. [UNIX/Linux Platform Binding] IMC executable files are
not required to be thread-safe. Therefore, the TNC Client
MUST NOT call an IMC from one thread when another
TNC Client thread is in the middle of a call to the same
IMC. (IF-IMC Section 4.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-47-M] [Windows Platform Binding] The IMC DLL MAY create
threads. The TNC Client MUST be thread-safe. (IF-IMC
Section 4.1.3)

a. [UNIX/Linux Platform Binding] The IMC MAY create
threads. The TNC Client MUST be thread-safe. (IF-IMC
Section 4.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-48-M] [Windows Platform Binding] IMCs implementing the
Microsoft Windows DLL platform binding MUST define
this additional platform-specific function
[TNC_IMC_ProvideBindFunction]. The TNC Client
MUST call this function immediately after calling
TNC_IMC_Initialize to provide a pointer to the TNCC
bind function. (IF-IMC Section 4.1.7.1)

[CTNC-IFIMC1.1-TNCC-REQ-49-M] [Windows Platform Binding] The imcID parameter
[passed to the TNC_IMC_ProvideBindFunction function]
MUST contain the value provided to TNC_IMC_Initialize.
(IF-IMC Section 4.1.7.1)

[CTNC-IFIMC1.1-TNCC-REQ-50-M] [Windows Platform Binding] The bindFunction parameter
[passed to the TNC_IMC_ProvideBindFunction function]
MUST contain a pointer to the TNCC bind function. (IF-
IMC Section 4.1.7.1)

[CTNC-IFIMC1.1-TNCC-REQ-51-M] [Windows Platform Binding] The Microsoft Windows DLL
platform binding for the IF-IMC API defines one
additional function that MUST be implemented by TNC
Clients implementing this platform binding. (IF-IMC
Section 4.1.8)

a. TNC Clients implementing the Microsoft Windows DLL
platform binding MUST define this additional platform-
specific function [TNC_TNCC_BindFunction]. (IF-IMC
Section 4.1.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-52-M] [Windows Platform Binding] [The IMC MUST set the
pOutFunctionPointer parameter [passed to the
TNC_TNCC_BindFunction function] to a pointer to
storage into which the desired function pointer will be
stored.] If the TNCC does not define the requested
function, NULL MUST be stored at pOutFunctionPointer.
Otherwise, a pointer to the requested function MUST be
stored at pOutFunctionPointer. (IF-IMC Section 4.1.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-53-M] [Windows Platform Binding] Once an IMC obtains a
pointer to a particular function [through
TNC_TNCC_BindFunction], the TNCC MUST always
return the same function pointer value to that IMC for
that function name. (IF-IMC Section 4.1.8.1)

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 17 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-TNCC-REQ-54-M] [Windows Platform Binding] A well-known registry key is
used by the TNCC to load IMCs. […] Additional values
or keys may be present within the keys listed above. […]
TNC Clients and IMCs MUST ignore unrecognized
values and keys. (IF-IMC Section 4.1.9)

[CTNC-IFIMC1.1-TNCC-REQ-55-M] [UNIX/Linux Platform Binding] Both the IMC and the
TNC Client MUST use POSIX threads (pthreads) for
threading and synchronization to ensure compatibility.
(IF-IMC Section 4.2.4)

[CTNC-IFIMC1.1-TNCC-REQ-56-M] [UNIX/Linux Platform Binding] The TNC Client MUST
call the [TNC_IMC_ProvideBindFunction] function
immediately after calling TNC_IMC_Initialize to provide a
pointer to the TNCC bind function. (IF-IMC Section
4.2.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-57-M] [UNIX/Linux Platform Binding] The imcID parameter
[passed to the TNC_IMC_ProvideBindFunction function]
MUST contain the value provided to TNC_IMC_Initialize.
(IF-IMC Section 4.2.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-58-M] [UNIX/Linux Platform Binding] The bindFunction
parameter [passed to the
TNC_IMC_ProvideBindFunction function] MUST contain
a pointer to the TNCC bind function. (IF-IMC Section
4.2.8.1)

[CTNC-IFIMC1.1-TNCC-REQ-59-M] [UNIX/Linux Platform Binding] The UNIX/Linux Dynamic
Linkage platform binding for the IF-IMC API defines one
additional function that MUST be implemented by TNC
Clients implementing this platform binding. (IF-IMC
Section 4.2.9)

a. [UNIX/Linux Platform Binding] TNC Clients implementing
the UNIX/Linux Dynamic Linkage platform binding MUST
define this additional platform-specific function
[TNC_TNCC_BindFunction]. (IF-IMC Section 4.2.9.1)

[CTNC-IFIMC1.1-TNCC-REQ-60-M] [UNIX/Linux Platform Binding] An IMC can use this
function [TNC_TNCC_BindFunction] to obtain pointers to
other TNCC functions. The IMC MUST set the
pOutFunctionPointer parameter to a pointer to storage
into which the desired function pointer will be stored. If
the TNCC does not define the requested function, NULL
MUST be stored at pOutFunctionPointer. Otherwise, a
pointer to the requested function MUST be stored at
pOutFunctionPointer.

