

TCG

Trusted Platform Module Library

Part 3: Commands

Family “2.0”

Level 00 Revision 01.59

November 8, 2019

Committee Draft

Work in Progress

This document is an intermediate draft for comment

only and is subject to change without notice. Readers

should not design products based on this document.

Contact: admin@trustedcomputinggroup.org

TCG Confidential
Copyright © TCG 2006-2019

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Page ii TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Licenses and Notices

Copyright Licenses:

• Trusted Computing Group (TCG) grants to the user of the source code in this specification (the
“Source Code”) a worldwide, irrevocable, nonexclusive, royalty free, copyright license to reproduce,
create derivative works, distribute, display and perform the Source Code and derivative works
thereof, and to grant others the rights granted herein.

• The TCG grants to the user of the other parts of the specification (other than the Source Code) the
rights to reproduce, distribute, display, and perform the specification solely for the purpose of
developing products based on such documents.

Source Code Distribution Conditions:

• Redistributions of Source Code must retain the above copyright licenses, this list of conditions and
the following disclaimers.

• Redistributions in binary form must reproduce the above copyright licenses, this list of conditions and
the following disclaimers in the documentation and/or other materials provided with the distribution.

Disclaimers:

• THE COPYRIGHT LICENSES SET FORTH ABOVE DO NOT REPRESENT ANY FORM OF
LICENSE OR WAIVER, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, WITH
RESPECT TO PATENT RIGHTS HELD BY TCG MEMBERS (OR OTHER THIRD PARTIES) THAT
MAY BE NECESSARY TO IMPLEMENT THIS SPECIFICATION OR OTHERWISE. Contact TCG
Administration (admin@trustedcomputinggroup.org) for information on specification licensing rights
available through TCG membership agreements.

• THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS, OR NONINFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY
PROPOSAL, SPECIFICATION OR SAMPLE.

• Without limitation, TCG and its members and licensors disclaim all liability, including liability for
infringement of any proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and TCG disclaims all liability for cost of procurement of
substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential,
direct, indirect, or special damages, whether under contract, tort, warranty or otherwise, arising in any
way out of use or reliance upon this specification or any information herein.

Any marks and brands contained herein are the property of their respective owners.

mailto:admin@trustedcomputinggroup.org

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page iii

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

CONTENTS

1 Scope .. 1
2 Terms and Definitions ... 1
3 Symbols and abbreviated terms .. 1
4 Notation ... 2

4.1 Introduction ... 2
4.2 Table Decorations ... 2
4.3 Handle and Parameter Demarcation .. 3
4.4 AuthorizationSize and ParameterSize .. 3
4.5 Return Code Alias ... 4

5 Command Processing ... 4

5.1 Introduction ... 4
5.2 Command Header Validation .. 4
5.3 Mode Checks .. 5
5.4 Handle Area Validation ... 5
5.5 Session Area Validation .. 6
5.6 Authorization Checks .. 7
5.7 Parameter Decryption ... 9
5.8 Parameter Unmarshaling .. 9
5.9 Command Post Processing .. 11

6 Response Values .. 12

6.1 Tag .. 12
6.2 Response Codes .. 12

7 Implementation Dependent ... 15
8 Detailed Actions Assumptions ... 16

8.1 Introduction ... 16
8.2 Pre-processing .. 16
8.3 Post Processing .. 16

9 Start-up .. 17

9.1 Introduction ... 17
9.2 _TPM_Init .. 17
9.3 TPM2_Startup ... 18
9.4 TPM2_Shutdown .. 23

10 Testing ... 29

10.1 Introduction ... 31
10.2 TPM2_SelfTest ... 32
10.3 TPM2_IncrementalSelfTest .. 34
10.4 TPM2_GetTestResult ... 37

11 Session Commands .. 40

11.1 TPM2_StartAuthSession .. 41
11.2 TPM2_PolicyRestart ... 44

12 Object Commands ... 49

12.1 TPM2_Create.. 50

Part 3: Commands Trusted Platform Module Library

Page iv TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12.2 TPM2_Load .. 54
12.3 TPM2_LoadExternal ... 58
12.4 TPM2_ReadPublic .. 63
12.5 TPM2_ActivateCredential ... 67
12.6 TPM2_MakeCredential ... 70
12.7 TPM2_Unseal ... 74
12.8 TPM2_ObjectChangeAuth .. 77
12.9 TPM2_CreateLoaded ... 80

13 Duplication Commands ... 83

13.1 TPM2_Duplicate ... 86
13.2 TPM2_Rewrap .. 88
13.3 TPM2_Import .. 92

14 Asymmetric Primitives ... 97

14.1 Introduction ... 100
14.2 TPM2_RSA_Encrypt ... 100
14.3 TPM2_RSA_Decrypt .. 103
14.4 TPM2_ECDH_KeyGen ... 106
14.5 TPM2_ECDH_ZGen ... 110
14.6 TPM2_ECC_Parameters .. 113
14.7 TPM2_ZGen_2Phase ... 116

15 Symmetric Primitives ... 119

15.1 Introduction ... 121
15.2 TPM2_EncryptDecrypt .. 123
15.3 TPM2_EncryptDecrypt2 .. 125
15.4 TPM2_Hash .. 129
15.5 TPM2_HMAC .. 132
15.6 TPM2_MAC .. 135

16 Random Number Generator .. 139

16.1 TPM2_GetRandom ... 140
16.2 TPM2_StirRandom ... 142

17 Hash/HMAC/Event Sequences ... 145

17.1 Introduction ... 146
17.2 TPM2_HMAC_Start .. 146
17.3 TPM2_MAC_Start ... 148
17.4 TPM2_HashSequenceStart .. 152
17.5 TPM2_SequenceUpdate .. 155
17.6 TPM2_SequenceComplete ... 158
17.7 TPM2_EventSequenceComplete ... 162

18 Attestation Commands .. 166

18.1 Introduction ... 168
18.2 TPM2_Certify .. 170
18.3 TPM2_CertifyCreation .. 172
18.4 TPM2_Quote... 175
18.5 TPM2_GetSessionAuditDigest ... 179
18.6 TPM2_GetCommandAuditDigest ... 182

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page v

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

18.7 TPM2_GetTime... 185
18.8 TPM2_CertifyX509 ... 189

19 Ephemeral EC Keys .. 193

19.1 Introduction ... 197
19.2 TPM2_Commit .. 198
19.3 TPM2_EC_Ephemeral .. 200

20 Signing and Signature Verification .. 205

20.1 TPM2_VerifySignature .. 206
20.2 TPM2_Sign ... 208

21 Command Audit ... 211

21.1 Introduction ... 213
21.2 TPM2_SetCommandCodeAuditStatus ... 214

22 Integrity Collection (PCR) .. 216

22.1 Introduction ... 217
22.2 TPM2_PCR_Extend ... 218
22.3 TPM2_PCR_Event ... 220
22.4 TPM2_PCR_Read .. 223
22.5 TPM2_PCR_Allocate .. 226
22.6 TPM2_PCR_SetAuthPolicy .. 229
22.7 TPM2_PCR_SetAuthValue ... 232
22.8 TPM2_PCR_Reset ... 235
22.9 _TPM_Hash_Start .. 238
22.10 _TPM_Hash_Data .. 240
22.11 _TPM_Hash_End ... 242

23 Enhanced Authorization (EA) Commands .. 244

23.1 Introduction ... 246
23.2 Signed Authorization Actions .. 247
23.3 TPM2_PolicySigned ... 251
23.4 TPM2_PolicySecret .. 254
23.5 TPM2_PolicyTicket ... 259
23.6 TPM2_PolicyOR ... 263
23.7 TPM2_PolicyPCR ... 267
23.8 TPM2_PolicyLocality .. 271
23.9 TPM2_PolicyNV .. 275
23.10 TPM2_PolicyCounterTimer ... 279
23.11 TPM2_PolicyCommandCode ... 283
23.12 TPM2_PolicyPhysicalPresence .. 287
23.13 TPM2_PolicyCpHash .. 290
23.14 TPM2_PolicyNameHash ... 293
23.15 TPM2_PolicyDuplicationSelect ... 297
23.16 TPM2_PolicyAuthorize ... 301
23.17 TPM2_PolicyAuthValue .. 305
23.18 TPM2_PolicyPassword ... 309
23.19 TPM2_PolicyGetDigest ... 312
23.20 TPM2_PolicyNvWritten ... 315
23.21 TPM2_PolicyTemplate .. 318

Part 3: Commands Trusted Platform Module Library

Page vi TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

23.22 TPM2_PolicyAuthorizeNV .. 321

24 Hierarchy Commands .. 325

24.1 TPM2_CreatePrimary ... 327
24.2 TPM2_HierarchyControl ... 329
24.3 TPM2_SetPrimaryPolicy ... 333
24.4 TPM2_ChangePPS .. 337
24.5 TPM2_ChangeEPS .. 341
24.6 TPM2_Clear .. 344
24.7 TPM2_ClearControl .. 347
24.8 TPM2_HierarchyChangeAuth ... 351

25 Dictionary Attack Functions ... 354

25.1 Introduction ... 355
25.2 TPM2_DictionaryAttackLockReset ... 355
25.3 TPM2_DictionaryAttackParameters.. 357

26 Miscellaneous Management Functions ... 360

26.1 Introduction ... 361
26.2 TPM2_PP_Commands ... 361
26.3 TPM2_SetAlgorithmSet .. 363

27 Field Upgrade .. 366

27.1 Introduction ... 367
27.2 TPM2_FieldUpgradeStart ... 369
27.3 TPM2_FieldUpgradeData ... 371
27.4 TPM2_FirmwareRead ... 374

28 Context Management .. 377

28.1 Introduction ... 378
28.2 TPM2_ContextSave .. 378
28.3 TPM2_ContextLoad .. 380
28.4 TPM2_FlushContext ... 385
28.5 TPM2_EvictControl ... 390

29 Clocks and Timers ... 394

29.1 TPM2_ReadClock ... 396
29.2 TPM2_ClockSet .. 398
29.3 TPM2_ClockRateAdjust .. 401

30 Capability Commands ... 404

30.1 Introduction ... 405
30.2 TPM2_GetCapability ... 405
30.3 TPM2_TestParms ... 410

31 Non-volatile Storage .. 415

31.1 Introduction ... 416
31.2 NV Counters ... 417
31.3 TPM2_NV_DefineSpace ... 418
31.4 TPM2_NV_UndefineSpace ... 421
31.5 TPM2_NV_UndefineSpaceSpecial ... 426
31.6 TPM2_NV_ReadPublic ... 429

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page vii

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.7 TPM2_NV_Write ... 432
31.8 TPM2_NV_Increment ... 435
31.9 TPM2_NV_Extend .. 439
31.10 TPM2_NV_SetBits .. 443
31.11 TPM2_NV_WriteLock ... 447
31.12 TPM2_NV_GlobalWriteLock ... 450
31.13 TPM2_NV_Read ... 453
31.14 TPM2_NV_ReadLock ... 456
31.15 TPM2_NV_ChangeAuth ... 459
31.16 TPM2_NV_Certify ... 462

32 Attached Components ... 465

32.1 Introduction ... 467
32.2 TPM2_AC_GetCapability .. 468
32.3 TPM2_AC_Send ... 470
32.4 TPM2_Policy_AC_SendSelect ... 473

33 Authenticated Countdown Timer ... 477

33.1 Introduction ... 479
33.2 TPM2_ACT_SetTimeout ... 479

34 Vendor Specific ... 481

34.1 Introduction ... 482
34.2 TPM2_Vendor_TCG_Test .. 482

Part 3: Commands Trusted Platform Module Library

Page viii TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Tables

Table 1 — Command Modifiers and Decoration ... 2

Table 2 — Separators ... 3

Table 3 — Unmarshaling Errors ... 10

Table 4 — Command-Independent Response Codes .. 13

Table 5 — TPM2_Startup Command .. 22

Table 6 — TPM2_Startup Response .. 22

Table 7 — TPM2_Shutdown Command ... 28

Table 8 — TPM2_Shutdown Response .. 28

Table 9 — TPM2_SelfTest Command .. 33

Table 10 — TPM2_SelfTest Response .. 33

Table 11 — TPM2_IncrementalSelfTest Command ... 36

Table 12 — TPM2_IncrementalSelfTest Response ... 36

Table 13 — TPM2_GetTestResult Command .. 39

Table 14 — TPM2_GetTestResult Response... 39

Table 15 — TPM2_StartAuthSession Command ... 43

Table 16 — TPM2_StartAuthSession Response .. 43

Table 17 — TPM2_PolicyRestart Command .. 48

Table 18 — TPM2_PolicyRestart Response .. 48

Table 19 — TPM2_Create Command .. 53

Table 20 — TPM2_Create Response ... 53

Table 21 — TPM2_Load Command ... 57

Table 22 — TPM2_Load Response .. 57

Table 23 — TPM2_LoadExternal Command .. 62

Table 24 — TPM2_LoadExternal Response .. 62

Table 25 — TPM2_ReadPublic Command ... 66

Table 26 — TPM2_ReadPublic Response ... 66

Table 27 — TPM2_ActivateCredential Command .. 69

Table 28 — TPM2_ActivateCredential Response .. 69

Table 29 — TPM2_MakeCredential Command .. 73

Table 30 — TPM2_MakeCredential Response .. 73

Table 31 — TPM2_Unseal Command .. 76

Table 32 — TPM2_Unseal Response .. 76

Table 33 — TPM2_ObjectChangeAuth Command ... 79

Table 34 — TPM2_ObjectChangeAuth Response ... 79

Table 35 — TPM2_CreateLoaded Command .. 82

Table 36 — TPM2_CreateLoaded Response ... 82

Table 37 — TPM2_Duplicate Command .. 87

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page ix

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Table 38 — TPM2_Duplicate Response ... 87

Table 39 — TPM2_Rewrap Command ... 91

Table 40 — TPM2_Rewrap Response ... 91

Table 41 — TPM2_Import Command ... 96

Table 42 — TPM2_Import Response ... 96

Table 43 — Padding Scheme Selection ... 100

Table 44 — Message Size Limits Based on Padding ... 101

Table 45 — TPM2_RSA_Encrypt Command.. 102

Table 46 — TPM2_RSA_Encrypt Response .. 102

Table 47 — TPM2_RSA_Decrypt Command ... 105

Table 48 — TPM2_RSA_Decrypt Response .. 105

Table 49 — TPM2_ECDH_KeyGen Command .. 109

Table 50 — TPM2_ECDH_KeyGen Response .. 109

Table 51 — TPM2_ECDH_ZGen Command .. 112

Table 52 — TPM2_ECDH_ZGen Response .. 112

Table 53 — TPM2_ECC_Parameters Command ... 115

Table 54 — TPM2_ECC_Parameters Response ... 115

Table 55 — TPM2_ZGen_2Phase Command .. 118

Table 56 — TPM2_ZGen_2Phase Response .. 118

Table 57 — Symmetric Chaining Process .. 122

Table 58 — TPM2_EncryptDecrypt Command... 124

Table 59 — TPM2_EncryptDecrypt Response ... 124

Table 60 — TPM2_EncryptDecrypt2 Command... 128

Table 61 — TPM2_EncryptDecrypt2 Response ... 128

Table 62 — TPM2_Hash Command ... 131

Table 63 — TPM2_Hash Response ... 131

Table 64 — TPM2_HMAC Command ... 134

Table 65 — TPM2_HMAC Response ... 134

Table 66 — TPM2_MAC Command ... 138

Table 67 — TPM2_MAC Response .. 138

Table 68 — TPM2_GetRandom Command .. 141

Table 69 — TPM2_GetRandom Response .. 141

Table 70 — TPM2_StirRandom Command .. 144

Table 71 — TPM2_StirRandom Response ... 144

Table 72 — Hash Selection Matrix ... 146

Table 73 — TPM2_HMAC_Start Command ... 147

Table 74 — TPM2_HMAC_Start Response ... 147

Table 75 — Algorithm Selection Matrix ... 150

Table 76 — TPM2_MAC_Start Command .. 151

Part 3: Commands Trusted Platform Module Library

Page x TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Table 77 — TPM2_MAC_Start Response .. 151

Table 78 — TPM2_HashSequenceStart Command ... 154

Table 79 — TPM2_HashSequenceStart Response ... 154

Table 80 — TPM2_SequenceUpdate Command ... 157

Table 81 — TPM2_SequenceUpdate Response .. 157

Table 82 — TPM2_SequenceComplete Command ... 161

Table 83 — TPM2_SequenceComplete Response .. 161

Table 84 — TPM2_EventSequenceComplete Command .. 165

Table 85 — TPM2_EventSequenceComplete Response ... 165

Table 86 — TPM2_Certify Command ... 171

Table 87 — TPM2_Certify Response ... 171

Table 88 — TPM2_CertifyCreation Command ... 174

Table 89 — TPM2_CertifyCreation Response .. 174

Table 90 — TPM2_Quote Command ... 178

Table 91 — TPM2_Quote Response .. 178

Table 92 — TPM2_GetSessionAuditDigest Command .. 181

Table 93 — TPM2_GetSessionAuditDigest Response .. 181

Table 94 — TPM2_GetCommandAuditDigest Command .. 184

Table 95 — TPM2_GetCommandAuditDigest Response ... 184

Table 96 — TPM2_GetTime Command ... 188

Table 97 — TPM2_GetTime Response .. 188

Table 98 — TPM2_CertifyX509 Command .. 192

Table 99 — TPM2_CertifyX509 Response ... 192

Table 100 — TPM2_Commit Command ... 199

Table 101 — TPM2_Commit Response ... 199

Table 102 — TPM2_EC_Ephemeral Command ... 204

Table 103 — TPM2_EC_Ephemeral Response ... 204

Table 104 — TPM2_VerifySignature Command... 207

Table 105 — TPM2_VerifySignature Response ... 207

Table 106 — TPM2_Sign Command .. 210

Table 107 — TPM2_Sign Response .. 210

Table 108 — TPM2_SetCommandCodeAuditStatus Command .. 215

Table 109 — TPM2_SetCommandCodeAuditStatus Response .. 215

Table 110 — TPM2_PCR_Extend Command .. 219

Table 111 — TPM2_PCR_Extend Response ... 219

Table 112 — TPM2_PCR_Event Command .. 222

Table 113 — TPM2_PCR_Event Response ... 222

Table 114 — TPM2_PCR_Read Command ... 225

Table 115 — TPM2_PCR_Read Response ... 225

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page xi

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Table 116 — TPM2_PCR_Allocate Command ... 228

Table 117 — TPM2_PCR_Allocate Response ... 228

Table 118 — TPM2_PCR_SetAuthPolicy Command ... 231

Table 119 — TPM2_PCR_SetAuthPolicy Response ... 231

Table 120 — TPM2_PCR_SetAuthValue Command ... 234

Table 121 — TPM2_PCR_SetAuthValue Response .. 234

Table 122 — TPM2_PCR_Reset Command .. 237

Table 123 — TPM2_PCR_Reset Response ... 237

Table 124 — TPM2_PolicySigned Command .. 253

Table 125 — TPM2_PolicySigned Response ... 253

Table 126 — TPM2_PolicySecret Command ... 258

Table 127 — TPM2_PolicySecret Response .. 258

Table 128 — TPM2_PolicyTicket Command .. 262

Table 129 — TPM2_PolicyTicket Response .. 262

Table 130 — TPM2_PolicyOR Command .. 266

Table 131 — TPM2_PolicyOR Response ... 266

Table 132 — TPM2_PolicyPCR Command .. 270

Table 133 — TPM2_PolicyPCR Response .. 270

Table 134 — TPM2_PolicyLocality Command ... 274

Table 135 — TPM2_PolicyLocality Response .. 274

Table 136 — TPM2_PolicyNV Command ... 278

Table 137 — TPM2_PolicyNV Response ... 278

Table 138 — TPM2_PolicyCounterTimer Command ... 282

Table 139 — TPM2_PolicyCounterTimer Response .. 282

Table 140 — TPM2_PolicyCommandCode Command .. 286

Table 141 — TPM2_PolicyCommandCode Response ... 286

Table 142 — TPM2_PolicyPhysicalPresence Command ... 289

Table 143 — TPM2_PolicyPhysicalPresence Response ... 289

Table 144 — TPM2_PolicyCpHash Command... 292

Table 145 — TPM2_PolicyCpHash Response ... 292

Table 146 — TPM2_PolicyNameHash Command.. 296

Table 147 — TPM2_PolicyNameHash Response .. 296

Table 148 — TPM2_PolicyDuplicationSelect Command .. 300

Table 149 — TPM2_PolicyDuplicationSelect Response .. 300

Table 150 — TPM2_PolicyAuthorize Command .. 304

Table 151 — TPM2_PolicyAuthorize Response ... 304

Table 152 — TPM2_PolicyAuthValue Command ... 308

Table 153 — TPM2_PolicyAuthValue Response ... 308

Table 154 — TPM2_PolicyPassword Command .. 311

Part 3: Commands Trusted Platform Module Library

Page xii TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Table 155 — TPM2_PolicyPassword Response .. 311

Table 156 — TPM2_PolicyGetDigest Command.. 314

Table 157 — TPM2_PolicyGetDigest Response .. 314

Table 158 — TPM2_PolicyNvWritten Command .. 317

Table 159 — TPM2_PolicyNvWritten Response .. 317

Table 160 — TPM2_PolicyTemplate Command... 320

Table 161 — TPM2_PolicyTemplate Response ... 320

Table 162 — TPM2_PolicyAuthorizeNV Command ... 324

Table 163 — TPM2_PolicyAuthorizeNV Response .. 324

Table 164 — TPM2_CreatePrimary Command .. 328

Table 165 — TPM2_CreatePrimary Response .. 328

Table 166 — TPM2_HierarchyControl Command .. 332

Table 167 — TPM2_HierarchyControl Response .. 332

Table 168 — TPM2_SetPrimaryPolicy Command .. 336

Table 169 — TPM2_SetPrimaryPolicy Response .. 336

Table 170 — TPM2_ChangePPS Command ... 340

Table 171 — TPM2_ChangePPS Response .. 340

Table 172 — TPM2_ChangeEPS Command ... 343

Table 173 — TPM2_ChangeEPS Response .. 343

Table 174 — TPM2_Clear Command ... 346

Table 175 — TPM2_Clear Response ... 346

Table 176 — TPM2_ClearControl Command ... 350

Table 177 — TPM2_ClearControl Response ... 350

Table 178 — TPM2_HierarchyChangeAuth Command .. 353

Table 179 — TPM2_HierarchyChangeAuth Response .. 353

Table 180 — TPM2_DictionaryAttackLockReset Command .. 356

Table 181 — TPM2_DictionaryAttackLockReset Response .. 356

Table 182 — TPM2_DictionaryAttackParameters Command .. 359

Table 183 — TPM2_DictionaryAttackParameters Response ... 359

Table 184 — TPM2_PP_Commands Command .. 362

Table 185 — TPM2_PP_Commands Response .. 362

Table 186 — TPM2_SetAlgorithmSet Command ... 365

Table 187 — TPM2_SetAlgorithmSet Response.. 365

Table 188 — TPM2_FieldUpgradeStart Command .. 370

Table 189 — TPM2_FieldUpgradeStart Response .. 370

Table 190 — TPM2_FieldUpgradeData Command .. 373

Table 191 — TPM2_FieldUpgradeData Response .. 373

Table 192 — TPM2_FirmwareRead Command.. 376

Table 193 — TPM2_FirmwareRead Response .. 376

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page xiii

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Table 194 — TPM2_ContextSave Command ... 379

Table 195 — TPM2_ContextSave Response ... 379

Table 196 — TPM2_ContextLoad Command ... 384

Table 197 — TPM2_ContextLoad Response ... 384

Table 198 — TPM2_FlushContext Command .. 389

Table 199 — TPM2_FlushContext Response .. 389

Table 200 — TPM2_EvictControl Command .. 393

Table 201 — TPM2_EvictControl Response .. 393

Table 202 — TPM2_ReadClock Command .. 397

Table 203 — TPM2_ReadClock Response .. 397

Table 204 — TPM2_ClockSet Command ... 400

Table 205 — TPM2_ClockSet Response ... 400

Table 206 — TPM2_ClockRateAdjust Command... 403

Table 207 — TPM2_ClockRateAdjust Response ... 403

Table 208 — TPM2_GetCapability Command.. 409

Table 209 — TPM2_GetCapability Response .. 409

Table 210 — TPM2_TestParms Command .. 414

Table 211 — TPM2_TestParms Response .. 414

Table 212 — TPM2_NV_DefineSpace Command ... 420

Table 213 — TPM2_NV_DefineSpace Response .. 420

Table 214 — TPM2_NV_UndefineSpace Command ... 425

Table 215 — TPM2_NV_UndefineSpace Response .. 425

Table 216 — TPM2_NV_UndefineSpaceSpecial Command .. 428

Table 217 — TPM2_NV_UndefineSpaceSpecial Response .. 428

Table 218 — TPM2_NV_ReadPublic Command .. 431

Table 219 — TPM2_NV_ReadPublic Response .. 431

Table 220 — TPM2_NV_Write Command .. 434

Table 221 — TPM2_NV_Write Response .. 434

Table 222 — TPM2_NV_Increment Command .. 438

Table 223 — TPM2_NV_Increment Response... 438

Table 224 — TPM2_NV_Extend Command ... 442

Table 225 — TPM2_NV_Extend Response ... 442

Table 226 — TPM2_NV_SetBits Command ... 446

Table 227 — TPM2_NV_SetBits Response ... 446

Table 228 — TPM2_NV_WriteLock Command .. 449

Table 229 — TPM2_NV_WriteLock Response... 449

Table 230 — TPM2_NV_GlobalWriteLock Command .. 452

Table 231 — TPM2_NV_GlobalWriteLock Response .. 452

Table 232 — TPM2_NV_Read Command .. 455

Part 3: Commands Trusted Platform Module Library

Page xiv TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Table 233 — TPM2_NV_Read Response .. 455

Table 234 — TPM2_NV_ReadLock Command .. 458

Table 235 — TPM2_NV_ReadLock Response .. 458

Table 236 — TPM2_NV_ChangeAuth Command .. 461

Table 237 — TPM2_NV_ChangeAuth Response .. 461

Table 238 — TPM2_NV_Certify Command .. 464

Table 239 — TPM2_NV_Certify Response .. 464

Table 240 — TPM2_AC_GetCapability Command .. 469

Table 241 — TPM2_AC_GetCapability Response ... 469

Table 242 — TPM2_AC_Send Command .. 472

Table 243 — TPM2_AC_Send Response .. 472

Table 244 — TPM2_Policy_AC_SendSelect Command .. 476

Table 245 — TPM2_Policy_AC_SendSelect Response .. 476

Table 246 — TPM2_ACT_SetTimeout Command ... 480

Table 247 — TPM2_ACT_SetTimeout Response .. 480

Table 248 — TPM2_Vendor_TCG_Test Command ... 483

Table 249 — TPM2_Vendor_TCG_Test Response ... 483

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 1

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Trusted Platform Module Library
Part 3: Commands

1 Scope

This TPM 2.0 Part 3 of the Trusted Platform Module Library specification contains the definitions of the

TPM commands. These commands make use of the constants, flags, structures, and union definitions

defined in TPM 2.0 Part 2.

The detailed description of the operation of the commands is written in the C language with extensive

comments. The behavior of the C code in this TPM 2.0 Part 3 is normative but does not fully describe the

behavior of a TPM. The combination of this TPM 2.0 Part 3 and TPM 2.0 Part 4 is sufficient to fully

describe the required behavior of a TPM.

The code in parts 3 and 4 is written to define the behavior of a compliant TPM. In some cases (e.g.,

firmware update), it is not possible to provide a compliant implementation. In those cases, any

implementation provided by the vendor that meets the general description of the function provided in TPM

2.0 Part 3 would be compliant.

The code in parts 3 and 4 is not written to meet any particular level of conformance nor does this

specification require that a TPM meet any particular level of conformance.

2 Terms and Definitions

For the purposes of this document, the terms and definitions given in TPM 2.0 Part 1 apply.

3 Symbols and abbreviated terms

For the purposes of this document, the symbols and abbreviated terms given in TPM 2.0 Part 1 apply.

Part 3: Commands Trusted Platform Module Library

Page 2 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

4 Notation

4.1 Introduction

For the purposes of this document, the notation given in TPM 2.0 Part 1 applies.

Command and response tables use various decorations to indicate the fields of the command and the

allowed types. These decorations are described in this clause.

4.2 Table Decorations

The symbols and terms in the Notation column of Table 1 are used in the tables for the command

schematics. These values indicate various qualifiers for the parameters or descriptions with which they

are associated.

Table 1 — Command Modifiers and Decoration

Notation Meaning

+ A Type decoration – When appended to a value in the Type column of a command, this symbol
indicates that the parameter is allowed to use the “null” value of the data type (see in TPM 2.0
Part 2, Conditional Types). The null value is usually TPM_RH_NULL for a handle or
TPM_ALG_NULL for an algorithm selector.

NOTE This decoration is not appended to response parameters.

@ A Name decoration – When this symbol precedes a handle parameter in the “Name” column, it
indicates that an authorization session is required for use of the entity associated with the handle.
If a handle does not have this symbol, then an authorization session is not allowed.

+PP A Description modifier – This modifier may follow TPM_RH_PLATFORM in the “Description”
column to indicate that Physical Presence is required when platformAuth/platformPolicy is
provided.

+{PP} A Description modifier – This modifier may follow TPM_RH_PLATFORM to indicate that Physical
Presence may be required when platformAuth/platformPolicy is provided. The commands with this
notation may be in the setList or clearList of TPM2_PP_Commands().

{NV} A Description modifier – This modifier may follow the commandCode in the “Description” column
to indicate that the command may result in an update of NV memory and be subject to rate
throttling by the TPM. If the command code does not have this notation, then a write to NV
memory does not occur as part of the command actions.

NOTE Any command that uses authorization may cause a write to NV if there is an authorization
failure. A TPM may use the occasion of command execution to update the NV copy of clock.

{F} A Description modifier – This modifier indicates that the “flushed” attribute will be SET in the
TPMA_CC for the command. The modifier may follow the commandCode in the “Description”
column to indicate that any transient handle context used by the command will be flushed from the
TPM when the command completes. This may be combined with the {NV} modifier but not with the
{E} modifier.

EXAMPLE 1 {NV F}

EXAMPLE 2 TPM2_SequenceComplete() will flush the context associated with the sequenceHandle.

{E} A Description modifier – This modifier indicates that the “extensive” attribute will be SET in the
TPMA_CC for the command. This modifier may follow the commandCode in the “Description”
column to indicate that the command may flush many objects and re-enumeration of the loaded
context likely will be required. This may be combined with the {NV} modifier but not with the {F}
modifier.

EXAMPLE 1 {NV E}

EXAMPLE 2 TPM2_Clear() will flush all contexts associated with the Storage hierarchy and the
Endorsement hierarchy.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 3

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Notation Meaning

Auth Index: A Description modifier – When a handle has a “@” decoration, the “Description” column will
contain an “Auth Index:” entry for the handle. This entry indicates the number of the authorization
session. The authorization sessions associated with handles will occur in the session area in the
order of the handles with the “@” modifier. Sessions used only for encryption/decryption or only for
audit will follow the handles used for authorization.

Auth Role: A Description modifier – This will be in the “Description” column of a handle with the “@”
decoration. It may have a value of USER, ADMIN or DUP.

