

TCG Compliance_TNC IF-IMV
Compliance Test Plan

Version 1.0
Revision 0.08
29 October 2007
Published

Contact:

admin@trustedcomputinggroup.org

TCG PUBLISHED
Copyright © TCG 2006-2007

mailto:admin@trustedcomputinggroup.org

TCG Compliance_TNC IF-IMV Compliance Test Plan TCG
Copyright
Version 1.0

Revision 0.08 Published Page ii of 27
29 October 2007 TCG PUBLISHED

Copyright © 2006-2007 Trusted Computing Group, Incorporated.

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING
ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. Without limitation, TCG disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation of this
specification, and TCG disclaims all liability for cost of procurement of substitute goods or services, lost
profits, loss of use, loss of data or any incidental, consequential, direct, indirect, or special damages,
whether under contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this
specification or any information herein.

No license, express, implied, by estoppels, or otherwise, to any TCG or TCG member intellectual property
rights is granted herein.

Except that a license is hereby granted by TCG to copy and reproduce this specification for
internal use only.

Contact the Trusted Computing Group at www.trustedcomputinggroup.org for information on specification
licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

TCG Compliance_TNC IF-IMV Compliance Test Plan TCG
Copyright
Version 1.0

Revision 0.08 Published Page iii of 27
29 October 2007 TCG PUBLISHED

Table of Contents

1 Introduction .. 4
1.1 Purpose .. 4
1.2 Intended Audience .. 4

2 Specifications and Components .. 5
2.1 Specifications .. 5
2.2 Components ... 5

3 Specifications Requirements ... 6
3.1 Requirements on IMVs ... 6
3.2 Requirements on TNC Servers .. 11
3.3 Other Requirements ... 17

4 Test Cases ... 19
4.1 Test Cases for IF-IMV Compliance Test for IMVs .. 19
4.2 Test Cases for IF-IMV Compliance Test for TNCSs .. 22

5 References ... 27
Informative References ... 27

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 4 of 27
29 October 2007 TCG PUBLISHED

1 Introduction
This section summarizes the purpose and intended audience for this document.

1.1 Purpose
The purpose of this document is to provide specific requirements for the compliance tests for IF-
IMV v1.1 [2]; in particular, it defines and lists all the compliance test cases that must be passed to
prove Compliance with respect to the IF-IMV v1.1 specification. This document does not contain
any normative statements.

1.2 Intended Audience
The intended audience for this document includes test designers and implementers, as well as
product developers and customers who need to understand the IF-IMV compliance tests.
Readers should be familiar with the TNC Architecture [1], with the Compliance_TNC Compliance
and Interoperability Principles specification [3] and with IF-IMV v1.1.

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 5 of 27
29 October 2007 TCG PUBLISHED

2 Specifications and Components

2.1 Specifications
This document is based on the IF-IMV v1.1 specification [2] and on the Compliance_TNC
Compliance and Interoperability Principles document [3]. The IF-IMV v1.1 specification defines
the IF-IMV interface. The Compliance_TNC Compliance and Interoperability Principles document
provides an overview of the Compliance_TNC testing.

2.2 Components
There are two IF-IMV compliance tests that test the two kinds of components that interface with
IF-IMV: Integrity Measurement Verifiers and TNC Servers.

2.2.1 IF-IMV Compliance Test for Integrity Measurement Verifiers (IMVs)
The IF-IMV Compliance test for Integrity Measurement Verifiers (IMVs) tests that an IMV properly
implements IF-IMV. The Test Target for this test (the component under test) is an IMV.

One difficult aspect of this test is that most IMVs require an active IMC from the same vendor in
order to function properly. Therefore, a test program (a single executable binary) will be
developed that loads a matching IMC and IMV pair then runs through a series of tests with the
IMV, allowing the IMV to communicate with the IMC.

2.2.2 IF-IMV Compliance Test for TNC Servers (TNCSs)
The IF-IMV Compliance test for TNC Servers (TNCSs) tests that a TNCS properly implements IF-
IMV. The Test Target for this test (the component under test) is a TNCS.

To test TNCSs, a test IMV will be developed that exercises the IF-IMV API and verifies that the
TNCS complies with the IF-IMV specification. A matching IMC will also be developed so that the
test IMV has something to talk to.

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 6 of 27
29 October 2007 TCG PUBLISHED

3 Specifications Requirements

The IF-IMV v1.1 specification includes many requirements and recommendations for Integrity
Measurement Verifiers and TNC Servers. This section lists only the requirements since the
compliance tests for IF-IMV only test normative requirements (not recommendations).

This section has two subsections. The first one lists requirements upon Integrity Measurement
Verifiers, which are tested by the IF-IMV compliance test for IMVs. The second one lists
requirements upon TNC Servers, which are tested by the IF-IMV compliance test for TNCSs.

As required by the TCG Compliance and Interoperability Guidelines, each requirement listed
below has a unique name composed of the string “CTNC” (for Compliance_TNC), “IFIMV1.1”
(indicating that these are requirements from IF-IMV v1.1), “IMV” or “TNCS” depending on which
component the requirement applies to, a requirement number unique within the preceding prefix,
and compliance classifier (“M” for MUST, “S” for SHOULD, “O” for OPTIONAL or MAY, “X” for
Expressly Forbidden or MUST NOT). Usage classifiers are not included in requirement names at
this time.

3.1 Requirements on IMVs
[CTNC-IFIMV1.1-IMV-REQ-1-M] Vendor-specific functions MUST have a name that begins with

“TNC_XXX_” where XXX is replaced by the vendor ID of the

organization that defined the extension. (IF-IMV section 2.5
and section 3.2.4)

[CTNC-IFIMV1.1-IMV-REQ-2-M] WARNING: The message routing and delivery algorithm just
described is not a one-to-one model. A single message may
be received by several recipients (for example, two IMVs from
a single vendor, two copies of an IMC, or nosy IMVs that
monitor all messages). If several of these recipients respond,
this may confuse the original sender. IMCs and IMVs MUST
work properly in this environment. They MUST NOT assume
that only one party will receive and/or respond to a message.
(IF-IMV section 2.6.4)

[CTNC-IFIMV1.1-IMV-REQ-3-M] On platforms that don’t define a Dynamic Function Binding
mechanism, all optional functions MUST be implemented,
vendor-specific functions MUST NOT be implemented or used
except by private convention, and provisions must be made to
insure that TNCSs and IMVs that support different version
numbers interact safely. (IF-IMV section 3.2.2) On platforms
that don’t define a Dynamic Function Binding mechanism, all
optional [IF-IMV API] functions MUST be implemented. (IF-
IMV section 3.6)

[CTNC-IFIMV1.1-IMV-REQ-4-M] An IMV or TNC Server MUST work properly if a vendor-
specific function is not implemented by the other party […].
(IF-IMV section 3.2.4)

[CTNC-IFIMV1.1-IMV-REQ-5-M] An IMV or TNC Server […] MUST ignore vendor-specific
functions that it does not understand. (IF-IMV section 3.2.4)

[CTNC-IFIMV1.1-IMV-REQ-6-M] The vendor ID is converted to ASCII numbers or the
equivalent, using a decimal representation whose initial digit
MUST NOT be zero (0). (IF-IMV section 3.2.4)

[CTNC-IFIMV1.1-IMV-REQ-7-M] IMV DLLs also MUST be reentrant. (IF-IMV section 3.3)

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 7 of 27
29 October 2007 TCG PUBLISHED

[CTNC-IFIMV1.1-IMV-REQ-8-M] The TNC Server and all IMV DLLs MUST be thread-safe. (IF-
IMV section 3.3)

[CTNC-IFIMV1.1-IMV-REQ-9-M] The TNCS can choose any value for the IMV ID and the IMV
MUST NOT attach any significance to the value chosen. (IF-
IMV section 3.4.2.1)

[CTNC-IFIMV1.1-IMV-REQ-10-M] As described in section 2.6.3 above, it is sometimes desirable
to retry an Integrity Check Handshake (when remediation is
complete, for instance). Some TNCSs will not support this but
all IMVs MUST do so. (IF-IMV section 3.4.2.2)

[CTNC-IFIMV1.1-IMV-REQ-11-M] [The TNC Server] can even choose a network connection ID
that was used by a previous network connection that has now
been deleted and is invalid. The IMV MUST NOT attach any
significance to the value chosen. (IF-IMV section 3.4.2.2)

[CTNC-IFIMV1.1-IMV-REQ-12-M] [For the handshake retry reason value,] The IMV MUST pass
one of the values listed in section 3.5.6. The IMV MUST NOT
use any other handshake retry reason value with this version
of the IF-IMV API. (IF-IMV section 3.4.2.4) [Section 3.5.6
Handshake Retry Reason Values: This is the complete set of
permissible values for the TNC_Retry_Reason type in this
version of the IF-IMV API.
TNC_RETRY_REASON_IMV_IMPORTANT_POLICY_CHAN
GE,
TNC_RETRY_REASON_IMV_MINOR_POLICY_CHANGE,
TNC_RETRY_REASON_IMV_SERIOUS_EVENT,
TNC_RETRY_IMV_MINOR_EVENT, AND
TNC_RETRY_REASON_IMV_PERIODIC]