3.3 Other Requirements

Requirements listed in this section are requirements for neither IMC nor TNCC. They are listed
here for completeness. However, they are out of scope and we will not provide test cases.

[CTNC-IFIMC1.1-OTHER-1-M] [UNIX/Linux Platform Binding] A line that begins with “IMC”
(U+0049, U+004D, U+0043, U+0020) specifies an IMC that may
be loaded. The next character MUST be U+0022 (QUOTATION
MARK). This MUST be followed by a human-readable IMC name

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 18 of 29
29 January 2008 TCG PUBLISHED

(potentially zero length) and another U+0022 character
(QUOTATION MARK). Of course, the IMC name cannot contain
a U+0022 (QUOTATION MARK). But it can contain spaces or
other characters.

After the U+0022 that terminates the human-readable name
MUST come a space (U+0020) and then the full path of the IMC
executable file (up to but not including the U+000A that
terminates the line).

The path to the IMC executable file MUST NOT be a partial path.
(IF-IMC Section 4.2.3)

This requirement is Installer’s requirement, which is out of scope
for this document. No test case will be provided for this
requirement.

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 19 of 29
29 January 2008 TCG PUBLISHED

4 Test Cases
This section lists a test case for each requirement in the preceding section.

4.1 Test Cases for IF-IMC Compliance Test for IMCs
There are several asynchronous actions that an IMC may initiate and which the test program
must be capable of handling during all normative test cases. For example, an IMC may attempt a
handshake retry at anytime based on conditions outside the test program’s control. The test
program must handle IMC asynchronous actions appropriately and ensure the IMC is generating
correct data/messages/etc. for the given action.

The following is the list of asynchronous actions and validation requirements for the test program:

[CTNC-IFIMC1.1-IMC-AA-1] Once loaded and initialized, an IMC may initiate a handshake
retry at anytime and the test program must have code that
verifies that the IMC under test only uses valid imcID, connection
ID, and handshake retry reason values and no others. This entry
covers the following IMC requirements: [CTNC-IFIMC1.1-IMC-
REQ-12-M] and [CTNC-IFIMC1.1-IMC-REQ-32-M].

[CTNC-IFIMC1.1-IMC-AA-2] Once loaded and initialized, an IMC can send messages at
anytime and the test program must have code that detects if the
IMC under test ever sends messages with reserved message
type values where NOT allowed. This entry covers the following
IMC requirements: [CTNC-IFIMC1.1-IMC-REQ-13-M], [CTNC-
IFIMC1.1-IMC-REQ-14-M], [CTNC-IFIMC1.1-IMC-REQ-15-M]
and [CTNC-IFIMC1.1-IMC-REQ-31-M].

[CTNC-IFIMC1.1-IMC-AA-3] Once loaded and initialized, an IMC uses a network connection
ID when communicating with the TNCC. The test program that
loads IMCs will contain code to detect if the IMC under test ever
uses the reserved value for the network connection ID, other
than in the instance a handshake retry is being requested for all
current network connections. This entry covers the following IMC
requirements: [CTNC-IFIMC1.1-IMC-REQ-17-M] and [CTNC-
IFIMC1.1-IMC-REQ-29-M].

[CTNC-IFIMC1.1-IMC-AA-4] The receive message function passes content to an IMC via
receive message buffer. The test program that loads IMCs will
contain code to verify that the contents of the receive message
buffer are unmodified on return of the receive message function.
The test program will also include code to detect if the IMC under
test ever attempts to access the contents of the receive message
buffer after the IMC returns from the receive message function.
This test case covers the following IMC requirements: [CTNC-
IFIMC1.1-IMC-REQ-25-M] and [CTNC-IFIMC1.1-IMC-REQ-26-
M].

The following is the set of normative test cases the test program must support, unless otherwise
noted.