If the handle has the Auth Role of USER and the handle is an Object, the type of authorization is
determined by the setting of userWithAuth in the Object's attributes. If the handle is
TPM_RH_OWNER, TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if
userWithAuth is SET. If the handle references an NV Index, then the allowed authorizations are
determined by the settings of the attributes of the NV Index as described in TPM 2.0 Part 2,
"TPMA_NV (NV Index Attributes)."

If the Auth Role is ADMIN and the handle is an Object, the type of authorization is determined by
the setting of adminWithPolicy in the Object's attributes. If the handle is TPM_RH_OWNER,
TPM_RH_ENDORSEMENT, or TPM_RH_PLATFORM, operation is as if adminWithPolicy is SET.
If the handle is an NV index, operation is as if adminWithPolicy is SET (see 5.6 e)2)).

If the DUP role is selected, authorization may only be with a policy session (DUP role only applies
to Objects).

When either ADMIN or DUP role is selected, a policy command that selects the command being
authorized is required to be part of the policy.

EXAMPLE TPM2_Certify requires the ADMIN role for the first handle (objectHandle). The policy
authorization for objectHandle is required to contain
TPM2_PolicyCommandCode(commandCode == TPM_CC_Certify). This sets the state of the
policy so that it can be used for ADMIN role authorization in TPM2_Certify().

4.3 Handle and Parameter Demarcation

The demarcations between the header, handle, and parameter parts are indicated by:

Table 2 — Separators

 Separator Meaning

 the values immediately following are in the handle area

 the values immediately following are in the parameter area

4.4 AuthorizationSize and ParameterSize

Authorization sessions are not shown in the command or response schematics. When the tag of a

command or response is TPM_ST_SESSIONS, then a 32-bit value will be present in the

command/response buffer to indicate the size of the authorization field or the parameter field. This value

shall immediately follow the handle area (which may contain no handles). For a command, this value

(authorizationSize) indicates the size of the Authorization Area and shall have a value of 9 or more. For a

response, this value (parameterSize) indicates the size of the parameter area and may have a value of

zero.

If the authorizationSize field is present in the command, parameterSize will be present in the response,

but only if the responseCode is TPM_RC_SUCCESS.

When authorization is required to use the TPM entity associated with a handle, then at least one session

will be present. To indicate this, the command tag Description field contains TPM_ST_SESSIONS.

Addional sessions for audit, encrypt, and decrypt may be present.

Part 3: Commands Trusted Platform Module Library

Page 4 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

When the command tag Description field contains TPM_ST_NO_SESSIONS, then no sessions are

allowed and the authorizationSize field is not present.

When a command allows use of sessions when not required, the command tag Description field will

indicate the types of sessions that may be used with the command.

4.5 Return Code Alias

For the RC_FMT1 return codes that may add a parameter, handle, or session number, the prefix

TPM_RCS_ is an alias for TPM_RC_.

TPM_RC_n is added, where n is the parameter, handle, or session number. In addition, TPM_RC_H is

added for handle, TPM_RC_P for parameter, and TPM_RC_S for session errors.

NOTE TPM_RCS_ is a programming convention. Programmers should only add numbers to
TPM_RCS_ return codes, never TPM_RC_ return codes. Only return codes that can have a
number added have the TPM_RCS_ alias defined. Attempting to use a TPM_RCS_ return code
that does not have the TPM_RCS_ alias will cause a compiler error.

EXAMPLE 1 Since TPM_RC_VALUE can have a number added, TPM_RCS_VALUE is defined. A
program can use the construct "TPM_RCS_VALUE + number". Since TPM_RC_SIGNATURE
cannot have a number added, TPM_RCS_SIGNATURE is not defined. A program using the
construct "TPM_RCS_SIGNATURE + number" will not compile, alerting the programmer that the
construct is incorrect.

By convention, the number to be added is of the form RC_CommandName_ParameterName where

CommmandName is the name of the command with the TPM2_ prefix removed. The parameter name

alone is insufficient because the same parameter name could be in a different position in different

commands.

EXAMPLE 2 TPM2_HMAC_Start with parameters that result in TPM_ALG_NULL as the hash algori thm will
returns TPM_RC_VALUE plus the parameter number. Since hashAlg is the second parameter,
This code results:

#define RC_HMAC_Start_hashAlg (TPM_RC_P + TPM_RC_2)

return TPM_RCS_VALUE + RC_HMAC_Start_hashAlg;

5 Command Processing

5.1 Introduction

This clause defines the command validations that are required of any implementation and the response

code returned if the indicated check fails. Unless stated otherwise, the order of the checks is not

normative and different TPM may give different responses when a command has multiple errors.

In the description below, some statements that describe a check may be followed by a response code in

parentheses. This is the normative response code should the indicated check fail. A normative response

code may also be included in the statement.

5.2 Command Header Validation

Before a TPM may begin the actions associated with a command, a set of command format and

consistency checks shall be performed. These checks are listed below and should be performed in the

indicated order.

 The TPM shall successfully unmarshal a TPMI_ST_COMMAND_TAG and verify that it is either

TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS (TPM_RC_BAD_TAG).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 5

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 The TPM shall successfully unmarshal a UINT32 as the commandSize. If the TPM has an interface

buffer that is loaded by some hardware process, the number of octets in the input buffer for the

command reported by the hardware process shall exactly match the value in commandSize

(TPM_RC_COMMAND_SIZE).

NOTE A TPM may have direct access to system memory and unmarshal direc tly from that memory.

 The TPM shall successfully unmarshal a TPM_CC and verify that the command is implemented

(TPM_RC_COMMAND_CODE).

5.3 Mode Checks

The following mode checks shall be performed in the order listed:

 If the TPM is in Failure mode, then the commandCode is TPM_CC_GetTestResult or

TPM_CC_GetCapability (TPM_RC_FAILURE) and the command tag is TPM_ST_NO_SESSIONS

(TPM_RC_FAILURE).

NOTE 1 In Failure mode, the TPM has no cryptographic capability and processing of sessions is not
supported.

 The TPM is in Field Upgrade mode (FUM), the commandCode is TPM_CC_FieldUpgradeData

(TPM_RC_UPGRADE).

 If the TPM has not been initialized (TPM2_Startup()), then the commandCode is TPM_CC_Startup

(TPM_RC_INITIALIZE).

NOTE 2 The TPM may enter Failure mode during _TPM_Init processing, before TPM2_Startup(). Since
the platform firmware cannot know that the TPM is in Failure mode without accessing it, and
since the first command is required to be TPM2_Startup(), the expected sequence will be that
platform firmware (the CRTM) will issue TPM2_Startup() and receive TPM_RC_FAILURE
indicating that the TPM is in Failure mode.

There may be failures where a TPM cannot record that it received TPM2_Startup(). In those
cases, a TPM in failure mode may process TPM2_GetTestResult(), TPM2_GetCapability(), or
the field upgrade commands. As a side effect, that TPM may process TPM2_GetTestResult(),
TPM2_GetCapability() or the field upgrade commands before TPM2_Startup().

This is a corner case exception to the rule that TPM2_Startup () must be the first command.

The mode checks may be performed before or after the command header validation.

5.4 Handle Area Validation

After successfully unmarshaling and validating the command header, the TPM shall perform the following

checks on the handles and sessions. These checks may be performed in any order.

NOTE 1 A TPM is required to perform the handle area validation before the authorization checks because an
authorization cannot be performed unless the authorization values and attributes for the r eferenced
entity are known by the TPM. For them to be known, the referenced entity must be in the TPM and
accessible.

 The TPM shall successfully unmarshal the number of handles required by the command and validate

that the value of the handle is consistent with the command syntax. If not, the TPM shall return

TPM_RC_VALUE.

NOTE 2 The TPM may unmarshal a handle and validate that it references an entity on the TPM before
unmarshaling a subsequent handle.

NOTE 3 If the submitted command contains fewer handles than required by the syntax of the command,
the TPM may continue to read into the next area and attempt to interpret the data as a handle.

Part 3: Commands Trusted Platform Module Library

Page 6 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 For all handles in the handle area of the command, the TPM will validate that the referenced entity is

present in the TPM.

1) If the handle references a transient object, the handle shall reference a loaded object

(TPM_RC_REFERENCE_H0 + N where N is the number of the handle in the command).

NOTE 4 If the hierarchy for a transient object is disabled, then the transient objec ts will be flushed
so this check will fail.

2) If the handle references a persistent object, then

i) the hierarchy associated with the object (platform or storage, based on the handle value) is

enabled (TPM_RC_HANDLE);

ii) the handle shall reference a persistent object that is currently in TPM non-volatile memory

(TPM_RC_HANDLE);

iii) if the handle references a persistent object that is associated with the endorsement hierarchy,

that the endorsement hierarchy is not disabled (TPM_RC_HANDLE); and

NOTE 5 The reference implementation keeps an internal attribute, passed down from a primary
key to its descendents, indicating the object's hierarchy.

iv) if the TPM implementation moves a persistent object to RAM for command processing then

sufficient RAM space is available (TPM_RC_OBJECT_MEMORY).

3) If the handle references an NV Index, then

i) an Index exists that corresponds to the handle (TPM_RC_HANDLE); and

ii) the hierarchy associated with the existing NV Index is not disabled (TPM_RC_HANDLE).

iii) If the command requires write access to the index data then TPMA_NV_WRITELOCKED is

not SET (TPM_RC_NV_LOCKED)

iv) If the command requires read access to the index data then TPMA_NV_READLOCKED is

not SET (TPM_RC_NV_LOCKED)

4) If the handle references a session, then the session context shall be present in TPM memory

(TPM_RC_REFERENCE_H0 + N).

5) If the handle references a primary seed for a hierarchy (TPM_RH_ENDORSEMENT,

TPM_RH_OWNER, or TPM_RH_PLATFORM) then the enable for the hierarchy is SET

(TPM_RC_HIERARCHY).

6) If the handle references a PCR, then the value is within the range of PCR supported by the TPM

(TPM_RC_VALUE)

NOTE 6 In the reference implementation, this TPM_RC_VALUE is returned by the unmarshaling
code for a TPMI_DH_PCR.

5.5 Session Area Validation

 If the tag is TPM_ST_SESSIONS and the command requires TPM_ST_NO_SESSIONS, the TPM will

return TPM_RC_AUTH_CONTEXT.

 If the tag is TPM_ST_NO_SESSIONS and the command requires TPM_ST_SESSIONS, the TPM will

return TPM_RC_AUTH_MISSING.

 If the tag is TPM_ST_SESSIONS, the TPM will attempt to unmarshal an authorizationSize and return

TPM_RC_AUTHSIZE if the value is not within an acceptable range.

1) The minimum value is (sizeof(TPM_HANDLE) + sizeof(UINT16) + sizeof(TPMA_SESSION) +

sizeof(UINT16)).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 7

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

2) The maximum value of authorizationSize is equal to commandSize – (sizeof(TPM_ST) +

sizeof(UINT32) + sizeof(TPM_CC) + (N * sizeof(TPM_HANDLE)) + sizeof(UINT32)) where N is

the number of handles associated with the commandCode and may be zero.

NOTE 1 (sizeof(TPM_ST) + sizeof(UINT32) + sizeof(TPM_CC)) is the size of a command header.
The last UINT32 contains the authorizationSize octets, which are not counted as being in
the authorization session area.

 The TPM will unmarshal the authorization sessions and perform the following validations:

1) If the session handle is not a handle for an HMAC session, a handle for a policy session, or,

TPM_RS_PW then the TPM shall return TPM_RC_HANDLE.

2) If the session is not loaded, the TPM will return the warning TPM_RC_REFERENCE_S0 + N

where N is the number of the session. The first session is session zero, N = 0.

NOTE 2 If the HMAC and policy session contexts use the same memory, the type of the context
must match the type of the handle.

3) If the maximum allowed number of sessions have been unmarshaled and fewer octets than

indicated in authorizationSize were unmarshaled (that is, authorizationSize is too large), the TPM

shall return TPM_RC_AUTHSIZE.

4) The consistency of the authorization session attributes is checked.

i) Only one session is allowed for:

(a) session auditing (TPM_RC_ATTRIBUTES) – this session may be used for encrypt or

decrypt but may not be a session that is also used for authorization;

(b) decrypting a command parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions, or the audit session, or a session may be added for the single

purpose of decrypting a command parameter, as long as the total number of sessions

does not exceed three; and

(c) encrypting a response parameter (TPM_RC_ATTRIBUTES) – this may be any of the

authorization sessions, or the audit session if present, ora session may be added for the

single purpose of encrypting a response parameter, as long as the total number of

sessions does not exceed three.

NOTE 3 A session used for decrypting a command parameter may also be used for
encrypting a response parameter.

ii) If a session is not being used for authorization, at least one of decrypt, encrypt, or audit must

be SET. (TPM_RC_ATTRIBUTES).

5) An authorization session is present for each of the handles with the “@” decoration

(TPM_RC_AUTH_MISSING).

5.6 Authorization Checks

After unmarshaling and validating the handles and the consistency of the authorization sessions, the

authorizations shall be checked. Authorization checks only apply to handles if the handle in the command

schematic has the “@” decoration. Authorization checks must be performed in this order.

 The public and sensitive portions of the object shall be present on the TPM

(TPM_RC_AUTH_UNAVAILABLE).

 If the associated handle is TPM_RH_PLATFORM, and the command requires confirmation with

physical presence, then physical presence is asserted (TPM_RC_PP).

 If the object or NV Index is subject to DA protection, and the authorization is with an HMAC or

password, then the TPM is not in lockout (TPM_RC_LOCKOUT).

Part 3: Commands Trusted Platform Module Library

Page 8 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

NOTE 1 An object is subject to DA protection if its noDA attribute is CLEAR. An NV Index is subject to
DA protection if its TPMA_NV_NO_DA attribute is CLEAR.

NOTE 2 An HMAC or password is required in a policy session when the policy contains
TPM2_PolicyAuthValue() or TPM2_PolicyPassword().

 If the command requires a handle to have DUP role authorization, then the associated authorization

session is a policy session (TPM_RC_AUTH_TYPE).

 If the command requires a handle to have ADMIN role authorization:

1) If the entity being authorized is an object and its adminWithPolicy attribute is SET, or a hierarchy,

then the authorization session is a policy session (TPM_RC_AUTH_TYPE).

NOTE 3 If adminWithPolicy is CLEAR, then any type of authorization session is allowed.

2) If the entity being authorized is an NV Index, then the associated authorization session is a policy

session.

NOTE 4 The only commands that are currently defined that require use of ADMIN role authorization
are commands that operate on objects and NV Indices.

 If the command requires a handle to have USER role authorization:

1) If the entity being authorized is an object and its userWithAuth attribute is CLEAR, then the

associated authorization session is a policy session (TPM_RC_POLICY_FAIL).

NOTE 5 There is no check for a hierarchy, because a hierarchy operates as if use rWithAuth is SET.

2) If the entity being authorized is an NV Index;

i) if the authorization session is a policy session;

(a) the TPMA_NV_POLICYWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_POLICYREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE);

ii) if the authorization is an HMAC session or a password;

(a) the TPMA_NV_AUTHWRITE attribute of the NV Index is SET if the command modifies

the NV Index data (TPM_RC_AUTH_UNAVAILABLE);

(b) the TPMA_NV_AUTHREAD attribute of the NV Index is SET if the command reads the

NV Index data (TPM_RC_AUTH_UNAVAILABLE).

 If the authorization is provided by a policy session, then:

1) if policySession→timeOut has been set, the session shall not have expired

(TPM_RC_EXPIRED);

2) if policySession→cpHash has been set, it shall match the cpHash of the command

(TPM_RC_POLICY_FAIL);

3) if policySession→commandCode has been set, then commandCode of the command shall match

(TPM_RC_POLICY_CC);

4) policySession→policyDigest shall match the authPolicy associated with the handle

(TPM_RC_POLICY_FAIL);

5) if policySession→pcrUpdateCounter has been set, then it shall match the value of

pcrUpdateCounter (TPM_RC_PCR_CHANGED);

6) if policySession→commandLocality has been set, it shall match the locality of the command

(TPM_RC_LOCALITY),

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 9

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

7) if policySession→cpHash contains a template, and the command is TPM2_Create(),

TPM2_CreatePrimary(), or TPM2_CreateLoaded(), then the inPublic parmeter matches the

contents of policySession→cpHash; and

8) if the policy requires that an authValue be provided in order to satisfy the policy, then

session.hmac is not an Empty Buffer.

 If the authorization uses an HMAC, then the HMAC is properly constructed using the authValue

associated with the handle and/or the session secret (TPM_RC_AUTH_FAIL or

TPM_RC_BAD_AUTH).

NOTE 6 A policy session may require proof of knowledge of the authValue of the object being
authorized.

 If the authorization uses a password, then the password matches the authValue associated with the

handle (TPM_RC_AUTH_FAIL or TPM_RC_BAD_AUTH).

If the TPM returns an error other than TPM_RC_AUTH_FAIL then the TPM shall not alter any TPM state.

If the TPM return TPM_RC_AUTH_FAIL, then the TPM shall not alter any TPM state other than

lockoutCount.

NOTE 7 The TPM may decrease failedTries regardless of any other processing performed by the TPM. That
is, the TPM may exit Lockout mode, regardless of the return code.

5.7 Parameter Decryption

If an authorization session has the TPMA_SESSION.decrypt attribute SET, and the command does not

allow a command parameter to be encrypted, then the TPM will return TPM_RC_ATTRIBUTES.

Otherwise, the TPM will decrypt the parameter using the values associated with the session before

parsing parameters.

NOTE The size of the parameter to be encrypted can be zero.

5.8 Parameter Unmarshaling

 Introduction

The detailed actions for each command assume that the input parameters of the command have been

unmarshaled into a command-specific structure with the structure defined by the command schematic.

Additionally, a response-specific output structure is assumed which will receive the values produced by

the detailed actions.

NOTE An implementation is not required to process parameters in this manner or to separate the
parameter parsing from the command actions. This method was chosen for the specification so that
the normative behavior described by the detailed actions would be clear and unencumbered .

Unmarshaling is the process of processing the parameters in the input buffer and preparing the

parameters for use by the command-specific action code. No data movement need take place but it is

required that the TPM validate that the parameters meet the requirements of the expected data type as

defined in TPM 2.0 Part 2.

Part 3: Commands Trusted Platform Module Library

Page 10 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Unmarshaling Errors

When an error is encountered while unmarshaling a command parameter, an error response code is

returned and no command processing occurs. A table defining a data type may have response codes

embedded in the table to indicate the error returned when the input value does not match the parameters

of the table.

NOTE In the reference implementation, a parameter number is added to the response code so that the
offending parameter can be isolated. This is optional.

In many cases, the table contains no specific response code value and the return code will be determined

as defined in Table 3.

Table 3 — Unmarshaling Errors

Response Code Meaning

TPM_RC_ASYMMETRIC a parameter that should be an asymmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_BAD_TAG a parameter that should be a command tag selection has a value that is not
supported by the TPM

TPM_RC_COMMAND_CODE a parameter that should be a command code does not have a value that is
supported by the TPM

TPM_RC_HASH a parameter that should be a hash algorithm selection does not have a value that
is supported by the TPM

TPM_RC_INSUFFICIENT the input buffer did not contain enough octets to allow unmarshaling of the
expected data type;

TPM_RC_KDF a parameter that should be a key derivation scheme (KDF) selection does not
have a value that is supported by the TPM

TPM_RC_KEY_SIZE a parameter that is a key size has a value that is not supported by the TPM

TPM_RC_MODE a parameter that should be a symmetric encryption mode selection does not have
a value that is supported by the TPM

TPM_RC_RESERVED a non-zero value was found in a reserved field of an attribute structure (TPMA_)

TPM_RC_SCHEME a parameter that should be signing or encryption scheme selection does not have
a value that is supported by the TPM

TPM_RC_SIZE the value of a size parameter is larger or smaller than allowed

TPM_RC_SYMMETRIC a parameter that should be a symmetric algorithm selection does not have a
value that is supported by the TPM

TPM_RC_TAG a parameter that should be a structure tag has a value that is not supported by
the TPM

TPM_RC_TYPE The type parameter of a TPMT_PUBLIC or TPMT_SENSITIVE has a value that is
not supported by the TPM

TPM_RC_VALUE a parameter does not have one of its allowed values

In some commands, a parameter may not be used because of various options of that command.

However, the unmarshaling code is required to validate that all parameters have values that are allowed

by the TPM 2.0 Part 2 definition of the parameter type even if that parameter is not used in the command

actions.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 11

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

5.9 Command Post Processing

When the code that implements the detailed actions of the command completes, it returns a response

code. If that code is not TPM_RC_SUCCESS, the post processing code will not update any session or

audit data and will return a 10-octet response packet.

If the command completes successfully, the tag of the command determines if any authorization sessions

will be in the response. If so, the TPM will encrypt the first parameter of the response if indicated by the

authorization attributes. The TPM will then generate a new nonce value for each session and, if

appropriate, generate an HMAC.

If authorization HMAC computations are performed on the response, the HMAC keys used in the

response will be the same as the HMAC keys used in processing the HMAC in the command.

NOTE 1 This primarily affects authorizations associated with a first write to an NV Index using a bound
session. The computation of the HMAC in the response is performed as if the Name of the Index did
not change as a consequence of the command actions. The session binding to the NV Index will not
persist to any subsequent command.

NOTE 2 The authorization attributes were validated during the session area validation to ensure that only
one session was used for parameter encryption of the response and that the command allowed
encryption in the response.

NOTE 3 No session nonce value is used for a password authorization but the session data is present.

Additionally, if the command is being audited by Command Audit, the audit digest is updated with the

cpHash of the command and rpHash of the response.

Part 3: Commands Trusted Platform Module Library

Page 12 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

6 Response Values

6.1 Tag

When a command completes successfully, the tag parameter in the response shall have the same value

as the tag parameter in the command (TPM_ST_SESSIONS or TPM_ST_NO_SESSIONS). When a

command fails (the responseCode is not TPM_RC_SUCCESS), then the tag parameter in the response

shall be TPM_ST_NO_SESSIONS.

A special case exists when the command tag parameter is not an allowed value (TPM_ST_SESSIONS or

TPM_ST_NO_SESSIONS). For this case, it is assumed that the system software is attempting to send a

command formatted for a TPM 1.2 but the TPM is not capable of executing TPM 1.2 commands. So that

the TPM 1.2 compatible software will have a recognizable response, the TPM sets tag to

TPM_ST_RSP_COMMAND, responseSize to 00 00 00 0A16 and responseCode to TPM_RC_BAD_TAG.

This is the same response as the TPM 1.2 fatal error for TPM_BADTAG.

6.2 Response Codes

The normal response for any command is TPM_RC_SUCCESS. Any other value indicates that the

command did not complete and the state of the TPM is unchanged. An exception to this general rule is

that the logic associated with dictionary attack protection is allowed to be modified when an authorization

failure occurs.

Commands have response codes that are specific to that command, and those response codes are

enumerated in the detailed actions of each command. The codes associated with the unmarshaling of

parameters are documented Table 3. Another set of response code values are not command specific and

indicate a problem that is not specific to the command. That is, if the indicated problem is remedied, the

same command could be resubmitted and may complete normally.

The response codes that are not command specific are listed and described in

Table 4.

The reference code for the command actions may have code that generates specific response codes

associated with a specific check but the listing of responses may not have that response code listed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 13

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Table 4 — Command-Independent Response Codes

Response Code Meaning

TPM_RC_CANCELED

This response code may be returned by a TPM that supports command cancel.
When the TPM receives an indication that the current command should be
cancelled, the TPM may complete the command or return this code. If this code
is returned, then the TPM state is not changed and the same command may be
retried.

TPM_RC_CONTEXT_GAP

This response code can be returned for commands that manage session
contexts. It indicates that the gap between the lowest numbered active session
and the highest numbered session is at the limits of the session tracking logic.
The remedy is to load the session context with the lowest number so that its
tracking number can be updated.

TPM_RC_LOCKOUT
This response indicates that authorizations for objects subject to DA protection
are not allowed at this time because the TPM is in DA lockout mode. The remedy
is to wait or to exeucte TPM2_DictionaryAttackLockoutReset().

TPM_RC_MEMORY

A TPM may use a common pool of memory for objects, sessions, and other
purposes. When the TPM does not have enough memory available to perform
the actions of the command, it may return TPM_RC_MEMORY. This indicates
that the TPM resource manager may flush either sessions or objects in order to
make memory available for the command execution. A TPM may choose to
return TPM_RC_OBJECT_MEMORY or TPM_RC_SESSION_MEMORY if it
needs contexts of a particular type to be flushed.

TPM_RC_NV_RATE

This response code indicates that the TPM is rate-limiting writes to the NV
memory in order to prevent wearout. This response is possible for any command
that explicity writes to NV or commands that incidentally use NV such as a
command that uses authorization session that may need to update the dictionary
attack logic.

TPM_RC_NV_UNAVAILABLE

This response code is similar to TPM_RC_NV_RATE but indicates that access to
NV memory is currently not available and the command is not allowed to proceed
until it is. This would occur in a system where the NV memory used by the TPM
is not exclusive to the TPM and is a shared system resource.

TPM_RC_OBJECT_HANDLES

This response code indicates that the TPM has exhausted its handle space and
no new objects can be loaded unless the TPM is rebooted. This does not occur in
the reference implementation because of the way that object handles are
allocated. However, other implementations are allowed to assign each object a
unique handle each time the object is loaded. A TPM using this implementation
would be able to load 224 objects before the object space is exhausted.

TPM_RC_OBJECT_MEMORY

This response code can be returned by any command that causes the TPM to
need an object 'slot'. The most common case where this might be returned is
when an object is loaded (TPM2_Load, TPM2_CreatePrimary(), or
TPM2_ContextLoad()). However, the TPM implementation is allowed to use
object slots for other reasons. In the reference implementation, the TPM copies a
referenced persistent object into RAM for the duration of the commannd. If all the
slots are previously occupied, the TPM may return this value. A TPM is allowed
to use object slots for other purposes and return this value. The remedy when
this response is returned is for the TPM resource manager to flush a transient
object.

TPM_RC_REFERENCE_Hx

This response code indicates that a handle in the handle area of the command is
not associated with a loaded object. The value of 'x' is in the range 0 to 6 with a
value of 0 indicating the 1st handle and 6 representing the 7th. Upper values are
provided for future use. The TPM resource manager needs to find the correct
object and load it. It may then adjust the handle and retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

Part 3: Commands Trusted Platform Module Library

Page 14 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Response Code Meaning

TPM_RC_REFERENCE_Sx

This response code indicates that a handle in the session area of the command
is not associated with a loaded session. The value of 'x' is in the range 0 to 6 with
a value of 0 indicating the 1st session handle and 6 representing the 7th. Upper
values are provided for future use. The TPM resource manager needs to find the
correct session and load it. It may then retry the command.

NOTE Usually, this error indicates that the TPM resource manager has a
corrupted database.

TPM_RC_RETRY the TPM was not able to start the command

TPM_RC_SESSION_HANDLES

This response code indicates that the TPM does not have a handle to assign to a
new session. This respose is only returned by TPM2_StartAuthSession(). It is
listed here because the command is not in error and the TPM resource manager
can remedy the situation by flushing a session (TPM2_FlushContext().

TPM_RC_SESSION_MEMORY

This response code can be returned by any command that causes the TPM to
need a session 'slot'. The most common case where this might be returned is
when a session is loaded (TPM2_StartAuthSession() or TPM2_ContextLoad()).
However, the TPM implementation is allowed to use object slots for other
purposes. The remedy when this response is returned is for the TPM resource
manager to flush a transient object.

TPM_RC_SUCCESS

Normal completion for any command. If the responseCode is
TPM_RC_SUCCESS, then the rest of the response has the format indicated in
the response schematic. Otherwise, the response is a 10 octet value indicating
an error.

TPM_RC_TESTING
This response code indicates that the TPM is performing tests and cannot
respond to the request at this time. The command may be retried.

TPM_RC_YIELDED

the TPM has suspended operation on the command; forward progress was made
and the command may be retried.

See TPM 2.0 Part 1, “Multi-tasking.”

NOTE This cannot occur on the reference implementation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 15

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

7 Implementation Dependent

The actions code for each command makes assumptions about the behavior of various sub-systems.

There are many possible implementations of the subsystems that would achieve equivalent results. The

actions code is not written to anticipate all possible implementations of the sub-systems. Therefore, it is

the responsibility of the implementer to ensure that the necessary changes are made to the actions code

when the sub-system behavior changes.

Part 3: Commands Trusted Platform Module Library

Page 16 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

8 Detailed Actions Assumptions

8.1 Introduction

The C code in the Detailed Actions for each command is written with a set of assumptions about the

processing performed before the action code is called and the processing that will be done after the

action code completes.

8.2 Pre-processing

Before calling the command actions code, the following actions have occurred.

• Verification that the handles in the handle area reference entities that are resident on the TPM.

• NOTE If a handle is in the parameter portion of the command, the associated entity does not
have to be loaded, but the handle is required to be the correct type.

• If use of a handle requires authorization, the Password, HMAC, or Policy session associated with the
handle has been verified.

• If a command parameter was encrypted using parameter encryption, it was decrypted before being
unmarshaled.

• If the command uses handles or parameters, the calling stack contains a pointer to a data structure
(in) that holds the unmarshaled values for the handles and command parameters. If the response has
handles or parameters, the calling stack contains a pointer to a data structure (out) to hold the
handles and response parameters generated by the command.

• All parameters of the in structure have been validated and meet the requirements of the parameter
type as defined in TPM 2.0 Part 2.

• Space set aside for the out structure is sufficient to hold the largest out structure that could be
produced by the command

8.3 Post Processing

When the function implementing the command actions completes,

• response parameters that require parameter encryption will be encrypted after the command actions
complete;

• audit and session contexts will be updated if the command response is TPM_RC_SUCCESS; and

• the command header and command response parameters will be marshaled to the response buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 17

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

9 Start-up

9.1 Introduction

This clause contains the commands used to manage the startup and restart state of a TPM.

9.2 _TPM_Init

 General Description

_TPM_Init initializes a TPM.

Initialization actions include testing code required to execute the next expected command. If the TPM is in

FUM, the next expected command is TPM2_FieldUpgradeData(); otherwise, the next expected command

is TPM2_Startup().

NOTE 1 If the TPM performs self-tests after receiving _TPM_Init() and the TPM enters Failure mode before
receiving TPM2_Startup() or TPM2_FieldUpgradeData(), then the TPM may be able to accept
TPM2_GetTestResult() or TPM2_GetCapability().

The means of signaling _TPM_Init shall be defined in the platform-specific specifications that define the

physical interface to the TPM. The platform shall send this indication whenever the platform starts its boot

process and only when the platform starts its boot process.

There shall be no software method of generating this indication that does not also reset the platform and

begin execution of the CRTM.

NOTE 2 In the reference implementation, this signal causes an internal flag (s_initialized) to be CLEAR.
While this flag is CLEAR, the TPM will only accept the next expected command described above.

Part 3: Commands Trusted Platform Module Library

Page 18 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "_TPM_Init_fp.h"

3 // This function is used to process a _TPM_Init indication.

