
          

Family "2.0" TCG Public Review  Page 1 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

 

TCG 

 

 

 

 

 

 

TCG TSS 2.0 TPM Command 

Transmission Interface (TCTI) API 

Specification 

 

Family "2.0" 

Version 1.0  

Revision 05 

4 January 2018 

Committee Draft 

Copyright © TCG 2013-2018 

 Work in Progress:  

This document is an intermediate draft for comment only and is subject to change 

without notice. Readers should not design products based on this document 

 

Contact: admin@trustedcomputinggroup.org 

  

  

mailto:admin@trustedcomputinggroup.org


Page 2 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

Disclaimers, Notices, and License Terms 

Copyright Licenses:  

 Trusted Computing Group (TCG) grants to the user of the source code in this 

specification (the “Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, 

copyright license to reproduce, create derivative works, distribute, display and perform 

the Source Code and derivative works thereof, and to grant others the rights granted 

herein.  

 The TCG grants to the user of the other parts of the specification (other than the Source 

Code) the rights to reproduce, distribute, display, and perform the specification solely for 

the purpose of developing products based on such documents. 

 

Source Code Distribution Conditions:  

 Redistributions of Source Code must retain the above copyright licenses, this list of 

conditions and the following disclaimers.  

 Redistributions in binary form must reproduce the above copyright licenses, this list of 

conditions and the following disclaimers in the documentation and/or other materials 

provided with the distribution. 

 

Disclaimers: 

 THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM 

OF LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, 

WITH RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD 

PARTIES) THAT MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR 

OTHERWISE. Contact TCG Administration (admin@trustedcomputinggroup.org) for 

information on specification licensing rights available through TCG membership 

agreements. 

 THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED 

WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF 

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, 

COMPLETENESS, OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY 

RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, 

SPECIFICATION OR SAMPLE. 

 Without limitation, TCG and its members and licensors disclaim all liability, including 

liability for infringement of any proprietary rights, relating to use of information in this 

specification and to the implementation of this specification, and TCG disclaims all liability 

for cost of procurement of substitute goods or services, lost profits, loss of use, loss of 

data or any incidental, consequential, direct, indirect, or special damages, whether under 

contract, tort, warranty or otherwise, arising in any way out of use or reliance upon this 

specification or any information herein. 



          

Family "2.0" TCG Public Review  Page 3 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

 

Any marks and brands contained herein are the property of their respective owners.  

 

Corrections and Comments 

Please send comments and corrections to techquestionsadmin@trustedcomputinggroup.org. 

 

Normative-Informative Language 

 

“SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY” and 

“OPTIONAL” in this document are normative statements.  They are to be interpreted as 

described in [RFC-2119]. 

 

Revision History 

 

Revision Date Description 

Version 0.9 rev 00 05/30/17 
 First version of this document – created TCTI 

information removed from the SAPI 
specification. 

Version 1.0 rev 01 06/02/17  Resolved review comments. 

 

Acknowledgements 

TCG and the TSS Work Group would like to thank the following people for their work on this 

specification. 

 Will Arthur,           Raytheon 

 Brenda Baggaley, Security Innovation (OnBoard Security) 

 Dave Challener,    Johns Hopkins University 

 Mike Cox,               Security Innovation (OnBoard Security) 

 Andreas Fuchs,      Fraunhofer SIT 

 Ken Goldman,        IBM 

 Jürgen Repp,          Fraunhofer SIT 

 Philip Tricca,           Intel 

 Lee Wilson,             Security Innovation (OnBoard Security) 

  

mailto:admin@trustedcomputinggroup.org


Page 4 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

Table of Contents 

1 General Information on The TCG TSS 2.0 Specification Library .......................................................... 5 

1.1 Acronyms ........................................................................................................................................ 5 
1.2 TCG Software Stack 2.0 (TSS 2.0) Specification Library Structure ............................................... 5 

2 TCTI Introduction ................................................................................................................................... 7 

2.1 TCTI Target Systems ...................................................................................................................... 7 

3 TPM Command Transmission Interface ................................................................................................ 9 

3.1 Introduction ..................................................................................................................................... 9 

3.1.1 Purpose & Goal ...................................................................................................................... 9 

3.2 TCTI data structures ....................................................................................................................... 9 
3.3 TCTI Context data structures .......................................................................................................... 9 

3.3.1 TCTI Context .......................................................................................................................... 9 
3.3.2 Function Invocation .............................................................................................................. 10 
3.3.3 Version Area ......................................................................................................................... 11 
3.3.4 Non-opaque Area ................................................................................................................. 11 
3.3.5 Function Callbacks ............................................................................................................... 11 

3.4 Compatibility ................................................................................................................................. 16 

3.4.1 Old and Not Useful Version .................................................................................................. 16 
3.4.2 New but Useful Version ........................................................................................................ 16 
3.4.3 New and Not Useful Version ................................................................................................ 16 
3.4.4 New Version with Deprecated Functions ............................................................................. 16 

3.5 Opaque Area................................................................................................................................. 16 

4 TCTI Header File ................................................................................................................................. 18 

4.1 TCTI Prelude................................................................................................................................. 18 
4.2 TCTI Data Structures .................................................................................................................... 18 
4.3 TCTI Macros ................................................................................................................................. 19 
4.4 Definitions Which Should Not Be Used by Callers ....................................................................... 21 
4.5 tss2_tcti.h Postlude ....................................................................................................................... 24 

 

 



          

Family "2.0" TCG Public Review  Page 5 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

1 General Information on The TCG TSS 2.0 Specification 
Library 

 

1.1 Acronyms 

   For definitions of the acronyms used in the TSS 2.0 specifications please see the TCG TSS 2.0 
Overview and Common Structures Specification [22}. 