[CTNC-IFIMC1.1-IMC-TC-1] The test program that loads the IMC under test will iterate
through all the functions defined by the IMC and ensure that
each of these is either an IMC function defined in the IF-IMC 1.1

specification or has a name that begins with “TNC_XXX_” where

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 20 of 29
29 January 2008 TCG PUBLISHED

XXX is a valid vendor ID (composed of ASCII numbers using a

decimal representation whose initial digit is not zero). This test
case is for the following IMC requirements: [CTNC-IFIMC1.1-
IMC-REQ-1-M] and [CTNC-IFIMC1.1-IMC-REQ-7-M].

[CTNC-IFIMC1.1-IMC-TC-2] Several instances of the test program that loads IMCs will be
created on the same machine. These several instances will load
the IMC under test and verify that it works properly when the test
program instances use the same connection ID for different
connections. This test case is for the following IMC
requirement:[CTNC-IFIMC1.1-IMC-REQ-2-M].

[CTNC-IFIMC1.1-IMC-TC-3] The test program that loads the IMV will load two copies of the
IMV so that two copies of each IMV message will be sent to the
IMC under test. The IMC may create a log entry noting these
duplicate messages, ignore them, display an error, or take any
other action allowed under the specification. But the IMC must
follow the IF-IMC specification and must not crash. This test
case is for the following IMC requirement:[CTNC-IFIMC1.1-IMC-
REQ-3-M].

[CTNC-IFIMC1.1-IMC-TC-4] The test program that loads the IMC will implement no vendor-
specific functions. The IMC must follow the IF-IMC specification
and must not crash. This test case is for the following IMC
requirement:[CTNC-IFIMC1.1-IMC-REQ-5-M].

[CTNC-IFIMC1.1-IMC-TC-5] The test program that loads the IMC will implement some extra
vendor-specific functions that the IMC does not understand. The
IMC must follow the IF-IMC specification and must not crash.
This test case is for the following IMC requirement:[CTNC-
IFIMC1.1-IMC-REQ-6-M].

[CTNC-IFIMC1.1-IMC-TC-6] Several instances of the test program that loads IMCs will be
created on the same machine. These several instances will load
the IMC under test and verify that it works properly when the test
programs issue overlapping calls to the IMC. This test case is
for the following IMC requirement:[CTNC-IFIMC1.1-IMC-REQ-8-
M].

[CTNC-IFIMC1.1-IMC-TC-7] The test program that loads IMCs will try loading the IMC several
times with different IMC ID values (including edge cases like 0,
1, and the maximum TNC_UInt32 value) and verify that the IMC
functions properly with all of these values. This test case is for
the following IMC requirement: [CTNC-IFIMC1.1-IMC-9-M].

[CTNC-IFIMC1.1-IMC-TC-8] The test program that loads IMCs will run a handshake retry and
verify that the IMC under test functions properly during this
handshake retry (in particular, that it sends messages during the
initial round of the handshake retry if it sent them in the initial
round of the initial handshake and that it does not crash or
hang). This test case is for the following IMC
requirement:[CTNC-IFIMC1.1-IMC-REQ-10-M].

[CTNC-IFIMC1.1-IMC-TC-9] The test program that loads IMCs will run a TNC handshake with
a particular connection ID. When this handshake is finished, it
will delete the connection ID and then reuse the same ID for a
subsequent handshake. It will verify that the IMC under test
functions properly during the second handshake (in particular,
that it sends messages during the initial round of the second
handshake if it sent them in the initial round of the initial

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 21 of 29
29 January 2008 TCG PUBLISHED

handshake and that it does not crash or hang). This test case is
for the following IMC requirement:[CTNC-IFIMC1.1-IMC-REQ-
11-M].

[CTNC-IFIMC1.1-IMC-TC-10] The test program that loads IMCs will return the values of 0x0,
0xFFFFFFFF, and 0xA as result codes during individual calls for
each of the three TNCC functions used by the IMC, as noted
below.

TNC_TNCC_ReportMessageTypes()
TNC_TNCC_SendMessage()
TNC_TNCC_RequestHandshakeRetry()

With the Windows DLL binding and the UNIX/Linux binding,
TNC_TNCC_BindFunction() will also behave in this manner.

This test case is for the following IMC requirement: [CTNC-
IFIMC1.1-IMC-REQ-16-M].