[CTNC-IFIMV1.1-IMV-REQ-13-M] [For the IMV action recommendation value,] The IMV MUST
pass one of the values listed in section 3.5.7. The IMV MUST
NOT use any other IMV Action Recommendation value with
this version of the IF-IMV API. (IF-IMV section 3.4.2.5)
[Section 3.5.7 IMV Action Recommendation Values: This is
the complete set of permissible values for the
TNC_IMV_Action_Recommendation type in this version of the
IF-IMV API.
TNC_IMV_ACTION_RECOMMENDATION_ALLOW,
TNC_IMV_ACTION_RECOMMENDATION__NO_ACCESS,
TNC_IMV_ACTION_RECOMMENDATION_ISOLATE,
TNC_IMV_ACTION_RECOMMENDATION_NO_RECOMMEN
DATION]

[CTNC-IFIMV1.1-IMV-REQ-14-M] [For the IMV evaluation result value,] The IMV MUST pass
one of the values listed in section 3.5.8. The IMV MUST NOT
use any other IMV Evaluation Result value with this version of
IF-IMV API. (IF-IMV Section 3.4.2.6) [Section 3.5.8 IMV
Evaluation Result Values: This is the complete set of
permissible values for the TNC_IMV_Evaluation_Result type
in this version [v1.1] of the IF-IMV API.
TNC_IMV_EVALUATION_RESULT_COMPLIANT,
TNC_IMV_EVALUATION_RESULT_NONCOMPLIANT_MINO
R,
TNC_IMV_EVALUATION_RESULT_NONCOMPLIANT_MAJ
OR, TNC_IMV_EVALUATION_RESULT_ERROR,
TNC_IMV_EVALUATION_RESULT_DONT_KNOW]

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 8 of 27
29 October 2007 TCG PUBLISHED

[CTNC-IFIMV1.1-IMV-REQ-15-M] The vendor ID TNC_VENDORID_ANY (0xffffff) and the
subtype TNC_SUBTYPE_ANY (0xff) are reserved as wild
cards as described in section 3.8.1.An IMV MUST NOT send
messages whose message type includes one of these
reserved values. (IF-IMV section 3.4.2.7)

[CTNC-IFIMV1.1-IMV-REQ-16-M] The message type TNC_VENDORID_ANY (0xffffff) is
reserved as a wild card as described in section 3.8.1. IMVs
may request messages with this vendor ID to indicate that
they want to receive messages whose message type includes
any vendor ID. However, an IMV MUST NOT send messages
whose message type includes this reserved value and a
TNCS MUST NOT deliver such messages. (IF-IMV section
3.4.2.9)

[CTNC-IFIMV1.1-IMV-REQ-17-M] The message subtype TNC_SUBTYPE_ANY (0xff) is
reserved as a wild card as described in section 3.8.1. IMVs
may request messages with this message subtype to indicate
that they want to receive messages whose message subtype
has any value. However, an IMV MUST NOT send messages
whose message subtype includes this reserved value and a
TNCS MUST NOT deliver such messages. (IF-IMV section
3.4.2.10)

[CTNC-IFIMV1.1-IMV-REQ-18-M] IMVs and TNCSs MUST be prepared for any function to return
any result code. (IF-IMV section 3.4.2.12 and 3.5.2)

[CTNC-IFIMV1.1-IMV-REQ-19-M] The reserved value TNC_CONNECTIONID_ANY MUST NOT
be used as a normal network connection ID. Instead, it may be
passed to TNC_TNCS_RequestHandshakeRetry to indicate
that handshake retry is requested for all current network
connections. (IF-IMV section 3.5.4)

[CTNC-IFIMV1.1-IMV-REQ-20-M] Some of the functions in the IF-IMV API are marked as
mandatory below. Mandatory [IF-IMV API] functions MUST be
implemented. (IF-IMV section 3.6)

[CTNC-IFIMV1.1-IMV-REQ-21-M] An IMV or TNC Server MUST work properly if one or more
optional [IF-IMV API] functions are not implemented by the
other party. (IF-IMV section 3.6) There aren’t any optional
TNCS functions in IF-IMV 1.1. No test case is necessary for
this requirement.

[CTNC-IFIMV1.1-IMV-REQ-22-M] The TNC Server calls this function [TNC_IMV_Initialize] to
initialize the IMV and agree on the API version number to be
used. It also supplies the IMV ID, an IMV identifier that the
IMV must use when calling TNC Server callback functions. All
IMVs MUST implement TNC_IMV_Initialize (IF-IMV section
3.7.1)

[CTNC-IFIMV1.1-IMV-REQ-23-M] The IMV MUST check these [minVersion and maxVersion] to
determine whether there is an API version number that it
supports in this range. (IF-IMV section 3.7.1)

[CTNC-IFIMV1.1-IMV-REQ-24-M] If not [if the API version number specified is not supported],
the IMV MUST return
TNC_RESULT_NO_COMMON_VERSION. (IF-IMV section
3.7.1)

[CTNC-IFIMV1.1-IMV-REQ-25-M] [TNC_IMV_NotifyConnectionChange is an optional function.] If
the state is TNC_CONNECTION_STATE_DELETE, the IMV

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 9 of 27
29 October 2007 TCG PUBLISHED

MUST NOT pass this network connection ID to the TNC
Server after this function
[TNC_IMV_NotifyConnectionChange] returns (unless the
TNCS later creates another network connection with the same
network connection ID). (IF-IMV section 3.7.2)

[CTNC-IFIMV1.1-IMV-REQ-26-M] [TNC_IMV_ReceiveMessage is an optional function] The IMV
MUST NOT ever modify the buffer contents [passed in the
TNC_IMV_ReceiveMessage function] […]. (IF-IMV section
3.7.3)

[CTNC-IFIMV1.1-IMV-REQ-27-M] [TNC_IMV_ReceiveMessage is an optional function] The IMV
MUST NOT access the buffer [passed in
TNC_IMV_ReceiveMessage function] after
TNC_IMV_ReceiveMessage has returned. If the IMV wants to
retain the message, it should copy it before returning from
TNC_IMV_ReceiveMessage. (IF-IMV section 3.7.3)

[CTNC-IFIMV1.1-IMV-REQ-28-M] [TNC_IMV_SolicitRecommendation] All IMVs MUST
implement this function [TNC_IMV_SolicitRecommendation].
(IF-IMV section 3.7.4)

[CTNC-IFIMV1.1-IMV-REQ-29-M] [TNC_TNCS_ReportMessageTypes] The imvID [passed into
the TNC_TNCS_ReportMessageTypes function] MUST
contain the value provided to TNC_IMV_Initialize. (IF-IMV
section 3.8.1)

[CTNC-IFIMV1.1-IMV-REQ-30-M] [TNC_TNCS_SendMessage] The imvID [passed into the
TNC_TNCS_SendMessage function] MUST contain the value
provided to TNC_IMV_Initialize […]. (IF-IMV section 3.8.2)

[CTNC-IFIMV1.1-IMV-REQ-31-M] [TNC_TNCS_SendMessage] […] The connectionID parameter
[passed into the TNC_TNCS_SendMessage] MUST contain a
valid network connection ID. (IF-IMV section 3.8.2)

[CTNC-IFIMV1.1-IMV-REQ-32-M] [TNC_TNCS_SendMessage] The IMV MUST NOT call this
function [TNC_TNCS_SendMessage] unless it has received a
call to TNC_IMV_ReceiveMessage, or
TNC_IMV_BatchEnding for this connection and the IMV has
not yet returned from that function. (IF-IMV Section 3.8.2)

[CTNC-IFIMV1.1-IMV-REQ-33-M] [TNC_TNCS_SendMessage] The IMV MUST NOT specify a
message type whose vendor ID is 0xffffff or whose subtype is
0xff. (IF-IMV Section 3.8.2)

[CTNC-IFIMV1.1-IMV-REQ-34-M] [TNC_TNCS_RequestHandshakeRetry] An IMV calls this
function [TNC_TNCS_RequestHandshakeRetry] to ask a
TNCS to retry an Integrity Check Handshake. The IMV MUST
pass its IMV ID as the imcID parameter […]. (IF-IMV section
3.8.3)

[CTNC-IFIMV1.1-IMV-REQ-35-M] [TNC_TNCS_RequestHandshakeRetry] An IMV calls this
function [TNC_TNCS_RequestHandshakeRetry] to ask a
TNCS to retry an Integrity Check Handshake. The IMV MUST
pass […] a network connection ID as the connectionID
parameter […]. (IF-IMV section 3.8.3)

[CTNC-IFIMV1.1-IMV-REQ-36-M] [TNC_TNCS_RequestHandshakeRetry] An IMV calls this
function [TNC_TNCS_RequestHandshakeRetry] to ask a
TNCS to retry an Integrity Check Handshake. The IMV MUST
pass […] one of the handshake retry reasons listed in section

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 10 of 27
29 October 2007 TCG PUBLISHED

3.5.6, as the reason parameter. (IF-IMV section 3.8.3)
[Section 3.5.6 Handshake Retry Reason Values: This is the
complete set of permissible values for the TNC_Retry_Reason
type in this version of the IF-IMC API: .
TNC_RETRY_REASON_IMV_IMPORTANT_POLICY_CHAN
GE, TNC_RETRY_REASON_IMV_MINOR
POLICY_CHANGE,
TNC_RETRY_REASON_IMV_SERIOUS_EVENT,
TNC_RETRY_REASON_IMV_MINOR_EVENT,
TNC_RETRY_REASON_IMV_PERIODIC.]