 

1.2 TCG Software Stack 2.0 (TSS 2.0) Specification Library 
Structure 

  At the time of writing, the documents that are part of the specification of the TSS 2.0 are: 

[1] TCG TSS 2.0 Overview and Common Structures Specification 

[2] TCG TSS 2.0 TPM Command Transmission Interface (TCTI) API Specification 

[3] TCG TSS 2.0 Marshaling/Unmarshaling API Specification 

[4] TCG TSS 2.0 System API (SAPI) Specification 

[5] TCG TSS 2.0 Enhanced System API (ESAPI) Specification 

[6] TCG TSS 2.0 Feature API (FAPI) Specification 

[7] TCG TSS 2.0 TAB and Resource Manager Specification 

 



Page 6 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

Figure 1: TSS 2.0 Specification Library 

   All references and acronyms for the TSS 2.0 library are in the TCG TSS 2.0 Overview and Common 
Structures Specification [22]. 

 

 



          

Family "2.0" TCG Public Review  Page 7 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

2 TCTI Introduction 

The TPM command transmission interface (TCTI) handles all the communication to and from the lower 

layers of the TSS software stack.  For instance, different interfaces are required for local hardware TPMs, 

firmware TPMs, virtual TPMs, remote TPMs, and software TPM simulators.  

NOTE: There are two different interfaces to TPMs:  the legacy TIS interface and the command/response 

buffer (CRB). 

 

Local TPM
TPM 

Simulator
Virtual TPM

Remote TPM

TPM Access Broker

 Resource Mgr

Local TPM driver

TPM Access 
Broker

Resource Mgr

Local TPM driver

TPM Access Broker

Resource Mgr

Sim TPM driver

TPM Access Broker

 Resource Mgr

Virt TPM driver

      

  Network

System API

Feature/EnvironmentAPI

Application

TCTI

TCTI

Local TPM
TPM 

Simulator
Virtual TPM

Remote TPM

TPM Access Broker

 Resource Mgr

Local TPM driver

TPM Access 
Broker

Resource Mgr

Local TPM driver

TPM Access Broker

Resource Mgr

Sim TPM driver

TPM Access Broker

 Resource Mgr

Virt TPM driver

      

  Network

System API (SAPI)

Feature API (FAPI)

Application

TCTI

TCTI

Enhanced System API (ESAPI)

 

Figure 2: Using TCTI to Connect to Various Target TPMs 

 

2.1 TCTI Target Systems 

   The TCTI API is designed to be used in a large range of computing devices from highly embedded 

systems to server OSes.   



Page 8 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

   The TCTI is a low-level interface intended for expert applications.  The SAPI uses the TCTI to 

communicate with the TPM.  Use of the TCTI requires an understanding of common device driver 

interfaces.  TCTI provides a generic interface to a wide variety of transport methods that can be used to 

communicate to the TPM. 



          

Family "2.0" TCG Public Review  Page 9 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

3 TPM Command Transmission Interface  

The TPM Command Transmission Interface (TCTI) is used to send marshalled commands to and receive 

marshalled responses from the TPM (or the underlying software stack that ultimately interacts with a 

TPM).  It is designed to handle a wide variety of transmission methods. 

3.1 Introduction 

3.1.1 Purpose & Goal 

The TPM Command Transmission Interface is designed to make it possible to switch modules at run time. 

An application or the Feature-API may be configurable with regards to the “TCTI-drivers” they offer to a 

user. The TCTI is designed specifically for these use cases and provides conventions and helpers to be 

runtime-loadable friendly while still allowing compile-time linking without namespace clashes. 

Initialization of the TCTI interface is accomplished in a driver-specific manner and is out of scope for this 

specification.   

3.2 TCTI data structures 

All TCTI data structures are included in the header file, tss2_tcti.h. The contents of tss2_tcti.h are 

specified in chapter 4. 

3.3 TCTI Context data structures 

3.3.1 TCTI Context 

The TCTI Context is an opaque pointer when passed in to the SAPI implementation.  It is created by the 

caller, typically using a TCTI implementation. However, the SAPI implementation must extract several 

fields (typically function callbacks) in order to communicate with the next lower layer. 

The SAPI implementation must not write any fields of the TCTI context. 

The TCTI context consists of three parts. 