[CTNC-IFIMC1.1-IMC-TC-11] The test program that loads IMCs will iterate through all IF-IMC
API functions that are mandatory for the IMC to implement
(TNC_IMC_Initialize and TNC_IMC_BeginHandshake) and verify
that the IMC under test implements these functions. This test
case is for the following IMC requirements: [CTNC-IFIMC1.1-
IMC-REQ-18-M], [CTNC-IFIMC1.1-IMC-REQ-20-M], [CTNC-
IFIMC1.1-IMC-REQ-24-M].

[CTNC-IFIMC1.1-IMC-TC-12] The test program that loads IMCs will iteratively call the IMC’s
initialization function with the following (minimum, maximum)
version value pairings: (1,1), (1,2), (2,2), and (1, MAX_UINT32).
The test program will verify that the IMC under test always
returns a valid value, consisting either of the API version it does
support or the no common version result code. This test case is
for the following IMC requirement: [CTNC-IFIMC1.1-IMC-REQ-
21-M] and [CTNC-IFIMC1.1-IMC-REQ-22-M].

[CTNC-IFIMC1.1-IMC-TC-13] The test program that loads IMCs will contain code to detect if
the IMC under test ever uses network connection ID values that
are in a delete state. This test case is for the following IMC
requirement: [CTNC-IFIMC1.1-IMC-REQ-23-M].

[CTNC-IFIMC1.1-IMC-TC-14] The test case for [CTNC-IFIMC1.1-IMC-20-M] will be expanded
by having the code in the test program detect if the IMC under
test ever attempts to use a different imcID value, with the send
message function, different from what was given in the
initialization function. This test case is for the following IMC
requirement:[CTNC-IFIMC1.1-IMC-REQ-27-M].

[CTNC-IFIMC1.1-IMC-TC-15] The test program that loads IMCs will contain code to detect if
the IMC under test ever uses an invalid connection ID value with
the send message function. This test case is for the following
IMC requirement: [CTNC-IFIMC1.1-IMC-REQ-29-M].

[CTNC-IFIMC1.1-IMC-TC-16] The test program that loads IMCs will contain code to detect if
the IMC under test ever attempts to call the send message
function for a connection for which the IMC is not servicing a
begin handshake, receive message, or batch ending function call
and has yet to return. This test case is for the following IMC
requirement:[CTNC-IFIMC1.1-IMC-REQ-30-M].

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 22 of 29
29 January 2008 TCG PUBLISHED

[CTNC-IFIMC1.1-IMC-TC-17] Several instances of the test program for Windows that loads
IMCs will be created on the same machine. These several
instances will load the IMC under test, issue overlapping calls to
the IMC and verify proper operation. This test case is for the
following IMC requirement:[CTNC-IFIMC1.1-IMC-REQ-33-M].

[CTNC-IFIMC1.1-IMC-TC-18] The test program(s) for UNIX/Linux or Windows that loads IMCs
will call the IMC’s TNC_IMC_ProvideBindFunction() to validate
that it has been implemented. This test case is for the following
IMC requirements: [CTNC-IFIMC1.1-IMC-REQ-34-M].

[CTNC-IFIMC1.1-IMC-TC-19] The test program for Windows that loads IMCs will have code to
verify that the IMC under test uses the same imcID value in the
TNCC platform bind function call as what was originally given to
the IMC in the initialization function. This test case is for the
following IMC requirement:[CTNC-IFIMC1.1-IMC-REQ-35-M].

[CTNC-IFIMC1.1-IMC-TC-20] The test program(s) for Windows or UNIX/Linux that loads IMCs
will have code to verify that the IMC under test always sends a
valid function name string that conforms to the “TNC_TNCC_” or
“TNC_XXX_” format (where XXX is a vendor ID) when the IMC
calls the TNCC platform bind function. This test case is for the
following IMC requirements:[CTNC-IFIMC1.1-IMC-REQ-36-M].

[CTNC-IFIMC1.1-IMC-TC-21] The test program(s) for Windows or UNIX/Linux that loads IMCs
will have code to verify that an IMC always passes function
pointer storage when the IMC calls the TNCC platform bind
function. Verification of function pointer storage can be done by
verifying that function pointer is not NULL and then attempting to
store a function pointer at the location pointed to. This test case
is for the following IMC requirement: [CTNC-IFIMC1.1-IMC-REQ-
37-M].

[CTNC-IFIMC1.1-IMC-TC-22] The test program for Windows that loads IMCs will populate the
well known registry location with optional values and verify that
an IMC ignores unknown optional values correctly and loads
without hanging or crashing. This test case is for the following
IMC requirement :[CTNC-IFIMC1.1-IMC-REQ-38-M].