[CTNC-IFIMV1.1-IMV-REQ-37-M] [TNC_TNCS_ProvideRecommendation] The IMV MUST pass
its IMV ID as the imvID parameter […]. (IF-IMV section 3.8.4)

[CTNC-IFIMV1.1-IMV-REQ-38-M] [TNC_TNCS_ProvideRecommendation] The IMV MUST pass
[…] a valid network connection ID as the connectionID
parameter […]. (IF-IMV section 3.8.4)

[CTNC-IFIMV1.1-IMV-REQ-39-M] [TNC_TNCS_ProvideRecommendation] The IMV MUST pass
[…] one of the IMV Action Recommendation values listed in
section 3.5.7 as the recommendation parameter […]. (IF-IMV
section 3.8.4) [Section 3.5.7 IMV Action Recommendation
Values: This is the complete set of permissible values for the
TNC_IMV_Action_Recommendation type in this version of the
IF-IMV API:
TNC_IMV_ACTION_RECOMMENDATION_ALLOW,
TNC_IMV_ACTION_RECOMMENDATION_NO_ACCESS,
TNC_IMV_ACTION_RECOMMENDATION_ISOLATE,
TNC_IMV_ACTION_RECOMMENDATION_NO_RECOMMEN
DATION.]

[CTNC-IFIMV1.1-IMV-REQ-40-M] [TNC_TNCS_ProvideRecommendation] The IMV MUST pass
[…] one of the IMV Evaluation Result values listed in section
3.5.8 as the evaluation parameter. (IF-IMV section 3.8.4)
[Section 3.5.8 IMV Evaluation Result Values: This is the
complete set of permissible values for the
TNC_IMV_Evaluation_Result type in this version of the
IF_IMV API:
TNC_IMV_EVALUATION_RESULT_COMPLAINT,
TNC_IMV_EVALUATION_RESULT_NONCOMPLAINT_MINO
R,
TNC_IMV_EVALUATION_RESULT_NONCOMPLAINT_MAJ
OR, TNC_IMV_EVALUATION_RESULT_ERROR,
TNC_IMV_EVALUATION_RESULT_DONT_KNOW.]

[CTNC-IFIMV1.1-IMV-REQ-41-M] [TNC_TNCS_ProvideRecommendation] However, a TNCS
MAY continue to deliver messages after an IMV calls
TNC_TNCS_ProvideRecommendation, especially if other
IMVs continue the dialog after the one IMV has rendered its
decision. The IMV MUST be prepared for this. (IF-IMV section
3.8.4) This requirement is not testable. Therefore, there will be
no test case for it.

[CTNC-IFIMV1.1-IMV-REQ-42-M] [Windows Platform Binding] The Microsoft Windows DLL
platform binding for the IF_IMV API defines one additional
function that MUST be implemented by IMVs implementing
this platform binding. (IF-IMV Section 4.1.7) IMVs
implementing the Microsoft Windows DLL platform binding

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 11 of 27
29 October 2007 TCG PUBLISHED

MUST define this additional platform-specific function
[TNC_IMV_ProviderBindFunction]. (IF-IMV Section 4.1.7.1)

[CTNC-IFIMV1.1-IMV-REQ-43-M] [Windows Platform Binding] The IMV MUST set the imvID
parameter [passed to TNC_TNCS_BindFunction function] to
the IMV ID value provided to TNC_IMV_Initialize. (IF-IMV
Section 4.1.8.1)

[CTNC-IFIMV1.1-IMV-REQ-44-M] [Windows Platform Binding] The IMV MUST set the
functionName parameter [passed to
TNC_TNCS_BindFunction function] to a pointer to a C string
identifying the function whose pointer is desired (i.e.,
“TNC_TNCS_SendMessage”) (IF-IMV Section 4.1.8.1)

[CTNC-IFIMV1.1-IMV-REQ-45-M] [Windows Platform Binding] The IMV MUST set the
pOutFunctionPointer parameter [passed to the
TNC_TNCS_BindFunction function] to a pointer to storage into
which the desired function pointer will be stored. (IF-IMV
Section 4.1.8.1)

[CTNC-IFIMV1.1-IMV-REQ-46-M] [Windows Platform Binding] A well-known registry key is used
by the TNCS to load IMVs. […] TNC Servers and IMVs MUST
ignore unrecognized values and keys. […] The only
requirement, as stated above, is that TNC Servers and IMVs
MUST ignore unrecognized values and keys. (IF-IMV Section
4.1.9)

[CTNC-IFIMV1.1-IMV-REQ-47-M] [UNIX/Linux Platform Binding] The UNIX/Linux Dynamic
Linkage platform binding for the IF-IMV API defines one
additional function that MUST be implemented by IMVs
implementing this platform binding. (IF-IMV Section 4.2.8)
IMVs implementing the UNIX/Linux Dynamic Linkage platform
binding MUST define this additional platform-specific function
[TNC_IMV_ProvideBindFunction]. (IF-IMV Section 4.2.8.1)

[CTNC-IFIMV1.1-IMV-REQ-48-M] [UNIX/Linux Platform Binding] The IMV MUST set the imvID
parameter [passed to the TNC_TNCS_BindFunction] to the
IMV ID value provided to TNC_IMV_Initialize. (IF-IMV Section
4.2.9.1)

[CTNC-IFIMV1.1-IMV-REQ-49-M] [UNIX/Linux Platform Binding] The IMV MUST set the
functionName parameter [passed to the
TNC_TNCS_BindFunction] to a pointer to a C string
identifying the function whose pointer is desired (i.e.,
“TNC_TNCS_SendMessage”). (IF-IMV Section 4.2.9.1)

[CTNC-IFIMV1.1-IMV-REQ-50-M] [UNIX/Linux Platform Binding] The IMV MUST set the
pOutFunctionPointer parameter [passed to the
TNC_TNCS_BindFunction] to a pointer to storage into which
the desired function pointer will be stored. (IF-IMV Section
4.2.9.1)

3.2 Requirements on TNC Servers

[CTNC-IFIMV1.1-TNCS-REQ-1-M] Vendor-specific functions MUST have a name that begins

with “TNC_XXX_” where XXX is replaced by the vendor ID of

the organization that defined the extension. (IF-IMV section
2.5 and section 3.2.4)

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 12 of 27
29 October 2007 TCG PUBLISHED

[CTNC-IFIMV1.1-TNCS-REQ-2-M] The TNCS MUST use the same connection ID for all IMVs
when referring to a particular connection. (IF-IMV section
2.6.2)

[CTNC-IFIMV1.1-TNCS-REQ-3-M] A zero length message is perfectly valid and MUST be
properly delivered by the TNCC and TNCS just as any other
IMC-IMV message would be. (IF-IMV section 2.6.4)

[CTNC-IFIMV1.1-TNCS-REQ-4-M] On platforms that don’t define a Dynamic Function Binding
mechanism, all optional functions MUST be implemented,
vendor-specific functions MUST NOT be implemented or
used except by private convention, and provisions must be
made to insure that TNCSs and IMVs that support different
version numbers interact safely. (IF-IMV section 3.2.2) On
platforms that don’t define a Dynamic Function Binding
mechanism, all optional [IF-IMV API] functions MUST be
implemented. (IF-IMV section 3.6) All platform bindings
defined in the IF-IMV 1.1 specification include Dynamic
Function Binding so we don’t need a test case for this
requirement.