 A version area 

 A non-opaque area 

 An opaque area 

The structure definitions look generally like this.  They are explained below. 

typedef struct  TSS2_TCTI_OPAQUE_CONTEXT_BLOB TSS2_TCTI_CONTEXT; 

 

/* superclass to get the version */  

typedef struct {  

    uint64_t magic;  

    uint32_t version;  

} TSS2_TCTI_CONTEXT_VERSION ;  

 

/* current version #1 known to this implementation */  



Page 10 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

typedef struct {  

    uint64_t magic;  

    uint32_t version;  

    TSS2_RC (*transmit)( TSS2_TCTI_CONTEXT *tctiContext, size_t size,  

const uint8_t *command);  

    TSS2_RC (*receive) (TSS2_TCTI_CONTEXT *tcti Context, size_t *size,  

uint8_t *response, int32_t timeout);  

    void (*finalize) (TSS2_TCTI_CONTEXT *tctiContext);  

    TSS2_RC (*cancel) (TSS2_TCTI_CONTEXT *tctiContext);  

    TSS2_RC (*getPollHandles) (TSS2_TCTI_CONTEXT *tctiContext,  

TSS2_TCTI_POLL_HANDLE *handles, size_t *num_handles);  

    TSS2_RC (*setLocality) (TSS2_TCTI_CONTEXT *tctiContext, uint8_t 

locality);  

} TSS2_TCTI_CONTEXT_COMMON_V1;  

 

typedef struct {  

    TSS2_TCTI_CONTEXT_COMMON_V1    v1;  

    TSS2_TCTI_MAKE_STICKY_FCN            makeSticky;  

} TSS2_TCTI_CONTEXT_COMMON_V2; 

 

typedef TSS2_ TCTI_CONTEXT_COMMON_V2 TSS2_TCTI_CONTEXT_COMMON_CURRENT;  

 

 

3.3.2 Function Invocation 

In order to call any of these functions, an application first needs to check that a given TCTI Context has 

the correct version number, which is a version greater or equal to the version at the time that the function 

was added to the common function table. The application then needs to check whether the function is 

also implemented by the respective driver, that is, whether the function pointer is non-NULL. Only then 

can the function be safely called. This process can be encapsulated inside a helper macro such as the 

following example: 

#define Tss2_ Tcti_ Transmit(tctiContext, size, command) \  

 ((tctiContext == NULL) ? TSS2_TCTI_ RC_BAD_REFERENCE: \  

 (((TSS2_TCTI_CONTEXT_VERSION *)tctiContext) - >version < 1) ? \  

  TSS2_TCTI_RC_WRONG_ABI_VERSION : \  

 (((TSS2_TCTI_CONTEXT_V1 *)tctiContext) - >transmit == NULL) ? \  

  TSS2_TCTI_ RC_NOT_IMPLEMENTED: \  

 ((TSS2_TCTI_CONTEXT_V1 *)tctiContext) - >transmit(t ctiContext, size, 

command))  

A similar pattern can be implemented for all TCTI function pointers. 

 



          

Family "2.0" TCG Public Review  Page 11 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

3.3.3 Version Area 

The SAPI implementation extracts the version area by casting the opaque context to a 

TSS2_TCTI_CONTEXT structure.  Each context structure must begin with the same members as the 

TSS2_TCTI_CONTEXT structure. 

The magic value is some unique number, perhaps simply a random number.  The SAPI implementation 

will likely not read it. The value is a sanity check, ensuring that the lower TCTI layer receives a context 

that it can interpret, typically one it created. 

The version value denotes the version number of the context structure.  This value must monotonically 

increase from older to newer versions.  The first version was 0x1.  The current version is 0x2. 

The SAPI implementation supports one or more versions of TCTI. 

In the simplest case, the SAPI implementation supports one version.  This would not necessarily be the 

latest version, but rather the numerically lowest version that contains all fields that the implementation 

requires.  Using the lowest possible version permits the SAPI implementation to use the largest possible 

set of TCTI implementations.  

In a more complex case, the SAPI implementation supports multiple TCTI versions.  This might be useful 

if a version is deprecated, where a callback has been superseded by an improved function. 

3.3.4 Non-opaque Area 

The contents of a non-opaque area are defined by the version.  The TCG defines versions and their 

contents.  Each newer version must contain all fields of the previous version in the same order.  

Callbacks must have identical parameters and return values.  This permits the SAPI implementation to 

safely cast a TCTI context to any version not greater than the value in the version field. 

Once the context is cast, structure members can be dereferenced and used.  A typical structure member 

is a function callback provided by the TCTI implementation. 

3.3.5 Function Callbacks 

The SAPI implementation extracts these callbacks from the non-opaque area of the TCTI context. 

3.3.5.1 transmit 

TSS2_RC (*transmit)(  

TSS2_TCTI_CONTEXT   *tctiContext,  

size_t     size,  

const uint8_t    *command 

);  

This function transmits the command packet of size bytes to next layer below the caller. 

Response Codes: 

 TSS2_TCTI_RC_NOT_IMPLEMENTED:  if the function isnôt implemented 

NOTE:  this error code would only be used if future versions of this spec deprecated or removed the transmit call.  