[CTNC-IFIMC1.1-IMC-TC-23] If the UNIX/Linux IMC under test is multi-threaded, the operator
will run ‘ldd’ against the IMC’s .so file. The output from ‘ldd’ will
be searched for the inclusion of the string “pthread”, which is
indicative of compliancy. This test case is for the following IMC
requirement: [CTNC-IFIMC1.1-IMC-REQ-39-M].

The following test is case is optional for the test program to support, but highly recommended.

[CTNC-IFIMC1.1-IMC-TC-24] Optional: Operator will initiate a handshake retry on the IMC
under test and the test program will verify that the IMC only uses
valid handshake retry reason values and no others. This test
case is for the following IMC requirements: [CTNC-IFIMC1.1-
IMC-REQ-12-M] and [CTNC-IFIMC1.1-IMC-REQ-31-M].

Notes:

 There is no test case for requirement [CTNC-IFIMC1.1-IMC-REQ-19-M] as there are no
optional to implement IF-IMC API functions currently defined in TNC standards.

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 23 of 29
29 January 2008 TCG PUBLISHED

 No test cases are needed for requirement [CTNC-IFIMC1.1-IMC-REQ-4-M] because all
platform bindings defined in the IF-IMC 1.1 specification include Dynamic Function
Binding..

4.2 Test Cases for IF-IMC Compliance Test for TNCCs
There are several asynchronous actions that an TNCC may initiate and which the test program
must be capable of handling during all normative test cases. The test program must handle
TNCC asynchronous actions appropriately and ensure the TNCC is generating correct
data/messages/etc. for the given action.

The following is the list of asynchronous actions and validation requirements for the test program:

[CTNC_IFIMC1.1-TNCC-AA-1] The test IMC will contain code to detect if the TNC Client ever
calls the test IMC from a callback function. This entry is for the
following TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-9-
M].

[CTNC_IFIMC1.1-TNCC-AA-2] Once loaded and initialized, an IMC uses a network connection
ID when communicating with the TNCC. The test IMC will
contain code to detect if the TNCC under test ever uses an
invalid network connection ID (such as
TNC_CONNECTION_ANY or connection ID whose state is
deleted). The test IMC verifies that the imcID parameter passed
by the TNCC is the IMC ID value provided to
TNC_IMC_Initialize. This entry covers the following TNCC
requirements:[CTNC-IFIMC1.1-TNCC-REQ-15-M], [CTNC-
IFIMC1.1-TNCC-REQ-24-M], [CTNC-IFIMC1.1-TNCC-REQ-25-
M], [CTNC-IFIMC1.1-TNCC-REQ-26-M], [CTNC-IFIMC1.1-
TNCC-REQ-27-M], [CTNC-IFIMC1.1-TNCC-REQ-28-M],
[CTNC-IFIMC1.1-TNCC-REQ-33-M], [CTNC-IFIMC1.1-TNCC-
REQ-34-M], [CTNC-IFIMC1.1-TNCC-REQ-36-M], [CTNC-
IFIMC1.1-TNCC-REQ-49-M] and [CTNC-IFIMC1.1-TNCC-REQ-
57-M].

[CTNC_IFIMC1.1-TNCC-AA-3] The test IMC will have code to detect if the TNCC under test
ever calls any IF-IMC API function before successfully
completing a call to TNC_IMC_Initialize. This entry is for the
following TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-18-
M].

[CTNC_IFIMC1.1-TNCC-AA-4] The test IMC will have code to detect if the TNCC under test
ever calls TNC_IMC_Initialize again after having called it
successfully before, unless TNC_IMC_Terminate() has
completed successfully. This entry is for the following TNCC
requirement:[CTNC-IFIMC1.1-TNCC-REQ-19-M].

[CTNC_IFIMC1.1-TNCC-AA-5] The test IMC will have to detect if the TNCC under test ever
advertises an invalid or incorrect minVersion and maxVersion
argument with TNC_IMC_Initialize. This entry is for the following
TNCC requirements: [CTNC-IFIMC1.1-TNCC-REQ-20-M]and
[CTNC-IFIMC1.1-TNCC-REQ-21-M].

[CTNC_IFIMC1.1-TNCC-AA-6] The test IMC will have code to verify that a TNCC always passes
valid function pointer storage in pOutActualVersion when the
TNCC calls the IMC initialization function TNC_IMC_Initialize.
Verification of function pointer storage can be done by verifying
that function pointer is not NULL. This entry is for the following
TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-22-M]

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 24 of 29
29 January 2008 TCG PUBLISHED

[CTNC_IFIMC1.1-TNCC-AA-7] The test IMC will have code to verify that a TNCC always when
calling the TNC_IMC_NotifyConnection function:

(a) Uses a valid newState parameter value , namely one of the
values listed in section 3.5.4.