4 LIB_EXPORT void

5 _TPM_Init(

6 void

7)

8 {

9 g_powerWasLost = g_powerWasLost | _plat__WasPowerLost();

10

11 #if SIMULATION && DEBUG

12 // If power was lost and this was a simulation, put canary in RAM used by NV

13 // so that uninitialized memory can be detected more easily

14 if(g_powerWasLost)

15 {

16 memset(&gc, 0xbb, sizeof(gc));

17 memset(&gr, 0xbb, sizeof(gr));

18 memset(&gp, 0xbb, sizeof(gp));

19 memset(&go, 0xbb, sizeof(go));

20 }

21 #endif

22

23 #if SIMULATION

24 // Clear the flag that forces failure on self-test

25 g_forceFailureMode = FALSE;

26 #endif

27

28 // Disable the tick processing

29 _plat__ACT_EnableTicks(FALSE);

30

31 // Set initialization state

32 TPMInit();

33

34 // Set g_DRTMHandle as unassigned

35 g_DRTMHandle = TPM_RH_UNASSIGNED;

36

37 // No H-CRTM, yet.

38 g_DrtmPreStartup = FALSE;

39

40 // Initialize the NvEnvironment.

41 g_nvOk = NvPowerOn();

42

43 // Initialize cryptographic functions

44 g_inFailureMode = (CryptInit() == FALSE);

45 if(!g_inFailureMode)

46 {

47 // Load the persistent data

48 NvReadPersistent();

49

50 // Load the orderly data (clock and DRBG state).

51 // If this is not done here, things break

52 NvRead(&go, NV_ORDERLY_DATA, sizeof(go));

53

54 // Start clock. Need to do this after NV has been restored.

55 TimePowerOn();

56 }

57 return;

58 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 19

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

9.3 TPM2_Startup

 General Description

TPM2_Startup() is always preceded by _TPM_Init, which is the physical indication that TPM initialization

is necessary because of a system-wide reset. TPM2_Startup() is only valid after _TPM_Init. Additional

TPM2_Startup() commands are not allowed after it has completed successfully. If a TPM requires

TPM2_Startup() and another command is received, or if the TPM receives TPM2_Startup() when it is not

required, the TPM shall return TPM_RC_INITIALIZE.

NOTE 1 See 9.2.1 for other command options for a TPM supporting field upgrade mode.

NOTE 2 _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are not commands and a platform-
specific specification may allow these indications between _TPM_Init and TPM2_Startup().

If in Failure mode, the TPM shall accept TPM2_GetTestResult() and TPM2_GetCapability() even if

TPM2_Startup() is not completed successfully or processed at all.

A platform-specific specification may restrict the localities at which TPM2_Startup() may be received.

A Shutdown/Startup sequence determines the way in which the TPM will operate in response to

TPM2_Startup(). The three sequences are:

1) TPM Reset – This is a Startup(CLEAR) preceded by either Shutdown(CLEAR) or no
TPM2_Shutdown(). On TPM Reset, all variables go back to their default initialization state.

NOTE 3 Only those values that are specified as having a default initialization state are changed by TPM
Reset. Persistent values that have no default initialization state are not changed by this
command. Values such as seeds have no default initialization state and only change due to
specific commands.

2) TPM Restart – This is a Startup(CLEAR) preceded by Shutdown(STATE). This preserves much of the
previous state of the TPM except that PCR and the controls associated with the Platform hierarchy
are all returned to their default initialization state;

3) TPM Resume – This is a Startup(STATE) preceded by Shutdown(STATE). This preserves the
previous state of the TPM including the static Root of Trust for Measurement (S-RTM) PCR and the
platform controls other than the phEnable.

If a TPM receives Startup(STATE) and that was not preceded by Shutdown(STATE), the TPM shall return

TPM_RC_VALUE.

If, during TPM Restart or TPM Resume, the TPM fails to restore the state saved at the last

Shutdown(STATE), the TPM shall enter Failure Mode and return TPM_RC_FAILURE.

On any TPM2_Startup(),

• phEnable shall be SET;

• all transient contexts (objects, sessions, and sequences) shall be flushed from TPM memory;

NOTE 4 See Part 1 Time for a description of the TPMS_TIME_INFO. time behaviour.

• use of lockoutAuth shall be enabled if lockoutRecovery is zero.

Additional actions are performed based on the Shutdown/Startup sequence.

Part 3: Commands Trusted Platform Module Library

Page 20 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

On TPM Reset:

• platformAuth and platformPolicy shall be set to the Empty Buffer,

• For each NV Index with TPMA_NV_WRITEDEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

• For each NV Index with TPMA_NV_ORDERLY SET, TPMA_NV_WRITTEN shall be CLEAR unless
the type is TPM_NT_COUNTER,

• On a disorderly reset, advance the orderly counters,

• For each NV Index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be CLEAR,

• tracking data for saved session contexts shall be set to its initial value,

• the object context sequence number is reset to zero,

• a new context encryption key shall be generated,

• TPMS_CLOCK_INFO.restartCount shall be reset to zero,

• TPMS_CLOCK_INFO.resetCount shall be incremented,

• the PCR Update Counter shall be clear to zero,

NOTE 5 Because the PCR update counter may be incremented when a PCR is reset, the PCR resets
performed as part of this command can result in the PCR update counter being non-zero at the
end of this command.

• phEnableNV, shEnable and ehEnable shall be SET, and

• PCR in all banks are reset to their default initial conditions as determined by the relevant platform-
specific specification and the H-CRTM state (for exceptions, see TPM 2.0 Part 1, H-CRTM before
TPM2_Startup() and TPM2_Startup without H-CRTM),

• For each ACT the timeout is reset to zero, the signaled attribute is set to CLEAR (if preserveSignaled
is CLEAR), and the authPolicy is set to the Empty Buffer and its hashAlg is set to TPM_ALG_NULL.

NOTE 6 PCR may be initialized any time between _TPM_Init and the end of TPM2_Startup(). PCR that
are preserved by TPM Resume will need to be restored during TPM2_Startup().

NOTE 7 See "Initializing PCR" in TPM 2.0 Part 1 for a description of the default initial conditions for a
PCR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 21

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

On TPM Restart:

• TPMS_CLOCK_INFO.restartCount shall be incremented,

• phEnableNV, shEnable and ehEnable shall be SET,

• platformAuth and platformPolicy shall be set to the Empty Buffer,

• For each NV index with TPMA_NV_WRITEDEFINE CLEAR or TPMA_NV_WRITTEN CLEAR,
TPMA_NV_WRITELOCKED shall be CLEAR,

• For each NV index with TPMA_NV_CLEAR_STCLEAR SET, TPMA_NV_WRITTEN shall be CLEAR,
and

• PCR in all banks are reset to their default initial conditions.

• If an H-CRTM Event Sequence is active, extend the PCR designated by the platform-specific
specification.

• For each ACT the timeout is reset to zero, the signaled attribute is set to CLEAR (if preserveSignaled
is CLEAR), and the authPolicy is set to the Empty Buffer and its hashAlg is set to TPM_ALG_NULL.

On TPM Resume:

• the H-CRTM startup method is the same for this TPM2_Startup() as for the previous TPM2_Startup();
(TPM_RC_LOCALITY)

• TPMS_CLOCK_INFO.restartCount shall be incremented; and

• PCR that are specified in a platform-specific specification to be preserved on TPM Resume are
restored to their saved state and other PCR are set to their initial value as determined by a platform-
specific specification. For constraints, see TPM 2.0 Part 1, H-CRTM before TPM2_Startup() and
TPM2_Startup without H-CRTM.

• The ACT timeout, the ACT signaled attribute and the ACT specific authPolicy values are preserved.

Other TPM state may change as required to meet the needs of the implementation.

If the startupType is TPM_SU_STATE and the TPM requires TPM_SU_CLEAR, then the TPM shall return

TPM_RC_VALUE.

NOTE 8 The TPM will require TPM_SU_CLEAR when no shutdown was performed or after
Shutdown(CLEAR).

NOTE 9 If startupType is neither TPM_SU_STATE nor TPM_SU_CLEAR, then the unmarshaling code returns
TPM_RC_VALUE.

Part 3: Commands Trusted Platform Module Library

Page 22 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 5 — TPM2_Startup Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Startup {NV}

TPM_SU startupType TPM_SU_CLEAR or TPM_SU_STATE

Table 6 — TPM2_Startup Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 23

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Startup_fp.h"

3 #if CC_Startup // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY a Startup(STATE) does not have the same H-CRTM state as the
previous Startup() or the locality of the startup is not 0 pr 3

TPM_RC_NV_UNINITIALIZED the saved state cannot be recovered and a Startup(CLEAR) is
required.

TPM_RC_VALUE start up type is not compatible with previous shutdown sequence

4 TPM_RC

5 TPM2_Startup(

6 Startup_In *in // IN: input parameter list

7)

8 {

9 STARTUP_TYPE startup;

10 BYTE locality = _plat__LocalityGet();

11 BOOL OK = TRUE;

12 //

13 // The command needs NV update.

14 RETURN_IF_NV_IS_NOT_AVAILABLE;

15

16 // Get the flags for the current startup locality and the H-CRTM.

17 // Rather than generalizing the locality setting, this code takes advantage

18 // of the fact that the PC Client specification only allows Startup()

19 // from locality 0 and 3. To generalize this probably would require a

20 // redo of the NV space and since this is a feature that is hardly ever used

21 // outside of the PC Client, this code just support the PC Client needs.

22

23 // Input Validation

24 // Check that the locality is a supported value

25 if(locality != 0 && locality != 3)

26 return TPM_RC_LOCALITY;

27 // If there was a H-CRTM, then treat the locality as being 3

28 // regardless of what the Startup() was. This is done to preserve the

29 // H-CRTM PCR so that they don't get overwritten with the normal

30 // PCR startup initialization. This basically means that g_StartupLocality3

31 // and g_DrtmPreStartup can't both be SET at the same time.

32 if(g_DrtmPreStartup)

33 locality = 0;

34 g_StartupLocality3 = (locality == 3);

35

36 #if USE_DA_USED

37 // If there was no orderly shutdown, then their might have been a write to

38 // failedTries that didn't get recorded but only if g_daUsed was SET in the

39 // shutdown state

40 g_daUsed = (gp.orderlyState == SU_DA_USED_VALUE);

41 if(g_daUsed)

42 gp.orderlyState = SU_NONE_VALUE;

43 #endif

44

45 g_prevOrderlyState = gp.orderlyState;

46

47 // If there was a proper shutdown, then the startup modifiers are in the

48 // orderlyState. Turn them off in the copy.

49 if(IS_ORDERLY(g_prevOrderlyState))

50 g_prevOrderlyState &= ~(PRE_STARTUP_FLAG | STARTUP_LOCALITY_3);

Part 3: Commands Trusted Platform Module Library

Page 24 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

51 // If this is a Resume,

52 if(in->startupType == TPM_SU_STATE)

53 {

54 // then there must have been a prior TPM2_ShutdownState(STATE)

55 if(g_prevOrderlyState != TPM_SU_STATE)

56 return TPM_RCS_VALUE + RC_Startup_startupType;

57 // and the part of NV used for state save must have been recovered

58 // correctly.

59 // NOTE: if this fails, then the caller will need to do Startup(CLEAR). The

60 // code for Startup(Clear) cannot fail if the NV can't be read correctly

61 // because that would prevent the TPM from ever getting unstuck.

62 if(g_nvOk == FALSE)

63 return TPM_RC_NV_UNINITIALIZED;

64 // For Resume, the H-CRTM has to be the same as the previous boot

65 if(g_DrtmPreStartup != ((gp.orderlyState & PRE_STARTUP_FLAG) != 0))

66 return TPM_RCS_VALUE + RC_Startup_startupType;

67 if(g_StartupLocality3 != ((gp.orderlyState & STARTUP_LOCALITY_3) != 0))

68 return TPM_RC_LOCALITY;

69 }

70 // Clean up the gp state

71 gp.orderlyState = g_prevOrderlyState;

72

73 // Internal Date Update

74 if((gp.orderlyState == TPM_SU_STATE) && (g_nvOk == TRUE))

75 {

76 // Always read the data that is only cleared on a Reset because this is not

77 // a reset

78 NvRead(&gr, NV_STATE_RESET_DATA, sizeof(gr));

79 if(in->startupType == TPM_SU_STATE)

80 {

81 // If this is a startup STATE (a Resume) need to read the data

82 // that is cleared on a startup CLEAR because this is not a Reset

83 // or Restart.

84 NvRead(&gc, NV_STATE_CLEAR_DATA, sizeof(gc));

85 startup = SU_RESUME;

86 }

87 else

88 startup = SU_RESTART;

89 }

90 else

91 // Will do a TPM reset if Shutdown(CLEAR) and Startup(CLEAR) or no shutdown

92 // or there was a failure reading the NV data.

93 startup = SU_RESET;

94 // Startup for cryptographic library. Don't do this until after the orderly

95 // state has been read in from NV.

96 OK = OK && CryptStartup(startup);

97

98 // When the cryptographic library has been started, indicate that a TPM2_Startup

99 // command has been received.

100 OK = OK && TPMRegisterStartup();

101

102 // Read the platform unique value that is used as VENDOR_PERMANENT

103 // authorization value

104 g_platformUniqueDetails.t.size

105 = (UINT16)_plat__GetUnique(1, sizeof(g_platformUniqueDetails.t.buffer),

106 g_platformUniqueDetails.t.buffer);

107

108 // Start up subsystems

109 // Start set the safe flag

110 OK = OK && TimeStartup(startup);

111

112 // Start dictionary attack subsystem

113 OK = OK && DAStartup(startup);

114

115 // Enable hierarchies

116 OK = OK && HierarchyStartup(startup);

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 25

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

117

118 // Restore/Initialize PCR

119 OK = OK && PCRStartup(startup, locality);

120

121 // Restore/Initialize command audit information

122 OK = OK && CommandAuditStartup(startup);

123

124 // Restore the ACT

125 OK = OK && ActStartup(startup);

126

127 //// The following code was moved from Time.c where it made no sense

128 if(OK)

129 {

130 switch(startup)

131 {

132 case SU_RESUME:

133 // Resume sequence

134 gr.restartCount++;

135 break;

136 case SU_RESTART:

137 // Hibernate sequence

138 gr.clearCount++;

139 gr.restartCount++;

140 break;

141 default:

142 // Reset object context ID to 0

143 gr.objectContextID = 0;

144 // Reset clearCount to 0

145 gr.clearCount = 0;

146

147 // Reset sequence

148 // Increase resetCount

149 gp.resetCount++;

150

151 // Write resetCount to NV

152 NV_SYNC_PERSISTENT(resetCount);

153

154 gp.totalResetCount++;

155 // We do not expect the total reset counter overflow during the life

156 // time of TPM. if it ever happens, TPM will be put to failure mode

157 // and there is no way to recover it.

158 // The reason that there is no recovery is that we don't increment

159 // the NV totalResetCount when incrementing would make it 0. When the

160 // TPM starts up again, the old value of totalResetCount will be read

161 // and we will get right back to here with the increment failing.

162 if(gp.totalResetCount == 0)

163 FAIL(FATAL_ERROR_INTERNAL);

164

165 // Write total reset counter to NV

166 NV_SYNC_PERSISTENT(totalResetCount);

167

168 // Reset restartCount

169 gr.restartCount = 0;

170

171 break;

172 }

173 }

174 // Initialize session table

175 OK = OK && SessionStartup(startup);

176

177 // Initialize object table

178 OK = OK && ObjectStartup();

179

180 // Initialize index/evict data. This function clears read/write locks

181 // in NV index

182 OK = OK && NvEntityStartup(startup);

Part 3: Commands Trusted Platform Module Library

Page 26 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

183

184 // Initialize the orderly shut down flag for this cycle to SU_NONE_VALUE.

185 gp.orderlyState = SU_NONE_VALUE;

186

187 OK = OK && NV_SYNC_PERSISTENT(orderlyState);

188

189 // This can be reset after the first completion of a TPM2_Startup() after

190 // a power loss. It can probably be reset earlier but this is an OK place.

191 if(OK)

192 g_powerWasLost = FALSE;

193

194 return (OK) ? TPM_RC_SUCCESS : TPM_RC_FAILURE;

195 }

196 #endif // CC_Startup

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 27

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

9.4 TPM2_Shutdown

 General Description

This command is used to prepare the TPM for a power cycle. The shutdownType parameter indicates

how the subsequent TPM2_Startup() will be processed.

For a shutdownType of any type, the volatile portion of Clock is saved to NV memory and the orderly

shutdown indication is SET. NV Indexes with the TPMA_NV_ORDERLY attribute will be updated.

For a shutdownType of TPM_SU_STATE, the following additional items are saved:

• tracking information for saved session contexts;

• the session context counter;

• PCR that are designated as being preserved by TPM2_Shutdown(TPM_SU_STATE);

• the PCR Update Counter;

• flags associated with supporting the TPMA_NV_WRITESTCLEAR and TPMA_NV_READSTCLEAR
attributes;

• the counter value and authPolicy for each ACT; and

NOTE If a counter has not been updated since the last TPM2_Startup(), then the saved value will be one
half of the current counter value.

• the command audit digest and count.

The following items shall not be saved and will not be in TPM memory after the next TPM2_Startup:

• TPM-memory-resident session contexts;

• TPM-memory-resident transient objects; or

• TPM-memory-resident hash contexts created by TPM2_HashSequenceStart().

Some values may be either derived from other values or saved to NV memory.

This command saves TPM state but does not change the state other than the internal indication that the

context has been saved. The TPM shall continue to accept commands. If a subsequent command

changes TPM state saved by this command, then the effect of this command is nullified. The TPM MAY

nullify this command for any subsequent command rather than check whether the command changed

state saved by this command. If this command is nullified. and if no TPM2_Shutdown() occurs before the

next TPM2_Startup(), then the next TPM2_Startup() shall be TPM2_Startup(CLEAR).

Part 3: Commands Trusted Platform Module Library

Page 28 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 7 — TPM2_Shutdown Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Shutdown {NV}

TPM_SU shutdownType TPM_SU_CLEAR or TPM_SU_STATE

Table 8 — TPM2_Shutdown Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 29

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Shutdown_fp.h"

3 #if CC_Shutdown // Conditional expansion of this file

Error Returns Meaning

TPM_RC_TYPE if PCR bank has been re-configured, a CLEAR StateSave() is
required

4 TPM_RC

5 TPM2_Shutdown(

6 Shutdown_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update. Check if NV is available.

10 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

11 // this point

12 RETURN_IF_NV_IS_NOT_AVAILABLE;

13

14 // Input Validation

15

16 // If PCR bank has been reconfigured, a CLEAR state save is required

17 if(g_pcrReConfig && in->shutdownType == TPM_SU_STATE)

18 return TPM_RCS_TYPE + RC_Shutdown_shutdownType;

19

20 // Internal Data Update

21

22 gp.orderlyState = in->shutdownType;

23

24 // PCR private date state save

25 PCRStateSave(in->shutdownType);

26

27 // Save the ACT state

28 ActShutdown(in->shutdownType);

29

30 // Save RAM backed NV index data

31 NvUpdateIndexOrderlyData();

32

33 #if ACCUMULATE_SELF_HEAL_TIMER

34 // Save the current time value

35 go.time = g_time;

36 #endif

37

38 // Save all orderly data

39 NvWrite(NV_ORDERLY_DATA, sizeof(ORDERLY_DATA), &go);

40

41 if(in->shutdownType == TPM_SU_STATE)

42 {

43 // Save STATE_RESET and STATE_CLEAR data

44 NvWrite(NV_STATE_CLEAR_DATA, sizeof(STATE_CLEAR_DATA), &gc);

45 NvWrite(NV_STATE_RESET_DATA, sizeof(STATE_RESET_DATA), &gr);

46

47 // Save the startup flags for resume

48 if(g_DrtmPreStartup)

49 gp.orderlyState = TPM_SU_STATE | PRE_STARTUP_FLAG;

50 else if(g_StartupLocality3)

51 gp.orderlyState = TPM_SU_STATE | STARTUP_LOCALITY_3;

52 }

53 // only two shutdown options.

54 else if(in->shutdownType != TPM_SU_CLEAR)

55 return TPM_RCS_VALUE + RC_Shutdown_shutdownType;

Part 3: Commands Trusted Platform Module Library

Page 30 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

56

57 NV_SYNC_PERSISTENT(orderlyState);

58

59 return TPM_RC_SUCCESS;

60 }

61 #endif // CC_Shutdown

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 31

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

10 Testing

10.1 Introduction

Compliance to standards for hardware security modules may require that the TPM test its functions

before the results that depend on those functions may be returned. The TPM may perform operations

using testable functions before those functions have been tested as long as the TPM returns no value

that depends on the correctness of the testable function.

EXAMPLE TPM2_PCR_Extend() may be executed before the hash algorithms have been tested. However, until
the hash algorithms have been tested, the contents of a PCR may not be used in any command if
that command may result in a value being returned to the TPM user. This means that
TPM2_PCR_Read() or TPM2_PolicyPCR() could not complete until the hashes have been checked
but other TPM2_PCR_Extend() commands may be executed even though the operation uses
previous PCR values.

If a command is received that requires return of a value that depends on untested functions, the TPM

shall test the required functions before completing the command.

Once the TPM has received TPM2_SelfTest() and before completion of all tests, the TPM is required to

return TPM_RC_TESTING for any command that uses a function that requires a test.

If a self-test fails at any time, the TPM will enter Failure mode. While in Failure mode, the TPM will return

TPM_RC_FAILURE for any command other than TPM2_GetTestResult() and TPM2_GetCapability(). The

TPM will remain in Failure mode until the next _TPM_Init.

Part 3: Commands Trusted Platform Module Library

Page 32 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

10.2 TPM2_SelfTest

 General Description

This command causes the TPM to perform a test of its capabilities. If the fullTest is YES, the TPM will test

all functions. If fullTest = NO, the TPM will only test those functions that have not previously been tested.

If any tests are required, the TPM shall either

• return TPM_RC_TESTING and begin self-test of the required functions, or

NOTE 1 If fullTest is NO, and all functions have been tested, the TPM shall return TPM_RC_SUCCESS.

• perform the tests and return the test result when complete. On failure, the TPM shall return
TPM_RC_FAILURE.

If the TPM uses option a), the TPM shall return TPM_RC_TESTING for any command that requires use

of a testable function, even if the functions required for completion of the command have already been

tested.

NOTE 2 This command may cause the TPM to continue processing after it has returned the response. So
that software can be notified of the completion of the testing, the interface may include controls that
would allow the TPM to generate an interrupt when the “background” processing is complete. This
would be in addition to the interrupt that may be available for signaling normal command completion.
It is not necessary that there be two interrupts, but the interface should provide a way to indicate the
nature of the interrupt (normal command or deferred command).

NOTE 3 The PC Client platform specific TPM, in response to fullTest YES, will not return
TPM_RC_TESTING. It will block until all tests are complete.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 33

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 9 — TPM2_SelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SelfTest {NV}

TPMI_YES_NO fullTest
YES if full test to be performed

NO if only test of untested functions required

Table 10 — TPM2_SelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 34 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SelfTest_fp.h"

3 #if CC_SelfTest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CANCELED the command was canceled (some incremental process may have
been made)

TPM_RC_TESTING self test in process

4 TPM_RC

5 TPM2_SelfTest(

6 SelfTest_In *in // IN: input parameter list

7)

8 {

9 // Command Output

10

11 // Call self test function in crypt module

12 return CryptSelfTest(in->fullTest);

13 }

14 #endif // CC_SelfTest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 35

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

10.3 TPM2_IncrementalSelfTest

 General Description

This command causes the TPM to perform a test of the selected algorithms.

NOTE 1 The toTest list indicates the algorithms that software would like the TPM to test in anticipation of
future use. This allows tests to be done so that a future commands will not be delayed due to
testing.

 The implementation may treat algorithms on the toTest list as either 'test each completely' or 'test
this combination.'

EXAMPLE If the toTest list includes AES and CTR mode, it may be interpreted as a request to test only AES in
CTR mode. Alternatively, it may be interpreted as a request to test AES in all modes and CTR mode
for all symmetric algorithms.

If toTest contains an algorithm that has already been tested, it will not be tested again.

NOTE 2 The only way to force retesting of an algorithm is with TPM2_SelfTest(fullTest = YES).

The TPM will return in toDoList a list of algorithms that are yet to be tested. This list is not the list of

algorithms that are scheduled to be tested but the algorithms/functions that have not been tested. Only

the algorithms on the toTest list are scheduled to be tested by this command.

NOTE 3 An algorithm remains on the toDoList while any part of it remains untested.

EXAMPLE A symmetric algorithm remains untested until it is tested with all its modes.

Making toTest an empty list allows the determination of the algorithms that remain untested without

triggering any testing.

If toTest is not an empty list, the TPM shall return TPM_RC_SUCCESS for this command and then return

TPM_RC_TESTING for any subsequent command (including TPM2_IncrementalSelfTest()) until the

requested testing is complete.

NOTE 4 If toDoList is empty, then no additional tests are required and TPM_RC_TESTING will not be
returned in subsequent commands and no additional delay will occur in a command due to testing.

NOTE 5 If none of the algorithms listed in toTest is in the toDoList, then no tests will be performed.

NOTE 6 The TPM cannot return TPM_RC_TESTING for the first call to this command even when testing is
not complete, because response parameters can only returned with the TPM_RC_SUCCESS return
code.

If all the parameters in this command are valid, the TPM returns TPM_RC_SUCCESS and the toDoList

(which may be empty).

NOTE 7 An implementation may perform all requested tests before returning TPM_RC_SUCCESS, or it may
return TPM_RC_SUCCESS for this command and then return TPM_RC_TESTING for all
subsequence commands (including TPM2_IncrementatSelfTest()) until the requested tests are
complete.

Part 3: Commands Trusted Platform Module Library

Page 36 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 11 — TPM2_IncrementalSelfTest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_IncrementalSelfTest {NV}

TPML_ALG toTest list of algorithms that should be tested

Table 12 — TPM2_IncrementalSelfTest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_ALG toDoList list of algorithms that need testing

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 37

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "IncrementalSelfTest_fp.h"

3 #if CC_IncrementalSelfTest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CANCELED the command was canceled (some tests may have completed)

TPM_RC_VALUE an algorithm in the toTest list is not implemented

4 TPM_RC

5 TPM2_IncrementalSelfTest(

6 IncrementalSelfTest_In *in, // IN: input parameter list

7 IncrementalSelfTest_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 // Command Output

12

13 // Call incremental self test function in crypt module. If this function

14 // returns TPM_RC_VALUE, it means that an algorithm on the 'toTest' list is

15 // not implemented.

16 result = CryptIncrementalSelfTest(&in->toTest, &out->toDoList);

17 if(result == TPM_RC_VALUE)

18 return TPM_RCS_VALUE + RC_IncrementalSelfTest_toTest;

19 return result;

20 }

21 #endif // CC_IncrementalSelfTest

Part 3: Commands Trusted Platform Module Library

Page 38 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

10.4 TPM2_GetTestResult

 General Description

This command returns manufacturer-specific information regarding the results of a self-test and an

indication of the test status.

If TPM2_SelfTest() has not been executed and a testable function has not been tested, testResult will be

TPM_RC_NEEDS_TEST. If TPM2_SelfTest() has been received and the tests are not complete,

testResult will be TPM_RC_TESTING.

If testing of all functions is complete without functional failures, testResult will be TPM_RC_SUCCESS. If

any test failed, testResult will be TPM_RC_FAILURE.

This command will operate when the TPM is in Failure mode so that software can determine the test

status of the TPM and so that diagnostic information can be obtained for use in failure analysis. If the

TPM is in Failure mode, then tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

NOTE The reference implementation may return a 32-bit value s_failFunction. This simply gives a unique
value to each of the possible places where a failure could occur. It is not intended to provide a
pointer to the function. __func__ is a pointer to a character string but the failure mode code can only
return 32-bit values. It is expected that the manufacturer can disambiguate this value if a customer’s
TPM goes into failure mode.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 39

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 13 — TPM2_GetTestResult Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTestResult

Table 14 — TPM2_GetTestResult Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData
test result data

contains manufacturer-specific information

TPM_RC testResult

Part 3: Commands Trusted Platform Module Library

Page 40 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "GetTestResult_fp.h"

3 #if CC_GetTestResult // Conditional expansion of this file

In the reference implementation, this function is only reachable if the TPM is not in failure mode meaning

that all tests that have been run have completed successfully. There is not test data and the test result is

TPM_RC_SUCCESS.

4 TPM_RC

5 TPM2_GetTestResult(

6 GetTestResult_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 // Call incremental self test function in crypt module

12 out->testResult = CryptGetTestResult(&out->outData);

13

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_GetTestResult

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 41

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

11 Session Commands

11.1 TPM2_StartAuthSession

 General Description

This command is used to start an authorization session using alternative methods of establishing the

session key (sessionKey). The session key is then used to derive values used for authorization and for

encrypting parameters.

This command allows injection of a secret into the TPM using either asymmetric or symmetric encryption.

The type of tpmKey determines how the value in encryptedSalt is encrypted. The decrypted secret value

is used to compute the sessionKey.

NOTE 1 If tpmKey Is TPM_RH_NULL, then encryptedSalt is required to be an Empty Buffer.

The label value of “SECRET” (see “Terms and Definitions” in TPM 2.0 Part 1) is used in the recovery of

the secret value.

The TPM generates the sessionKey from the recovered secret value.

No authorization is required for tpmKey or bind.

NOTE 2 The justification for using tpmKey without providing authorization is that the result of using the key is
not available to the caller, except indirectly through the sessionKey. This does not represent a point
of attack on the value of the key. If the caller attempts to use the session without knowing the
sessionKey value, it is an authorization failure that will trigger the dictionary attack logic.

The entity referenced with the bind parameter contributes an authorization value to the sessionKey

generation process.

If both tpmKey and bind are TPM_RH_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is not

TPM_RH_NULL, then encryptedSalt is used in the computation of sessionKey. If bind is not

TPM_RH_NULL, the authValue of bind is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in

the symmetric parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial

nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall return

TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextID values, then the TPM shall return

TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See

“Context Management” in TPM 2.0 Part 1).

If tpmKey is not TPM_ALG_NULL then encryptedSalt shall be a TPM2B_ENCRYPTED_SECRET of the

proper type for tpmKey. The TPM shall return TPM_RC_HANDLE if the sensitive portion of tpmKey is not

loaded. The TPM shall return TPM_RC_VALUE if:

 tpmKey references an RSA key and

1) the size of encryptedSalt is not the same as the size of the public modulus of tpmKey,

2) encryptedSalt has a value that is greater than the public modulus of tpmKey,

3) encryptedSalt is not a properly encoded OAEP value, or

4) the decrypted salt value is larger than the size of the digest produced by the nameAlg of tpmKey;

or

Part 3: Commands Trusted Platform Module Library

Page 42 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

NOTE 3 The asymScheme of the key object is ignored in this case and TPM_ALG_OAEP is used, even if
asymScheme is set to TPM_ALG_NULL.

 tpmKey references an ECC key and encryptedSalt

1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tpmKey;

NOTE 4 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

The TPM shall return TPM_RC_KEY if tpmkey does not reference an asymmetric key. The TPM shall

return TPM_RC_VALUE if the scheme of the key is not TPM_ALG_OAEP or TPM_ALG_NULL. The TPM

shall return TPM_RC_ATTRIBUTES if tpmKey does not have the decrypt attribute SET.

NOTE While TPM_RC_VALUE is preferred, TPM_RC_SCHEME is acceptable.

If bind references a transient object, then the TPM shall return TPM_RC_HANDLE if the sensitive portion

of the object is not loaded.