 TSS2_TCTI_RC_IO_ERROR: underlying IO failed  

 TSS2_TCTI_ RC_BAD_CONTEXT: bad version and /or  magic fields in the TCTI -

context  



Page 12 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

 TSS2_TCTI_RC_BAD_SEQUENCE: if transmit was called more than once  

without a call to receive in between  

 TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext or command is NULL   

 TSS2_TCTI_RC_BAD_VALUE: if a bad value for any parameter  is detected  

NOTE:  Some possible examples of bad values are:  size out of range, size not at least 10 bytes, or size doesn’t match 

commandSize. 

3.3.5.2 receive 

TSS2_RC (* receive )(  

TSS2_TCTI_CONTEXT  *tctiContext,  

size_t    *size,  

uint8_t    *response,  

int32_t    timeout  

);  

This function receives a response packet from the layer below the caller. 

If the parameter response is NULL and the size of the TPM response is known, the required size is 

written to the size parameter and TSS2_RC_SUCCESS is returned. 

On input, size is the maximum allocated byte size of response.  On a successful return, size is the actual 

used bytes of response.  If size is insufficient for the TPM response the required size is returned in size 

with TSS2_TCTI_RC_INSUFFICIENT_BUFFER error. 

NOTE:  in some cases, depending on the communication interface, this will require the TCTI layer to keep track of the data read 

from the interface during the unsuccessful call to receive. A subsequent call to receive using the same TCTI context and a larger 

response buffer and size could be used to get the response data and clear the interface so that subsequent commands can be sent. 

If timeout is TSS2_TCTI_TIMEOUT_BLOCK, the command is synchronous and blocks until a response is 

received.   

If timeout is TSS2_TCTI_TIMEOUT_NONE, the command returns immediately. size and response are 

updated only on a successful return. 

If timeout is positive, the command returns after a maximum of timeout msec. size and response are 

updated only on a successful return. 

receive always returns either the entire TPM response or a return code indicating that the response is not 

yet completely available.  A TCTI implementation that might receive partial responses can use the 

response buffer to assemble the partial responses. 

There is one exception to the above: receive may return a return code indicating that the response buffer 

is too small to hold the TPM response.  In that case, the caller must call receive again with a larger buffer.     

Response Codes: 

 TSS2_TCTI_RC_NOT_IMPLEMENTED:  if the function isnôt implemented 

 NOTE:  this error code would only be used if future versions of this 

spec deprecated or removed the receive call.  

 TSS2_TCTI_ RC_BAD_CONTEXT: bad version and /or  magic fields in the TCTI -

context  

 TSS2_TCTI_RC_TRY_AGAIN: i f a timeout occurred before the complete 

response was received .  



          

Family "2.0" TCG Public Review  Page 13 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

 TSS2_TCTI_RC_INSUFFICIENT_BUFFER: if the response buffer is too small 

for the TPM response.  In this case, the returned size indicates the 

size of the buffer that is needed for the response.  

 TSS2_TCTI_RC_IO_ERROR: Underlying IO failed.  

 TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext or size is NULL  

 TSS2_TCTI_RC_BAD_VALUE: i f timeout  is negative but not - 1 

(TSS2_TCTI_TIMEOUT_BLOCK) or response is NULL.  

 TSS2_TCTI_RC_BAD_SEQUENCE: if receive called aga in after first 

successful receive or if transmit not called first  

3.3.5.3 finalize 

void  (*finalize) (  

TSS2_TCTI_CONTEXT   *tctiContext  

);  

This function performs any actions required when a TCTI connection is terminated and invalidates the 

TCTI Context. The TCTI Context cannot be used for subsequent operations after this call. This function 

should be called whenever a TCTI Context is not needed anymore. Afterwards the TCTI Context memory 

can be freed. 

3.3.5.4 cancel 

TSS2_RC (*cancel) (  

TSS2_TCTI_CONTEXT   *tctiContext  

);  

This function causes the TCTI layer to cancel the command: in some TCTI implementations this may 

include sending the TPM cancel command.  This command can only be called between transmit and 

receive calls. 

NOTE:  After calling cancel, receive still needs to be called. 

Response Codes: 

 TSS2_TCTI_RC_NOT_IMPLEMENTED:  if the function isnôt implemented 

 TSS2_TCTI_RC_IO_ERROR: if connection to the TPM fails .  

 TSS2_TCTI_RC_BAD_SEQUENCE: if not called between transmit and receive .  

 TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext is NULL  

 TSS2_TCTI_ RC_BAD_CONTEXT: bad version and /or  magic fields in the TCTI -

context  

 

3.3.5.5 getPollHandles 

TSS2_RC (*getPollHandles) (  

TSS2_TCTI_CONTEXT  *tctiContext,  

TSS2_TCTI_POLL_HANDLE  *handles,   



Page 14 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

size_t    *num_handles  

);  

NOTE:  This function was added to support event-loop driven programming.  If polling or select aren’t needed, this function isn’t 

necessary.  Understanding this function requires a detailed understanding of poll and select calls. 