This entry is for the following TNCC requirements: [CTNC-
IFIMC1.1-TNCC-REQ-10-M] [CTNC-IFIMC1.1-TNCC-REQ-23-
M].

[CTNC_IFIMC1.1-TNCC-AA-8] The test IMC will have code to verify that always when a TNCC
is calling the [optional] TNC_IMC_ReceiveMessage() function:

(a) message parameter contains a valid reference (e.g. memory
pointer) to the buffer containing the message being delivered to
the test IMC. If messageLength parameter is not zero,
verification of message buffer can be done by verifying that
message pointer is not NULL and then attempting to read
messageLength octets from the location pointed to.

(b) messageLength parameters contains the number of octets in
the message. If messageLength parameter is not zero,
verification of this parameter can be done by reading
messageLength octets from location pointed by message buffere
reference.

(c) messageType parameter contains the type of message and
matches one of the TNC_MessageType values previously
supplied by the IMC to the TNCC in the IMC’s most recent call to
TNC_TNCC_ReportMessageTypes.

This entry is for the following TNCC requirements: [CTNC-
IFIMC1.1-TNCC-REQ-29-M], [CTNC-IFIMC1.1-TNCC-REQ-30-
M] and [CTNC-IFIMC1.1-TNCC-REQ-31-M]

[CTNC_IFIMC1.1-TNCC-AA-9] The test IMC will have code to verify that a TNCC never calls
any IMC function other than TNC_IMC_Initialize after calling the
[optional] TNC_IMC_Terminate function. This entry is for the
following TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-35-
M].

[CTNC_IFIMC1.1-TNCC-AA-10] The test IMC will have the capability to detect if the TNCC under
test ever attempts to access or modify the message type list after
TNC_TNCC_ReportMessageTypes has returned. One method
for performing the validation is to use protected memory. This
entry is for the following TNCC requirement:[CTNC-IFIMC1.1-
TNCC-REQ-38-M] and [CTNC-IFIMC1.1-TNCC-REQ-39-M].

[CTNC_IFIMC1.1-TNCC-AA-11] The test IMC will have the capability to detect if the TNCC under
test ever attempts to access or modify the buffer after
TNC_TNCC_SendMessage has returned. One method for
performing this validation is to use protected memory. This entry
is for the following TNCC requirement: [CTNC-IFIMC1.1-TNCC-
REQ-43-M] and [CTNC-IFIMC1.1-TNCC-REQ-44-M].

[CTNC_IFIMC1.1-TNCC-AA-12] The test IMC program (either the Windows or Unix/Linux
Platform Binding) will have code to detect if the TNCC under test
attempts to call the test IMC from one thread when another
TNCC client thread is in the middle of a call to the test IMC. This
entry is for the following TNCC requirement: [CTNC-IFIMC1.1-
TNCC-REQ-46-M].

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 25 of 29
29 January 2008 TCG PUBLISHED

[CTNC_IFIMC1.1-TNCC-AA-13] [Windows or Unix/Linux Platform Binding] The test IMC program
will have code to validate that the TNCC under test immediately
calls TNC_IMC_ProvideBindFunction after TNC_IMC_Initialize.
This entry is for the following TNCC requirement: [CTNC-
IFIMC1.1-TNCC-REQ-48-M] and [CTNC-IFIMC1.1-TNCC-REQ-
56-M].

[CTNC_IFIMC1.1-TNCC-AA-14] [Windows or Unix/Linux Platform Binding] The test IMC will have
code to verify that a TNCC always when calling the
TNC_IMC_ProvideBindFunction function the bindFunction
parameter contains a pointer to the TNCC bind function.
Verification of this pointer can be performed by checking for a
non-NULL value.

This entry is for the following TNCC requirements: [CTNC-
IFIMC1.1-TNCC-REQ-50-M] and [CTNC-IFIMC1.1-TNCC-REQ-
58-M].

The following is the set of normative test cases the test program must support.