For all session types, this command will cause initialization of the sessionKey and may establish binding

between the session and an object (the bind object). If sessionType is TPM_SE_POLICY or

TPM_SE_TRIAL, the additional session initialization is:

• set policySession→policyDigest to a Zero Digest (the digest size for policySession→policyDigest is
the size of the digest produced by authHash);

• authorization may be given at any locality;

• authorization may apply to any command code;

• authorization may apply to any command parameters or handles;

• the authorization has no time limit;

• an authValue is not needed when the authorization is used;

• the session is not bound;

• the session is not an audit session; and

• the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be

used to compute the authPolicy for an object.

NOTE 5 Although this command changes the session allocation information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re -
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of

the digest produced by authHash.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 43

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 15 — TPM2_StartAuthSession Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_StartAuthSession

TPMI_DH_OBJECT+ tpmKey

handle of a loaded decrypt key used to encrypt salt

may be TPM_RH_NULL

Auth Index: None

TPMI_DH_ENTITY+ bind

entity providing the authValue

may be TPM_RH_NULL

Auth Index: None

TPM2B_NONCE nonceCaller
initial nonceCaller, sets nonceTPM size for the session

shall be at least 16 octets

TPM2B_ENCRYPTED_SECRET encryptedSalt

value encrypted according to the type of tpmKey

If tpmKey is TPM_RH_NULL, this shall be the Empty
Buffer.

TPM_SE sessionType
indicates the type of the session; simple HMAC or policy
(including a trial policy)

TPMT_SYM_DEF+ symmetric
the algorithm and key size for parameter encryption

may select TPM_ALG_NULL

TPMI_ALG_HASH authHash

hash algorithm to use for the session

Shall be a hash algorithm supported by the TPM and
not TPM_ALG_NULL

Table 16 — TPM2_StartAuthSession Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_SH_AUTH_SESSION sessionHandle handle for the newly created session

TPM2B_NONCE nonceTPM
the initial nonce from the TPM, used in the computation
of the sessionKey

Part 3: Commands Trusted Platform Module Library

Page 44 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "StartAuthSession_fp.h"

3 #if CC_StartAuthSession // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES tpmKey does not reference a decrypt key

TPM_RC_CONTEXT_GAP the difference between the most recently created active context and
the oldest active context is at the limits of the TPM

TPM_RC_HANDLE input decrypt key handle only has public portion loaded

TPM_RC_MODE symmetric specifies a block cipher but the mode is not
TPM_ALG_CFB.

TPM_RC_SESSION_HANDLES no session handle is available

TPM_RC_SESSION_MEMORY no more slots for loading a session

TPM_RC_SIZE nonce less than 16 octets or greater than the size of the digest
produced by authHash

TPM_RC_VALUE secret size does not match decrypt key type; or the recovered secret
is larger than the digest size of the nameAlg of tpmKey; or, for an
RSA decrypt key, if encryptedSecret is greater than the public
modulus of tpmKey.

4 TPM_RC

5 TPM2_StartAuthSession(

6 StartAuthSession_In *in, // IN: input parameter buffer

7 StartAuthSession_Out *out // OUT: output parameter buffer

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 OBJECT *tpmKey; // TPM key for decrypt salt

12 TPM2B_DATA salt;

13

14 // Input Validation

15

16 // Check input nonce size. IT should be at least 16 bytes but not larger

17 // than the digest size of session hash.

18 if(in->nonceCaller.t.size < 16

19 || in->nonceCaller.t.size > CryptHashGetDigestSize(in->authHash))

20 return TPM_RCS_SIZE + RC_StartAuthSession_nonceCaller;

21

22 // If an decrypt key is passed in, check its validation

23 if(in->tpmKey != TPM_RH_NULL)

24 {

25 // Get pointer to loaded decrypt key

26 tpmKey = HandleToObject(in->tpmKey);

27

28 // key must be asymmetric with its sensitive area loaded. Since this

29 // command does not require authorization, the presence of the sensitive

30 // area was not already checked as it is with most other commands that

31 // use the sensitive are so check it here

32 if(!CryptIsAsymAlgorithm(tpmKey->publicArea.type))

33 return TPM_RCS_KEY + RC_StartAuthSession_tpmKey;

34 // secret size cannot be 0

35 if(in->encryptedSalt.t.size == 0)

36 return TPM_RCS_VALUE + RC_StartAuthSession_encryptedSalt;

37 // Decrypting salt requires accessing the private portion of a key.

38 // Therefore, tmpKey can not be a key with only public portion loaded

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 45

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

39 if(tpmKey->attributes.publicOnly)

40 return TPM_RCS_HANDLE + RC_StartAuthSession_tpmKey;

41 // HMAC session input handle check.

42 // tpmKey should be a decryption key

43 if(!IS_ATTRIBUTE(tpmKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

44 return TPM_RCS_ATTRIBUTES + RC_StartAuthSession_tpmKey;

45 // Secret Decryption. A TPM_RC_VALUE, TPM_RC_KEY or Unmarshal errors

46 // may be returned at this point

47 result = CryptSecretDecrypt(tpmKey, &in->nonceCaller, SECRET_KEY,

48 &in->encryptedSalt, &salt);

49 if(result != TPM_RC_SUCCESS)

50 return TPM_RCS_VALUE + RC_StartAuthSession_encryptedSalt;

51 }

52 else

53 {

54 // secret size must be 0

55 if(in->encryptedSalt.t.size != 0)

56 return TPM_RCS_VALUE + RC_StartAuthSession_encryptedSalt;

57 salt.t.size = 0;

58 }

59 switch(HandleGetType(in->bind))

60 {

61 case TPM_HT_TRANSIENT:

62 {

63 OBJECT *object = HandleToObject(in->bind);

64 // If the bind handle references a transient object, make sure that we

65 // can get to the authorization value. Also, make sure that the object

66 // has a proper Name (nameAlg != TPM_ALG_NULL). If it doesn't, then

67 // it might be possible to bind to an object where the authValue is

68 // known. This does not create a real issue in that, if you know the

69 // authorization value, you can actually bind to the object. However,

70 // there is a potential

71 if(object->attributes.publicOnly == SET)

72 return TPM_RCS_HANDLE + RC_StartAuthSession_bind;

73 break;

74 }

75 case TPM_HT_NV_INDEX:

76 // a PIN index can't be a bind object

77 {

78 NV_INDEX *nvIndex = NvGetIndexInfo(in->bind, NULL);

79 if(IsNvPinPassIndex(nvIndex->publicArea.attributes)

80 || IsNvPinFailIndex(nvIndex->publicArea.attributes))

81 return TPM_RCS_HANDLE + RC_StartAuthSession_bind;

82 break;

83 }

84 default:

85 break;

86 }

87 // If 'symmetric' is a symmetric block cipher (not TPM_ALG_NULL or TPM_ALG_XOR)

88 // then the mode must be CFB.

89 if(in->symmetric.algorithm != TPM_ALG_NULL

90 && in->symmetric.algorithm != TPM_ALG_XOR

91 && in->symmetric.mode.sym != TPM_ALG_CFB)

92 return TPM_RCS_MODE + RC_StartAuthSession_symmetric;

93

94 // Internal Data Update and command output

95

96 // Create internal session structure. TPM_RC_CONTEXT_GAP, TPM_RC_NO_HANDLES

97 // or TPM_RC_SESSION_MEMORY errors may be returned at this point.

98 //

99 // The detailed actions for creating the session context are not shown here

100 // as the details are implementation dependent

101 // SessionCreate sets the output handle and nonceTPM

102 result = SessionCreate(in->sessionType, in->authHash, &in->nonceCaller,

103 &in->symmetric, in->bind, &salt, &out->sessionHandle,

104 &out->nonceTPM);

Part 3: Commands Trusted Platform Module Library

Page 46 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

105 return result;

106 }

107 #endif // CC_StartAuthSession

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 47

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

11.2 TPM2_PolicyRestart

 General Description

This command allows a policy authorization session to be returned to its initial state. This command is

used after the TPM returns TPM_RC_PCR_CHANGED. That response code indicates that a policy will

fail because the PCR have changed after TPM2_PolicyPCR() was executed. Restarting the session

allows the authorizations to be replayed because the session restarts with the same nonceTPM. If the

PCR are valid for the policy, the policy may then succeed.

This command does not reset the policy ID or the policy start time.

Part 3: Commands Trusted Platform Module Library

Page 48 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 17 — TPM2_PolicyRestart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyRestart

TPMI_SH_POLICY sessionHandle the handle for the policy session

Table 18 — TPM2_PolicyRestart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 49

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyRestart_fp.h"

3 #if CC_PolicyRestart // Conditional expansion of this file

4 TPM_RC

5 TPM2_PolicyRestart(

6 PolicyRestart_In *in // IN: input parameter list

7)

8 {

9 // Initialize policy session data

10 SessionResetPolicyData(SessionGet(in->sessionHandle));

11

12 return TPM_RC_SUCCESS;

13 }

14 #endif // CC_PolicyRestart

Part 3: Commands Trusted Platform Module Library

Page 50 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12 Object Commands

12.1 TPM2_Create

 General Description

This command is used to create an object that can be loaded into a TPM using TPM2_Load(). If the

command completes successfully, the TPM will create the new object and return the object’s creation

data (creationData), its public area (outPublic), and its encrypted sensitive area (outPrivate). Preservation

of the returned data is the responsibility of the caller. The object will need to be loaded (TPM2_Load())

before it may be used. The only difference between the inPublic TPMT_PUBLIC template and the

outPublic TPMT_PUBLIC object is in the unique field.

NOTE 1 This command may require temporary use of a transient resource, even though the object does not
remain loaded after the command. See Part 1 Transient Resources.

TPM2B_PUBLIC template (inPublic) contains all of the fields necessary to define the properties of the

new object. The setting for these fields is defined in “Public Area Template” in Part 1 of this specification

and in “TPMA_OBJECT” in Part 2 of this specification. The size of the unique field shall not be checked

for consistency with the other object parameters.

NOTE 2 For interoperability, the unique field should not be set to a value that is larger than allowed by object
parameters, so that the unmarshaling will not fail. A size of zero is recommended. After
unmarshaling, the TPM does not use the input unique field. It is, however, used in
TPM2_CreatePrimary() and TPM2_CreateLoaded.

EXAMPLE 1 A TPM_ALG_RSA object with a keyBits of 2048 in the object’s parameters should have a unique
field that is no larger than 256 bytes.

EXAMPLE 2 TPM_ALG_KEYEDHASH or a TPM_ALG_SYMCIPHER object should have a unique field that is no
larger than the digest produced by the object’s nameAlg.

The parentHandle parameter shall reference a loaded decryption key that has both the public and

sensitive area loaded.

When defining the object, the caller provides a template structure for the object in a TPM2B_PUBLIC

structure (inPublic), an initial value for the object’s authValue (inSensitive.userAuth), and, if the object is a

symmetric object, an optional initial data value (inSensitive.data). The TPM shall validate the consistency

of the attributes of inPublic according to the Creation rules in “TPMA_OBJECT” in TPM 2.0 Part 2.

The inSensitive parameter may be encrypted using parameter encryption.

The methods in this clause are used by both TPM2_Create() and TPM2_CreatePrimary(). When a value

is indicated as being TPM-generated, the value is filled in by bits from the RNG if the command is

TPM2_Create() and with values from KDFa() if the command is TPM2_CreatePrimary(). The parameters

of each creation value are specified in TPM 2.0 Part 1.

The sensitiveDataOrigin attribute of inPublic shall be SET if inSensitive.data is an Empty Buffer and

CLEAR if inSensitive.data is not an Empty Buffer or the TPM shall return TPM_RC_ATTRIBUTES.

If the Object is a not a keyedHash object, and the sign and encrypt attributes are CLEAR, the TPM shall

return TPM_RC_ATTRIBUTES.

The TPM will create new data for the sensitive area and compute a TPMT_PUBLIC.unique from the

sensitive area based on the object type:

 For a symmetric key:

1) If inSensitive.sensitive.data is the Empty Buffer, a TPM-generated key value is placed in the new

object’s TPMT_SENSITIVE.sensitive.sym. The size of the key will be determined by

inPublic.publicArea.parameters.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 51

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

2) If inSensitive.sensitive.data is not the Empty Buffer, the TPM will validate that the size of

inSensitive.data is no larger than the key size indicated in the inPublic template (TPM_RC_SIZE)

and copy the inSensitive.data to TPMT_SENSITIVE.sensitive.sym of the new object.

3) A TPM-generated obfuscation value is placed in TPMT_SENSITIVE.sensitive.seedValue. The

size of the obfuscation value is the size of the digest produced by the nameAlg in inPublic. This

value prevents the public unique value from leaking information about the sensitive area.

4) The TPMT_PUBLIC.unique.sym value for the new object is then generated, as shown in equation

(1) below, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the nameAlg

of the object.

 unique ≔ HnameAlg(sensitive.seedValue.buffer || sensitive.any.buffer) (1)

 If the Object is an asymmetric key:

1) If inSensitive.sensitive.data is not the Empty Buffer, then the TPM shall return TPM_RC_VALUE.

2) A TPM-generated private key value is created with the size determined by the parameters of

inPublic.publicArea.parameters.

3) If the key is a Storage Key, a TPM-generated TPMT_SENSITIVE.seedValue value is created;

otherwise, TPMT_SENSITIVE.seedValue.size is set to zero.

NOTE 3 An Object that is not a storage key has no child Objects to encrypt, so it does not need a
symmetric key.

4) The public unique value is computed from the private key according to the methods of the key

type.

5) If the key is an ECC key and the scheme required by the curveID is not the same as scheme in

the public area of the template, then the TPM shall return TPM_RC_SCHEME.

6) If the key is an ECC key and the KDF required by the curveID is not the same as kdf in the pubic

area of the template, then the TPM shall return TPM_RC_KDF.

NOTE 4 There is currently no command in which the caller may specify the KDF to be used with an
ECC decryption key. Since there is no use for this capabil ity, the reference implementation
requires that the kdf in the template be set to TPM_ALG_NULL or TPM_RC_KDF is
returned.

 If the Object is a keyedHash object:

1) If inSensitive.sensitive.data is an Empty Buffer, and both sign and decrypt are CLEAR in the

attributes of inPublic, the TPM shall return TPM_RC_ATTRIBUTES. This would be a data object

with no data.

NOTE 5 Revisions 134 and earlier reference code did not check the error case of
sensitiveDataOrigin SET and an Empty Buffer. Thus, some TPM implementations may also
not have included this error check.

2) If sign and decrypt are both CLEAR, or if sign and decrypt are both SET and the scheme in the

public area of the template is not TPM_ALG_NULL, the TPM shall return TPM_RC_SCHEME.

NOTE 6 Revisions 138 and earlier did not enforce this error case.

3) If inSensitive.sensitive.data is not an Empty Buffer, the TPM will copy the

inSensitive.sensitive.data to TPMT_SENSITIVE.sensitive.bits of the new object.

NOTE 7 The size of inSensitive.sensitive.data is limited to be no larger than MAX_SYM_DATA.

4) If inSensitive.sensitive.data is an Empty Buffer, a TPM-generated key value that is the size of the

digest produced by the nameAlg in inPublic is placed in TPMT_SENSITIVE.sensitive.bits.

Part 3: Commands Trusted Platform Module Library

Page 52 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

5) A TPM-generated obfuscation value that is the size of the digest produced by the nameAlg of

inPublic is placed in TPMT_SENSITIVE.seedValue.

6) The TPMT_PUBLIC.unique.keyedHash value for the new object is then generated, as shown in

equation (1) above, by hashing the key and obfuscation values in the TPMT_SENSITIVE with the

nameAlg of the object.

For TPM2_Load(), the TPM will apply normal symmetric protections to the created TPMT_SENSITIVE to

create outPublic.

NOTE 8 The encryption key is derived from the symmetric seed in the sensitive area of the parent.

In addition to outPublic and outPrivate, the TPM will build a TPMS_CREATION_DATA structure for the

object. TPMS_CREATION_DATA.outsideInfo is set to outsideInfo. This structure is returned in

creationData. Additionally, the digest of this structure is returned in creationHash, and, finally, a

TPMT_TK_CREATION is created so that the association between the creation data and the object may

be validated by TPM2_CertifyCreation().

If the object being created is a Storage Key and fixedParent is SET in the attributes of inPublic, then the

symmetric algorithms and parameters of inPublic are required to match those of the parent. The

algorithms that must match are inPublic.nameAlg, and the values in inPublic.parameters that select the

symmetric scheme. If inPublic.nameAlg does not match, the TPM shall return TPM_RC_HASH.If the

symmetric scheme of the key does not match, the parent, the TPM shall return TPM_RC_SYMMETRIC.

The TPM shall not use different response code to differentiate between mismatches of the components of

inPublic.parameters. However, after this verification, when using the scheme to encrypt child objects, the

TPM ignores the symmetric mode and uses TPM_ALG_CFB.

NOTE 9 The symmetric scheme is a TPMT_SYM_DEF_OBJECT. In a symmetric block ciphier, it is at
inPublic.parameters.symDetail.sym and in an asymmetric object is at
inPublic.parameters.asymDetail.symmetric.

NOTE 10 Prior to revision 01.34, the parent asymmetric algorithms were also checked for fixedParent storage
keys.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 53

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 19 — TPM2_Create Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Create

TPMI_DH_OBJECT @parentHandle

handle of parent for new object

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 20 — TPM2_Create Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate the private portion of the object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMS_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

Part 3: Commands Trusted Platform Module Library

Page 54 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Object_spt_fp.h"

3 #include "Create_fp.h"

4 #if CC_Create // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when sensitive.data is an Empty
Buffer, or is SET when sensitive.data is not empty; fixedTPM,
fixedParent, or encryptedDuplication attributes are inconsistent
between themselves or with those of the parent object; inconsistent
restricted, decrypt and sign attributes; attempt to inject sensitive data
for an asymmetric key;

TPM_RC_HASH non-duplicable storage key and its parent have different name
algorithm

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY invalid key size values in an asymmetric key public area or a
provided symmetric key has a value that is not allowed

TPM_RC_KEY_SIZE key size in public area for symmetric key differs from the size in the
sensitive creation area; may also be returned if the TPM does not
allow the key size to be used for a Storage Key

TPM_RC_OBJECT_MEMORY a free slot is not available as scratch memory for object creation

TPM_RC_RANGE the exponent value of an RSA key is not supported.

TPM_RC_SCHEME inconsistent attributes decrypt, sign, or restricted and key's scheme
ID; or hash algorithm is inconsistent with the scheme ID for keyed
hash object

TPM_RC_SIZE size of public authPolicy or sensitive authValue does not match
digest size of the name algorithm sensitive data size for the keyed
hash object is larger than is allowed for the scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE unknown object type; parentHandle does not reference a restricted
decryption key in the storage hierarchy with both public and sensitive
portion loaded

TPM_RC_VALUE exponent is not prime or could not find a prime using the provided
parameters for an RSA key; unsupported name algorithm for an ECC
key

TPM_RC_OBJECT_MEMORY there is no free slot for the object

5 TPM_RC

6 TPM2_Create(

7 Create_In *in, // IN: input parameter list

8 Create_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *parentObject;

13 OBJECT *newObject;

14 TPMT_PUBLIC *publicArea;

15

16 // Input Validation

17 parentObject = HandleToObject(in->parentHandle);

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 55

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

18 pAssert(parentObject != NULL);

19

20 // Does parent have the proper attributes?

21 if(!ObjectIsParent(parentObject))

22 return TPM_RCS_TYPE + RC_Create_parentHandle;

23

24 // Get a slot for the creation

25 newObject = FindEmptyObjectSlot(NULL);

26 if(newObject == NULL)

27 return TPM_RC_OBJECT_MEMORY;

28 // If the TPM2B_PUBLIC was passed as a structure, marshal it into is canonical

29 // form for processing

30

31 // to save typing.

32 publicArea = &newObject->publicArea;

33

34 // Copy the input structure to the allocated structure

35 *publicArea = in->inPublic.publicArea;

36

37 // Check attributes in input public area. CreateChecks() checks the things that

38 // are unique to creation and then validates the attributes and values that are

39 // common to create and load.

40 result = CreateChecks(parentObject, publicArea,

41 in->inSensitive.sensitive.data.t.size);

42 if(result != TPM_RC_SUCCESS)

43 return RcSafeAddToResult(result, RC_Create_inPublic);

44 // Clean up the authValue if necessary

45 if(!AdjustAuthSize(&in->inSensitive.sensitive.userAuth, publicArea->nameAlg))

46 return TPM_RCS_SIZE + RC_Create_inSensitive;

47

48 // Command Output

49 // Create the object using the default TPM random-number generator

50 result = CryptCreateObject(newObject, &in->inSensitive.sensitive, NULL);

51 if(result != TPM_RC_SUCCESS)

52 return result;

53 // Fill in creation data

54 FillInCreationData(in->parentHandle, publicArea->nameAlg,

55 &in->creationPCR, &in->outsideInfo,

56 &out->creationData, &out->creationHash);

57

58 // Compute creation ticket

59 TicketComputeCreation(EntityGetHierarchy(in->parentHandle), &newObject->name,

60 &out->creationHash, &out->creationTicket);

61

62 // Prepare output private data from sensitive

63 SensitiveToPrivate(&newObject->sensitive, &newObject->name, parentObject,

64 publicArea->nameAlg,

65 &out->outPrivate);

66

67 // Finish by copying the remaining return values

68 out->outPublic.publicArea = newObject->publicArea;

69

70 return TPM_RC_SUCCESS;

71 }

72 #endif // CC_Create

Part 3: Commands Trusted Platform Module Library

Page 56 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12.2 TPM2_Load

 General Description

This command is used to load objects into the TPM. This command is used when both a TPM2B_PUBLIC

and TPM2B_PRIVATE are to be loaded. If only a TPM2B_PUBLIC is to be loaded, the

TPM2_LoadExternal command is used.

NOTE 1 Loading an object is not the same as restoring a saved object context.

The object’s TPMA_OBJECT attributes will be checked according to the rules defined in

“TPMA_OBJECT” in TPM 2.0 Part 2 of this specification. If the Object is a not a keyedHash object, and

the sign and encrypt attributes are CLEAR, the TPM shall return TPM_RC_ATTRIBUTES.

Objects loaded using this command will have a Name. The Name is the concatenation of nameAlg and

the digest of the public area using the nameAlg.

NOTE 2 nameAlg is a parameter in the public area of the inPublic structure.

If inPrivate.size is zero, the load will fail.

After inPrivate.buffer is decrypted using the symmetric key of the parent, the integrity value shall be

checked before the sensitive area is used, or unmarshaled.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by fuzzing the
data and looking at the differences in the response codes.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the digest of the TPMT_PUBLIC structure in inPublic).

NOTE 4 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithms specified in the nameAlg of the object.

NOTE 5 The returned handle is associated with the object until the object is fl ushed (TPM2_FlushContext) or
until the next TPM2_Startup.

For all objects, the size of the key in the sensitive area shall be consistent with the key size indicated in

the public area or the TPM shall return TPM_RC_KEY_SIZE.

Before use, a loaded object shall be checked to validate that the public and sensitive portions are

properly linked, cryptographically. Use of an object includes use in any policy command. If the parts of the

object are not properly linked, the TPM shall return TPM_RC_BINDING. If a weak symmetric key is in the

sensitive portion, the TPM shall return TPM_RC_KEY.

EXAMPLE 1 For a symmetric object, the unique value in the public area shall be the digest of the sensitive key
and the obfuscation value.

EXAMPLE 2 For a two-prime RSA key, the remainder when dividing the public modulus by the private key shall
be zero and it shall be possible to form a private exponent from the two prime factors of the public
modulus.

EXAMPLE 3 For an ECC key, the public point shall be f(x) where x is the private key.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 57

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 21 — TPM2_Load Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Load

TPMI_DH_OBJECT @parentHandle

TPM handle of parent key; shall not be a reserved
handle

Auth Index: 1

Auth Role: USER

TPM2B_PRIVATE inPrivate the private portion of the object

TPM2B_PUBLIC inPublic the public portion of the object

Table 22 — TPM2_Load Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for the loaded
object

TPM2B_NAME name Name of the loaded object

Part 3: Commands Trusted Platform Module Library

Page 58 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Load_fp.h"

3 #if CC_Load // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES inPulblic attributes are not allowed with selected parent

TPM_RC_BINDING inPrivate and inPublic are not cryptographically bound

TPM_RC_HASH incorrect hash selection for signing key or the nameAlg for 'inPubic is
not valid

TPM_RC_INTEGRITY HMAC on inPrivate was not valid

TPM_RC_KDF KDF selection not allowed

TPM_RC_KEY the size of the object's unique field is not consistent with the indicated
size in the object's parameters

TPM_RC_OBJECT_MEMORY no available object slot

TPM_RC_SCHEME the signing scheme is not valid for the key

TPM_RC_SENSITIVE the inPrivate did not unmarshal correctly

TPM_RC_SIZE inPrivate missing, or authPolicy size for inPublic or is not valid

TPM_RC_SYMMETRIC symmetric algorithm not provided when required

TPM_RC_TYPE parentHandle is not a storage key, or the object to load is a storage
key but its parameters do not match the parameters of the parent.

TPM_RC_VALUE decryption failure

5 TPM_RC

6 TPM2_Load(

7 Load_In *in, // IN: input parameter list

8 Load_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 TPMT_SENSITIVE sensitive;

13 OBJECT *parentObject;

14 OBJECT *newObject;

15

16 // Input Validation

17 // Don't get invested in loading if there is no place to put it.

18 newObject = FindEmptyObjectSlot(&out->objectHandle);

19 if(newObject == NULL)

20 return TPM_RC_OBJECT_MEMORY;

21

22 if(in->inPrivate.t.size == 0)

23 return TPM_RCS_SIZE + RC_Load_inPrivate;

24

25 parentObject = HandleToObject(in->parentHandle);

26 pAssert(parentObject != NULL);

27 // Is the object that is being used as the parent actually a parent.

28 if(!ObjectIsParent(parentObject))

29 return TPM_RCS_TYPE + RC_Load_parentHandle;

30

31 // Compute the name of object. If there isn't one, it is because the nameAlg is

32 // not valid.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 59

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

33 PublicMarshalAndComputeName(&in->inPublic.publicArea, &out->name);

34 if(out->name.t.size == 0)

35 return TPM_RCS_HASH + RC_Load_inPublic;

36

37 // Retrieve sensitive data.

38 result = PrivateToSensitive(&in->inPrivate.b, &out->name.b, parentObject,

39 in->inPublic.publicArea.nameAlg,

40 &sensitive);

41 if(result != TPM_RC_SUCCESS)

42 return RcSafeAddToResult(result, RC_Load_inPrivate);

43

44 // Internal Data Update

45 // Load and validate object

46 result = ObjectLoad(newObject, parentObject,

47 &in->inPublic.publicArea, &sensitive,

48 RC_Load_inPublic, RC_Load_inPrivate,

49 &out->name);

50 if(result == TPM_RC_SUCCESS)

51 {

52 // Set the common OBJECT attributes for a loaded object.

53 ObjectSetLoadedAttributes(newObject, in->parentHandle);

54 }

55 return result;

56

57 }

58 #endif // CC_Load

Part 3: Commands Trusted Platform Module Library

Page 60 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12.3 TPM2_LoadExternal

 General Description

This command is used to load an object that is not a Protected Object into the TPM. The command allows

loading of a public area or both a public and sensitive area.

NOTE 1 Typical use for loading a public area is to allow the TPM to validate an asymmetric signature.
Typical use for loading both a public and sensitive area is to allow the TPM to be used as a crypto
accelerator.

Load of a public external object area allows the object to be associated with a hierarchy so that the

correct algorithms may be used when creating tickets. The hierarchy parameter provides this association.

If the public and sensitive portions of the object are loaded, hierarchy is required to be TPM_RH_NULL.

NOTE 2 If both the public and private portions of an object are loaded, the object is not allowed to appear to
be part of a hierarchy.

The object’s TPMA_OBJECT attributes will be checked according to the rules defined in

“TPMA_OBJECT” in TPM 2.0 Part 2. In particular, fixedTPM, fixedParent, and restricted shall be CLEAR

if inPrivate is not the Empty Buffer.

NOTE 3 The duplication status of a public key needs to be able to be the same as the full key which may be
resident on a different TPM. If both the public and private parts of the key are loaded, then it is not
possible for the key to be either fixedTPM or fixedParent, since, its private area would not be
available in the clear to load.

Objects loaded using this command will have a Name. The Name is the nameAlg of the object

concatenated with the digest of the public area using the nameAlg. The Qualified Name for the object will

be the same as its Name. The TPM will validate that the authPolicy is either the size of the digest

produced by nameAlg or the Empty Buffer.

NOTE 4 If nameAlg is TPM_ALG_NULL, then the Name is the Empty Buffer. When the authorization value for
an object with no Name is computed, no Name value is included in the HMAC. To ensure that these
unnamed entities are not substituted, they should have an authValue that is statistically unique.

NOTE 5 The digest size for TPM_ALG_NULL is zero.

If the nameAlg is TPM_ALG_NULL, the TPM shall not verify the cryptographic binding between the public

and sensitive areas, but the TPM will validate that the size of the key in the sensitive area is consistent

with the size indicated in the public area. If it is not, the TPM shall return TPM_RC_KEY_SIZE.

NOTE 6 For an ECC object, the TPM will verify that the public key is on the curve of the key before the public
area is used.

If nameAlg is not TPM_ALG_NULL, then the same consistency checks between inPublic and inPrivate

are made as for TPM2_Load().

NOTE 7 Consistency checks are necessary because an object with a Name needs to have the public and
sensitive portions cryptographically bound so that an attacker cannot mix pubic and sensitive areas.

The command returns a handle for the loaded object and the Name that the TPM computed for

inPublic.public (that is, the TPMT_PUBLIC structure in inPublic).

NOTE 8 The TPM-computed Name is provided as a convenience to the caller for those cases where the
caller does not implement the hash algorithm specified in the nameAlg of the object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 61

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

The hierarchy parameter associates the external object with a hierarchy. External objects are flushed

when their associated hierarchy is disabled. If hierarchy is TPM_RH_NULL, the object is part of no

hierarchy, and there is no implicit flush.

If hierarchy is TPM_RH_NULL or nameAlg is TPM_ALG_NULL, a ticket produced using the object shall

be a NULL Ticket.

EXAMPLE If a key is loaded with hierarchy set to TPM_RH_NULL, then TPM2_VerifySignature() will produce a
NULL Ticket of the required type.

External objects are Temporary Objects. The saved external object contexts shall be invalidated at the

next TPM Reset.

If a weak symmetric key is in the sensitive area, the TPM shall return TPM_RC_KEY.

For an RSA key, the private exponent is computed using the two prime factors of the public modulus. One

of the primes is P, and the second prime (Q) is found by dividing the public modulus by P. A TPM may

return an error (TPM_RC_BINDING) if the bit size of P and Q are not the same.”