[CTNC-IFIMV1.1-TNCS-REQ-5-M] An IMV or TNC Server MUST work properly if a vendor-
specific function is not implemented by the other party […].
(IF-IMV section 3.2.4)

[CTNC-IFIMV1.1-TNCS-REQ-6-M] An IMV or TNC Server […] MUST ignore vendor-specific
functions that it does not understand. (IF-IMV section 3.2.4)

[CTNC-IFIMV1.1-TNCS-REQ-7-M] The vendor ID is converted to ASCII numbers or the
equivalent, using a decimal representation whose initial digit
MUST NOT be zero (0). (IF-IMV section 3.2.4)

[CTNC-IFIMV1.1-TNCS-REQ-8-M] The TNCS MUST be reentrant (able to receive and process
a function call even when one is already underway). (IF-IMV
section 3.3)

[CTNC-IFIMV1.1-TNCS-REQ-9-M] The TNC Server and all IMV DLLs MUST be thread-safe.
(IF-IMV section 3.3) [Windows Platform Binding] Unlike
IMCs, IMV DLLs are required to be thread-safe. The IMV
DLL MAY create threads. The TNC Server MUST be thread-
safe. (IF-IMV Section 4.1.3) [UNIX/Linux Platform Binding]
The IMV MAY create threads. The TNC Server MUST be
thread-safe. (IF-IMV Section 4.2.4)

[CTNC-IFIMV1.1-TNCS-REQ-10-M] [For the network connection state value,] the TNCS MUST
pass one of the values listed in section 3.5.51. The TNCS
MUST NOT use any other network connection state value
with this version of the IF-IMV API. (IF-IMV section 3.4.2.3)
[TNC_IMV_NotifyConnectionChange is an optional function.]
The TNC Server calls this function
[TNC_IMV_NotifyConnectionChange] to inform the IMV that
the state of the network connection identified by
connectionID has changed to newState. Section 3.5.5 lists
all the possible values of newState for this version of the IF-
IMV API. The TNCS MUST NOT use any other values with
this version of IF-IMV (IF-IMV section 3.7.2) The newState
parameter MUST contain one of the values listed in section

1 IF-IMV v1.1 specification references section 3.5.4. However, section 3.5.5 lists the complete set
of permissible values for TNC_Connection_State type.

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 13 of 27
29 October 2007 TCG PUBLISHED

3.5.5. (IF-IMV section 3.7.2) [Section 3.5.5 Network
Connection State Values: This is the complete set of
permissible values for the TNC_Connection_State type in
this version [v1.1] of IF-IMV API:
TNC_CONNECTION_STATE_CREATE,
TNC_CONNECTION_STATE_HANDSHAKE,
TNC_CONNECTION_STATE_ACCESS_ALLOWED,
TNC_CONNECTION_STATE_ACCESS_ISOLATED,
TNC_CONNECTION_STATE_ACCESS_NONE, and
TNC_CONNECTION_STATE_DELETE]

[CTNC-IFIMV1.1-TNCS-REQ-11-M] TNC Clients and TNC Servers MUST properly deliver
messages with any message type (as described in section
2.6.4). (IF-IMV section 3.4.2.7)

[CTNC-IFIMV1.1-TNCS-REQ-12-M] The message type TNC_VENDORID_ANY (0xffffff) is
reserved as a wild card as described in section 3.8.1. IMVs
may request messages with this vendor ID to indicate that
they want to receive messages whose message type
includes any vendor ID. However, an IMV MUST NOT send
messages whose message type includes this reserved value
and a TNCS MUST NOT deliver such messages. (IF-IMV
section 3.4.2.9)

[CTNC-IFIMV1.1-TNCS-REQ-13-M] The message subtype TNC_SUBTYPE_ANY (0xff) is
reserved as a wild card as described in section 3.8.1. IMVs
may request messages with this message subtype to
indicate that they want to receive messages whose message
subtype has any value. However, an IMV MUST NOT send
messages whose message subtype includes this reserved
value and a TNCS MUST NOT deliver such messages. (IF-
IMV section 3.4.2.10)

[CTNC-IFIMV1.1-TNCS-REQ-14-M] IMVs and TNCSs MUST be prepared for any function to
return any result code. (IF-IMV section 3.4.2.12 and 3.5.2)

[CTNC-IFIMV1.1-TNCS-REQ-15-M] The reserved value TNC_CONNECTIONID_ANY MUST
NOT be used as a normal network connection ID. Instead, it
may be passed to TNC_TNCS_RequestHandshakeRetry to
indicate that handshake retry is requested for all current
network connections. (IF-IMV section 3.5.4)

[CTNC-IFIMV1.1-TNCS-REQ-16-M] Some of the functions in the IF-IMV API are marked as
mandatory below. Mandatory [IF-IMV API] functions MUST
be implemented. (IF-IMV section 3.6)

[CTNC-IFIMV1.1-TNCS-REQ-17-M] An IMV or TNC Server MUST work properly if one or more
optional [IF-IMV API] functions are not implemented by the
other party. (IF-IMV section 3.6)

[CTNC-IFIMV1.1-TNCS-REQ-18-M] The TNC Server MUST NOT call any other IF-IMV API
functions for an IMV until it has successfully completed a call
to TNC_IMV_Initialize() (IF-IMV section 3.7.1) [Windows
Platform Binding] The TNCS MUST always call the
TNC_IMV_Initialize function first. (IF-IMV section 4.1.1)
[UNIX/Linux Platform Binding] The TNCS MUST always call
the TNC_IMV_Initialize function first. (IF-IMV Section 4.2.1)

[CTNC-IFIMV1.1-TNCS-REQ-19-M] Once a call to this function [TNC_IMV_Initialize] completed
successfully, this function MUST NOT be called again for a

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 14 of 27
29 October 2007 TCG PUBLISHED

particular IMV-TNCS pair until a call to TNC_IMV_Terminate
has completed successfully. (IF-IMV section 3.7.1)

[CTNC-IFIMV1.1-TNCS-REQ-20-M] The TNC Server MUST set minVersion to the minimum IF-
IMV API version number that it supports […] (IF-IMV section
3.7.1.)

[CTNC-IFIMV1.1-TNCS-REQ-21-M] [The TNC Server] MUST set maxVersion to the maximum
API version number that it supports. (IF-IMV section 3.7.1)

[CTNC-IFIMV1.1-TNCS-REQ-22-M] The TNC Server also MUST set pOutActualVersion so that
the IMV can use it as an output parameter to provide the
actual API version number to be used. With the C binding,
this would involve setting pOutActualVersion to point to a
suitable storage location. (IF-IMV section 3.7.1)

[CTNC-IFIMV1.1-TNCS-REQ-23-M] [TNC_IMV_NotifyConnectionChange is an optional function.]
The imvID parameter (passed in to
TNC_IMV_NotifyConnectionChange function) MUST contain
the IMV ID value provided to TNC_IMV_Initialize. (IF-IMV
section 3.7.2)

[CTNC-IFIMV1.1-TNCS-REQ-24-M] [TNC_IMV_NotifyConnectionChange is an optional function.]
The connectionID parameter (passed in to
TNC_IMV_NotifyConnectionChange function) MUST contain
a valid network connection ID. (IF-IMV section 3.7.2)

[CTNC-IFIMV1.1-TNCS-REQ-25-M] [TNC_IMV_ReceiveMessage is an optional function] The
TNC Server calls this function [TNC_IMV_ReceiveMessage]
to deliver a message to the IMV. The message is contained
in the buffer referenced by message and contains the
number of octets (bytes) indicated by messageLength. The
type of message is indicated by messageType. The
message MUST be from an IMC (or a TNCC or other party
acting as an IMC). The (IF-IMV section 3.7.3) This
requirement is not automatically testable; therefore, there will
be no test case corresponding to this requirement.

[CTNC-IFIMV1.1-TNCS-REQ-26-M] [TNC_IMV_ReceiveMessage is an optional function.] The
imvID parameter [passed into TNC_IMV_ReceiveMessage
function] MUST contain the IMV ID value provided to
TNC_IMV_Initialize. (IF-IMV section 3.7.3)

[CTNC-IFIMV1.1-TNCS-REQ-27-M] [TNC_IMV_ReceiveMessage is an optional function.] The
connectionID parameter [passed into
TNC_IMV_ReceiveMessage function] MUST contain a valid
network connection ID. (IF-IMV section 3.7.3)

[CTNC-IFIMV1.1-TNCS-REQ-28-M] [TNC_IMV_ReceiveMessage is an optional function.] The
message parameter [passed into
TNC_IMV_ReceiveMessage function] MUST contain a
reference to a buffer containing the message being delivered
to the IMV. (IF-IMV section 3.7.3)

[CTNC-IFIMV1.1-TNCS-REQ-29-M] [TNC_IMV_ReceiveMessage is an optional function.] The
messageLength parameter [passed into
TNC_IMV_ReceiveMessage function] MUST contain the
number of octets in the message. (IF-IMV section 3.7.3)

[CTNC-IFIMV1.1-TNCS-REQ-30-M] [TNC_IMV_ReceiveMessage is an optional function.] The
messageType parameter [passed into

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 15 of 27
29 October 2007 TCG PUBLISHED

TNC_IMV_ReceiveMessage function] MUST contain the
type of the message. It MUST match one of the
TNC_MessageType values previously supplied by the IMV
to the TNCS in the IMV’s most recent call to
TNC_TNCS_ReportMessageTypes. (IF-IMV section 3.7.3)

[CTNC-IFIMV1.1-TNCS-REQ-31-M] [TNC_IMV_SolicitRecommendation] The imvID parameter
[passed into TNC_IMV_SolicitRecommendation function]
MUST contain the IMV ID value provided to
TNC_IMV_Initialize. (IF-IMV section 3.7.4)