[CTNC-IFIMC1.1-TNCC-TC-1] The test IMC will iterate through all the functions defined by the
TNCC and ensure that each of these is either a TNCC function
defined in the IF-IMC 1.1 specification or has a name that begins

with “TNC_XXX_” where XXX is a valid vendor ID. For the latter

case, the test IMC will verify that the vendor ID is composed of
ASCII numbers using a decimal representation whose initial digit
is not zero. This test case is for the following TNCC
requirement: [CTNC-IFIMC1.1-TNCC-REQ-1-M] and [CTNC-
IFIMC1.1-TNCC-REQ-7-M].

[CTNC-IFIMC1.1-TNCC-TC-2] Several test IMCs will be created. When a connection starts,
these IMCs will check that they all get the same connection ID
for that connection. This test case is for the following TNCC
requirement: [CTNC-IFIMC1.1-TNCC-REQ-2-M].

[CTNC-IFIMC1.1-TNCC-TC-3] The test IMC will send a zero length message and the test IMV
will verify that it is delivered properly. This test case is for the
following TNCC requirement:[CTNC-IFIMC1.1-TNCC-REQ-3-M].

[CTNC-IFIMC1.1-TNCC-TC-4] The test IMC will implement no vendor-specific functions. The
TNCC must follow the IF-IMC specification and must not crash.
This test case is for the following TNCC requirement: [CTNC-
IFIMC1.1-TNCC-REQ-5-M].

[CTNC-IFIMC1.1-TNCC-TC-5] The test IMC will implement some extra vendor-specific functions
that the TNCC does not understand. The TNCC must follow the
IF-IMC specification and must not crash. This test case is for the
following TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-6-
M].

[CTNC-IFIMC1.1-TNCC-TC-6] The test IMC will wait until the TNCC calls
TNC_IMC_BatchEnding. While that call is in progress, the test
IMC will call TNC_TNCC_SendMessage. This test case is for the
following TNCC requirement:[CTNC-IFIMC1.1-TNCC-REQ-8-M]

[CTNC-IFIMC1.1-TNCC-TC-7] The test IMC sends messages whose message types include

boundary message types (0x00000000, 0x000000FE
0x00000100, 0x000001FE, 0xFFFFFE00, 0xFFFFFFFE). The

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 26 of 29
29 January 2008 TCG PUBLISHED

test IMV verifies that all messages are delivered. The test IMV
sends messages whose types include boundary message types
(0x00000000, 0x000000FE, 0x00000100, 0x000001FE,
0xFFFFFE00, 0xFFFFFEFE). The test IMC verifies that all
messages are delivered. This test case is for the following
TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-11-M].

[CTNC-IFIMC1.1-TNCC-TC-8] The test case for the TNCS requirement [CTNC-IFIMC1.1-

TNCC-REQ-11-M] will be expanded. The test IMC sends two
messages including one message whose message type includes
the reserved TNC_VENDORID_ANY (0xFFFFFF). The test IMV
verifies that only one message whose message type does not
include the reserved TNC_VENDORID_ANY (0xFFFFFF) is
received. This test case is expanded so that the test IMC sends
two messages including one message whose message type
includes the reserved TNC_SUBTYPE_ANY (0xFF). The test
IMV verifies that only one message whose message type does
not include the reserved TNC_SUBTYPE_ANY (0xFF) is
received. This test case is for the following TNCC requirement:
[CTNC-IFIMC1.1-TNCC-REQ-12-M] and [CTNC-IFIMC1.1-
TNCC-REQ-13-M].

[CTNC-IFIMC1.1-TNCC-TC-9] The test IMC will return the values of 0x0, 0xFFFFFFFF, and

0xA as result codes during individual calls for each of the six IMC
functions used by the TNCC, as noted below.

TNC_IMC_Initialize()
TNC_IMC_BeginHandshake()
TNC_IMC_NotifyConnectionChange()
TNC_IMC_ReceiveMessage()
TNC_IMC_BatchEnding()
TNC_IMC_Terminate()

The TNCS under test must operate normally without hanging or
crashing. This test case is for the following IMC requirement:
[CTNC-IFIMC1.1-TNCC-REQ-14-M].

[CTNC-IFIMC1.1-TNCC-TC-10] The test IMC will iterate through all mandatory IF-IMC API
functions

TNC_TNCC_ReportMessageTypes,
TNC_TNCC_SendMessage,
TNC_TNCC_RequestHandshakeRetry

and verify that the TNCC under test implements these functions.
This test case is for the following TNCC requirements: [CTNC-
IFIMC1.1-TNCC-REQ-16-M], [CTNC-IFIMC1.1-TNCC-REQ-37-
M] and [CTNC-IFIMC1.1-TNCC-REQ-42-M].