Part 3: Commands Trusted Platform Module Library

Page 62 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 23 — TPM2_LoadExternal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_LoadExternal

TPM2B_SENSITIVE inPrivate the sensitive portion of the object (optional)

TPM2B_PUBLIC+ inPublic the public portion of the object

TPMI_RH_HIERARCHY+ hierarchy hierarchy with which the object area is associated

Table 24 — TPM2_LoadExternal Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for the loaded
object

TPM2B_NAME name name of the loaded object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 63

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "LoadExternal_fp.h"

3 #if CC_LoadExternal // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES 'fixedParent", fixedTPM, and restricted must be CLEAR if sensitive
portion of an object is loaded

TPM_RC_BINDING the inPublic and inPrivate structures are not cryptographically bound

TPM_RC_HASH incorrect hash selection for signing key

TPM_RC_HIERARCHY hierarchy is turned off, or only NULL hierarchy is allowed when
loading public and private parts of an object

TPM_RC_KDF incorrect KDF selection for decrypting keyedHash object

TPM_RC_KEY the size of the object's unique field is not consistent with the indicated
size in the object's parameters

TPM_RC_OBJECT_MEMORY if there is no free slot for an object

TPM_RC_ECC_POINT for a public-only ECC key, the ECC point is not on the curve

TPM_RC_SCHEME the signing scheme is not valid for the key

TPM_RC_SIZE authPolicy is not zero and is not the size of a digest produced by the
object's nameAlg TPM_RH_NULL hierarchy

TPM_RC_SYMMETRIC symmetric algorithm not provided when required

TPM_RC_TYPE inPublic and inPrivate are not the same type

5 TPM_RC

6 TPM2_LoadExternal(

7 LoadExternal_In *in, // IN: input parameter list

8 LoadExternal_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 OBJECT *object;

13 TPMT_SENSITIVE *sensitive = NULL;

14

15 // Input Validation

16 // Don't get invested in loading if there is no place to put it.

17 object = FindEmptyObjectSlot(&out->objectHandle);

18 if(object == NULL)

19 return TPM_RC_OBJECT_MEMORY;

20

21 // If the hierarchy to be associated with this object is turned off, the object

22 // cannot be loaded.

23 if(!HierarchyIsEnabled(in->hierarchy))

24 return TPM_RCS_HIERARCHY + RC_LoadExternal_hierarchy;

25

26 // For loading an object with both public and sensitive

27 if(in->inPrivate.size != 0)

28 {

29 // An external object with a sensitive area can only be loaded in the

30 // NULL hierarchy

31 if(in->hierarchy != TPM_RH_NULL)

32 return TPM_RCS_HIERARCHY + RC_LoadExternal_hierarchy;

33 // An external object with a sensitive area must have fixedTPM == CLEAR

Part 3: Commands Trusted Platform Module Library

Page 64 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

34 // fixedParent == CLEAR so that it does not appear to be a key created by

35 // this TPM.

36 if(IS_ATTRIBUTE(in->inPublic.publicArea.objectAttributes, TPMA_OBJECT,

37 fixedTPM)

38 || IS_ATTRIBUTE(in->inPublic.publicArea.objectAttributes, TPMA_OBJECT,

39 fixedParent)

40 || IS_ATTRIBUTE(in->inPublic.publicArea.objectAttributes, TPMA_OBJECT,

41 restricted))

42 return TPM_RCS_ATTRIBUTES + RC_LoadExternal_inPublic;

43

44 // Have sensitive point to something other than NULL so that object

45 // initialization will load the sensitive part too

46 sensitive = &in->inPrivate.sensitiveArea;

47 }

48

49 // Need the name to initialize the object structure

50 PublicMarshalAndComputeName(&in->inPublic.publicArea, &out->name);

51

52 // Load and validate key

53 result = ObjectLoad(object, NULL,

54 &in->inPublic.publicArea, sensitive,

55 RC_LoadExternal_inPublic, RC_LoadExternal_inPrivate,

56 &out->name);

57 if(result == TPM_RC_SUCCESS)

58 {

59 object->attributes.external = SET;

60 // Set the common OBJECT attributes for a loaded object.

61 ObjectSetLoadedAttributes(object, in->hierarchy);

62 }

63 return result;

64 }

65 #endif // CC_LoadExternal

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 65

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

12.4 TPM2_ReadPublic

 General Description

This command allows access to the public area of a loaded object.

Use of the objectHandle does not require authorization.

NOTE Since the caller is not likely to know the public area of the object associated with objectHandle, it
would not be possible to include the Name associated with objectHandle in the cpHash computation.

If objectHandle references a sequence object, the TPM shall return TPM_RC_SEQUENCE.

Part 3: Commands Trusted Platform Module Library

Page 66 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 25 — TPM2_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadPublic

TPMI_DH_OBJECT objectHandle
TPM handle of an object

Auth Index: None

Table 26 — TPM2_ReadPublic Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC outPublic structure containing the public area of an object

TPM2B_NAME name name of the object

TPM2B_NAME qualifiedName the Qualified Name of the object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 67

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ReadPublic_fp.h"

3 #if CC_ReadPublic // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SEQUENCE can not read the public area of a sequence object

4 TPM_RC

5 TPM2_ReadPublic(

6 ReadPublic_In *in, // IN: input parameter list

7 ReadPublic_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *object = HandleToObject(in->objectHandle);

11

12 // Input Validation

13 // Can not read public area of a sequence object

14 if(ObjectIsSequence(object))

15 return TPM_RC_SEQUENCE;

16

17 // Command Output

18 out->outPublic.publicArea = object->publicArea;

19 out->name = object->name;

20 out->qualifiedName = object->qualifiedName;

21

22 return TPM_RC_SUCCESS;

23 }

24 #endif // CC_ReadPublic

Part 3: Commands Trusted Platform Module Library

Page 68 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12.5 TPM2_ActivateCredential

 General Description

This command enables the association of a credential with an object in a way that ensures that the TPM

has validated the parameters of the credentialed object.

If both the public and private portions of activateHandle and keyHandle are not loaded, then the TPM

shall return TPM_RC_AUTH_UNAVAILABLE.

If keyHandle is not a Storage Key, then the TPM shall return TPM_RC_TYPE.

Authorization for activateHandle requires the ADMIN role.

The key associated with keyHandle is used to recover a seed from secret, which is the encrypted seed.

The Name of the object associated with activateHandle and the recovered seed are used in a KDF to

recover the symmetric key. The recovered seed (but not the Name) is used in a KDF to recover the

HMAC key.

The HMAC is used to validate that the credentialBlob is associated with activateHandle and that the data

in credentialBlob has not been modified. The linkage to the object associated with activateHandle is

achieved by including the Name in the HMAC calculation.

If the integrity checks succeed, credentialBlob is decrypted and returned as certInfo.

NOTE The output certInfo parameter is an application defined value. It is typically a symmetric key or seed
that is used to decrypt a certificate. See the TPM2_MakeCredential credential input parameter.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 69

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 27 — TPM2_ActivateCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ActivateCredential

TPMI_DH_OBJECT @activateHandle

handle of the object associated with certificate in
credentialBlob

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT @keyHandle

loaded key used to decrypt the TPMS_SENSITIVE in
credentialBlob

Auth Index: 2

Auth Role: USER

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
keyHandle algorithm-dependent encrypted seed that
protects credentialBlob

Table 28 — TPM2_ActivateCredential Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST certInfo

the decrypted certificate information

the data should be no larger than the size of the digest
of the nameAlg associated with keyHandle

Part 3: Commands Trusted Platform Module Library

Page 70 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ActivateCredential_fp.h"

3 #if CC_ActivateCredential // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a decryption key

TPM_RC_ECC_POINT secret is invalid (when keyHandle is an ECC key)

TPM_RC_INSUFFICIENT secret is invalid (when keyHandle is an ECC key)

TPM_RC_INTEGRITY credentialBlob fails integrity test

TPM_RC_NO_RESULT secret is invalid (when keyHandle is an ECC key)

TPM_RC_SIZE secret size is invalid or the credentialBlob does not unmarshal
correctly

TPM_RC_TYPE keyHandle does not reference an asymmetric key.

TPM_RC_VALUE secret is invalid (when keyHandle is an RSA key)

5 TPM_RC

6 TPM2_ActivateCredential(

7 ActivateCredential_In *in, // IN: input parameter list

8 ActivateCredential_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *object; // decrypt key

13 OBJECT *activateObject; // key associated with credential

14 TPM2B_DATA data; // credential data

15

16 // Input Validation

17

18 // Get decrypt key pointer

19 object = HandleToObject(in->keyHandle);

20

21 // Get certificated object pointer

22 activateObject = HandleToObject(in->activateHandle);

23

24 // input decrypt key must be an asymmetric, restricted decryption key

25 if(!CryptIsAsymAlgorithm(object->publicArea.type)

26 || !IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, decrypt)

27 || !IS_ATTRIBUTE(object->publicArea.objectAttributes,

28 TPMA_OBJECT, restricted))

29 return TPM_RCS_TYPE + RC_ActivateCredential_keyHandle;

30

31 // Command output

32

33 // Decrypt input credential data via asymmetric decryption. A

34 // TPM_RC_VALUE, TPM_RC_KEY or unmarshal errors may be returned at this

35 // point

36 result = CryptSecretDecrypt(object, NULL, IDENTITY_STRING, &in->secret, &data);

37 if(result != TPM_RC_SUCCESS)

38 {

39 if(result == TPM_RC_KEY)

40 return TPM_RC_FAILURE;

41 return RcSafeAddToResult(result, RC_ActivateCredential_secret);

42 }

43

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 71

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

44 // Retrieve secret data. A TPM_RC_INTEGRITY error or unmarshal

45 // errors may be returned at this point

46 result = CredentialToSecret(&in->credentialBlob.b,

47 &activateObject->name.b,

48 &data.b,

49 object,

50 &out->certInfo);

51 if(result != TPM_RC_SUCCESS)

52 return RcSafeAddToResult(result, RC_ActivateCredential_credentialBlob);

53

54 return TPM_RC_SUCCESS;

55 }

56 #endif // CC_ActivateCredential

Part 3: Commands Trusted Platform Module Library

Page 72 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12.6 TPM2_MakeCredential

 General Description

This command allows the TPM to perform the actions required of a Certificate Authority (CA) in creating a

TPM2B_ID_OBJECT containing an activation credential.

NOTE The input credential parameter is an application defined value. It is typically a symmetric key or
seed that is used to encrypt a certificate. See the TPM2_ActivateCredential certInfo output
parameter.

The TPM will produce a TPM2B_ID_OBJECT according to the methods in “Credential Protection” in TPM

2.0 Part 1.

The loaded public area referenced by handle is required to be the public area of a Storage key,

otherwise, the credential cannot be properly sealed.

This command does not use any TPM secrets nor does it require authorization. It is a convenience

function, using the TPM to perform cryptographic calculations that could be done externally.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 73

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 29 — TPM2_MakeCredential Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MakeCredential

TPMI_DH_OBJECT handle

loaded public area, used to encrypt the sensitive area
containing the credential key

Auth Index: None

TPM2B_DIGEST credential the credential information

TPM2B_NAME objectName Name of the object to which the credential applies

Table 30 — TPM2_MakeCredential Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ID_OBJECT credentialBlob the credential

TPM2B_ENCRYPTED_SECRET secret
handle algorithm-dependent data that wraps the key
that encrypts credentialBlob

Part 3: Commands Trusted Platform Module Library

Page 74 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "MakeCredential_fp.h"

3 #if CC_MakeCredential // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_KEY handle referenced an ECC key that has a unique field that is not a
point on the curve of the key

TPM_RC_SIZE credential is larger than the digest size of Name algorithm of handle

TPM_RC_TYPE handle does not reference an asymmetric decryption key

5 TPM_RC

6 TPM2_MakeCredential(

7 MakeCredential_In *in, // IN: input parameter list

8 MakeCredential_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12

13 OBJECT *object;

14 TPM2B_DATA data;

15

16 // Input Validation

17

18 // Get object pointer

19 object = HandleToObject(in->handle);

20

21 // input key must be an asymmetric, restricted decryption key

22 // NOTE: Needs to be restricted to have a symmetric value.

23 if(!CryptIsAsymAlgorithm(object->publicArea.type)

24 || !IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, decrypt)

25 || !IS_ATTRIBUTE(object->publicArea.objectAttributes,

26 TPMA_OBJECT, restricted))

27 return TPM_RCS_TYPE + RC_MakeCredential_handle;

28

29 // The credential information may not be larger than the digest size used for

30 // the Name of the key associated with handle.

31 if(in->credential.t.size > CryptHashGetDigestSize(object->publicArea.nameAlg))

32 return TPM_RCS_SIZE + RC_MakeCredential_credential;

33

34 // Command Output

35

36 // Make encrypt key and its associated secret structure.

37 out->secret.t.size = sizeof(out->secret.t.secret);

38 result = CryptSecretEncrypt(object, IDENTITY_STRING, &data, &out->secret);

39 if(result != TPM_RC_SUCCESS)

40 return result;

41

42 // Prepare output credential data from secret

43 SecretToCredential(&in->credential, &in->objectName.b, &data.b,

44 object, &out->credentialBlob);

45

46 return TPM_RC_SUCCESS;

47 }

48 #endif // CC_MakeCredential

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 75

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

12.7 TPM2_Unseal

 General Description

This command returns the data in a loaded Sealed Data Object.

NOTE 1 A random, TPM-generated, Sealed Data Object may be created by the TPM with TPM2_Create() or
TPM2_CreatePrimary() using the template for a Sealed Data Object.

NOTE 2 TPM 1.2 hard coded PCR authorization. TPM 2.0 PCR authorization requires a policy.

The returned value may be encrypted using authorization session encryption.

If either restricted, decrypt, or sign is SET in the attributes of itemHandle, then the TPM shall return

TPM_RC_ATTRIBUTES. If the type of itemHandle is not TPM_ALG_KEYEDHASH, then the TPM shall

return TPM_RC_TYPE.

Part 3: Commands Trusted Platform Module Library

Page 76 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 31 — TPM2_Unseal Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Unseal

TPMI_DH_OBJECT @itemHandle

handle of a loaded data object

Auth Index: 1

Auth Role: USER

Table 32 — TPM2_Unseal Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_SENSITIVE_DATA outData
unsealed data

Size of outData is limited to be no more than 128 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 77

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Unseal_fp.h"

3 #if CC_Unseal // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES itemHandle has wrong attributes

TPM_RC_TYPE itemHandle is not a KEYEDHASH data object

4 TPM_RC

5 TPM2_Unseal(

6 Unseal_In *in,

7 Unseal_Out *out

8)

9 {

10 OBJECT *object;

11 // Input Validation

12 // Get pointer to loaded object

13 object = HandleToObject(in->itemHandle);

14

15 // Input handle must be a data object

16 if(object->publicArea.type != TPM_ALG_KEYEDHASH)

17 return TPM_RCS_TYPE + RC_Unseal_itemHandle;

18 if(IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, decrypt)

19 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, sign)

20 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, restricted))

21 return TPM_RCS_ATTRIBUTES + RC_Unseal_itemHandle;

22 // Command Output

23 // Copy data

24 out->outData = object->sensitive.sensitive.bits;

25 return TPM_RC_SUCCESS;

26 }

27 #endif // CC_Unseal

Part 3: Commands Trusted Platform Module Library

Page 78 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

12.8 TPM2_ObjectChangeAuth

 General Description

This command is used to change the authorization secret for a TPM-resident object.

If successful, a new private area for the TPM-resident object associated with objectHandle is returned,

which includes the new authorization value.

This command does not change the authorization of the TPM-resident object on which it operates.

Therefore, the old authValue (of the TPM-resident object) is used when generating the response HMAC

key if required.

NOTE 1 The returned outPrivate will need to be loaded before the new authorization will apply.

NOTE 2 The TPM-resident object may be persistent and changing the authorization value of the persistent
object could prevent other users from accessing the object. This is why this command does not
change the TPM-resident object.

EXAMPLE If a persistent key is being used as a Storage Root Key and the authorizat ion of the key is a well-
known value so that the key can be used generally, then changing the authorization value in the
persistent key would deny access to other users.

This command may not be used to change the authorization value for an NV Index or a Primary Object.

NOTE 3 If an NV Index is to have a new authorization, it is done with TPM2_NV_ChangeAuth().

NOTE 4 If a Primary Object is to have a new authorization, it needs to be recreated (TPM2_CreatePrimary()).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 79

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 33 — TPM2_ObjectChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ObjectChangeAuth

TPMI_DH_OBJECT @objectHandle

handle of the object

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT parentHandle
handle of the parent

Auth Index: None

TPM2B_AUTH newAuth new authorization value

Table 34 — TPM2_ObjectChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate private area containing the new authorization value

Part 3: Commands Trusted Platform Module Library

Page 80 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ObjectChangeAuth_fp.h"

3 #if CC_ObjectChangeAuth // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_SIZE newAuth is larger than the size of the digest of the Name algorithm of
objectHandle

TPM_RC_TYPE the key referenced by parentHandle is not the parent of the object
referenced by objectHandle; or objectHandle is a sequence object.

5 TPM_RC

6 TPM2_ObjectChangeAuth(

7 ObjectChangeAuth_In *in, // IN: input parameter list

8 ObjectChangeAuth_Out *out // OUT: output parameter list

9)

10 {

11 TPMT_SENSITIVE sensitive;

12

13 OBJECT *object = HandleToObject(in->objectHandle);

14 TPM2B_NAME QNCompare;

15

16 // Input Validation

17

18 // Can not change authorization on sequence object

19 if(ObjectIsSequence(object))

20 return TPM_RCS_TYPE + RC_ObjectChangeAuth_objectHandle;

21

22 // Make sure that the authorization value is consistent with the nameAlg

23 if(!AdjustAuthSize(&in->newAuth, object->publicArea.nameAlg))

24 return TPM_RCS_SIZE + RC_ObjectChangeAuth_newAuth;

25

26 // Parent handle should be the parent of object handle. In this

27 // implementation we verify this by checking the QN of object. Other

28 // implementation may choose different method to verify this attribute.

29 ComputeQualifiedName(in->parentHandle,

30 object->publicArea.nameAlg,

31 &object->name, &QNCompare);

32 if(!MemoryEqual2B(&object->qualifiedName.b, &QNCompare.b))

33 return TPM_RCS_TYPE + RC_ObjectChangeAuth_parentHandle;

34

35 // Command Output

36 // Prepare the sensitive area with the new authorization value

37 sensitive = object->sensitive;

38 sensitive.authValue = in->newAuth;

39

40 // Protect the sensitive area

41 SensitiveToPrivate(&sensitive, &object->name, HandleToObject(in->parentHandle),

42 object->publicArea.nameAlg,

43 &out->outPrivate);

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_ObjectChangeAuth

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 81

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

12.9 TPM2_CreateLoaded

 General Description

This command creates an object and loads it in the TPM. This command allows creation of any type of

object (Primary, Ordinary, or Derived) depending on the type of parentHandle. If parentHandle references

a Primary Seed, then a Primary Object is created; if parentHandle references a Storage Parent, then an

Ordinary Object is created; and if parentHandle references a Derivation Parent, then a Derived Object is

generated.

The input validation is the same as for TPM2_Create() and TPM2_CreatePrimary() with one exception:

when parentHandle references a Derivation Parent, then sensitiveDataOrigin in inPublic is required to be

CLEAR.

Note 1 In the general descriptions of TPM2_Create() and TPM2_CreatePrimary() the validations refer t o a
TPMT_PUBLIC structure that is in inPublic. For TPM2_CreateLoaded(), inPublic is a
TPM2B_TEMPLATE that may contain a TPMT_PUBLIC that is used for object creation. For object
derivation, the unique field can contain a label and context that are used in the derivation process.
To allow both the TPMT_PUBLIC and the derivation variation, a TPM2B_TEMPLATE is used. When
referring to the checks in TPM2_Create() and TPM2_CreatePrimary(), TPM2B_TEMPLATE should
be assumed to contain a TPMT_PUBLIC.

If parentHandle references a Derivation Parent, then the TPM may return TPM_RC_TYPE if the key type

to be generated is an RSA key.

If parentHandle references a Derivation Parent or a Primary Seed, then outPrivate will be an Empty

Buffer.

NOTE 2 Returning outPrivate would imply that the returned primary or derived object can be loaded and it
cannot. It can only be re-derived.

A primary key cannot be loaded is because loading a key is a way to attack the protections of a key
(e.g. using DPA). A saved context for a primary object is protected. The TPM will go into failure
mode if the integrity of a saved context is good but the fingerprint doesn’t decrypt. It is not possible
to have these protections on loaded objects because this would be a simple way for an atta cker to
put the TPM into failure mode Saved contexts are assumed to be under control of the driver but
loaded objects are not.

If all objects were derived from their parents then, load could not be used as an attack. However,
that would preclude importation of objects and key hierarchies.

NOTE 3 Unlike TPM2_Create() and TPM2_CreatePrimary(), this command does not return creation data. If
creation data is needed, then TPM2_Create() or TPM2_CreatePrimary() should be used.

Part 3: Commands Trusted Platform Module Library

Page 82 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 35 — TPM2_CreateLoaded Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreateLoade

TPMI_DH_PARENT+ @parentHandle

Handle of a transient storage key, a persistent storage
key, TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data, see TPM 2.0 Part 1 Sensitive Values

TPM2B_TEMPLATE inPublic the public template

Table 36 — TPM2_CreateLoaded Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle handle of type TPM_HT_TRANSIENT for created object

TPM2B_PRIVATE outPrivate the sensitive area of the object (optional)

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_NAME name the name of the created object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 83

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "CreateLoaded_fp.h"

3 #if CC_CreateLoaded // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when sensitive.data is an Empty
Buffer; fixedTPM, fixedParent, or encryptedDuplication attributes are
inconsistent between themselves or with those of the parent object;
inconsistent restricted, decrypt and sign attributes; attempt to inject
sensitive data for an asymmetric key; attempt to create a symmetric
cipher key that is not a decryption key

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY the value of a provided symmetric key is not allowed

TPM_RC_OBJECT_MEMORY there is no free slot for the object

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID;
or hash algorithm is inconsistent with the scheme ID for keyed hash
object

TPM_RC_SIZE size of public authorization policy or sensitive authorization value
does not match digest size of the name algorithm sensitive data size
for the keyed hash object is larger than is allowed for the scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE cannot create the object of the indicated type (usually only occurs if
trying to derive an RSA key).

4 TPM_RC

5 TPM2_CreateLoaded(

6 CreateLoaded_In *in, // IN: input parameter list

7 CreateLoaded_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 OBJECT *parent = HandleToObject(in->parentHandle);

12 OBJECT *newObject;

13 BOOL derivation;

14 TPMT_PUBLIC *publicArea;

15 RAND_STATE randState;

16 RAND_STATE *rand = &randState;

17 TPMS_DERIVE labelContext;

18

19 // Input Validation

20

21 // How the public area is unmarshaled is determined by the parent, so

22 // see if parent is a derivation parent

23 derivation = (parent != NULL && parent->attributes.derivation);

24

25 // If the parent is an object, then make sure that it is either a parent or

26 // derivation parent

27 if(parent != NULL && !parent->attributes.isParent && !derivation)

28 return TPM_RCS_TYPE + RC_CreateLoaded_parentHandle;

29

30 // Get a spot in which to create the newObject

31 newObject = FindEmptyObjectSlot(&out->objectHandle);

32 if(newObject == NULL)

33 return TPM_RC_OBJECT_MEMORY;

Part 3: Commands Trusted Platform Module Library

Page 84 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

34

35 // Do this to save typing

36 publicArea = &newObject->publicArea;

37

38 // Unmarshal the template into the object space. TPM2_Create() and

39 // TPM2_CreatePrimary() have the publicArea unmarshaled by CommandDispatcher.

40 // This command is different because of an unfortunate property of the

41 // unique field of an ECC key. It is a structure rather than a single TPM2B. If

42 // if had been a TPM2B, then the label and context could be within a TPM2B and

43 // unmarshaled like other public areas. Since it is not, this command needs its

44 // on template that is a TPM2B that is unmarshaled as a BYTE array with a

45 // its own unmarshal function.

46 result = UnmarshalToPublic(publicArea, &in->inPublic, derivation,

47 &labelContext);

48 if(result != TPM_RC_SUCCESS)

49 return result + RC_CreateLoaded_inPublic;

50

51 // Validate that the authorization size is appropriate

52 if(!AdjustAuthSize(&in->inSensitive.sensitive.userAuth, publicArea->nameAlg))

53 return TPM_RCS_SIZE + RC_CreateLoaded_inSensitive;

54

55 // Command output

56 if(derivation)

57 {

58 TPMT_KEYEDHASH_SCHEME *scheme;

59 scheme = &parent->publicArea.parameters.keyedHashDetail.scheme;

60

61 // SP800-108 is the only KDF supported by this implementation and there is

62 // no default hash algorithm.

63 pAssert(scheme->details.xor.hashAlg != TPM_ALG_NULL

64 && scheme->details.xor.kdf == TPM_ALG_KDF1_SP800_108);

65 // Don't derive RSA keys

66 if(publicArea->type == ALG_RSA_VALUE)

67 return TPM_RCS_TYPE + RC_CreateLoaded_inPublic;

68 // sensitiveDataOrigin has to be CLEAR in a derived object. Since this

69 // is specific to a derived object, it is checked here.

70 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT,

71 sensitiveDataOrigin))

72 return TPM_RCS_ATTRIBUTES;

73 // Check the reset of the attributes

74 result = PublicAttributesValidation(parent, publicArea);

75 if(result != TPM_RC_SUCCESS)

76 return RcSafeAddToResult(result, RC_CreateLoaded_inPublic);

77 // Process the template and sensitive areas to get the actual 'label' and

78 // 'context' values to be used for this derivation.

79 result = SetLabelAndContext(&labelContext, &in->inSensitive.sensitive.data);

80 if(result != TPM_RC_SUCCESS)

81 return result;

82 // Set up the KDF for object generation

83 DRBG_InstantiateSeededKdf((KDF_STATE *)rand,

84 scheme->details.xor.hashAlg,

85 scheme->details.xor.kdf,

86 &parent->sensitive.sensitive.bits.b,

87 &labelContext.label.b,

88 &labelContext.context.b,

89 MAX_DERIVATION_BITS);

90 // Clear the sensitive size so that the creation functions will not try

91 // to use this value.

92 in->inSensitive.sensitive.data.t.size = 0;

93 }

94 else

95 {

96 // Check attributes in input public area. CreateChecks() checks the things

97 // that are unique to creation and then validates the attributes and values

98 // that are common to create and load.

99 result = CreateChecks(parent, publicArea,

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 85

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

100 in->inSensitive.sensitive.data.t.size);

101 if(result != TPM_RC_SUCCESS)

102 return RcSafeAddToResult(result, RC_CreateLoaded_inPublic);

103 // Creating a primary object

104 if(parent == NULL)

105 {

106 TPM2B_NAME name;

107 newObject->attributes.primary = SET;

108 if(in->parentHandle == TPM_RH_ENDORSEMENT)

109 newObject->attributes.epsHierarchy = SET;

110 // If so, use the primary seed and the digest of the template

111 // to seed the DRBG

112 result = DRBG_InstantiateSeeded((DRBG_STATE *)rand,

113 &HierarchyGetPrimarySeed(in->parentHandle)->b,

114 PRIMARY_OBJECT_CREATION,

115 (TPM2B *)PublicMarshalAndComputeName(publicArea,

116 &name),

117 &in->inSensitive.sensitive.data.b);

118 if(result != TPM_RC_SUCCESS)

119 return result;

120 }

121 else

122 {

123 // This is an ordinary object so use the normal random number generator

124 rand = NULL;

125 }

126 }

127 // Internal data update

128 // Create the object

129 result = CryptCreateObject(newObject, &in->inSensitive.sensitive, rand);

130 if(result != TPM_RC_SUCCESS)

131 return result;

132 // if this is not a Primary key and not a derived key, then return the sensitive

133 // area

134 if(parent != NULL && !derivation)

135 // Prepare output private data from sensitive

136 SensitiveToPrivate(&newObject->sensitive, &newObject->name,

137 parent, newObject->publicArea.nameAlg,

138 &out->outPrivate);

139 else

140 out->outPrivate.t.size = 0;

141 // Set the remaining return values

142 out->outPublic.publicArea = newObject->publicArea;

143 out->name = newObject->name;

144 // Set the remaining attributes for a loaded object

145 ObjectSetLoadedAttributes(newObject, in->parentHandle);

146

147 return result;

148 }

149 #endif // CC_CreateLoaded

Part 3: Commands Trusted Platform Module Library

Page 86 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

13 Duplication Commands

13.1 TPM2_Duplicate

 General Description

This command duplicates a loaded object so that it may be used in a different hierarchy. The new parent

key for the duplicate may be on the same or different TPM or TPM_RH_NULL. Only the public area of

newParentHandle is required to be loaded.

NOTE 1 Since the new parent may only be extant on a different TPM, it is likely that the new parent’s
sensitive area could not be loaded in the TPM from which objectHandle is being duplicated.

If encryptedDuplication is SET in the object being duplicated, then the TPM shall return

TPM_RC_SYMMETRIC if symmetricAlg.algorithm is TPM_ALG_NULL or TPM_RC_HIERARCHY if

newParentHandle is TPM_RH_NULL.

The authorization for this command shall be with a policy session.

If fixedParent of objectHandle→attributes is SET, the TPM shall return TPM_RC_ATTRIBUTES. If

objectHandle→nameAlg is TPM_ALG_NULL, the TPM shall return TPM_RC_TYPE.

The policySession→commandCode parameter in the policy session is required to be TPM_CC_Duplicate

to indicate that authorization for duplication has been provided. This indicates that the policy that is being

used is a policy that is for duplication, and not a policy that would approve another use. That is, authority

to use an object does not grant authority to duplicate the object.

The policy is likely to include cpHash in order to restrict where duplication can occur. If

TPM2_PolicyCpHash() has been executed as part of the policy, the policySession→cpHash is compared

to the cpHash of the command.

If TPM2_PolicyDuplicationSelect() has been executed as part of the policy, the

policySession→nameHash is compared to

 HpolicyAlg(objectHandle→Name || newParentHandle→Name) (2)

If the compared hashes are not the same, then the TPM shall return TPM_RC_POLICY_FAIL.

NOTE 2 It is allowed that policySesion→nameHash and policySession→cpHash share the same memory
space.

NOTE 3 A duplication policy is not required to have either TPM2_PolicyDuplicationSelect() or
TPM2_PolicyCpHash() as part of the policy. If neither is present, then the duplication policy may b e
satisfied with a policy that only contains TPM2_PolicyCommandCode(code = TPM_CC_Duplicate).

The TPM shall follow the process of encryption defined in the “Duplication” subclause of “Protected

Storage Hierarchy” in TPM 2.0 Part 1.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 87

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 37 — TPM2_Duplicate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Duplicate

TPMI_DH_OBJECT @objectHandle

loaded object to duplicate

Auth Index: 1

Auth Role: DUP

TPMI_DH_OBJECT+ newParentHandle
shall reference the public area of an asymmetric key

Auth Index: None

TPM2B_DATA encryptionKeyIn

optional symmetric encryption key

The size for this key is set to zero when the TPM is to
generate the key. This parameter may be encrypted.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to be used for the
inner wrapper

may be TPM_ALG_NULL if no inner wrapper is applied

Table 38 — TPM2_Duplicate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DATA encryptionKeyOut

If the caller provided an encryption key or if
symmetricAlg was TPM_ALG_NULL, then this will be
the Empty Buffer; otherwise, it shall contain the TPM-
generated, symmetric encryption key for the inner
wrapper.