[CTNC-IFIMV1.1-TNCS-REQ-32-M] [TNC_IMV_SolicitRecommendation] The connectionID
parameter [passed into TNC_IMV_SolicitRecommendation
function] MUST contain a valid network connection ID. (IF-
IMV section 3.7.4)

[CTNC-IFIMV1.1-TNCS-REQ-33-M] [TNC_IMV_BatchEnding is an optional function.] The imvID
parameter [passed into TNC_IMV_BatchEnding function]
MUST contain the IMV ID value provided to
TNC_IMV_Initialize. (IF-IMV section 3.7.5)

[CTNC-IFIMV1.1-TNCS-REQ-34-M] [TNC_IMV_BatchEnding is an optional function.] The
connectionID parameter [passed into
TNC_IMV_BatchEnding function] MUST contain a valid
network connection ID. (IF-IMV section 3.7.5)

[CTNC-IFIMV1.1-TNCS-REQ-35-M] [TNC_IMV_Terminate is an optional function.] Once a call to
TNC_IMV_Terminate is made, the TNC Server MUST NOT
call the IMV except to call TNC_IMV_Initialize (which may
not succeed if the IMV cannot initialize itself). (IF-IMV
section 3.7.6)

[CTNC-IFIMV1.1-TNCS-REQ-36-M] [TNC_IMV_Terminate is an optional function.] The imvID
parameter [passed into TNC_IMV_Terminate function]
MUST contain the IMV ID value provided to
TNC_IMV_Initialize. (IF-IMV section 3.7.6)

[CTNC-IFIMV1.1-TNCS-REQ-37-M] [TNC_TNCS_ReportMessageTypes] All TNC Servers MUST
implement this function
[TNC_TNCS_ReportMessageTypes]. (IF-IMV section 3.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-38-M] [TNC_TNCS_ReportMessageTypes] The TNC Server MUST
NOT ever modify the list of message types […] (IF-IMV
section 3.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-39-M] [TNC_TNCS_ReportMessageTypes] The TNC Server […]
MUST NOT access this list after
TNC_TNCS_ReportMessageTypes has returned. (IF-IMV
section 3.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-40-M] [TNC_TNCS_ReportMessageTypes] TNC Servers MUST
support any message type [for the
TNC_TNCS_ReportMessageTypes]. (IF-IMV section 3.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-41-M] [TNC_TNCS_ReportMessageTypes] Note that although all
TNC Servers must implement this function, some IMVs may
never call it if they don’t support receiving any message
types. This is acceptable. In such a case, the TNC Server
MUST NOT deliver any messages to the IMV. (IF-IMV
section 3.8.1)

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 16 of 27
29 October 2007 TCG PUBLISHED

[CTNC-IFIMV1.1-TNCS-REQ-42-M] [TNC_TNCS_SendMessage] All TNC Servers MUST
implement this function [TNC_TNCS_SendMessage]. (IF-
IMV section 3.8.2)

[CTNC-IFIMV1.1-TNCS-REQ-43-M] [TNC_TNCS_SendMessage] The TNC Server MUST NOT
ever modify the buffer contents […]. (IF-IMV section 3.8.2)

[CTNC-IFIMV1.1-TNCS-REQ-44-M] [TNC_TNCS_SendMessage] The TNC Server […] MUST
NOT access the buffer after TNC_TNCS_SendMessage has
returned. (IF-IMV section 3.8.2)

[CTNC-IFIMV1.1-TNCS-REQ-45-M] [TNC_TNCS_SendMessage] The TNC Server MUST
support any message type [for the
TNC_TNCS_SendMessage function]. (IF-IMV Section 3.8.2)

[CTNC-IFIMV1.1-TNCS-REQ-46-M] [Windows Platform Binding] The TNCS MUST listen for
changes to the well-known registry key so that it can load
and unload IMVs dynamically. However, the TNCS SHOULD
delay before making changes based on registry key changes
since it is common for these changes to come in batches
within a few seconds during an install process. Unlike a
TNCC, a TNCS MUST NOT ignore such changes. (IF-IMV
section 4.1.1)

[CTNC-IFIMV1.1-TNCS-REQ-47-M] [Windows Platform Binding] IMVs implementing the
Microsoft Windows DLL platform binding MUST define this
additional platform-specific function
[TNC_IMV_ProvideBindFunction]. The TNC Server MUST
call this function immediately after calling TNC_IMV_Initialize
to provide a pointer to the TNCS bind function. (IF-IMV
Section 4.1.7.1)

[CTNC-IFIMV1.1-TNCS-REQ-48-M] [Windows Platform Binding] The imvID parameter [passed to
the TNC_IMV_ProvideBindFunction function] MUST contain
the value provided to TNC_IMV_Initialize. (IF-IMV Section
4.1.7.1)

[CTNC-IFIMV1.1-TNCS-REQ-49-M] [Windows Platform Binding] The bindFunction parameter
[passed to the TNC_IMV_ProvideBindFunction function]
MUST contain a pointer to the TNCS bind function. (IF-IMV
Section 4.1.7.1)

[CTNC-IFIMV1.1-TNCS-REQ-50-M] [Windows Platform Binding] The Microsoft Windows DLL
platform binding for the IF-IMV API defines one additional
function that MUST be implemented by TNC Servers
implementing this platform binding. (IF-IMV Section 4.1.8)
TNC Servers implementing the Microsoft Windows DLL
platform binding MUST define this additional platform-
specific function [TNC_TNCS_BindFunction]. (IF-IMV
Section 4.1.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-51-M] [Windows Platform Binding] If the TNCS does not define the
requested function, NULL MUST be stored at
pOutFunctionPointer. Otherwise, a pointer to the requested
function MUST be stored at pOutFunctionPointer. (IF-IMV
Section 4.1.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-52-M] [Windows Platform Binding] Once an IMV obtains a pointer
to a particular function [through TNC_TNCS_BindFunction],
the TNCS MUST always return the same function pointer

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 17 of 27
29 October 2007 TCG PUBLISHED

value to that IMV for that function name. (IF-IMV Section
4.1.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-53-M] [Windows Platform Binding] A well-known registry key is
used by the TNCS to load IMCs. […] TNC Servers and IMVs
MUST ignore unrecognized values and keys. […] The only
requirement, as stated above, is that TNC Servers and IMVs
MUST ignore unrecognized values and keys. (IF-IMV
Section 4.1.9)

[CTNC-IFIMV1.1-TNCS-REQ-54-M] [UNIX/Linux Platform Binding] The TNC Server MUST call
the function [TNC_IMV_ProvideBindFunction] immediately
after calling TNC_IMV_Initialize to provide a pointer to the
TNCS bind function. (IF-IMV Section 4.2.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-55-M] [UNIX/Linux Platform Binding] The imvID parameter [passed
to the TNC_IMV_ProvideBindFunction function] MUST
contain the value provided to TNC_IMV_Initialize. (IF-IMV
section 4.2.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-56-M] [UNIX/Linux Platform Binding] The bindFunction parameter
[passed to the TNC_IMV_ProvideBindFunction function]
MUST contain a pointer to the TNCS bind function. (IF-IMV
section 4.2.8.1)

[CTNC-IFIMV1.1-TNCS-REQ-57-M] [UNIX/Linux Platform Binding] The UNIX/Linux Dynamic
Linkage platform binding for the IF-IMV API defines one
additional function that MUST be implemented by TNC
Servers implementing this platform binding. (IF-IMV section
4.2.9) TNC Servers implementing the UNIX/Linux Dynamic
Linkage platform binding MUST define this additional
platform-specific function [TNC_TNCS_BindFunction]. (IF-
IMV section 4.2.9.1)

[CTNC-IFIMV1.1-TNCS-REQ-58-M] [UNIX/Linux Platform Binding] An IMV can use this function
[TNC_TNCS_BindFunction] to obtain pointers to other TNCS
functions. […] The IMV MUST set the pOutFunctionPointer
parameter to a pointer to storage into which the desired
function pointer will be stored. If the TNCS does not define
the requested function, NULL MUST be stored at
pOutFunctionPointer. Otherwise, a pointer to the requested
function MUST be stored at pOutFunctionPointer. (IF-IMV
section 4.2.9.1)

3.3 Other Requirements
Requirements listed in this section are requirements for neither IMV nor TNCS. They are listed
here for completeness. However, they are out of scope and we will not provide test cases.