This function retrieves the handles that can be used for polling or select.   This function returns a set of 

handles that can be used to poll for incoming responses from the underlying software stack or TPM. The 

type for these handles is platform specific and defined separately in the declaration of 

TSS2_TCTI_POLL_HANDLE.   In order to query the number of handles that a TCTI module needs to 

have monitored, the application may pass NULL for handles; in this case, it returns the number of 

handles.  In pseudo-code this could be: 

*getPollHandles (&tctiCon text, NULL,&num);  

TSS2_TCTI_POLL_HANDLES handles[num];  

 *getPollHandles (&tctiContext, &handles[0], &num);  

 poll(&handles[0], num, - 1);  // Platform specific syscall  

Response Codes: 

 TSS2_TCTI_RC_NOT_IMPLEMENTED:  if the function isnôt implemented 

 TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext, handles, or num_handles is 

NULL 

 TSS2_TCTI_RC_INSUFFICIENT_BUFFER: if num_handles is too small  

 TSS2_TCTI_ RC_BAD_CONTEXT: bad version and /or  magic fields in the TCTI -

context  

3.3.5.6 setLocality 

TSS2_RC (*setLocality) (  

TSS2_TCTI_CONTEXT  *tctiContext,  

uint8_t    locality  

);  

This function sets the locality for the TPM.   

The locality cannot be changed between transmit and receive  

Response Codes: 

 TSS2_TCTI_RC_NOT_IMPLEMENTED:  if the function isnôt implemented 

 TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext is NULL  

 TSS2_TCTI_RC_IO_ERROR: if command fails due to an IO error  

 TSS2_TCTI_RC_BAD_SEQUENCE: if locality is changed between transmit and 

receive calls  

 TSS2_TCTI_ RC_BAD_VALUE: if TCTI canôt support the locality, e.g. the 

loc ality doesnôt even exist. 

 TSS2_TCTI_RC_NOT_PERMITTED:  if the change in locality is not permitted , 

e.g. the locality is supported by the TPM, but the lower layer doesnôt 

allow changing the locality .  

 TSS2_TCTI_ RC_NOT_SUPPORTED:  if the lower layer  doesnôt support changing 

localities  at all .  



          

Family "2.0" TCG Public Review  Page 15 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

 TSS2_TCTI_ RC_BAD_CONTEXT: bad version and /or  magic fields in the TCTI -

context  

3.3.5.7 makeSticky 

TSS2_RC (* makeSticky) (  

TSS2_TCTI_CONTEXT  *tctiContext ,  

TPM_HANDLE    *handle,  

uint8_t     sticky  

);  

If sticky is 1, this function allows an application to request the underlying resource manager to make sure 

that a certain session, sequence or object is loaded in TPM memory. Making a handle sticky means that it 

will stay loaded in TPM memory, meaning the RM won’t unload it.  This allows another process (typically 

a kernel) to use the object without concern about whether it's loaded in TPM memory. 

If sticky is 0, and makeSticky is called with the physical handle returned when it was made sticky, the 

object is made unsticky. Making a handle unsticky means that the RM is free to manage it as it desires.   

If a session, sequence, or object is made sticky, it can only be made unsticky by the same tctiContext. 

NOTE: If the finalize call to TCTI context is called, the associated connection breaks, or the application process exits, all sticky 

sessions, sequences, and objects will be flushed from the TPM. 

This function is optional for TCTI and will only be implemented, i.e. non-NULL and not returning 

TSS2_TCTI_RC_NOT_IMPLEMENTED, if the TCTI layer is communicating with a resource manager. 

Due to the nature of this function - being able to do a denial of service attack on the TPM - it should be 

restricted for usage by privileged applications and/or users only. Details on how to identify those or what 

privileged means are platform and stack specific and thereby out of scope for this specification. 

The handle parameter is an input and output parameter.  If sticky is 1, on input, handle is a virtual handle 

which is going to be made sticky; on output, handle is the real handle.  If sticky is 0, on input, handle is a 

real handle which is going to be made unsticky; on output, handle is the virtual handle. 

NOTE: In order to use “trusted key ring” from the Linux kernel, an application must be able to pass a real handle for a loaded object 

to the kernel.  It can’t pass a virtual handle because the kernel is bypassing the RM which means that no virtual to physical handle 

translation is possible. 

When a session, sequence, or object is sticky, its previous virtual handle can’t be used. 

NOTE: for sessions this is required to avoid application/kernel conflicts because session state changes whenever it’s used.  For 

sequences and objects, this isn’t strictly required, but it was specified this way for the sake of consistency. 

Response Codes: 

 TSS2_TCTI_RC_NOT_IMPLEMENTED:  if the function isnôt implemented 

 TSS2_TCTI_RC_BAD_REFERENCE: if tctiContext or handle is NULL  

 TSS2_TCTI_RC_IO_ERROR: if command fails due to an IO error  

 TSS2_TCTI_RC_BAD_SEQUENCE: if function is called  between transmit and 

receive calls  

 TSS2_TCTI_ RC_BAD_CONTEXT: bad version and /or  magic fields in the TCTI -

context  

 TSS2_TCTI_RC_BAD_HANDLE: if the handle does not exist or is not owned 

by the TCTI context.  