TPM2B_PRIVATE duplicate
private area that may be encrypted by encryptionKeyIn;
and may be doubly encrypted

TPM2B_ENCRYPTED_SECRET outSymSeed
seed protected by the asymmetric algorithms of new
parent (NP)

Part 3: Commands Trusted Platform Module Library

Page 88 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Duplicate_fp.h"

3 #if CC_Duplicate // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES key to duplicate has fixedParent SET

TPM_RC_HASH for an RSA key, the nameAlg digest size for the newParent is not
compatible with the key size

TPM_RC_HIERARCHY encryptedDuplication is SET and newParentHandle specifies Null
Hierarchy

TPM_RC_KEY newParentHandle references invalid ECC key (public point not on the
curve)

TPM_RC_SIZE input encryption key size does not match the size specified in
symmetric algorithm

TPM_RC_SYMMETRIC encryptedDuplication is SET but no symmetric algorithm is provided

TPM_RC_TYPE newParentHandle is neither a storage key nor TPM_RH_NULL; or
the object has a NULL nameAlg

TPM_RC_VALUE for an RSA newParent, the sizes of the digest and the encryption key
are too large to be OAEP encoded

5 TPM_RC

6 TPM2_Duplicate(

7 Duplicate_In *in, // IN: input parameter list

8 Duplicate_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 TPMT_SENSITIVE sensitive;

13

14 UINT16 innerKeySize = 0; // encrypt key size for inner wrap

15

16 OBJECT *object;

17 OBJECT *newParent;

18 TPM2B_DATA data;

19

20 // Input Validation

21

22 // Get duplicate object pointer

23 object = HandleToObject(in->objectHandle);

24 // Get new parent

25 newParent = HandleToObject(in->newParentHandle);

26

27 // duplicate key must have fixParent bit CLEAR.

28 if(IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, fixedParent))

29 return TPM_RCS_ATTRIBUTES + RC_Duplicate_objectHandle;

30

31 // Do not duplicate object with NULL nameAlg

32 if(object->publicArea.nameAlg == TPM_ALG_NULL)

33 return TPM_RCS_TYPE + RC_Duplicate_objectHandle;

34

35 // new parent key must be a storage object or TPM_RH_NULL

36 if(in->newParentHandle != TPM_RH_NULL

37 && !ObjectIsStorage(in->newParentHandle))

38 return TPM_RCS_TYPE + RC_Duplicate_newParentHandle;

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 89

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

39

40 // If the duplicated object has encryptedDuplication SET, then there must be

41 // an inner wrapper and the new parent may not be TPM_RH_NULL

42 if(IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT,

43 encryptedDuplication))

44 {

45 if(in->symmetricAlg.algorithm == TPM_ALG_NULL)

46 return TPM_RCS_SYMMETRIC + RC_Duplicate_symmetricAlg;

47 if(in->newParentHandle == TPM_RH_NULL)

48 return TPM_RCS_HIERARCHY + RC_Duplicate_newParentHandle;

49 }

50

51 if(in->symmetricAlg.algorithm == TPM_ALG_NULL)

52 {

53 // if algorithm is TPM_ALG_NULL, input key size must be 0

54 if(in->encryptionKeyIn.t.size != 0)

55 return TPM_RCS_SIZE + RC_Duplicate_encryptionKeyIn;

56 }

57 else

58 {

59 // Get inner wrap key size

60 innerKeySize = in->symmetricAlg.keyBits.sym;

61

62 // If provided the input symmetric key must match the size of the algorithm

63 if(in->encryptionKeyIn.t.size != 0

64 && in->encryptionKeyIn.t.size != (innerKeySize + 7) / 8)

65 return TPM_RCS_SIZE + RC_Duplicate_encryptionKeyIn;

66 }

67

68 // Command Output

69

70 if(in->newParentHandle != TPM_RH_NULL)

71 {

72 // Make encrypt key and its associated secret structure. A TPM_RC_KEY

73 // error may be returned at this point

74 out->outSymSeed.t.size = sizeof(out->outSymSeed.t.secret);

75 result = CryptSecretEncrypt(newParent, DUPLICATE_STRING, &data,

76 &out->outSymSeed);

77 if(result != TPM_RC_SUCCESS)

78 return result;

79 }

80 else

81 {

82 // Do not apply outer wrapper

83 data.t.size = 0;

84 out->outSymSeed.t.size = 0;

85 }

86

87 // Copy sensitive area

88 sensitive = object->sensitive;

89

90 // Prepare output private data from sensitive.

91 // Note: If there is no encryption key, one will be provided by

92 // SensitiveToDuplicate(). This is why the assignment of encryptionKeyIn to

93 // encryptionKeyOut will work properly and is not conditional.

94 SensitiveToDuplicate(&sensitive, &object->name.b, newParent,

95 object->publicArea.nameAlg, &data.b,

96 &in->symmetricAlg, &in->encryptionKeyIn,

97 &out->duplicate);

98

99 out->encryptionKeyOut = in->encryptionKeyIn;

100

101 return TPM_RC_SUCCESS;

102 }

103 #endif // CC_Duplicate

Part 3: Commands Trusted Platform Module Library

Page 90 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

13.2 TPM2_Rewrap

 General Description

This command allows the TPM to serve in the role as a Duplication Authority. If proper authorization for

use of the oldParent is provided, then an HMAC key and a symmetric key are recovered from inSymSeed

and used to integrity check and decrypt inDuplicate. A new protection seed value is generated according

to the methods appropriate for newParent and the blob is re-encrypted and a new integrity value is

computed. The re-encrypted blob is returned in outDuplicate and the symmetric key returned in

outSymKey.

In the rewrap process, L is “DUPLICATE” (see TPM 2.0 Part 1, Terms and Definitions).

If inSymSeed has a zero length, then oldParent is required to be TPM_RH_NULL and no decryption of

inDuplicate takes place.

If newParent is TPM_RH_NULL, then no encryption is performed on outDuplicate. outSymSeed will have

a zero length. See TPM 2.0 Part 2 encryptedDuplication.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 91

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 39 — TPM2_Rewrap Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Rewrap

TPMI_DH_OBJECT+ @oldParent

parent of object

Auth Index: 1

Auth Role: User

TPMI_DH_OBJECT+ newParent
new parent of the object

Auth Index: None

TPM2B_PRIVATE inDuplicate
an object encrypted using symmetric key derived from
inSymSeed

TPM2B_NAME name the Name of the object being rewrapped

TPM2B_ENCRYPTED_SECRET inSymSeed

the seed for the symmetric key and HMAC key

needs oldParent private key to recover the seed and
generate the symmetric key

Table 40 — TPM2_Rewrap Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outDuplicate
an object encrypted using symmetric key derived from
outSymSeed

TPM2B_ENCRYPTED_SECRET outSymSeed
seed for a symmetric key protected by newParent
asymmetric key

Part 3: Commands Trusted Platform Module Library

Page 92 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Rewrap_fp.h"

3 #if CC_Rewrap // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES newParent is not a decryption key

TPM_RC_HANDLE oldParent does not consistent with inSymSeed

TPM_RC_INTEGRITY the integrity check of inDuplicate failed

TPM_RC_KEY for an ECC key, the public key is not on the curve of the curve ID

TPM_RC_KEY_SIZE the decrypted input symmetric key size does not matches the
symmetric algorithm key size of oldParent

TPM_RC_TYPE oldParent is not a storage key, or 'newParent is not a storage key

TPM_RC_VALUE for an 'oldParent; RSA key, the data to be decrypted is greater than
the public exponent

errors errors during unmarshaling the input encrypted buffer to a ECC public
key, or unmarshal the private buffer to sensitive

5 TPM_RC

6 TPM2_Rewrap(

7 Rewrap_In *in, // IN: input parameter list

8 Rewrap_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 TPM2B_DATA data; // symmetric key

13 UINT16 hashSize = 0;

14 TPM2B_PRIVATE privateBlob; // A temporary private blob

15 // to transit between old

16 // and new wrappers

17 // Input Validation

18 if((in->inSymSeed.t.size == 0 && in->oldParent != TPM_RH_NULL)

19 || (in->inSymSeed.t.size != 0 && in->oldParent == TPM_RH_NULL))

20 return TPM_RCS_HANDLE + RC_Rewrap_oldParent;

21 if(in->oldParent != TPM_RH_NULL)

22 {

23 OBJECT *oldParent = HandleToObject(in->oldParent);

24

25 // old parent key must be a storage object

26 if(!ObjectIsStorage(in->oldParent))

27 return TPM_RCS_TYPE + RC_Rewrap_oldParent;

28 // Decrypt input secret data via asymmetric decryption. A

29 // TPM_RC_VALUE, TPM_RC_KEY or unmarshal errors may be returned at this

30 // point

31 result = CryptSecretDecrypt(oldParent, NULL, DUPLICATE_STRING,

32 &in->inSymSeed, &data);

33 if(result != TPM_RC_SUCCESS)

34 return TPM_RCS_VALUE + RC_Rewrap_inSymSeed;

35 // Unwrap Outer

36 result = UnwrapOuter(oldParent, &in->name.b,

37 oldParent->publicArea.nameAlg, &data.b,

38 FALSE,

39 in->inDuplicate.t.size, in->inDuplicate.t.buffer);

40 if(result != TPM_RC_SUCCESS)

41 return RcSafeAddToResult(result, RC_Rewrap_inDuplicate);

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 93

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

42 // Copy unwrapped data to temporary variable, remove the integrity field

43 hashSize = sizeof(UINT16) +

44 CryptHashGetDigestSize(oldParent->publicArea.nameAlg);

45 privateBlob.t.size = in->inDuplicate.t.size - hashSize;

46 pAssert(privateBlob.t.size <= sizeof(privateBlob.t.buffer));

47 MemoryCopy(privateBlob.t.buffer, in->inDuplicate.t.buffer + hashSize,

48 privateBlob.t.size);

49 }

50 else

51 {

52 // No outer wrap from input blob. Direct copy.

53 privateBlob = in->inDuplicate;

54 }

55 if(in->newParent != TPM_RH_NULL)

56 {

57 OBJECT *newParent;

58 newParent = HandleToObject(in->newParent);

59

60 // New parent must be a storage object

61 if(!ObjectIsStorage(in->newParent))

62 return TPM_RCS_TYPE + RC_Rewrap_newParent;

63 // Make new encrypt key and its associated secret structure. A

64 // TPM_RC_VALUE error may be returned at this point if RSA algorithm is

65 // enabled in TPM

66 out->outSymSeed.t.size = sizeof(out->outSymSeed.t.secret);

67 result = CryptSecretEncrypt(newParent, DUPLICATE_STRING, &data,

68 &out->outSymSeed);

69 if(result != TPM_RC_SUCCESS)

70 return result;

71 // Copy temporary variable to output, reserve the space for integrity

72 hashSize = sizeof(UINT16) +

73 CryptHashGetDigestSize(newParent->publicArea.nameAlg);

74 // Make sure that everything fits into the output buffer

75 // Note: this is mostly only an issue if there was no outer wrapper on

76 // 'inDuplicate'. It could be as large as a TPM2B_PRIVATE buffer. If we add

77 // a digest for an outer wrapper, it won't fit anymore.

78 if((privateBlob.t.size + hashSize) > sizeof(out->outDuplicate.t.buffer))

79 return TPM_RCS_VALUE + RC_Rewrap_inDuplicate;

80 // Command output

81 out->outDuplicate.t.size = privateBlob.t.size;

82 pAssert(privateBlob.t.size

83 <= sizeof(out->outDuplicate.t.buffer) - hashSize);

84 MemoryCopy(out->outDuplicate.t.buffer + hashSize, privateBlob.t.buffer,

85 privateBlob.t.size);

86 // Produce outer wrapper for output

87 out->outDuplicate.t.size = ProduceOuterWrap(newParent, &in->name.b,

88 newParent->publicArea.nameAlg,

89 &data.b,

90 FALSE,

91 out->outDuplicate.t.size,

92 out->outDuplicate.t.buffer);

93 }

94 else // New parent is a null key so there is no seed

95 {

96 out->outSymSeed.t.size = 0;

97

98 // Copy privateBlob directly

99 out->outDuplicate = privateBlob;

100 }

101 return TPM_RC_SUCCESS;

102 }

103 #endif // CC_Rewrap

Part 3: Commands Trusted Platform Module Library

Page 94 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

13.3 TPM2_Import

 General Description

This command allows an object to be encrypted using the symmetric encryption values of a Storage Key.

After encryption, the object may be loaded and used in the new hierarchy. The imported object (duplicate)

may be singly encrypted, multiply encrypted, or unencrypted.

If fixedTPM or fixedParent is SET in objectPublic, the TPM shall return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in the object referenced by parentHandle and encryptedDuplication is

CLEAR in objectPublic, the TPM may return TPM_RC_ATTRIBUTES.

If encryptedDuplication is SET in objectPublic, then inSymSeed and encryptionKey shall not be Empty

buffers (TPM_RC_ATTRIBUTES). Recovery of the sensitive data of the object occurs in the TPM in a

multi--step process in the following order:

 If inSymSeed has a non-zero size:

1) The asymmetric parameters and private key of parentHandle are used to recover the seed used

in the creation of the HMAC key and encryption keys used to protect the duplication blob.

NOTE 1 When recovering the seed from inSymSeed, L is “DUPLICATE”.

2) The integrity value in duplicate.buffer.integrityOuter is used to verify the integrity of the data blob,

which is the remainder of duplicate.buffer (TPM_RC_INTEGRITY).

NOTE 2 The data blob will contain a TPMT_SENSITIVE and may contain a TPM2B_DIGEST for the
innerIntegrity.

3) The symmetric key recovered in 1) is used to decrypt the data blob.

NOTE 3 Checking the integrity before the data is used prevents attacks on the sensitive area by
fuzzing the data and looking at the differences in the response codes .

 If encryptionKey is not an Empty Buffer:

1) Use encryptionKey to decrypt the inner blob.

2) Use the TPM2B_DIGEST at the start of the inner blob to verify the integrity of the inner blob

(TPM_RC_INTEGRITY).

 Unmarshal the sensitive area

NOTE 4 It is not necessary to validate that the sensitive area data is cryptographically bound to the public
area other than that the Name of the public area is included in the HMAC. However, if the binding is
not validated by this command, the binding must be checked each time the object is loaded. For an
object that is imported under a parent with fixedTPM SET, binding need only be checked at import. If
the parent has fixedTPM CLEAR, then the binding needs to be checked each time the object is
loaded, or before the TPM performs an operation for which the binding affects the outcome of the
operation (for example, TPM2_PolicySigned() or TPM2_Certify()).

 Similarly, if the new parent's fixedTPM is set, the encryptedDuplication state need only be checked
at import.

If the new parent is not fixedTPM, then that object will be loadable on any TPM (including SW
versions) on which the new parent exists. This means that, each time an object is loaded under a
parent that is not fixedTPM, it is necessary to validate all of the properties of that object. If the
parent is fixedTPM, then the new private blob is integrity protected by the TPM that “owns” the
parent. So, it is sufficient to validate the object’s properties (attribute and public -private binding) on
import and not again.

If a weak symmetric key is being imported, the TPM shall return TPM_RC_KEY.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 95

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

After integrity checks and decryption, the TPM will create a new symmetrically encrypted private area

using the encryption key of the parent.

NOTE 5 The symmetric re-encryption is the normal integrity generation and symmetric encryption applied to
a child object.

NOTE 6 Revision 01.16 of this specification required the ECC private key in duplicate to be padded.

Part 3: Commands Trusted Platform Module Library

Page 96 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 41 — TPM2_Import Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Import

TPMI_DH_OBJECT @parentHandle

the handle of the new parent for the object

Auth Index: 1

Auth Role: USER

TPM2B_DATA encryptionKey

the optional symmetric encryption key used as the inner
wrapper for duplicate

If symmetricAlg is TPM_ALG_NULL, then this
parameter shall be the Empty Buffer.

TPM2B_PUBLIC objectPublic

the public area of the object to be imported

This is provided so that the integrity value for duplicate
and the object attributes can be checked.

NOTE Even if the integrity value of the object is not
checked on input, the object Name is required
to create the integrity value for the imported
object.

TPM2B_PRIVATE duplicate
the symmetrically encrypted duplicate object that may
contain an inner symmetric wrapper

TPM2B_ENCRYPTED_SECRET inSymSeed

the seed for the symmetric key and HMAC key

inSymSeed is encrypted/encoded using the algorithms
of newParent.

TPMT_SYM_DEF_OBJECT+ symmetricAlg

definition for the symmetric algorithm to use for the inner
wrapper

If this algorithm is TPM_ALG_NULL, no inner wrapper is
present and encryptionKey shall be the Empty Buffer.

Table 42 — TPM2_Import Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PRIVATE outPrivate
the sensitive area encrypted with the symmetric key of
parentHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 97

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Import_fp.h"

3 #if CC_Import // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_ATTRIBUTES FixedTPM and fixedParent of objectPublic are not both CLEAR; or
inSymSeed is nonempty and parentHandle does not reference a
decryption key; or objectPublic and parentHandle have incompatible
or inconsistent attributes; or encrytpedDuplication is SET in
objectPublic but the inner or outer wrapper is missing. Note that if the
TPM provides parameter values, the parameter number will indicate
symmetricKey (missing inner wrapper) or inSymSeed (missing outer
wrapper)

TPM_RC_BINDING duplicate and objectPublic are not cryptographically bound

TPM_RC_ECC_POINT inSymSeed is nonempty and ECC point in inSymSeed is not on the
curve

TPM_RC_HASH objectPublic does not have a valid nameAlg

TPM_RC_INSUFFICIENT inSymSeed is nonempty and failed to retrieve ECC point from the
secret; or unmarshaling sensitive value from duplicate failed the
result of inSymSeed decryption

TPM_RC_INTEGRITY duplicate integrity is broken

TPM_RC_KDF objectPublic representing decrypting keyed hash object specifies
invalid KDF

TPM_RC_KEY inconsistent parameters of objectPublic; or inSymSeed is nonempty
and parentHandle does not reference a key of supported type; or
invalid key size in objectPublic representing an asymmetric key

TPM_RC_NO_RESULT inSymSeed is nonempty and multiplication resulted in ECC point at
infinity

TPM_RC_OBJECT_MEMORY no available object slot

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID
in objectPublic; or hash algorithm is inconsistent with the scheme ID
for keyed hash object

TPM_RC_SIZE authPolicy size does not match digest size of the name algorithm in
objectPublic; or symmetricAlg and encryptionKey have different
sizes; or inSymSeed is nonempty and it size is not consistent with the
type of parentHandle; or unmarshaling sensitive value from duplicate
failed

TPM_RC_SYMMETRIC objectPublic is either a storage key with no symmetric algorithm or a
non-storage key with symmetric algorithm different from
TPM_ALG_NULL

TPM_RC_TYPE unsupported type of objectPublic; or parentHandle is not a storage
key; or only the public portion of parentHandle is loaded; or
objectPublic and duplicate are of different types

TPM_RC_VALUE nonempty inSymSeed and its numeric value is greater than the
modulus of the key referenced by parentHandle or inSymSeed is
larger than the size of the digest produced by the name algorithm of
the symmetric key referenced by parentHandle

5 TPM_RC

Part 3: Commands Trusted Platform Module Library

Page 98 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

6 TPM2_Import(

7 Import_In *in, // IN: input parameter list

8 Import_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 OBJECT *parentObject;

13 TPM2B_DATA data; // symmetric key

14 TPMT_SENSITIVE sensitive;

15 TPM2B_NAME name;

16 TPMA_OBJECT attributes;

17 UINT16 innerKeySize = 0; // encrypt key size for inner

18 // wrapper

19

20 // Input Validation

21 // to save typing

22 attributes = in->objectPublic.publicArea.objectAttributes;

23 // FixedTPM and fixedParent must be CLEAR

24 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedTPM)

25 || IS_ATTRIBUTE(attributes, TPMA_OBJECT, fixedParent))

26 return TPM_RCS_ATTRIBUTES + RC_Import_objectPublic;

27

28 // Get parent pointer

29 parentObject = HandleToObject(in->parentHandle);

30

31 if(!ObjectIsParent(parentObject))

32 return TPM_RCS_TYPE + RC_Import_parentHandle;

33

34 if(in->symmetricAlg.algorithm != TPM_ALG_NULL)

35 {

36 // Get inner wrap key size

37 innerKeySize = in->symmetricAlg.keyBits.sym;

38 // Input symmetric key must match the size of algorithm.

39 if(in->encryptionKey.t.size != (innerKeySize + 7) / 8)

40 return TPM_RCS_SIZE + RC_Import_encryptionKey;

41 }

42 else

43 {

44 // If input symmetric algorithm is NULL, input symmetric key size must

45 // be 0 as well

46 if(in->encryptionKey.t.size != 0)

47 return TPM_RCS_SIZE + RC_Import_encryptionKey;

48 // If encryptedDuplication is SET, then the object must have an inner

49 // wrapper

50 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, encryptedDuplication))

51 return TPM_RCS_ATTRIBUTES + RC_Import_encryptionKey;

52 }

53 // See if there is an outer wrapper

54 if(in->inSymSeed.t.size != 0)

55 {

56 // in->inParentHandle is a parent, but in order to decrypt an outer wrapper,

57 // it must be able to do key exchange and a symmetric key can't do that.

58 if(parentObject->publicArea.type == TPM_ALG_SYMCIPHER)

59 return TPM_RCS_TYPE + RC_Import_parentHandle;

60

61 // Decrypt input secret data via asymmetric decryption. TPM_RC_ATTRIBUTES,

62 // TPM_RC_ECC_POINT, TPM_RC_INSUFFICIENT, TPM_RC_KEY, TPM_RC_NO_RESULT,

63 // TPM_RC_SIZE, TPM_RC_VALUE may be returned at this point

64 result = CryptSecretDecrypt(parentObject, NULL, DUPLICATE_STRING,

65 &in->inSymSeed, &data);

66 pAssert(result != TPM_RC_BINDING);

67 if(result != TPM_RC_SUCCESS)

68 return RcSafeAddToResult(result, RC_Import_inSymSeed);

69 }

70 else

71 {

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 99

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

72 // If encrytpedDuplication is set, then the object must have an outer

73 // wrapper

74 if(IS_ATTRIBUTE(attributes, TPMA_OBJECT, encryptedDuplication))

75 return TPM_RCS_ATTRIBUTES + RC_Import_inSymSeed;

76 data.t.size = 0;

77 }

78 // Compute name of object

79 PublicMarshalAndComputeName(&(in->objectPublic.publicArea), &name);

80 if(name.t.size == 0)

81 return TPM_RCS_HASH + RC_Import_objectPublic;

82

83 // Retrieve sensitive from private.

84 // TPM_RC_INSUFFICIENT, TPM_RC_INTEGRITY, TPM_RC_SIZE may be returned here.

85 result = DuplicateToSensitive(&in->duplicate.b, &name.b, parentObject,

86 in->objectPublic.publicArea.nameAlg,

87 &data.b, &in->symmetricAlg,

88 &in->encryptionKey.b, &sensitive);

89 if(result != TPM_RC_SUCCESS)

90 return RcSafeAddToResult(result, RC_Import_duplicate);

91

92 // If the parent of this object has fixedTPM SET, then validate this

93 // object as if it were being loaded so that validation can be skipped

94 // when it is actually loaded.

95 if(IS_ATTRIBUTE(parentObject->publicArea.objectAttributes, TPMA_OBJECT, fixedTPM))

96 {

97 result = ObjectLoad(NULL, NULL, &in->objectPublic.publicArea,

98 &sensitive, RC_Import_objectPublic, RC_Import_duplicate,

99 NULL);

100 }

101 // Command output

102 if(result == TPM_RC_SUCCESS)

103 {

104 // Prepare output private data from sensitive

105 SensitiveToPrivate(&sensitive, &name, parentObject,

106 in->objectPublic.publicArea.nameAlg,

107 &out->outPrivate);

108 }

109 return result;

110 }

111 #endif // CC_Import

Part 3: Commands Trusted Platform Module Library

Page 100 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

14 Asymmetric Primitives

14.1 Introduction

The commands in this clause provide low-level primitives for access to the asymmetric algorithms

implemented in the TPM. Many of these commands are only allowed if the asymmetric key is an

unrestricted key.

14.2 TPM2_RSA_Encrypt

 General Description

This command performs RSA encryption using the indicated padding scheme according to IETF RFC

8017. If the scheme of keyHandle is TPM_ALG_NULL, then the caller may use inScheme to specify the

padding scheme. If scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be

TPM_ALG_NULL or be the same as scheme (TPM_RC_SCHEME).

The key referenced by keyHandle is required to be an RSA key (TPM_RC_KEY).

The three types of allowed padding are:

1) TPM_ALG_OAEP – Data is OAEP padded as described in 7.1 of IETF RFC 8017 (PKCS#1).

The only supported mask generation is MGF1.

2) TPM_ALG_RSAES – Data is padded as described in 7.2 of IETF RFC 8017 (PKCS#1).

3) TPM_ALG_NULL – Data is not padded by the TPM and the TPM will treat message as an

unsigned integer and perform a modular exponentiation of message using the public

exponent of the key referenced by keyHandle. This scheme is only used if both the scheme

in the key referenced by keyHandle is TPM_ALG_NULL, and the inScheme parameter of the

command is TPM_ALG_NULL. The input value cannot be larger than the public modulus of

the key referenced by keyHandle.

Table 43 — Padding Scheme Selection

keyHandle→scheme inScheme padding scheme used

TPM_ALG_NULL

TPM_ALG_NULL none

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP OAEP

TPM_ALG_RSAES

TPM_ALG_NULL RSAES

TPM_ALG_RSAES RSAES

TPM_ALG_OAEP error (TPM_RC_SCHEME)

TPM_ALG_OAEP

TPM_ALG_NULL OAEP

TPM_ALG_RSAES error (TPM_RC_SCHEME)

TPM_ALG_OAEP OAEP

After padding, the data is RSAEP encrypted according to 5.1.1 of IETF RFC 8017 (PKCS#1).

If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

NOTE 1 Because only the public portion of the key needs to be loaded for this command, the caller can
manipulate the attributes of the key in any way desired. As a result, the TPM shall not check the
consistency of the attributes. The only property checking is that the key is an RSA key and that the
padding scheme is supported.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 101

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

The message parameter is limited in size by the padding scheme according to the following table:

Table 44 — Message Size Limits Based on Padding

Scheme
Maximum Message Length (mLen)

in Octets Comments

TPM_ALG_OAEP mLen k – 2hLen – 2

TPM_ALG_RSAES mLen k – 11

TPM_ALG_NULL mLen k The numeric value of the message must be
less than the numeric value of the public

modulus (n).

NOTES

1) k ≔ the number of byes in the public modulus

2) hLen ≔ the number of octets in the digest produced by the hash algorithm used in the process

The label parameter is optional. If provided (label.size != 0) then the TPM shall return TPM_RC_VALUE if

the last octet in label is not zero. The terminating octet of zero is included in the label used in the padding

scheme.

NOTE 2 If the scheme does not use a label, the TPM will still verify that label is proper ly formatted if label is
present.

NOTE 3 Specifications before version 1.54 stated that label is truncated after the first zero octet.
Applications should not include embedded zero bytes for compatibility.

The function returns padded and encrypted value outData.

The message parameter in the command may be encrypted using parameter encryption.

NOTE 4 Only the public area of keyHandle is required to be loaded. A public key may be loaded with any
desired scheme. If the scheme is to be changed, a different public area must be loaded.

Part 3: Commands Trusted Platform Module Library

Page 102 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 45 — TPM2_RSA_Encrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Encrypt

TPMI_DH_OBJECT keyHandle

reference to public portion of RSA key to use for
encryption

Auth Index: None

TPM2B_PUBLIC_KEY_RSA message

message to be encrypted

NOTE 1 The data type was chosen because it limits
the overall size of the input to no greater than
the size of the largest RSA public key. This
may be larger than allowed for keyHandle.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label

optional label L to be associated with the message

Size of the buffer is zero if no label is present

NOTE 2 See description of label above.

Table 46 — TPM2_RSA_Encrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA outData encrypted output

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 103

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "RSA_Encrypt_fp.h"

3 #if CC_RSA_Encrypt // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES decrypt attribute is not SET in key referenced by keyHandle

TPM_RC_KEY keyHandle does not reference an RSA key

TPM_RC_SCHEME incorrect input scheme, or the chosen scheme is not a valid RSA
decrypt scheme

TPM_RC_VALUE the numeric value of message is greater than the public modulus of
the key referenced by keyHandle, or label is not a null-terminated
string

4 TPM_RC

5 TPM2_RSA_Encrypt(

6 RSA_Encrypt_In *in, // IN: input parameter list

7 RSA_Encrypt_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *rsaKey;

12 TPMT_RSA_DECRYPT *scheme;

13 // Input Validation

14 rsaKey = HandleToObject(in->keyHandle);

15

16 // selected key must be an RSA key

17 if(rsaKey->publicArea.type != TPM_ALG_RSA)

18 return TPM_RCS_KEY + RC_RSA_Encrypt_keyHandle;

19 // selected key must have the decryption attribute

20 if(!IS_ATTRIBUTE(rsaKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

21 return TPM_RCS_ATTRIBUTES + RC_RSA_Encrypt_keyHandle;

22

23 // Is there a label?

24 if(!IsLabelProperlyFormatted(&in->label.b))

25 return TPM_RCS_VALUE + RC_RSA_Encrypt_label;

26 // Command Output

27 // Select a scheme for encryption

28 scheme = CryptRsaSelectScheme(in->keyHandle, &in->inScheme);

29 if(scheme == NULL)

30 return TPM_RCS_SCHEME + RC_RSA_Encrypt_inScheme;

31

32 // Encryption. TPM_RC_VALUE, or TPM_RC_SCHEME errors my be returned buy

33 // CryptEncyptRSA.

34 out->outData.t.size = sizeof(out->outData.t.buffer);

35

36 result = CryptRsaEncrypt(&out->outData, &in->message.b, rsaKey, scheme,

37 &in->label.b, NULL);

38 return result;

39 }

40 #endif // CC_RSA_Encrypt

Part 3: Commands Trusted Platform Module Library

Page 104 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

14.3 TPM2_RSA_Decrypt

 General Description

This command performs RSA decryption using the indicated padding scheme according to IETF RFC

8017 ((PKCS#1).

The scheme selection for this command is the same as for TPM2_RSA_Encrypt() and is shown in Table

43.

The key referenced by keyHandle shall be an RSA key (TPM_RC_KEY) with restricted CLEAR and

decrypt SET (TPM_RC_ATTRIBUTES).

This command uses the private key of keyHandle for this operation and authorization is required.

The TPM will perform a modular exponentiation of ciphertext using the private exponent associated with

keyHandle (this is described in IETF RFC 8017 (PKCS#1), clause 5.1.2). It will then validate the padding

according to the selected scheme. If the padding checks fail, TPM_RC_VALUE is returned. Otherwise,

the data is returned with the padding removed. If no padding is used, the returned value is an unsigned

integer value that is the result of the modular exponentiation of cipherText using the private exponent of

keyHandle. The returned value may include leading octets zeros so that it is the same size as the public

modulus. For the other padding schemes, the returned value will be smaller than the public modulus but

will contain all the data remaining after padding is removed and this may include leading zeros if the

original encrypted value contained leading zeros.

If a label is used in the padding process of the scheme during encryption, the label parameter is required

to be present in the decryption process and label is required to be the same in both cases. If label is not

the same, the decrypt operation is very likely to fail ((TPM_RC_VALUE). If label is present (label.size !=

0), it shall be a byte stream whose last byte is zero or the TPM will return TPM_RC_VALUE.

NOTE 1 The size of label includes the terminating null.

The message parameter in the response may be encrypted using parameter encryption.

 If inScheme is used, and the scheme requires a hash algorithm it may not be TPM_ALG_NULL.