[CTNC-IFIMV1.1-OTHER-REQ-1-M] [UNIX/Linux Platform Binding] A line that begins with “IMV”
(U+0049, U+004D, U+0043, U+0020) specifies an IMV that
may be loaded. The next character MUST be U+0022
(QUOTATION MARK). This MUST be followed by a human-
readable IMV name (potentially zero length) and another
U+0022 character (QUOTATION MARK). Of course, the IMV
name cannot contain a U+0022 (QUOTATION MARK). But it
can contain spaces or other characters. After the U+0022
that terminates the human-readable name MUST come a
space (U+0020) and then the full path of the IMV executable

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 18 of 27
29 October 2007 TCG PUBLISHED

file (up to but not including the U+000A that terminates the
line). The path to the IMV executable file MUST NOT be a
partial path. The /etc/tnc_config file must not contain IMVs
with the same human-readable name. (IF-IMV Section
4.2.3) This requirement is Installer’s requirement, which is
out of scope for this document. No test case will be provided
for this requirement.

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 19 of 27
29 October 2007 TCG PUBLISHED

4 Test Cases
This section lists a test case for each requirement in the preceding section.

4.1 Test Cases for IF-IMV Compliance Test for IMVs
There are several asynchronous actions that an IMV may initiate and for which the test program
must be capable of handling during all normative test cases. For example, an IMV may attempt a
handshake retry at anytime based on conditions outside the test program’s control. The test
program must handle IMV asynchronous actions appropriately and ensure the IMV is generating
correct data/messages/etc. for the given action. Following is the list of asynchronous actions and
validation requirements for the test program.

[CTNC-IFIMV1.1-IMV-AA-1] Once loaded and initialized, an IMV may initiate a handshake
retry at anytime and the test program must have code that
verifies the IMV under test only uses valid imvID, connection ID,
and handshake retry reason values and no others. This entry
covers the following IMV requirements: [CTNC-IFIMV1.1-IMV-
REQ-12-M], [CTNC-IFIMV1.1-IMV-REQ-34-M], [CTNC-
IFIMV1.1-IMV-REQ-35-M], and [CTNC-IFIMV1.1-IMV-REQ-36-
M].

[CTNC-IFIMV1.1-IMV-AA-2] The test program that loads the IMV must have code that detects
if the IMV under test passes only permissible
TNC_IMV_Action_Recommendation type and
TNC_IMV_Evaluation_Result type to the
TNC_TNCS_ProvideRecommendation function. This entry
covers the following IMV requirements: [CTNC-IFIMV1.1-IMV-
REQ-13-M], [CTNC-IFIMV1.1-IMV-REQ-14-M], [CTNC-
IFIMV1.1-IMV-REQ-39-M], and [CTNC-IFIMV1.1-IMV-REQ-40-
M].

[CTNC-IFIMV1.1-IMV-AA-3] Once loaded and initialized, an IMV can send messages at
anytime and the test program must have code that detects if the
IMV under test ever sends messages with reserved message
type values where NOT allowed. This entry covers the following
IMV requirements: [CTNC-IFIMV1.1-IMV-REQ-15-M], [CTNC-
IFIMV1.1-IMV-REQ-16-M], [CTNC-IFIMV1.1-IMV-REQ-17-M],
and [CTNC-IFIMV1.1-IMV-REQ-33-M].

[CTNC-IFIMV1.1-IMV-AA-4] Once loaded and initialized, an IMV uses a network connection
ID when communicating with the TNCS. The test program that
loads IMVs will contain code to detect if the IMV under test ever
uses an invalid value for the network connection ID, such as one
that is in “delete” state or the reserved value
(TNC_CONNECTIONID_ANY other than in the instance a
handshake retry is being requested for all current network
connections). This entry covers the following IMV requirements:
[CTNC-IFIMV1.1-IMV-REQ-19-M], [CTNC-IFIMV1.1-IMV-REQ-
25-M], and [CTNC-IFIMV1.1-IMV-REQ-31-M].

[CTNC-IFIMV1.1-IMV-AA-5] The receive message function passes content to an IMV via
receive message buffer. The test program that loads IMVs will
contain code to verify that the contents of the receive message
buffer are unmodified on return of the receive message function.
This test case will be expanded by employing memory protection
in the test program to detect if the IMV under test ever attempts
to access a receive message buffer after the IMV returns from

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 20 of 27
29 October 2007 TCG PUBLISHED

the receive message function. This entry covers the following
IMV requirements [CTNC-IFIMV1.1-IMV-REQ-26-M] and [CTNC-
IFIMV1.1-IMV-REQ-27-M].

[CTNC-IFIMV1.1-IMV-AA-6] Once loaded and initialized, an IMV uses an IMV ID when
communicating with the TNCS. The test program that loads IMVs
will contain code to detect if the IMV under test uses its IMV ID
that was provided to TNC_IMV_Initialize. This entry covers the
following IMV requirements: [CTNC-IFIMV1.1-IMV-REQ-29-M],
[CTNC-IFIMV1.1-IMV-REQ-30-M], [CTNC-IFIMV1.1-IMV-REQ-
37-M], [CTNC-IFIMV1.1-IMV-REQ-43-M], and [CTNC-IFIMV1.1-
IMV-REQ-48-M].

[CTNC-IFIMV1.1-IMV-AA-7] The test program for Windows and Unix/Linux that loads IMVs
will have code to verify that the IMV under test always sends a
valid function name string that conforms to the “TNC_TNCS_” or
“TNC_XXX_” format (where XXX is a vendor ID) when the IMV
calls the TNCS platform bind function. This test case is for the
following IMV requirements: [CTNC-IFIMV1.1-IMV-REQ-44-M]
and [CTNC-IFIMV1.1-IMV-REQ-49-M].

[CTNC-IFIMV1.1-IMV-AA-8] The test program for Windows and Unix/Linux that loads IMVs
will have code to verify that an IMV always passes function
pointer storage when the IMV calls the TNCS platform bind
function. Verification of function pointer storage can be done by
verifying that function pointer is not NULL and then attempting to
store a function pointer at the location pointed to. This test case
is for the following IMV requirements: [CTNC-IFIMV1.1-IMV-
REQ-45-M] and [CTNC-IFIMV1.1-IMV-REQ-50-M].

[CTNC-IFIMV1.1-IMV-AA-9] The test program that loads IMVs will contain code to detect if
the IMV under test ever attempts to call the send message
function for a connection for which the IMV is not servicing a
receive message, or batch ending function call and has yet to
return. This test case is for the following IMV requirement:
[CTNC-IFIMV1.1-IMV-REQ-32-M].

The following is the set of normative test cases the test program must support, unless otherwise
noted.

[CTNC-IFIMV1.1-IMV-TC-1] The test program that loads the IMV under test will iterate
through all the functions defined by the IMV and ensure that
each of these is either an IMV function defined in the IF-IMV 1.1
specification or has a name that begins with “TNC_XXX_” where
XXX is a valid vendor ID. This case will be expanded to verify
that the vendor ID is composed of ASCII numbers using a
decimal representation whose initial digit is not zero. This test
case is for the following IMV requirements: [CTNC-IFIMV1.1-
IMV-REQ-1-M] and [CTNC-IFIMV1.1-IMV-REQ-6-M].

[CTNC-IFIMV1.1-IMV-TC-2] The test program that loads the IMC will load two copies of the
IMC so that two copies of each IMC message will be sent to the
IMV under test. The IMV may create a log entry noting these
duplicate messages, ignore them, display an error, or take any
other action allowed under the specification. But the IMV must
follow the IF-IMV specification and must not crash. This test case
is for the following IMV requirement: [CTNC-IFIMV1.1-IMV-REQ-
2-M].

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 21 of 27
29 October 2007 TCG PUBLISHED

[CTNC-IFIMV1.1-IMV-TC-3] The test program that loads the IMV will implement no vendor-
specific functions. The IMV must follow the IF-IMV specification
and must not crash. This test case is for the following IMV
requirement: [CTNC-IFIMV1.1-IMV-REQ-4-M].

[CTNC-IFIMV1.1-IMV-TC-4] The test program that loads the IMV will implement some extra
vendor-specific functions that the IMV does not understand. The
IMV must follow the IF-IMV specification and must not crash.
This test case is for the following IMV requirement: [CTNC-
IFIMV1.1-IMV-REQ-5-M].

[CTNC-IFIMV1.1-IMV-TC-5] The test program that loads the IMV calls into the IMV while the
IMV is calling the TNCS. For instance, the test program waits
until the IMV calls TNC_TNCS_ProvideRecommendation and
then calls TNC_IMV_NotifyConnectionChange to notify the IMV
about the creation of a different connection. This test case is for
the following IMV requirement: [CTNC-IFIMV1.1-IMV-REQ-7-M].

[CTNC-IFIMV1.1-IMV-TC-6] The test program that loads the IMV starts up two threads. Each
thread runs a series of handshakes, inserting short and varying
(but not random) delays into the handshakes. The test program
verifies that IMV does not crash or otherwise violate the spec
when running multiple threads. This test case is for the following
IMV requirement: [CTNC-IFIMV1.1-IMV-REQ-8-M].

[CTNC-IFIMV1.1-IMV-TC-7] The test program that loads IMVs will try loading the IMV several
times with different IMV ID values (including edge cases like 0, 1,
and the maximum TNC_UInt32 value) and verify that the IMV
functions properly with all of these values. This test case is for
the following IMV requirement: [CTNC-IFIMV1.1-IMV-REQ-9-M].