Page 16 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

 TSS2_TCTI_RC_BAD_VALUE: if sticky  is not 0 or 1.   

 

3.4 Compatibility 

This design anticipates that the non-opaque area might change over time, with new functions added and 

existing functions deprecated or even deleted (set to NULL).  The section lists a few such use cases. 

The SAPI implementation might receive an old but still completely useful context.  Assuming it has a 

structure definition for this version (which is why it was recommended that the implementation use the 

oldest suitable structure), it casts to that version and continues. 

3.4.1 Old and Not Useful Version 

The SAPI implementation can receive an old TCTI context version that it cannot use because it requires a 

callback not available in the old version.  The implementation detects the down level version (by detecting 

that it’s less than required version) and returns an error. 

The TCTI implementation must be updated to support the new requirements. 

3.4.2 New but Useful Version 

If the SAPI implementation receives a newer version than the one compiled in, it can cast the TCTI 

context to its down level version and use existing structure members.  The cast is safe because new 

members are added at the end of the structure and existing members are never removed. 

The implementation cannot access new members, but it was not coded to use them anyway. 

3.4.3 New and Not Useful Version 

The implementation might receive a newer context version where structure members that it requires have 

been superseded by newer members.  For example, the TCTI implementation might provide a new 

callback with a different parameter list. 

The TCTI implementation flags this situation by setting an older, now unimplemented function callback to 

NULL.  After the cast, the SAPI implementation detects the NULL.  It cannot continue because a function 

it requires is no longer available. 

The SAPI implementation must be updated to use the new callback. 

3.4.4 New Version with Deprecated Functions 

If the SAPI implementation receives a context version with both deprecated and recommended function 

callbacks, it can handle it one of two ways. 

If it was compiled to only handle a down level context, it will cast and use only the deprecated callbacks. 

If it was compiled to handle several context versions, it can cast to a more recent version and use the 

recommended callbacks. 

3.5 Opaque Area 

The SAPI implementation cannot access the opaque area of the TCTI context.  The TCTI implementation 

can add any implementation specific fields as needed to the opaque area. 

The TCTI is expected to cast the context to its implementation specific context type based on the version 

number.  Since the TCTI both creates and consumes the context, no incompatibility is expected. 



          

Family "2.0" TCG Public Review  Page 17 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

The TCTI implementation may also validate that the magic value is as expected.  This sanity check 

ensures that the pointer passed in is indeed a TCTI context known to the TCTI implementation. 

 



Page 18 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

4 TCTI Header File 
tss2_tcti.h  

4.1 TCTI Prelude 

#ifndef TSS2_TCTI_H  

#define TSS2_TCTI_H  

 

#include <stdint.h>  

#include <stdd ef.h>  

#include "tss2_common.h"  

#include "tss2_tpm2_types.h"  

 

#ifndef TSS2_API_VERSION_1_2_1_108  

#error Version mismatch among TSS2 header files.  

#endif  

 

 

4.2 TCTI Data Structures 

TSS2_TCTI_POLL_HANDLE:  The TCTI supports an asynchronous mode of operation for processing TPM 

commands. After transmission of a command, the application can request to be notified when the 

response is available for reception. The TSS2_TCTI_POLL_HANDLE type is used as a data type for the 

handles that are used when querying for this notice. Since these handles are highly platform specific, 

they will change depending on the type of platform. For some platforms the handles are defined in the 

following; further handle types will be defined in future revisions of this specification. Note that not all 

TCTI-drivers have support for this function.  

/*  

 * "Public" TCTI definitions and operations.  

 */  

 

/* Define OS - specific TSS2_TCTI_POLL_HANDLE */  

#if defined(WIN32)  

#include <windows.h>  

typedef HANDLE TSS2_TCTI_POLL_HANDLE;  

#elif defined(_POSIX_ C_SOURCE) 

#include <poll.h>  

typedef struct pollfd TSS2_TCTI_POLL_HANDLE;  

#else  



          

Family "2.0" TCG Public Review  Page 19 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

typedef void TSS2_TCTI_POLL_HANDLE;  

#ifndef TSS2_TCTI_SUPPRESS_POLL_WARNINGS  

#pragma message "Info: Platform not suported for TCTI_POLL_HANDLES"  

#endif /* TSS2_TCTI_SUPPRESS_POL L_WARNINGS */  

#endif /* OS selection */  

 

/* Constants used to control timeout behavior */  

#define  TSS2_TCTI_TIMEOUT_BLOCK    - 1 

#define  TSS2_TCTI_TIMEOUT_NONE     0  

 

/* TSS2_TCTI_CONTEXT is a data structure opaque to the caller. */  

typedef struct TSS2_TC TI_OPAQUE_CONTEXT_BLOB TSS2_TCTI_CONTEXT; 

 

 

4.3 TCTI Macros 
The following macros simplify some basic TCTI tasks. 

/* Macros to simplify invocation of functions from the common TCTI structure 

*/  

#define Tss2_Tcti_Transmit(tctiContext, size, command)                       

\  

    ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT:                       

\  

    (TSS2_TCTI_VERSION(tctiContext) < 1) ?                                   