[CTNC-IFIMC1.1-TNCC-TC-11] The test IMC will not register for any messages via the
TNC_TNCC_ReportMessageTypes function. The test IMC will
validate that the TNCC never delivers any messages to it. This
test case is for the following TNCC requirement: [CTNC-
IFIMC1.1-TNCC-REQ-41-M].

[CTNC-IFIMC1.1-TNCC-TC-12] The test IMC (either the Windows or Linux/UNIX Platform
Bindings) will create eight (8) concurrent threads and each
thread will make overlapping calls to the TNCC under test. The

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 27 of 29
29 January 2008 TCG PUBLISHED

test IMC will validate that TNCC under test does not crash, hang,
or return inconsistent results. This test case is for the following
TNCC requirement: [CTNC-IFIMC1.1-TNCC-REQ-47-M]

[CTNC-IFIMC1.1-TNCC-TC-13] [Windows and Unix/Linux Platform Binding] The test IMC will call
TNC_TNCC_BindFunction four (4) times to validate correct
implementation. On the first call the test IMC will set the
functionName parameter to
“TNC_TNCC_ReportMessageTypes”. On the second call the
functionName parameter will be set to
“TNC_TNCC_SendMessage”, On third call the functionName
parameter will be set to “TNC_TNCC_RequestHandshakeRetry”.
On the fourth call the functionName parameter will be set to
“TNC_1234_UndefinedFunction”. For the first three calls the
pOutFunctionPointer is to be validated to be non-NULL, while in
the last call the parameter value should be NULL. This test case
is for the following TNCC requirements: [CTNC-IFIMC1.1-TNCC-
REQ-51-M], [CTNC-IFIMC1.1-TNCC-REQ-52-M], [CTNC-
IFIMC1.1-TNCC-REQ-59-M] and [CTNC-IFIMC1.1-TNCC-REQ-
60-M].

[CTNC-IFIMC1.1-TNCC-TC-14] [Windows Platform Binding] Test case [CTNC-IFIMC1.1-TNCC-
TC-13] will be expanded by repeating it twice and verifying that
the pOutFunctionPointer values returned for each function do
not change between the first and second cycle. This test case is
for the following TNCC requirements: [CTNC-IFIMC1.1-TNCC-
REQ-53-M].

[CTNC-IFIMC1.1-TNCC-TC-15] [Windows Platform Binding] The test IMC will populate the well-
known registry key with the following bogus values and ensure
that the TNCC under test does not crash or hang:

HKEY_LOCAL_MACHINE

 SOFTWARE

  BOGUS_VALUE_1

  TRUSTED COMPUTING GROUP

  BOGUS_VALUE_2

  TNC

  BOGUS_VALUE_3

  IMC

  BOGUS_VALUE_4

This test case is for the following TNCC requirement: [CTNC-
IFIMC1.1-TNCC-REQ-54-M].

[CTNC-IFIMC1.1-TNCC-TC-16] [Unix/Linux Platform Binding] The operator will run ‘ldd’ against
the TNCC’s .so file. The output from ‘ldd’ will be searched for
the inclusion of the string “pthread”, which is indicative of
compliancy. This test case is for the following TNCC
requirement: [CTNC-IFIMC1.1-TNCC-REQ-55-M].

Notes:

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 28 of 29
29 January 2008 TCG PUBLISHED

 There is no test case for requirements [CTNC-IFIMC1.1-TNCC-REQ-4-M] as all platform
bindings defined in the IF-IMC 1.1 specification include Dynamic Function Binding.

 There is no test case for requirements [CTNC-IFIMC1.1-TNCC-REQ-17-M] as there are
no optional to implement IF-IMC API functions currently defined in TNC standards.

 There is no test case for requirement [CTNC-IFIMC1.1-TNCC-REQ-32-M] as it is not
possible in a simple fashion to determine whether a message originated from an IMV.

TCG Compliance_TNC IF-IMC Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.09 Published Page 29 of 29
29 January 2008 TCG PUBLISHED

5 References
This section lists specifications and other documents that are referred to in the document. Since
this document is informative (not normative), all of these references are informative with respect
to this document.

Informative References
[1] Trusted Computing Group, TNC Architecture for Interoperability, Specification Version

1.1, May 2006.

[2] Trusted Computing Group, TNC IF-IMC, Specification Version 1.1, May 2006.

[3] Trusted Computing Group, Compliance_TNC Compliance and Interoperability Principles,
Specification Version 1.0, Draft Specification, October 2006.