[CTNC-IFIMV1.1-IMV-TC-8] The test program that loads IMVs will run a handshake retry and
verify that the IMV under test functions properly during this
handshake retry (in particular, that it does not crash or hang).
This test case is for the following IMV requirement: [CTNC-
IFIMV1.1-IMV-REQ-10-M].

[CTNC-IFIMV1.1-IMV-TC-9] The test program that loads IMVs will run a TNC handshake with
a particular connection ID. When this handshake is finished, it
will delete the connection ID and then reuse the same ID for a
subsequent handshake. It will verify that the IMV under test
functions properly during the second handshake (in particular,
that it does not crash or hang). This test case is for the following
IMV requirement: [CTNC-IFIMV1.1-IMV-REQ-11-M].

[CTNC-IFIMV1.1-IMV-TC-10] The test program that loads IMVs will return the values of 0x0,
0xFFFFFFFF, and 0xA as result codes during individual calls for
each of the five TNCS functions used by the IMV:
TNC_TNCS_BindFunction,
TNC_TNCS_ProvideRecommendation,
TNC_TNCS_ReportMessageTypes,
TNC_TNCS_RequestHandshakeRetry,
TNC_TNCS_SendMessage , . This test case is for the following
IMV requirement [CTNC-IFIMV1.1-IMV-REQ-18-M].

[CTNC-IFIMV1.1-IMV-TC-11] The test program that loads IMVs, for both Windows and
Unix/Linux, will iterate through all mandatory IF-IMV API
functions including TNC_IMV_ProvideBindFunction and verify
that the IMV under test implements these functions. This test
case is for the following IMV requirements: [CTNC-IFIMV1.1-

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 22 of 27
29 October 2007 TCG PUBLISHED

IMV-REQ-20-M], [CTNC-IFIMV1.1-IMV-REQ-22-M], [CTNC-
IFIMV1.1-IMV-REQ-28-M], [CTNC-IFIMV1.1-IMV-REQ-42-M],
and [CTNC-IFIMV1.1-IMV-REQ-47-M].

[CTNC-IFIMV1.1-IMV-TC-12] The test case [CTNC-IFIMV1.1-IMV-TC-11] will be expanded by
iteratively calling the IMV’s initialization function with the
following (minimum, maximum) version value pairings: (1,1),
(1,2), (2,2), and (1, MAX_UINT32). The test program will verify
that the IMV under test always returns a valid value, consisting
either of the API version it does support or the no common
version result code. This test case is for the following IMV
requirements: [CTNC-IFIMV1.1-IMV-REQ-23-M] and [CTNC-
IFIMV1.1-IMV-REQ-24-M].

[CTNC-IFIMV1.1-IMV-TC-13] The test program for Windows that loads IMVs will populate the
well known registry location with optional values and verify that
an IMV ignores unknown optional values correctly and loads
without hanging or crashing. This test case is for the following
IMV requirement: [CTNC-IFIMV1.1-IMV-REQ-46-M].

NOTES:

 There is no test case for [CTNC-IFIMV1.1-IMV-REQ-3-M] requirement because all
platform bindings defined in the IF-IMV 1.1 specification include Dynamic Function
Binding.

4.2 Test Cases for IF-IMV Compliance Test for TNCSs
There are several asynchronous actions that a TNCS may initiate and which the test program
must be capable of handling during all normative test cases. For example, a TNCS may call
TNC_IMV_NotifyConnectionChange to provide a notification of a new network connection at any
time. The test program must handle TNCS asynchronous actions appropriately and ensure the
TNCS is generating correct data/messages/etc for the given action. Following is the list of
asynchronous actions and validation requirements for the test program.

[CTNC-IFIMV1.1-TNCS-AA-1] The test IMV must implement
TNC_IMV_NotifyConnectionChange and verify that the TNCS
under test sends only one of the valid network connection state
values listed in section 3.5.5 of IF-IMV v1.1, The test IMV will
check the network connection state value to make sure it is one
of the values listed in IF-IMV section 3.4.2.3. This test case is for
the following TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-
10-M].

[CTNC-IFIMV1.1-TNCS-AA-2] The test IMV verifies that the imvID parameter passed by the
TNCS is the IMV ID value provided to TNC_IMV_Initialize. The
test IMV also verifies that the connection ID also contains a valid
network connection ID. The network connection ID must never
have the reserved value TNC_CONNECTIONID_ANY. Further,
the connection ID must never have the value
TNC_CONNECTIONID_DELETE except when passed to the
TNC_IMV_NotifyConnectionChange function. This test case is
for the following TNCS requirement: [CTNC-IFIMV1.1-TNCS-
REQ-15-M], [CTNC-IFIMV1.1-TNCS-REQ-23-M], [CTNC-
IFIMV1.1-TNCS-REQ-24-M], [CTNC-IFIMV1.1-TNCS-REQ-26-
M], [CTNC-IFIMV1.1-TNCS-REQ-27-M], [CTNC-IFIMV1.1-
TNCS-REQ-31-M], [CTNC-IFIMV1.1-TNCS-REQ-32-M], [CTNC-
IFIMV1.1-TNCS-REQ-33-M], [CTNC-IFIMV1.1-TNCS-REQ-34-

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 23 of 27
29 October 2007 TCG PUBLISHED

M], [CTNC-IFIMV1.1-TNCS-REQ-36-M], [CTNC-IFIMV1.1-
TNCS-REQ-48-M], and [CTNC-IFIMV1.1-TNCS-REQ-55-M].

[CTNC-IFIMV1.1-TNCS-AA-3] The test IMV calls TNC_TNCS_BindFunction for all TNCS
functions and verifies pOutFunctionPointer is set to either a
pointer to the requested function or NULL when the requested
function is not defined. The test IMV also verifies that the same
function pointer is returned once the test IMV obtains a pointer to
a particular function. This test case is for the following TNCS
requirements: [CTNC-IFIMV1.1-TNCS-REQ-51-M], [CTNC-
IFIMV1.1-TNCS-REQ-52-M], and [CTNC-IFIMV1.1-TNCS-REQ-
58-M]

[CTNC-IFIMV1.1-TNCS-AA-4] The test IMV will have code to detect if the TNCS under test ever
calls TNC_IMV_Initialize again after having called it successfully
before, unless TNC_IMV_Terminate() has completed
successfully. This entry is for the following TNCS requirements:
[CTNC-IFIMV1.1-TNCS-REQ-18-M] and [CTNC-IFIMV1.1-
TNCS-REQ-19-M].

[CTNC-IFIMV1.1-TNCS-AA-5] The test IMV will have code to detect if the TNCS under test ever
advertises an invalid or incorrect minVersion and maxVersion
argument with TNC_IMV_Initialize. This entry is for the following
TNCS requirements: [CTNC-IFIMV1.1-TNCS-REQ-20-M], and
[CTNC-IFIMV1.1-TNCS-REQ-21-M].

[CTNC-IFIMV1.1-TNCS-AA-6] The test IMV will have code to verify that a TNCS always passes
valid function pointer storage in pOutActualVersion when the
TNCS calls the IMV initialization function TNC_IMV_Initialize.
Verification of function pointer storage can be done by verifying
that function pointer is not NULL. This entry is for the following
TNCS requirement:[CTNC-IFIMV1.1-TNCS-REQ-22-M].

[CTNC-IFIMV1.1-TNCS-AA-7] The test IMV will have code to verify that always when a TNCS is
calling the [optional] TNC_IMV_ReceiveMessage() function:

 (a) message parameter contains a valid reference (e.g. memory
pointer) to the buffer containing the message being delivered to
the test IMV. If messageLength parameter is not zero,
verification of message buffer can be done by verifying that
message pointer is not NULL and then attempting to read
messageLength octets from the location pointed to.

(b) messageLength parameters contains the number of octets in
the message. If messageLength parameter is not zero,
verification of this parameter can be done by reading
messageLength octets from location pointed by message buffer
reference.

(c) messageType parameter contains the type of message and
matches one of the TNC_MessageType values previously
supplied by the IMV to the TNCS in the IMV’s most recent call to
TNC_TNCS_ReportMessageTypes.

This entry is for the following TNCS requirements: [CTNC-
IFIMV1.1-TNCS-REQ-28-M], [CTNC-IFIMV1.1-TNCS-REQ-29-
M], and [CTNC-IFIMV1.1-TNCS-REQ-30-M]

[CTNC-IFIMV1.1-TNCS-AA-8] The test IMV will have code to verify that a TNCS never calls any
IMV function other than TNC_IMV_Initialize after calling the
[optional] TNC_IMV_Terminate function. This entry is for the

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 24 of 27
29 October 2007 TCG PUBLISHED

following TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-35-
M].