\  

        TSS2_TCTI_RC_ABI_MISMATCH:                                           

\  

    (TS S2_TCTI_TRANSMIT(tctiContext) == NULL) ?                              

\  

        TSS2_TCTI_RC_NOT_IMPLEMENTED:                                        

\  

    TSS2_TCTI_TRANSMIT(tctiContext)(tctiContext, size, command))  

#define Tss2_Tcti_Receive(tctiContext, s ize, response, timeout)              

\  

    ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT:                       

\  

    (TSS2_TCTI_VERSION(tctiContext) < 1) ?                                   

\  

        TSS2_TCTI_RC_ABI_MISMATCH:                                           

\  

    (TSS2_TCTI_RECEIVE(tctiContext) == NULL) ?                               

\  



Page 20 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

        TSS2_TCTI_RC_NOT_IMPLEMENTED:                                        

\  

    TSS2_TCTI_RECEIVE(tctiContext)(tctiContext, size, response, timeout))  

#def ine Tss2_Tcti_Finalize(tctiContext)                                      

\  

    do {                                                                     

\  

        if ((tctiContext != NULL) &&                                         

\  

            (TSS2_TCTI_ VERSION(tctiContext) >= 1) &&                         

\  

            (TSS2_TCTI_FINALIZE(tctiContext) != NULL))                       

\  

        {                                                                    

\  

            TSS2_TCTI_FINALIZE(tctiContext )(tctiContext);                    

\  

        }                                                                    

\  

    } while (0)  

#define Tss2_Tcti_Cancel(tctiContext)                                        

\  

    ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT:                       

\  

    (TSS2_TCTI_VERSION(tctiContext) < 1) ?                                   

\  

        TSS2_TCTI_RC_ABI_MISMATCH:                                           

\  

    (TSS2_TCTI_CANCEL(tctiContext) == NULL) ?                                

\  

        TSS2_TCTI_RC_NOT_IMPLEMENTED:                                        

\  

    TSS2_TCTI_CANCEL(tctiContext)(tctiContext))  

#define Tss2_Tcti_GetPollHandles(tctiContext, handles, num_handles)          

\  

    ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT:                       

\  

    (TSS2_TCTI_VERSION(tctiContext) < 1) ?                                   

\  

        TSS2_TCTI_RC_ABI_MISMATCH:                                           

\  

    (TSS2 _TCTI_GET_POLL_HANDLES(tctiContext) == NULL) ?                      

\  

        TSS2_TCTI_RC_NOT_IMPLEMENTED:                                        

\  



          

Family "2.0" TCG Public Review  Page 21 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

    TSS2_TCTI_GET_POLL_HANDLES(tctiContext)(tctiContext, handles, 

num_handles))  

#define Tss2_Tcti_SetLocali ty(tctiContext, locality)                         

\  

    ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT:                       

\  

    (TSS2_TCTI_VERSION(tctiContext) < 1) ?                                   

\  

        TSS2_TCTI_RC_ABI_MISMATCH:                                           

\  

    (TSS2_TCTI_SET_LOCALITY(tctiContext) == NULL) ?                          

\  

        TSS2_TCTI_RC_NOT_IMPLEMENTED:                                        

\  

    TSS2_TCTI_SET_LOCALITY(tctiContext)(tctiContext, locality))  

#define Tss2_Tcti_MakeSticky(tctiContext, handle, sticky)                    

\  

    ((tctiContext == NULL) ? TSS2_TCTI_RC_BAD_CONTEXT:                       

\  

    (TSS2_TCTI_VERSION(tctiContext) < 2) ?                                   

\  

        TSS2_TCTI_RC_ABI_MISMATCH:                                           

\  

    (TSS2_TCTI_MAKE_STICKY(tctiContext) == NULL) ?                           

\  

        TSS2_TCTI_RC_NOT_IMPLEMENTED:                                        

\  

    TSS2_TCTI_MAKE_STICKY(tctiContext)( tctiContext, handle, sticky))  

 

 

4.4 Definitions Which Should Not Be Used by Callers 
All TCTI features can be accessed via the definitions above. It is strongly recommended that the following 
definitions not be used directly by callers. 

/*  

 * "Private" TCTI definitions.  

 *  

 * All TCTI features can be accessed via the definitions above. It is  

 * strongly recommended that the following definitions not be used  

 * directly by callers. These are made public in order to enable  

 * implementation of  the macros above.  