If the scheme does not require a label, the value in label is not used but the size of the label field is

checked for consistency with the indicated data type (TPM2B_DATA). That is, the field may not be larger

than allowed for a TPM2B_DATA.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 105

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 47 — TPM2_RSA_Decrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_RSA_Decrypt

TPMI_DH_OBJECT @keyHandle

RSA key to use for decryption

Auth Index: 1

Auth Role: USER

TPM2B_PUBLIC_KEY_RSA cipherText

cipher text to be decrypted

NOTE An encrypted RSA data block is the size of
the public modulus.

TPMT_RSA_DECRYPT+ inScheme
the padding scheme to use if scheme associated with
keyHandle is TPM_ALG_NULL

TPM2B_DATA label
label whose association with the message is to be
verified

Table 48 — TPM2_RSA_Decrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_PUBLIC_KEY_RSA message decrypted output

Part 3: Commands Trusted Platform Module Library

Page 106 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "RSA_Decrypt_fp.h"

3 #if CC_RSA_Decrypt // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES decrypt is not SET or if restricted is SET in the key referenced by
keyHandle

TPM_RC_BINDING The public and private parts of the key are not properly bound

TPM_RC_KEY keyHandle does not reference an unrestricted decrypt key

TPM_RC_SCHEME incorrect input scheme, or the chosen scheme is not a valid RSA
decrypt scheme

TPM_RC_SIZE cipherText is not the size of the modulus of key referenced by
keyHandle

TPM_RC_VALUE label is not a null terminated string or the value of cipherText is
greater that the modulus of keyHandle or the encoding of the data is
not valid

4 TPM_RC

5 TPM2_RSA_Decrypt(

6 RSA_Decrypt_In *in, // IN: input parameter list

7 RSA_Decrypt_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *rsaKey;

12 TPMT_RSA_DECRYPT *scheme;

13

14 // Input Validation

15

16 rsaKey = HandleToObject(in->keyHandle);

17

18 // The selected key must be an RSA key

19 if(rsaKey->publicArea.type != TPM_ALG_RSA)

20 return TPM_RCS_KEY + RC_RSA_Decrypt_keyHandle;

21

22 // The selected key must be an unrestricted decryption key

23 if(IS_ATTRIBUTE(rsaKey->publicArea.objectAttributes, TPMA_OBJECT, restricted)

24 || !IS_ATTRIBUTE(rsaKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

25 return TPM_RCS_ATTRIBUTES + RC_RSA_Decrypt_keyHandle;

26

27 // NOTE: Proper operation of this command requires that the sensitive area

28 // of the key is loaded. This is assured because authorization is required

29 // to use the sensitive area of the key. In order to check the authorization,

30 // the sensitive area has to be loaded, even if authorization is with policy.

31

32 // If label is present, make sure that it is a NULL-terminated string

33 if(!IsLabelProperlyFormatted(&in->label.b))

34 return TPM_RCS_VALUE + RC_RSA_Decrypt_label;

35 // Command Output

36 // Select a scheme for decrypt.

37 scheme = CryptRsaSelectScheme(in->keyHandle, &in->inScheme);

38 if(scheme == NULL)

39 return TPM_RCS_SCHEME + RC_RSA_Decrypt_inScheme;

40

41 // Decryption. TPM_RC_VALUE, TPM_RC_SIZE, and TPM_RC_KEY error may be

42 // returned by CryptRsaDecrypt.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 107

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

43 // NOTE: CryptRsaDecrypt can also return TPM_RC_ATTRIBUTES or TPM_RC_BINDING

44 // when the key is not a decryption key but that was checked above.

45 out->message.t.size = sizeof(out->message.t.buffer);

46 result = CryptRsaDecrypt(&out->message.b, &in->cipherText.b, rsaKey,

47 scheme, &in->label.b);

48 return result;

49 }

50 #endif // CC_RSA_Decrypt

Part 3: Commands Trusted Platform Module Library

Page 108 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

14.4 TPM2_ECDH_KeyGen

 General Description

This command uses the TPM to generate an ephemeral key pair (de, Qe where Qe ≔ [de]G). It uses the

private ephemeral key and a loaded public key (QS) to compute the shared secret value (P ≔ [hde]QS).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY). The sensitive portion of this key need not

be loaded.

The curve parameters of the loaded ECC key are used to generate the ephemeral key.

NOTE This function is the equivalent of encrypting data to another object’s public key. The seed value is
used in a KDF to generate a symmetric key and that key is used to encrypt the data. Once the data
is encrypted and the symmetric key discarded, only the object with the private portion of the
keyHandle will be able to decrypt it.

The zPoint in the response may be encrypted using parameter encryption.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 109

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 49 — TPM2_ECDH_KeyGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_KeyGen

TPMI_DH_OBJECT keyHandle
Handle of a loaded ECC key public area.

Auth Index: None

Table 50 — TPM2_ECDH_KeyGen Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT zPoint results of P ≔ h[de]Qs

TPM2B_ECC_POINT pubPoint generated ephemeral public point (Qe)

Part 3: Commands Trusted Platform Module Library

Page 110 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ECDH_KeyGen_fp.h"

3 #if CC_ECDH_KeyGen // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY keyHandle does not reference an ECC key

4 TPM_RC

5 TPM2_ECDH_KeyGen(

6 ECDH_KeyGen_In *in, // IN: input parameter list

7 ECDH_KeyGen_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *eccKey;

11 TPM2B_ECC_PARAMETER sensitive;

12 TPM_RC result;

13

14 // Input Validation

15

16 eccKey = HandleToObject(in->keyHandle);

17

18 // Referenced key must be an ECC key

19 if(eccKey->publicArea.type != TPM_ALG_ECC)

20 return TPM_RCS_KEY + RC_ECDH_KeyGen_keyHandle;

21

22 // Command Output

23 do

24 {

25 TPMT_PUBLIC *keyPublic = &eccKey->publicArea;

26 // Create ephemeral ECC key

27 result = CryptEccNewKeyPair(&out->pubPoint.point, &sensitive,

28 keyPublic->parameters.eccDetail.curveID);

29 if(result == TPM_RC_SUCCESS)

30 {

31 // Compute Z

32 result = CryptEccPointMultiply(&out->zPoint.point,

33 keyPublic->parameters.eccDetail.curveID,

34 &keyPublic->unique.ecc,

35 &sensitive,

36 NULL, NULL);

37 // The point in the key is not on the curve. Indicate

38 // that the key is bad.

39 if(result == TPM_RC_ECC_POINT)

40 return TPM_RCS_KEY + RC_ECDH_KeyGen_keyHandle;

41 // The other possible error from CryptEccPointMultiply is

42 // TPM_RC_NO_RESULT indicating that the multiplication resulted in

43 // the point at infinity, so get a new random key and start over

44 // BTW, this never happens.

45 }

46 } while(result == TPM_RC_NO_RESULT);

47 return result;

48 }

49 #endif // CC_ECDH_KeyGen

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 111

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

14.5 TPM2_ECDH_ZGen

 General Description

This command uses the TPM to recover the Z value from a public point (QB) and a private key (ds). It will

perform the multiplication of the provided inPoint (QB) with the private key (ds) and return the coordinates

of the resultant point (Z = (xZ , yZ) ≔ [hds]QB; where h is the cofactor of the curve).

keyHandle shall refer to a loaded, ECC key (TPM_RC_KEY) with the restricted attribute CLEAR and the

decrypt attribute SET (TPM_RC_ATTRIBUTES).

NOTE While TPM_RC_ATTRIBUTES is preferred, TPM_RC_KEY is acceptable.

The scheme of the key referenced by keyHandle is required to be either TPM_ALG_ECDH or

TPM_ALG_NULL (TPM_RC_SCHEME).

inPoint is required to be on the curve of the key referenced by keyHandle (TPM_RC_ECC_POINT).

The parameters of the key referenced by keyHandle are used to perform the point multiplication.

Part 3: Commands Trusted Platform Module Library

Page 112 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 51 — TPM2_ECDH_ZGen Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECDH_ZGen

TPMI_DH_OBJECT @keyHandle

handle of a loaded ECC key

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inPoint a public key

Table 52 — TPM2_ECDH_ZGen Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outPoint
X and Y coordinates of the product of the multiplication

Z = (xZ , yZ) ≔ [hdS]QB

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 113

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ECDH_ZGen_fp.h"

3 #if CC_ECDH_ZGen // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key

TPM_RC_KEY key referenced by keyA is not an ECC key

TPM_RC_NO_RESULT multiplying inPoint resulted in a point at infinity

TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH,

4 TPM_RC

5 TPM2_ECDH_ZGen(

6 ECDH_ZGen_In *in, // IN: input parameter list

7 ECDH_ZGen_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *eccKey;

12

13 // Input Validation

14 eccKey = HandleToObject(in->keyHandle);

15

16 // Selected key must be a non-restricted, decrypt ECC key

17 if(eccKey->publicArea.type != TPM_ALG_ECC)

18 return TPM_RCS_KEY + RC_ECDH_ZGen_keyHandle;

19 // Selected key needs to be unrestricted with the 'decrypt' attribute

20 if(IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, restricted)

21 || !IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

22 return TPM_RCS_ATTRIBUTES + RC_ECDH_ZGen_keyHandle;

23 // Make sure the scheme allows this use

24 if(eccKey->publicArea.parameters.eccDetail.scheme.scheme != TPM_ALG_ECDH

25 && eccKey->publicArea.parameters.eccDetail.scheme.scheme != TPM_ALG_NULL)

26 return TPM_RCS_SCHEME + RC_ECDH_ZGen_keyHandle;

27 // Command Output

28 // Compute Z. TPM_RC_ECC_POINT or TPM_RC_NO_RESULT may be returned here.

29 result = CryptEccPointMultiply(&out->outPoint.point,

30 eccKey->publicArea.parameters.eccDetail.curveID,

31 &in->inPoint.point,

32 &eccKey->sensitive.sensitive.ecc,

33 NULL, NULL);

34 if(result != TPM_RC_SUCCESS)

35 return RcSafeAddToResult(result, RC_ECDH_ZGen_inPoint);

36 return result;

37 }

38 #endif // CC_ECDH_ZGen

Part 3: Commands Trusted Platform Module Library

Page 114 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

14.6 TPM2_ECC_Parameters

 General Description

This command returns the parameters of an ECC curve identified by its TCG-assigned curveID.

The value returned is the same as that from the TCG Algorithm Registry, but may not be the same size.

EXAMPLE The value 01 may be returned as 00000001.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 115

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 53 — TPM2_ECC_Parameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ECC_Parameters

TPMI_ECC_CURVE curveID parameter set selector

Table 54 — TPM2_ECC_Parameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_ALGORITHM_DETAIL_ECC parameters ECC parameters for the selected curve

Part 3: Commands Trusted Platform Module Library

Page 116 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ECC_Parameters_fp.h"

3 #if CC_ECC_Parameters // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE Unsupported ECC curve ID

4 TPM_RC

5 TPM2_ECC_Parameters(

6 ECC_Parameters_In *in, // IN: input parameter list

7 ECC_Parameters_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // Get ECC curve parameters

13 if(CryptEccGetParameters(in->curveID, &out->parameters))

14 return TPM_RC_SUCCESS;

15 else

16 return TPM_RCS_VALUE + RC_ECC_Parameters_curveID;

17 }

18 #endif // CC_ECC_Parameters

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 117

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

14.7 TPM2_ZGen_2Phase

 General Description

This command supports two-phase key exchange protocols. The command is used in combination with

TPM2_EC_Ephemeral(). TPM2_EC_Ephemeral() generates an ephemeral key and returns the public

point of that ephemeral key along with a numeric value that allows the TPM to regenerate the associated

private key.

The input parameters for this command are a static public key (inQsU), an ephemeral key (inQeU) from

party B, and the commitCounter returned by TPM2_EC_Ephemeral(). The TPM uses the counter value to

regenerate the ephemeral private key (de,V) and the associated public key (Qe,V). keyA provides the static

ephemeral elements ds,V and Qs,V. This provides the two pairs of ephemeral and static keys that are

required for the schemes supported by this command.

The TPM will compute Z or Zs and Ze according to the selected scheme. If the scheme is not a two-phase

key exchange scheme or if the scheme is not supported, the TPM will return TPM_RC_SCHEME.

It is an error if inQsB or inQeB are not on the curve of keyA (TPM_RC_ECC_POINT).

The two-phase key schemes that were assigned an algorithm ID as of the time of the publication of this

specification are TPM_ALG_ECDH, TPM_ALG_ECMQV, and TPM_ALG_SM2.

If this command is supported, then support for TPM_ALG_ECDH is required. Support for

TPM_ALG_ECMQV or TPM_ALG_SM2 is optional.

NOTE 1 If SM2 is supported and this command is supported, then the implementation is required to support
the key exchange protocol of SM2, part 3.

For TPM_ALG_ECDH outZ1 will be Zs and outZ2 will Ze as defined in 6.1.1.2 of SP800-56A.

NOTE 2 An unrestricted decryption key using ECDH may be used in either TPM2_ECDH_ZGen() or
TPM2_ZGen_2Phase as the computation done with the private part of keyA is the same in both
cases.

For TPM_ALG_ECMQV or TPM_ALG_SM2 outZ1 will be Z and outZ2 will be an Empty Point.

NOTE 3 An Empty Point has two Empty Buffers as coordinates meaning the minimum size value for outZ2
will be four.

If the input scheme is TPM_ALG_ECDH, then outZ1 will be Zs and outZ2 will be Ze. For schemes like

MQV (including SM2), outZ1 will contain the computed value and outZ2 will be an Empty Point.

NOTE 4 The Z values returned by the TPM are a full point and not just an x -coordinate.

If a computation of either Z produces the point at infinity, then the corresponding Z value will be an Empty

Point.

Part 3: Commands Trusted Platform Module Library

Page 118 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 55 — TPM2_ZGen_2Phase Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ZGen_2Phase

TPMI_DH_OBJECT @keyA

handle of an unrestricted decryption key ECC

The private key referenced by this handle is used as dS,A

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT inQsB other party’s static public key (Qs,B = (Xs,B, Ys,B))

TPM2B_ECC_POINT inQeB other party's ephemeral public key (Qe,B = (Xe,B, Ye,B))

TPMI_ECC_KEY_EXCHANGE inScheme the key exchange scheme

UINT16 counter value returned by TPM2_EC_Ephemeral()

Table 56 — TPM2_ZGen_2Phase Response

Type Name Description

TPM_ST tag

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT outZ1
X and Y coordinates of the computed value (scheme
dependent)

TPM2B_ECC_POINT outZ2
X and Y coordinates of the second computed value
(scheme dependent)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 119

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ZGen_2Phase_fp.h"

3 #if CC_ZGen_2Phase // Conditional expansion of this file

This command uses the TPM to recover one or two Z values in a two phase key exchange protocol

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by keyA is restricted or not a decrypt key

TPM_RC_ECC_POINT inQsB or inQeB is not on the curve of the key reference by keyA

TPM_RC_KEY key referenced by keyA is not an ECC key

TPM_RC_SCHEME the scheme of the key referenced by keyA is not TPM_ALG_NULL,
TPM_ALG_ECDH, ALG_ECMQV or TPM_ALG_SM2

4 TPM_RC

5 TPM2_ZGen_2Phase(

6 ZGen_2Phase_In *in, // IN: input parameter list

7 ZGen_2Phase_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *eccKey;

12 TPM2B_ECC_PARAMETER r;

13 TPM_ALG_ID scheme;

14

15 // Input Validation

16

17 eccKey = HandleToObject(in->keyA);

18

19 // keyA must be an ECC key

20 if(eccKey->publicArea.type != TPM_ALG_ECC)

21 return TPM_RCS_KEY + RC_ZGen_2Phase_keyA;

22

23 // keyA must not be restricted and must be a decrypt key

24 if(IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, restricted)

25 || !IS_ATTRIBUTE(eccKey->publicArea.objectAttributes, TPMA_OBJECT, decrypt))

26 return TPM_RCS_ATTRIBUTES + RC_ZGen_2Phase_keyA;

27

28 // if the scheme of keyA is TPM_ALG_NULL, then use the input scheme; otherwise

29 // the input scheme must be the same as the scheme of keyA

30 scheme = eccKey->publicArea.parameters.asymDetail.scheme.scheme;

31 if(scheme != TPM_ALG_NULL)

32 {

33 if(scheme != in->inScheme)

34 return TPM_RCS_SCHEME + RC_ZGen_2Phase_inScheme;

35 }

36 else

37 scheme = in->inScheme;

38 if(scheme == TPM_ALG_NULL)

39 return TPM_RCS_SCHEME + RC_ZGen_2Phase_inScheme;

40

41 // Input points must be on the curve of keyA

42 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

43 &in->inQsB.point))

44 return TPM_RCS_ECC_POINT + RC_ZGen_2Phase_inQsB;

45

46 if(!CryptEccIsPointOnCurve(eccKey->publicArea.parameters.eccDetail.curveID,

47 &in->inQeB.point))

48 return TPM_RCS_ECC_POINT + RC_ZGen_2Phase_inQeB;

Part 3: Commands Trusted Platform Module Library

Page 120 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

49

50 if(!CryptGenerateR(&r, &in->counter,

51 eccKey->publicArea.parameters.eccDetail.curveID,

52 NULL))

53 return TPM_RCS_VALUE + RC_ZGen_2Phase_counter;

54

55 // Command Output

56

57 result =

58 CryptEcc2PhaseKeyExchange(&out->outZ1.point,

59 &out->outZ2.point,

60 eccKey->publicArea.parameters.eccDetail.curveID,

61 scheme,

62 &eccKey->sensitive.sensitive.ecc,

63 &r,

64 &in->inQsB.point,

65 &in->inQeB.point);

66 if(result == TPM_RC_SCHEME)

67 return TPM_RCS_SCHEME + RC_ZGen_2Phase_inScheme;

68

69 if(result == TPM_RC_SUCCESS)

70 CryptEndCommit(in->counter);

71

72 return result;

73 }

74 #endif // CC_ZGen_2Phase

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 121

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

15 Symmetric Primitives

15.1 Introduction

The commands in this clause provide low-level primitives for access to the symmetric algorithms

implemented in the TPM that operate on blocks of data. These include symmetric encryption and

decryption as well as hash and HMAC. All of the commands in this group are stateless. That is, they have

no persistent state that is retained in the TPM when the command is complete.

For hashing, HMAC, and Events that require large blocks of data with retained state, the sequence

commands are provided (see clause 1).

Some of the symmetric encryption/decryption modes use an IV. When an IV is used, it may be an

initiation value or a chained value from a previous stage. The chaining for each mode is:

Part 3: Commands Trusted Platform Module Library

Page 122 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

Table 57 — Symmetric Chaining Process

Mode Chaining process

TPM_ALG_CTR The TPM will increment the entire IV provided by the caller. The next count value will be
returned to the caller as ivOut. This can be the input value to the next encrypt or decrypt
operation.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

EXAMPLE 1 AES requires that ivIn be 128 bits (16 octets).

ivOut will be the size of a cipher block and not the size of the last encrypted block.

NOTE ivOut will be the value of the counter after the last block is encrypted.

EXAMPLE 2 If ivIn were 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0016 and four data blocks
 were encrypted, ivOut will have a value of
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0416.

All the bits of the IV are incremented as if it were an unsigned integer.

TPM_ALG_OFB In Output Feedback (OFB), the output of the pseudo-random function (the block encryption
algorithm) is XORed with a plaintext block to produce a ciphertext block. ivOut will be the
value that was XORed with the last plaintext block. That value can be used as the ivIn for a
next buffer.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_CBC For Cipher Block Chaining (CBC), a block of ciphertext is XORed with the next plaintext
block and that block is encrypted. The encrypted block is then input to the encryption of the
next block. The last ciphertext block then is used as an IV for the next buffer.

Even though the last ciphertext block is evident in the encrypted data, it is also returned in
ivOut.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

TPM_ALG_CFB Similar to CBC in that the last ciphertext block is an input to the encryption of the next block.
ivOut will be the value that was XORed with the last plaintext block. That value can be used
as the ivIn for a next buffer.

ivIn is required to be the size of a block encrypted by the selected algorithm and key
combination. If the size of ivIn is not correct, the TPM shall return TPM_RC_SIZE.

ivOut will be the size of a cipher block and not the size of the last encrypted block.

TPM_ALG_ECB Electronic Codebook (ECB) has no chaining. Each block of plaintext is encrypted using the
key. ECB does not support chaining and ivIn shall be the Empty Buffer. ivOut will be the
Empty Buffer.

inData is required to be an even multiple of the block encrypted by the selected algorithm
and key combination. If the size of inData is not correct, the TPM shall return
TPM_RC_SIZE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 123

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

15.2 TPM2_EncryptDecrypt

 General Description

NOTE 1 This command is deprecated, and TPM2_EncryptDecrypt2() is preferred. This should be reflected in
platform-specific specifications.

This command performs symmetric encryption or decryption using the symmetric key referenced by

keyHandle and the selected mode.

keyHandle shall reference a symmetric cipher object (TPM_RC_KEY) with the restricted attribute CLEAR

(TPM_RC_ATTRIBUTES).

If the decrypt parameter of the command is TRUE, then the decrypt attribute of the key is required to be

SET (TPM_RC_ATTRIBUTES). If the decrypt parameter of the command is FALSE, then the sign

attribute of the key is required to be SET (TPM_RC_ATTRIBUTES).

NOTE 2 A key may have both decrypt and sign SET.

If the mode of the key is not TPM_ALG_NULL, then that is the only mode that can be used with the key

and the caller is required to set mode either to TPM_ALG_NULL or to the same mode as the key

(TPM_RC_MODE). If the mode of the key is TPM_ALG_NULL, then the caller may set mode to any valid

symmetric encryption/decryption mode but may not select TPM_ALG_NULL (TPM_RC_MODE).

If the TPM allows this command to be canceled before completion, then the TPM may produce

incremental results and return TPM_RC_SUCCESS rather than TPM_RC_CANCELED. In such case,

outData may be less than inData.

NOTE 3 If all the data is encrypted/decrypted, the size of outData will be the same as inData.

Part 3: Commands Trusted Platform Module Library

Page 124 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 58 — TPM2_EncryptDecrypt Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_CIPHER_MODE+ mode

symmetric encryption/decryption mode

this field shall match the default mode of the key or be
TPM_ALG_NULL.

TPM2B_IV ivIn an initial value as required by the algorithm

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

Table 59 — TPM2_EncryptDecrypt Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted or decrypted output

TPM2B_IV ivOut chaining value to use for IV in next round

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 125

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "EncryptDecrypt_fp.h"

3 #if CC_EncryptDecrypt2

4 #include "EncryptDecrypt_spt_fp.h"

5 #endif

6 #if CC_EncryptDecrypt // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private
portions loaded

TPM_RC_SIZE IvIn size is incompatible with the block cipher mode; or inData size is
not an even multiple of the block size for CBC or ECB mode

TPM_RC_VALUE keyHandle is restricted and the argument mode does not match the
key's mode

7 TPM_RC

8 TPM2_EncryptDecrypt(

9 EncryptDecrypt_In *in, // IN: input parameter list

10 EncryptDecrypt_Out *out // OUT: output parameter list

11)

12 {

13 #if CC_EncryptDecrypt2

14 return EncryptDecryptShared(in->keyHandle, in->decrypt, in->mode,

15 &in->ivIn, &in->inData, out);

16 #else

17 OBJECT *symKey;

18 UINT16 keySize;

19 UINT16 blockSize;

20 BYTE *key;

21 TPM_ALG_ID alg;

22 TPM_ALG_ID mode;

23 TPM_RC result;

24 BOOL OK;

25 TPMA_OBJECT attributes;

26

27 // Input Validation

28 symKey = HandleToObject(in->keyHandle);

29 mode = symKey->publicArea.parameters.symDetail.sym.mode.sym;

30 attributes = symKey->publicArea.objectAttributes;

31

32 // The input key should be a symmetric key

33 if(symKey->publicArea.type != TPM_ALG_SYMCIPHER)

34 return TPM_RCS_KEY + RC_EncryptDecrypt_keyHandle;

35 // The key must be unrestricted and allow the selected operation

36 OK = IS_ATTRIBUTE(attributes, TPMA_OBJECT, restricted)

37 if(YES == in->decrypt)

38 OK = OK && IS_ATTRIBUTE(attributes, TPMA_OBJECT, decrypt);

39 else

40 OK = OK && IS_ATTRIBUTE(attributes, TPMA_OBJECT, sign);

41 if(!OK)

42 return TPM_RCS_ATTRIBUTES + RC_EncryptDecrypt_keyHandle;

43

44 // If the key mode is not TPM_ALG_NULL...

45 // or TPM_ALG_NULL

46 if(mode != TPM_ALG_NULL)

47 {

48 // then the input mode has to be TPM_ALG_NULL or the same as the key

49 if((in->mode != TPM_ALG_NULL) && (in->mode != mode))

Part 3: Commands Trusted Platform Module Library

Page 126 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

50 return TPM_RCS_MODE + RC_EncryptDecrypt_mode;

51 }

52 else

53 {

54 // if the key mode is null, then the input can't be null

55 if(in->mode == TPM_ALG_NULL)

56 return TPM_RCS_MODE + RC_EncryptDecrypt_mode;

57 mode = in->mode;

58 }

59 // The input iv for ECB mode should be an Empty Buffer. All the other modes

60 // should have an iv size same as encryption block size

61 keySize = symKey->publicArea.parameters.symDetail.sym.keyBits.sym;

62 alg = symKey->publicArea.parameters.symDetail.sym.algorithm;

63 blockSize = CryptGetSymmetricBlockSize(alg, keySize);

64

65 // reverify the algorithm. This is mainly to keep static analysis tools happy

66 if(blockSize == 0)

67 return TPM_RCS_KEY + RC_EncryptDecrypt_keyHandle;

68

69 // Note: When an algorithm is not supported by a TPM, the TPM_ALG_xxx for that

70 // algorithm is not defined. However, it is assumed that the ALG_xxx_VALUE for

71 // the algorithm is always defined. Both have the same numeric value.

72 // ALG_xxx_VALUE is used here so that the code does not get cluttered with

73 // #ifdef's. Having this check does not mean that the algorithm is supported.

74 // If it was not supported the unmarshaling code would have rejected it before

75 // this function were called. This means that, depending on the implementation,

76 // the check could be redundant but it doesn't hurt.

77 if(((mode == ALG_ECB_VALUE) && (in->ivIn.t.size != 0))

78 || ((mode != ALG_ECB_VALUE) && (in->ivIn.t.size != blockSize)))

79 return TPM_RCS_SIZE + RC_EncryptDecrypt_ivIn;

80

81 // The input data size of CBC mode or ECB mode must be an even multiple of

82 // the symmetric algorithm's block size

83 if(((mode == ALG_CBC_VALUE) || (mode == ALG_ECB_VALUE))

84 && ((in->inData.t.size % blockSize) != 0))

85 return TPM_RCS_SIZE + RC_EncryptDecrypt_inData;

86

87 // Copy IV

88 // Note: This is copied here so that the calls to the encrypt/decrypt functions

89 // will modify the output buffer, not the input buffer

90 out->ivOut = in->ivIn;

91

92 // Command Output

93 key = symKey->sensitive.sensitive.sym.t.buffer;

94 // For symmetric encryption, the cipher data size is the same as plain data

95 // size.

96 out->outData.t.size = in->inData.t.size;

97 if(in->decrypt == YES)

98 {

99 // Decrypt data to output

100 result = CryptSymmetricDecrypt(out->outData.t.buffer, alg, keySize, key,

101 &(out->ivOut), mode, in->inData.t.size,

102 in->inData.t.buffer);

103 }

104 else

105 {

106 // Encrypt data to output

107 result = CryptSymmetricEncrypt(out->outData.t.buffer, alg, keySize, key,

108 &(out->ivOut), mode, in->inData.t.size,

109 in->inData.t.buffer);

110 }

111 return result;

112 #endif // CC_EncryptDecrypt2

113

114 }

115 #endif // CC_EncryptDecrypt

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 127

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

15.3 TPM2_EncryptDecrypt2

 General Description

This command is identical to TPM2_EncryptDecrypt(), except that the inData parameter is the first

parameter. This permits inData to be parameter encrypted.

NOTE In platform specification updates, this command is preferred and TPM2_EncryptDecrypt() should be
deprecated.

Part 3: Commands Trusted Platform Module Library

Page 128 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Comand and Response

Table 60 — TPM2_EncryptDecrypt2 Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EncryptDecrypt2

TPMI_DH_OBJECT @keyHandle

the symmetric key used for the operation

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER inData the data to be encrypted/decrypted

TPMI_YES_NO decrypt
if YES, then the operation is decryption; if NO, the
operation is encryption

TPMI_ALG_CIPHER_MODE+ mode

symmetric mode

this field shall match the default mode of the key or be
TPM_ALG_NULL.

TPM2B_IV ivIn an initial value as required by the algorithm

Table 61 — TPM2_EncryptDecrypt2 Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER outData encrypted or decrypted output

TPM2B_IV ivOut chaining value to use for IV in next round

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 129

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "EncryptDecrypt2_fp.h"

3 #include "EncryptDecrypt_fp.h"

4 #include "EncryptDecrypt_spt_fp.h"

5 #if CC_EncryptDecrypt2 // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY is not a symmetric decryption key with both public and private
portions loaded

TPM_RC_SIZE IvIn size is incompatible with the block cipher mode; or inData size is
not an even multiple of the block size for CBC or ECB mode

TPM_RC_VALUE keyHandle is restricted and the argument mode does not match the
key's mode

6 TPM_RC

7 TPM2_EncryptDecrypt2(

8 EncryptDecrypt2_In *in, // IN: input parameter list

9 EncryptDecrypt2_Out *out // OUT: output parameter list

10)

11 {

12 TPM_RC result;

13 // EncryptDecyrptShared() performs the operations as shown in

14 // TPM2_EncrypDecrypt

15 result = EncryptDecryptShared(in->keyHandle, in->decrypt, in->mode,

16 &in->ivIn, &in->inData,

17 (EncryptDecrypt_Out *)out);

18 // Handle response code swizzle.

19 switch(result)

20 {

21 case TPM_RCS_MODE + RC_EncryptDecrypt_mode:

22 result = TPM_RCS_MODE + RC_EncryptDecrypt2_mode;

23 break;

24 case TPM_RCS_SIZE + RC_EncryptDecrypt_ivIn:

25 result = TPM_RCS_SIZE + RC_EncryptDecrypt2_ivIn;

26 break;

27 case TPM_RCS_SIZE + RC_EncryptDecrypt_inData:

28 result = TPM_RCS_SIZE + RC_EncryptDecrypt2_inData;

29 break;

30 default:

31 break;

32 }

33 return result;

34 }

35 #endif // CC_EncryptDecrypt2

Part 3: Commands Trusted Platform Module Library

Page 130 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

15.4 TPM2_Hash

 General Description

This command performs a hash operation on a data buffer and returns the results.

NOTE If the data buffer to be hashed is larger than will fit into the TPM’s input buffer, then the sequence
hash commands will need to be used.