[CTNC-IFIMV1.1-TNCS-AA-9] The test IMV has code to detect that the TNCS under test calls
TNC_IMV_ProvideBindFunction immediately after calling
TNC_IMV_Initialize. The test IMV also has code to detect that
the bindFunction parameter contains a pointer to the TNCS bind
function. This test case is for the following TNCS requirements:
[CTNC-IFIMV1.1-TNCS-REQ-47-M], [CTNC-IFIMV1.1-TNCS-
REQ-49-M], [CTNC-IFIMV1.1-TNCS-REQ-54-M], and [CTNC-
IFIMV1.1-TNCS-REQ-56-M].

The following is the set of normative test cases the test program must support, unless otherwise
noted.

[CTNC-IFIMV1.1-TNCS-TC-1] The test IMV will iterate through all the functions defined by the
TNCS and ensure that each of these is either a TNCS function
defined by the IF-IMV 1.1 specification or has a name that

begins with “TNC_XXX_” where XXX is a valid vendor ID. This

test case will be expanded to verify that the vendor ID is
composed of ASCII numbers using a decimal representation
whose initial digit is not zero. This test case is for the following
TNCS requirements: [CTNC-IFIMV1.1-TNCS-REQ-1-M] and
[CTNC-IFIMV1.1-TNCS-REQ-7-M].

[CTNC-IFIMV1.1-TNCS-TC-2] Several test IMVs will be created. When a connection starts,
these IMVs will check that they all get the same connection ID
for that connection. This test case is for the following TNCS
requirement: [CTNC-IFIMV1.1-TNCS-REQ-2-M].

[CTNC-IFIMV1.1-TNCS-TC-3] The test IMV will send a zero length message and the test IMC
will verify that it is delivered properly. This test case is for the
following TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-3-M]

[CTNC-IFIMV1.1-TNCS-TC-4] The test IMV will implement no vendor-specific functions. The
TNCS must follow the IF-IMV specification and must not crash.
This test case is for the following TNCS requirement: [CTNC-
IFIMV1.1-IMV-REQ-5-M].

[CTNC-IFIMV1.1-TNCS-TC-5] The test IMV will implement some extra vendor-specific functions
that the TNCS does not understand. The TNCS must follow the
IF-IMV specification and must not crash. This test case is for the
following TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-6-M].

[CTNC-IFIMV1.1-TNCS-TC-6] The test IMV will wait until the TNCS calls
TNC_IMV_BatchEnding. While that call is in progress, the test
IMV will call TNC_TNCS_SendMessage. This test case is for the
following TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-8-M].

[CTNC-IFIMV1.1-TNCS-TC-7] The test IMV (either the Windows or Linux/UNIX Platform
Bindings) will create eight (8) concurrent threads and each
thread will make overlapping calls to the TNCS under test. The
test IMV will validate that TNCS under test does not crash, hang,
or return inconsistent results. This test case is for the following
TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-9-M].

[CTNC-IFIMV1.1-TNCS-TC-8] The test IMC sends messages whose message types include
boundary message types (0x00000000, 0x000000FE
0x00000100, 0x000001FE, 0xFFFFFE00, 0xFFFFFFFE). The
test IMV verifies that all messages are delivered. The test IMV
sends messages whose types include boundary message types

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 25 of 27
29 October 2007 TCG PUBLISHED

(0x00000000, 0x000000FE, 0x00000100, 0x000001FE,
0xFFFFFE00, 0xFFFFFEFE). The test IMC verifies that all
messages are delivered. This test case is for the following TNCS
requirement: [CTNC-IFIMV1.1-TNCS-REQ-11-M].

[CTNC-IFIMV1.1-TNCS-TC-9] The test case for the TNCS requirement [CTNC-IFIMV1.1-
TNCS-REQ-11-M] will be expanded. The test IMV sends two
messages including one message whose message type includes
the reserved TNC_VENDORID_ANY (0xFFFFFF). The test IMC
verifies that only one message whose message type does not
include the reserved TNC_VENDORID_ANY (0xFFFFFF) is
received. This test case is expanded so that the test IMV sends
two messages including one message whose message type
includes the reserved TNC_SUBTYPE_ANY (0xFF). The test
IMC verifies that only one message whose message type does
not include the reserved TNC_SUBTYPE_ANY (0xFF) is
received. This test case is for the following TNCS requirements:
[CTNC-IFIMV1.1-TNCS-REQ-12-M] and [CTNC-IFIMV1.1-
TNCS-REQ-13-M].

[CTNC-IFIMV1.1-TNCS-TC-10] The test IMV implements IMV functions (TNC_IMV_Initialize,
TNC_IMV_NotifyConnection Change,
TNC_IMV_ReceiveMessage,
TNC_IMV_SolicitRecommendation, TNC_IMV_BatchEnding,
and TNC_IMV_Terminate) and has these functions return values
of 0, 10, and FFFFFFFF. The TNCS under test must operate
normally without hanging or crashing. This test case is for the
following TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-14-
M].

[CTNC-IFIMV1.1-TNCS-TC-11] The test IMV calls all mandatory functions
(TNC_TNCS_ReportMessageTypes,
TNC_TNCS_SendMessage,
TNC_TNCS_ProvideRecommendation, and
TNC_TNCS_RequestHandshakeRetry) and verifies that they are
implemented. This test case is for the following TNCS
requirements: [CTNC-IFIMV1.1-TNCS-REQ-16-M], [CTNC-
IFIMV1.1-TNCS-REQ-37-M], and [CTNC-IFIMV1.1-TNCS-REQ-
42-M].

[CTNC-IFIMV1.1-TNCS-TC-12] The test IMV does not implement any of the optional IMV
functions (TNC_IMV_NotifyConnectionChange,
TNC_IMV_ReceiveMessage, TNC_IMV_BatchEnding, and
TNC_IMV_Terminate). The TNCS under test must operate
properly (not crash or hang). This test case is for the following
TNCS requirement: [CTNC-IFIMV1.1-TNCS-REQ-17-M].

[CTNC-IFIMV1.1-TNCS-TC-13] The test IMV has code to verify that the list of message types
passed in supportedTypes has not been modified or accessed
after the call returns. One method of performing this validation is
to use protected memory. Additionally, the test IMV passes in
boundary cases for the TNC_UINT32 type as a list of message
types to check if the TNCS under test handles any message
type. This test case is for the following TNCS requirements:,
[CTNC-IFIMV1.1-TNCS-REQ-38-M], [CTNC-IFIMV1.1-TNCS-
REQ-39-M], [CTNC-IFIMV1.1-TNCS-REQ-40-M], and [CTNC-
IFIMV1.1-TNCS-REQ-41-M]

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 26 of 27
29 October 2007 TCG PUBLISHED

[CTNC-IFIMV1.1-TNCS-TC-14] The test IMV has codes to verify that the buffer content passed
into TNC_TNCS_SendMessage as message argument has not
been modified or otherwise accessed after the call returns. The
test suite also has codes to compare that the message sent by
TNCS is the same as the message the test IMV sent. This test
case is for the following TNCS requirements: [CTNC-IFIMV1.1-
TNCS-REQ-43-M], and [CTNC-IFIMV1.1-TNCS-REQ-44-M].

[CTNC-IFIMV1.1-TNCS-TC-15] The test suite updates the well-known registry key to change the
list of IMVs to load and unload. The test suite verifies that the
TNCS under test reflects such changes within 2 minutes by
loading and unloading IMVs as specified in the well-known
registry key. This test case is for the following TNCS
requirement: [CTNC-IFIMV1.1-TNCS-REQ-46-M].

[CTNC-IFIMV1.1-TNCS-TC-16] The test IMV calls TNC_TNCS_BindFunction to verify that the
TNCS under test implements this function. The test case is for
the following TNCS requirements: [CTNC-IFIMV1.1-TNCS-REQ-
50-M] and [CTNC-IFIMV1.1-TNCS-REQ-57-M].

[CTNC-IFIMV1.1-TNCS-TC-17] For the testing of TNCS for Windows platforms, the test IMVs will
populate the well known registry location with optional values
and verify that the TNCS ignores unknown optional values
correctly and loads without hanging or crashing. This test case is
for the following TNCS requirement: [CTNC-IFIMV1.1-TNCS-
REQ-53-M].

NOTES:

 There is no test case for [CTNC-IFIMV1.1-TNCS-REQ-25-M] requirement because it is
not automatically testable.

TCG Compliance_TNC IF-IMV Compliance Test Plan
 TCG Copyright
Version 1.0

Revision 0.08 Published Page 27 of 27
29 October 2007 TCG PUBLISHED

5 References
This section lists specifications and other documents that are referred to in the document. Since
this document is informative (not normative), all of these references are informative with respect
to this document.

Informative References
[1] Trusted Computing Group, TNC Architecture for Interoperability, Specification Version

1.1, May 2006.

[2] Trusted Computing Group, TNC IF-IMV, Specification Version 1.1, May 2006.

[3] Trusted Computing Group, Compliance_TNC Compliance and Interoperability Principles,
Specification Version 1.0, Draft Specification, October 2006.