 */  

 



Page 22 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

/* Function pointer types for the TCTI operations. */  

typedef TSS2_RC (*TSS2_TCTI_TRANSMIT_FCN)(  

    TSS2_TCTI_CONTEXT *tctiContext,  

    size_t             size,  

    uint8_t     const *command);  

typedef TSS2_RC (*TSS2_TCTI_RECEIVE_ FCN)(  

    TSS2_TCTI_CONTEXT *tctiContext,  

    size_t            *size,  

    uint8_t           *response,  

    int32_t            timeout);  

typedef void (*TSS2_TCTI_FINALIZE_FCN)(  

    TSS2_TCTI_CONTEXT *tctiContext);  

typedef TSS2_RC (*TSS2_TCTI_CANCEL_FCN)(  

    TSS2_TCTI_CONTEXT *tctiContext);  

typedef TSS2_RC (*TSS2_TCTI_GET_POLL_HANDLES_FCN)(  

    TSS2_TCTI_CONTEXT     *tctiContext,  

    TSS2_TCTI_POLL_HANDLE *handles,  

    size_t                *num_handles);  

typedef TSS2_RC (*TSS2_TCTI_SET_LOCALITY_FCN)(  

    TSS2_TCTI_CONTEXT *tctiContext,  

    uint8_t            locality);  

typedef TSS2_RC (*TSS2_TCTI_MAKE_STICKY_FCN)(  

    TSS2_TCTI_CONTEXT *tctiContext,  

    TPM2_HANDLE       *handle,  

    uint8_t            sticky);  

 

 

/* TCTI Context headers and versions.  

 * The most recent TCTI Context is V2.  

 */  

typedef struct {  

    uint64_t magic;  

    uint32_t version;  

} TSS2_TCTI_CONTEXT_VERSION;  

 

typedef struct {  

    uint64_t                       magic;  



          

Family "2.0" TCG Public Review  Page 23 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

    uint32_t                       version;  

    TSS2_TCTI_TRANSMIT_FCN         transmit;  

    TSS2_TCTI_RECEIVE_FCN          receive;  

    TSS2_TCTI_FINALIZE_FCN         finalize;  

    TSS2_TCTI_CANCEL_FCN           cancel;  

    TSS2_TCTI_GET_POLL_HANDLES_FCN getPollHandles;  

    TSS2_TCTI_SET_LOCALITY_FCN     setLocality;  

} TSS2_TCTI_CONTEXT_COMMON_V1; 

 

typedef struct {  

    TSS2_TCTI_CONTEXT_COMMON_V1    v1;  

    TSS2_TCTI_MAKE_STICKY_FCN      makeSticky;  

} TSS2_TCTI_CONTEXT_COMMON_V2; 

 

typedef TSS2_TCTI_CONTEXT_COMMON_V2 TSS2_TCTI_CONTEXT_COMMON_CURRENT; 

 

/* Macros to simplif y access to values in common TCTI structure */  

#define TSS2_TCTI_MAGIC(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >magic  

#define TSS2_TCTI_VERSION(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >version  

#define TSS2_TCTI _TRANSMIT(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >transmit  

#define TSS2_TCTI_RECEIVE(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >receive  

#define TSS2_TCTI_FINALIZE(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >finalize  

#define TSS2_TCTI_CANCEL(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >cancel  

#define TSS2_TCTI_GET_POLL_HANDLES(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >getPollHandles  

#define TSS2_TCTI_SET _LOCALITY(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V1*)tctiContext) - >setLocality  

#define TSS2_TCTI_MAKE_STICKY(tctiContext) \  

    ((TSS2_TCTI_CONTEXT_COMMON_V2*)tctiContext) - >makeSticky  

 

 



Page 24 TCG Public Review Family "2.0" 

4 January 2018 Copyright © TCG  2013-2018 Version 1.0, Revision 05  

4.5 tss2_tcti.h Postlude 

#endif /* TSS2_TCTI_H */   



          

Family "2.0" TCG Public Review  Page 25 

Version 1.0, Revision 05 Copyright © TCG  2013-2018 4 January 2018 

5  


	1 General Information on The TCG TSS 2.0 Specification Library
	1.1 Acronyms
	1.2 TCG Software Stack 2.0 (TSS 2.0) Specification Library Structure

	2 TCTI Introduction
	2.1 TCTI Target Systems

	3 TPM Command Transmission Interface
	3.1 Introduction
	3.1.1 Purpose & Goal

	3.2 TCTI data structures
	3.3 TCTI Context data structures
	3.3.1 TCTI Context
	3.3.2 Function Invocation
	3.3.3 Version Area
	3.3.4 Non-opaque Area
	3.3.5 Function Callbacks
	3.3.5.1 transmit
	3.3.5.2 receive
	3.3.5.3 finalize
	3.3.5.4 cancel
	3.3.5.5 getPollHandles
	3.3.5.6 setLocality
	3.3.5.7 makeSticky


	3.4 Compatibility
	3.4.1 Old and Not Useful Version
	3.4.2 New but Useful Version
	3.4.3 New and Not Useful Version
	3.4.4 New Version with Deprecated Functions

	3.5 Opaque Area

	4 TCTI Header File
	4.1 TCTI Prelude
	4.2 TCTI Data Structures
	4.3 TCTI Macros
	4.4 Definitions Which Should Not Be Used by Callers
	4.5 tss2_tcti.h Postlude

	5