If the results of the hash will be used in a signing operation that uses a restricted signing key, then the

ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then the TPM will return a TPMT_TK_HASHCHECK with the hierarchy set

to TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 131

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 62 — TPM2_Hash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, decrypt, or encrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Hash

TPM2B_MAX_BUFFER data data to be hashed

TPMI_ALG_HASH hashAlg
algorithm for the hash being computed – shall not be
TPM_ALG_NULL

TPMI_RH_HIERARCHY+ hierarchy hierarchy to use for the ticket (TPM_RH_NULL allowed)

Table 63 — TPM2_Hash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHash results

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

will be a NULL ticket if the digest may not be signed
with a restricted key

Part 3: Commands Trusted Platform Module Library

Page 132 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Hash_fp.h"

3 #if CC_Hash // Conditional expansion of this file

4 TPM_RC

5 TPM2_Hash(

6 Hash_In *in, // IN: input parameter list

7 Hash_Out *out // OUT: output parameter list

8)

9 {

10 HASH_STATE hashState;

11

12 // Command Output

13

14 // Output hash

15 // Start hash stack

16 out->outHash.t.size = CryptHashStart(&hashState, in->hashAlg);

17 // Adding hash data

18 CryptDigestUpdate2B(&hashState, &in->data.b);

19 // Complete hash

20 CryptHashEnd2B(&hashState, &out->outHash.b);

21

22 // Output ticket

23 out->validation.tag = TPM_ST_HASHCHECK;

24 out->validation.hierarchy = in->hierarchy;

25

26 if(in->hierarchy == TPM_RH_NULL)

27 {

28 // Ticket is not required

29 out->validation.hierarchy = TPM_RH_NULL;

30 out->validation.digest.t.size = 0;

31 }

32 else if(in->data.t.size >= sizeof(TPM_GENERATED)

33 && !TicketIsSafe(&in->data.b))

34 {

35 // Ticket is not safe

36 out->validation.hierarchy = TPM_RH_NULL;

37 out->validation.digest.t.size = 0;

38 }

39 else

40 {

41 // Compute ticket

42 TicketComputeHashCheck(in->hierarchy, in->hashAlg,

43 &out->outHash, &out->validation);

44 }

45

46 return TPM_RC_SUCCESS;

47 }

48 #endif // CC_Hash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 133

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

15.5 TPM2_HMAC

 General Description

This command performs an HMAC on the supplied data using the indicated hash algorithm.

NOTE 1 A TPM may implement either TPM2_HMAC() or TPM2_MAC() but not both, as they have the same
command code and there is no way to distinguish them. A TPM that supports TPM2_MAC() will
support any code that was written to use TPM2_HMAC(), but a TPM that supports TPM2_HMAC()
will not support a MAC based on symmetric block ciphers.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return TPM_RC_TYPE. If the key

referenced by handle has the restricted attribute SET, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not

TPM_ALG_NULL (TPM_RC_VALUE) (see hash selection matrix in

Table 72).

NOTE 3 A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and the hash algorithm must be specified.

Part 3: Commands Trusted Platform Module Library

Page 134 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 64 — TPM2_HMAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the
HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer HMAC data

TPMI_ALG_HASH+ hashAlg algorithm to use for HMAC

Table 65 — TPM2_HMAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outHMAC the returned HMAC in a sized buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 135

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "HMAC_fp.h"

3 #if CC_HMAC // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is a restricted key

TPM_RC_KEY handle does not reference a signing key

TPM_RC_TYPE key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_HMAC(

6 HMAC_In *in, // IN: input parameter list

7 HMAC_Out *out // OUT: output parameter list

8)

9 {

10 HMAC_STATE hmacState;

11 OBJECT *hmacObject;

12 TPMI_ALG_HASH hashAlg;

13 TPMT_PUBLIC *publicArea;

14

15 // Input Validation

16

17 // Get HMAC key object and public area pointers

18 hmacObject = HandleToObject(in->handle);

19 publicArea = &hmacObject->publicArea;

20 // Make sure that the key is an HMAC key

21 if(publicArea->type != TPM_ALG_KEYEDHASH)

22 return TPM_RCS_TYPE + RC_HMAC_handle;

23

24 // and that it is unrestricted

25 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

26 return TPM_RCS_ATTRIBUTES + RC_HMAC_handle;

27

28 // and that it is a signing key

29 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

30 return TPM_RCS_KEY + RC_HMAC_handle;

31

32 // See if the key has a default

33 if(publicArea->parameters.keyedHashDetail.scheme.scheme == TPM_ALG_NULL)

34 // it doesn't so use the input value

35 hashAlg = in->hashAlg;

36 else

37 {

38 // key has a default so use it

39 hashAlg

40 = publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;

41 // and verify that the input was either the TPM_ALG_NULL or the default

42 if(in->hashAlg != TPM_ALG_NULL && in->hashAlg != hashAlg)

43 hashAlg = TPM_ALG_NULL;

44 }

45 // if we ended up without a hash algorithm then return an error

46 if(hashAlg == TPM_ALG_NULL)

47 return TPM_RCS_VALUE + RC_HMAC_hashAlg;

48

49 // Command Output

50

Part 3: Commands Trusted Platform Module Library

Page 136 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

51 // Start HMAC stack

52 out->outHMAC.t.size = CryptHmacStart2B(&hmacState, hashAlg,

53 &hmacObject->sensitive.sensitive.bits.b);

54 // Adding HMAC data

55 CryptDigestUpdate2B(&hmacState.hashState, &in->buffer.b);

56

57 // Complete HMAC

58 CryptHmacEnd2B(&hmacState, &out->outHMAC.b);

59

60 return TPM_RC_SUCCESS;

61 }

62 #endif // CC_HMAC

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 137

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

15.6 TPM2_MAC

 General Description

This command performs an HMAC or a block cipher MAC on the supplied data using the indicated

algorithm.

NOTE 1 A TPM may implement either TPM2_HMAC() or TPM2_MAC() but not both as they have the same
command code and there is no way to distinguish them. A TPM that supports TPM2_MAC() will
support any code that was written to use TPM2_HMAC() but a TPM that supports TPM2_HMAC ()
will not support a MAC based on symmetric block ciphers.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is neither TPM_ALG_KEYEDHASH nor TPM_ALG_SYMCIPHER then the TPM shall

return TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme or mode of the key referenced by handle is not TPM_ALG_NULL, then the

inScheme parameter is required to be either the same as the key’s default or TPM_ALG_NULL

(TPM_RC_VALUE).

If the default scheme of an HMAC key is TPM_ALG_NULL, then inScheme is required to be a valid hash

and not TPM_ALG_NULL (TPM_RC_VALUE) (see algorithm selection matrix in

Table 75).

If the default mode of a symmetric cipher key is TPM_ALG_NULL, then inScheme is required to be a valid

block cipher mode for authentication and not TPM_ALG_NULL (TPM_RC_VALUE)

NOTE 3 A key may only have both sign and decrypt SET if the key is unrestricted. When both sign and
decrypt are set, there is no default scheme for the key and inScheme may not be TPM_ALG_NULL.

NOTE 4 TPM2_MAC() was added in revision 01.43.

Part 3: Commands Trusted Platform Module Library

Page 138 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 66 — TPM2_MAC Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MAC

TPMI_DH_OBJECT @handle

handle for the symmetric signing key providing the MAC
key

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer MAC data

TPMI_ALG_MAC_SCHEME+ inScheme algorithm to use for MAC

Table 67 — TPM2_MAC Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST outMAC the returned MAC in a sized buffer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 139

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "MAC_fp.h"

3 #if CC_MAC // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is a restricted key

TPM_RC_KEY handle does not reference a signing key

TPM_RC_TYPE key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_MAC(

6 MAC_In *in, // IN: input parameter list

7 MAC_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *keyObject;

11 HMAC_STATE state;

12 TPMT_PUBLIC *publicArea;

13 TPM_RC result;

14

15 // Input Validation

16 // Get MAC key object and public area pointers

17 keyObject = HandleToObject(in->handle);

18 publicArea = &keyObject->publicArea;

19

20 // If the key is not able to do a MAC, indicate that the handle selects an

21 // object that can't do a MAC

22 result = CryptSelectMac(publicArea, &in->inScheme);

23 if(result == TPM_RCS_TYPE)

24 return TPM_RCS_TYPE + RC_MAC_handle;

25 // If there is another error type, indicate that the scheme and key are not

26 // compatible

27 if(result != TPM_RC_SUCCESS)

28 return RcSafeAddToResult(result, RC_MAC_inScheme);

29 // Make sure that the key is not restricted

30 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

31 return TPM_RCS_ATTRIBUTES + RC_MAC_handle;

32 // and that it is a signing key

33 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

34 return TPM_RCS_KEY + RC_MAC_handle;

35 // Command Output

36 out->outMAC.t.size = CryptMacStart(&state, &publicArea->parameters,

37 in->inScheme,

38 &keyObject->sensitive.sensitive.any.b);

39 // If the mac can't start, treat it as a fatal error

40 if(out->outMAC.t.size == 0)

41 return TPM_RC_FAILURE;

42 CryptDigestUpdate2B(&state.hashState, &in->buffer.b);

43 // If the MAC result is not what was expected, it is a fatal error

44 if(CryptHmacEnd2B(&state, &out->outMAC.b) != out->outMAC.t.size)

45 return TPM_RC_FAILURE;

46 return TPM_RC_SUCCESS;

47 }

48 #endif // CC_MAC

Part 3: Commands Trusted Platform Module Library

Page 140 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

16 Random Number Generator

16.1 TPM2_GetRandom

 General Description

This command returns the next bytesRequested octets from the random number generator (RNG).

NOTE 1 It is recommended that a TPM implement the RNG in a manner that would allow it to return RNG
octets such that, as long as the value of bytesRequested is not greater than the maximum digest
size, the frequency of bytesRequested being more than the number of octets available is an
infrequent occurrence.

If bytesRequested is more than will fit into a TPM2B_DIGEST on the TPM, no error is returned but the

TPM will only return as much data as will fit into a TPM2B_DIGEST buffer for the TPM.

NOTE 2 TPM2B_DIGEST is large enough to hold the largest digest that may be produced by the TPM.
Because that digest size changes according to the implemented hashes, the maximum amount of
data returned by this command is TPM implementation-dependent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 141

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 68 — TPM2_GetRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetRandom

UINT16 bytesRequested number of octets to return

Table 69 — TPM2_GetRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST randomBytes the random octets

Part 3: Commands Trusted Platform Module Library

Page 142 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "GetRandom_fp.h"

3 #if CC_GetRandom // Conditional expansion of this file

4 TPM_RC

5 TPM2_GetRandom(

6 GetRandom_In *in, // IN: input parameter list

7 GetRandom_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // if the requested bytes exceed the output buffer size, generates the

13 // maximum bytes that the output buffer allows

14 if(in->bytesRequested > sizeof(TPMU_HA))

15 out->randomBytes.t.size = sizeof(TPMU_HA);

16 else

17 out->randomBytes.t.size = in->bytesRequested;

18

19 CryptRandomGenerate(out->randomBytes.t.size, out->randomBytes.t.buffer);

20

21 return TPM_RC_SUCCESS;

22 }

23 #endif // CC_GetRandom

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 143

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

16.2 TPM2_StirRandom

 General Description

This command is used to add "additional information" to the RNG state.

NOTE The "additional information" is as defined in SP800-90A.

The inData parameter may not be larger than 128 octets.

Part 3: Commands Trusted Platform Module Library

Page 144 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 70 — TPM2_StirRandom Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_StirRandom {NV}

TPM2B_SENSITIVE_DATA inData additional information

Table 71 — TPM2_StirRandom Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 145

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "StirRandom_fp.h"

3 #if CC_StirRandom // Conditional expansion of this file

4 TPM_RC

5 TPM2_StirRandom(

6 StirRandom_In *in // IN: input parameter list

7)

8 {

9 // Internal Data Update

10 CryptRandomStir(in->inData.t.size, in->inData.t.buffer);

11

12 return TPM_RC_SUCCESS;

13 }

14 #endif // CC_StirRandom

Part 3: Commands Trusted Platform Module Library

Page 146 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

17 Hash/HMAC/Event Sequences

17.1 Introduction

All of the commands in this group are to support sequences for which an intermediate state must be

maintained. For a description of sequences, see “Hash, MAC, and Event Sequences” in TPM 2.0 Part 1.

A TPM may implement either TPM2_HMAC_Start() or TPM2_MAC_Start() but not both as they have the

same command code and there is no way to distinguish them. A TPM that supports TPM2_MAC_Start()

will support any code that was written to use TPM2_HMAC_Start() but a TPM that supports

TPM2_HMAC_Start() will not support a MAC based on symmetric block ciphers.

17.2 TPM2_HMAC_Start

 General Description

This command starts an HMAC sequence. The TPM will create and initialize an HMAC sequence

structure, assign a handle to the sequence, and set the authValue of the sequence object to the value in

auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH then the TPM shall return TPM_RC_TYPE. If the key

referenced by handle has the restricted attribute SET, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the hashAlg

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then hashAlg is required to be a valid hash and not

TPM_ALG_NULL (TPM_RC_VALUE).

Table 72 — Hash Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(hash algorithm
from key's scheme) hashAlg hash used

CLEAR (unrestricted) TPM_ALG_NULL(1) TPM_ALG_NULL error(1) (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash hashAlg

CLEAR valid hash TPM_ALG_NULL or same as
handle→scheme

handle→scheme

CLEAR valid hash valid hash error (TPM_RC_VALUE) if
hashAlg != handle->scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

NOTE 1 A TPM may implement either TPM2_HMAC_Start() or TPM2_MAC_Start() but not both, as they have
the same command code and there is no way to distinguish them. A TPM that supports
TPM2_MAC_Start() will support any code that was written to use TPM2_HMAC_Start(), but a TPM
that supports TPM2_HMAC_Start() will not support a MAC based on symmetric block ciphers.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 147

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 73 — TPM2_HMAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HMAC_Start

TPMI_DH_OBJECT @handle

handle of an HMAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg the hash algorithm to use for the HMAC

Table 74 — TPM2_HMAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Part 3: Commands Trusted Platform Module Library

Page 148 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "HMAC_Start_fp.h"

3 #if CC_HMAC_Start // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key or is restricted

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC_KEY key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_HMAC_Start(

6 HMAC_Start_In *in, // IN: input parameter list

7 HMAC_Start_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *keyObject;

11 TPMT_PUBLIC *publicArea;

12 TPM_ALG_ID hashAlg;

13

14 // Input Validation

15

16 // Get HMAC key object and public area pointers

17 keyObject = HandleToObject(in->handle);

18 publicArea = &keyObject->publicArea;

19

20 // Make sure that the key is an HMAC key

21 if(publicArea->type != TPM_ALG_KEYEDHASH)

22 return TPM_RCS_TYPE + RC_HMAC_Start_handle;

23

24 // and that it is unrestricted

25 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

26 return TPM_RCS_ATTRIBUTES + RC_HMAC_Start_handle;

27

28 // and that it is a signing key

29 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

30 return TPM_RCS_KEY + RC_HMAC_Start_handle;

31

32 // See if the key has a default

33 if(publicArea->parameters.keyedHashDetail.scheme.scheme == TPM_ALG_NULL)

34 // it doesn't so use the input value

35 hashAlg = in->hashAlg;

36 else

37 {

38 // key has a default so use it

39 hashAlg

40 = publicArea->parameters.keyedHashDetail.scheme.details.hmac.hashAlg;

41 // and verify that the input was either the TPM_ALG_NULL or the default

42 if(in->hashAlg != TPM_ALG_NULL && in->hashAlg != hashAlg)

43 hashAlg = TPM_ALG_NULL;

44 }

45 // if we ended up without a hash algorithm then return an error

46 if(hashAlg == TPM_ALG_NULL)

47 return TPM_RCS_VALUE + RC_HMAC_Start_hashAlg;

48

49 // Internal Data Update

50

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 149

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

51 // Create a HMAC sequence object. A TPM_RC_OBJECT_MEMORY error may be

52 // returned at this point

53 return ObjectCreateHMACSequence(hashAlg,

54 keyObject,

55 &in->auth,

56 &out->sequenceHandle);

57 }

58 #endif // CC_HMAC_Start

Part 3: Commands Trusted Platform Module Library

Page 150 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

17.3 TPM2_MAC_Start

 General Description

This command starts a MAC sequence. The TPM will create and initialize a MAC sequence structure,

assign a handle to the sequence, and set the authValue of the sequence object to the value in auth.

NOTE 1 The structure of a sequence object is vendor-dependent.

The caller shall provide proper authorization for use of handle.

If the sign attribute is not SET in the key referenced by handle then the TPM shall return TPM_RC_KEY.

If the key type is not TPM_ALG_KEYEDHASH or TPM_ALG_SYMCIPHER then the TPM shall return

TPM_RC_TYPE. If the key referenced by handle has the restricted attribute SET, the TPM shall return

TPM_RC_ATTRIBUTES.

NOTE 2 For symmetric signing with a restricted key, see TPM2_Sign.

If the default scheme of the key referenced by handle is not TPM_ALG_NULL, then the inScheme

parameter is required to be either the same as the key’s default or TPM_ALG_NULL (TPM_RC_VALUE).

If the default scheme of the key is TPM_ALG_NULL, then inSchemeis required to be a valid hash or

symmetric MAC scheme and not TPM_ALG_NULL (TPM_RC_VALUE).

Table 75 — Algorithm Selection Matrix

handle→restricted

(key's restricted
attribute)

handle→scheme

(algorithm from
key's scheme) inScheme algorithm used

CLEAR (unrestricted) TPM_ALG_NULL(1) TPM_ALG_NULL error(1) (TPM_RC_VALUE)

CLEAR TPM_ALG_NULL valid hash or symmetric MAC inScheme

CLEAR not TPM_ALG_NULL TPM_ALG_NULL or same as
handle→scheme

handle→scheme

CLEAR not TPM_ALG_NULL not TPM_AGL_NULL error (TPM_RC_VALUE)
ifinScheme!= handle-
>scheme

SET (restricted) don't care don't care TPM_RC_ATTRIBUTES

NOTES:

1) A hash algorithm is required for the HMAC.

2) hashAlg shall be TPM_ALG_NULL for handle referencing a CMAC key.

NOTE 3 For a TPM_ALG_SYMCIPHER key, the symmetric block cipher algorithm is part of the key definition.

NOTE 4 TPM2_MAC_Start() was added in revision 01.43.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 151

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 76 — TPM2_MAC_Start Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_MAC_Start

TPMI_DH_OBJECT @handle

handle of a MAC key

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_MAC_SCHEME+ inScheme the algorithm to use for the MAC

Table 77 — TPM2_MAC_Start Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Part 3: Commands Trusted Platform Module Library

Page 152 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "MAC_Start_fp.h"

3 #if CC_MAC_Start // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key referenced by handle is not a signing key or is restricted

TPM_RC_OBJECT_MEMORY no space to create an internal object

TPM_RC_KEY key referenced by handle is not an HMAC key

TPM_RC_VALUE hashAlg is not compatible with the hash algorithm of the scheme of
the object referenced by handle

4 TPM_RC

5 TPM2_MAC_Start(

6 MAC_Start_In *in, // IN: input parameter list

7 MAC_Start_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *keyObject;

11 TPMT_PUBLIC *publicArea;

12 TPM_RC result;

13

14 // Input Validation

15

16 // Get HMAC key object and public area pointers

17 keyObject = HandleToObject(in->handle);

18 publicArea = &keyObject->publicArea;

19

20 // Make sure that the key can do what is required

21 result = CryptSelectMac(publicArea, &in->inScheme);

22 // If the key is not able to do a MAC, indicate that the handle selects an

23 // object that can't do a MAC

24 if(result == TPM_RCS_TYPE)

25 return TPM_RCS_TYPE + RC_MAC_Start_handle;

26 // If there is another error type, indicate that the scheme and key are not

27 // compatible

28 if(result != TPM_RC_SUCCESS)

29 return RcSafeAddToResult(result, RC_MAC_Start_inScheme);

30 // Make sure that the key is not restricted

31 if(IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, restricted))

32 return TPM_RCS_ATTRIBUTES + RC_MAC_Start_handle;

33 // and that it is a signing key

34 if(!IS_ATTRIBUTE(publicArea->objectAttributes, TPMA_OBJECT, sign))

35 return TPM_RCS_KEY + RC_MAC_Start_handle;

36

37 // Internal Data Update

38 // Create a HMAC sequence object. A TPM_RC_OBJECT_MEMORY error may be

39 // returned at this point

40 return ObjectCreateHMACSequence(in->inScheme,

41 keyObject,

42 &in->auth,

43 &out->sequenceHandle);

44 }

45 #endif // CC_MAC_Start

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 153

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

17.4 TPM2_HashSequenceStart

 General Description

This command starts a hash or an Event Sequence. If hashAlg is an implemented hash, then a hash

sequence is started. If hashAlg is TPM_ALG_NULL, then an Event Sequence is started. If hashAlg is

neither an implemented algorithm nor TPM_ALG_NULL, then the TPM shall return TPM_RC_HASH.

Depending on hashAlg, the TPM will create and initialize a Hash Sequence context or an Event

Sequence context. Additionally, it will assign a handle to the context and set the authValue of the context

to the value in auth. A sequence context for an Event (hashAlg = TPM_ALG_NULL) contains a hash

context for each of the PCR banks implemented on the TPM.

Part 3: Commands Trusted Platform Module Library

Page 154 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 78 — TPM2_HashSequenceStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HashSequenceStart

TPM2B_AUTH auth authorization value for subsequent use of the sequence

TPMI_ALG_HASH+ hashAlg
the hash algorithm to use for the hash sequence

An Event Sequence starts if this is TPM_ALG_NULL.

Table 79 — TPM2_HashSequenceStart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_OBJECT sequenceHandle a handle to reference the sequence

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 155

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "HashSequenceStart_fp.h"

3 #if CC_HashSequenceStart // Conditional expansion of this file

Error Returns Meaning

TPM_RC_OBJECT_MEMORY no space to create an internal object

4 TPM_RC

5 TPM2_HashSequenceStart(

6 HashSequenceStart_In *in, // IN: input parameter list

7 HashSequenceStart_Out *out // OUT: output parameter list

8)

9 {

10 // Internal Data Update

11

12 if(in->hashAlg == TPM_ALG_NULL)

13 // Start a event sequence. A TPM_RC_OBJECT_MEMORY error may be

14 // returned at this point

15 return ObjectCreateEventSequence(&in->auth, &out->sequenceHandle);

16

17 // Start a hash sequence. A TPM_RC_OBJECT_MEMORY error may be

18 // returned at this point

19 return ObjectCreateHashSequence(in->hashAlg, &in->auth, &out->sequenceHandle);

20 }

21 #endif // CC_HashSequenceStart

Part 3: Commands Trusted Platform Module Library

Page 156 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

17.5 TPM2_SequenceUpdate

 General Description

This command is used to add data to a hash or HMAC sequence. The amount of data in buffer may be

any size up to the limits of the TPM.

NOTE 1 In all TPM, a buffer size of 1,024 octets is allowed.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If the command does not return TPM_RC_SUCCESS, the state of the sequence is unmodified.

If the sequence is intended to produce a digest that will be signed by a restricted signing key, then the

first block of data shall contain sizeof(TPM_GENERATED) octets and the first octets shall not be

TPM_GENERATED_VALUE.

NOTE 2 This requirement allows the TPM to validate that the first block is safe to sign without having to
accumulate octets over multiple calls.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 157

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 80 — TPM2_SequenceUpdate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceUpdate

TPMI_DH_OBJECT @sequenceHandle

handle for the sequence object

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to hash

Table 81 — TPM2_SequenceUpdate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 158 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SequenceUpdate_fp.h"

3 #if CC_SequenceUpdate // Conditional expansion of this file

Error Returns Meaning

TPM_RC_MODE sequenceHandle does not reference a hash or HMAC sequence
object

4 TPM_RC

5 TPM2_SequenceUpdate(

6 SequenceUpdate_In *in // IN: input parameter list

7)

8 {

9 OBJECT *object;

10 HASH_OBJECT *hashObject;

11

12 // Input Validation

13

14 // Get sequence object pointer

15 object = HandleToObject(in->sequenceHandle);

16 hashObject = (HASH_OBJECT *)object;

17

18 // Check that referenced object is a sequence object.

19 if(!ObjectIsSequence(object))

20 return TPM_RCS_MODE + RC_SequenceUpdate_sequenceHandle;

21

22 // Internal Data Update

23

24 if(object->attributes.eventSeq == SET)

25 {

26 // Update event sequence object

27 UINT32 i;

28 for(i = 0; i < HASH_COUNT; i++)

29 {

30 // Update sequence object

31 CryptDigestUpdate2B(&hashObject->state.hashState[i], &in->buffer.b);

32 }

33 }

34 else

35 {

36 // Update hash/HMAC sequence object

37 if(hashObject->attributes.hashSeq == SET)

38 {

39 // Is this the first block of the sequence

40 if(hashObject->attributes.firstBlock == CLEAR)

41 {

42 // If so, indicate that first block was received

43 hashObject->attributes.firstBlock = SET;

44

45 // Check the first block to see if the first block can contain

46 // the TPM_GENERATED_VALUE. If it does, it is not safe for

47 // a ticket.

48 if(TicketIsSafe(&in->buffer.b))

49 hashObject->attributes.ticketSafe = SET;

50 }

51 // Update sequence object hash/HMAC stack

52 CryptDigestUpdate2B(&hashObject->state.hashState[0], &in->buffer.b);

53 }

54 else if(object->attributes.hmacSeq == SET)

55 {

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 159

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

56 // Update sequence object HMAC stack

57 CryptDigestUpdate2B(&hashObject->state.hmacState.hashState,

58 &in->buffer.b);

59 }

60 }

61 return TPM_RC_SUCCESS;

62 }

63 #endif // CC_SequenceUpdate

Part 3: Commands Trusted Platform Module Library

Page 160 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

17.6 TPM2_SequenceComplete

 General Description

This command adds the last part of data, if any, to a hash/HMAC sequence and returns the result.

NOTE 1 This command is not used to complete an Event Sequence. TPM2_EventSequenceComplete() is
used for that purpose.

For a hash sequence, if the results of the hash will be used in a signing operation that uses a restricted

signing key, then the ticket returned by this command can indicate that the hash is safe to sign.

If the digest is not safe to sign, then validation will be a TPMT_TK_HASHCHECK with the hierarchy set to

TPM_RH_NULL and digest set to the Empty Buffer.

If hierarchy is TPM_RH_NULL, then digest in the ticket will be the Empty Buffer.

NOTE 2 Regardless of the contents of the first octets of the hashed message, if the first buffer sent to the
TPM had fewer than sizeof(TPM_GENERATED) octets, then the TPM will operate as if digest is not
safe to sign.

NOTE 3 The ticket is only required for a signing operation that uses a restricted signing key. It is always
returned, but can be ignored if not needed.

If sequenceHandle references an Event Sequence, then the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 161

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 82 — TPM2_SequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SequenceComplete {F}

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 1

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the hash/HMAC

TPMI_RH_HIERARCHY+ hierarchy hierarchy of the ticket for a hash

Table 83 — TPM2_SequenceComplete Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST result the returned HMAC or digest in a sized buffer

TPMT_TK_HASHCHECK validation

ticket indicating that the sequence of octets used to
compute outDigest did not start with
TPM_GENERATED_VALUE

This is a NULL Ticket when the sequence is HMAC.

Part 3: Commands Trusted Platform Module Library

Page 162 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SequenceComplete_fp.h"

3 #if CC_SequenceComplete // Conditional expansion of this file

Error Returns Meaning

TPM_RC_MODE sequenceHandle does not reference a hash or HMAC sequence
object

4 TPM_RC

5 TPM2_SequenceComplete(

6 SequenceComplete_In *in, // IN: input parameter list

7 SequenceComplete_Out *out // OUT: output parameter list

8)

9 {

10 HASH_OBJECT *hashObject;

11 // Input validation

12 // Get hash object pointer

13 hashObject = (HASH_OBJECT *)HandleToObject(in->sequenceHandle);

14

15 // input handle must be a hash or HMAC sequence object.

16 if(hashObject->attributes.hashSeq == CLEAR

17 && hashObject->attributes.hmacSeq == CLEAR)

18 return TPM_RCS_MODE + RC_SequenceComplete_sequenceHandle;

19 // Command Output

20 if(hashObject->attributes.hashSeq == SET) // sequence object for hash

21 {

22 // Get the hash algorithm before the algorithm is lost in CryptHashEnd

23 TPM_ALG_ID hashAlg = hashObject->state.hashState[0].hashAlg;

24

25 // Update last piece of the data

26 CryptDigestUpdate2B(&hashObject->state.hashState[0], &in->buffer.b);

27

28 // Complete hash

29 out->result.t.size = CryptHashEnd(&hashObject->state.hashState[0],

30 sizeof(out->result.t.buffer),

31 out->result.t.buffer);

32 // Check if the first block of the sequence has been received

33 if(hashObject->attributes.firstBlock == CLEAR)

34 {

35 // If not, then this is the first block so see if it is 'safe'

36 // to sign.

37 if(TicketIsSafe(&in->buffer.b))

38 hashObject->attributes.ticketSafe = SET;

39 }

40 // Output ticket

41 out->validation.tag = TPM_ST_HASHCHECK;

42 out->validation.hierarchy = in->hierarchy;

43

44 if(in->hierarchy == TPM_RH_NULL)

45 {

46 // Ticket is not required

47 out->validation.digest.t.size = 0;

48 }

49 else if(hashObject->attributes.ticketSafe == CLEAR)

50 {

51 // Ticket is not safe to generate

52 out->validation.hierarchy = TPM_RH_NULL;

53 out->validation.digest.t.size = 0;

54 }

55 else

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 163

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

56 {

57 // Compute ticket

58 TicketComputeHashCheck(out->validation.hierarchy, hashAlg,

59 &out->result, &out->validation);

60 }

61 }

62 else

63 {

64 // Update last piece of data

65 CryptDigestUpdate2B(&hashObject->state.hmacState.hashState, &in->buffer.b);

66 #if !SMAC_IMPLEMENTED

67 // Complete HMAC

68 out->result.t.size = CryptHmacEnd(&(hashObject->state.hmacState),

69 sizeof(out->result.t.buffer),

70 out->result.t.buffer);

71 #else

72 // Complete the MAC

73 out->result.t.size = CryptMacEnd(&hashObject->state.hmacState,

74 sizeof(out->result.t.buffer),

75 out->result.t.buffer);

76 #endif

77 // No ticket is generated for HMAC sequence

78 out->validation.tag = TPM_ST_HASHCHECK;

79 out->validation.hierarchy = TPM_RH_NULL;

80 out->validation.digest.t.size = 0;

81 }

82 // Internal Data Update

83 // mark sequence object as evict so it will be flushed on the way out

84 hashObject->attributes.evict = SET;

85

86 return TPM_RC_SUCCESS;

87 }

88 #endif // CC_SequenceComplete

Part 3: Commands Trusted Platform Module Library

Page 164 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

17.7 TPM2_EventSequenceComplete

 General Description

This command adds the last part of data, if any, to an Event Sequence and returns the result in a digest

list. If pcrHandle references a PCR and not TPM_RH_NULL, then the returned digest list is processed in

the same manner as the digest list input parameter to TPM2_PCR_Extend(). That is, if a bank contains a

PCR associated with pcrHandle, it is extended with the associated digest value from the list.

If sequenceHandle references a hash or HMAC sequence, the TPM shall return TPM_RC_MODE.

Proper authorization for the sequence object associated with sequenceHandle is required. If an

authorization or audit of this command requires computation of a cpHash and an rpHash, the Name

associated with sequenceHandle will be the Empty Buffer.

If this command completes successfully, the sequenceHandle object will be flushed.

NOTE: Unlike TPM2_PCR_Event(), a digest is always returned for each implemented hash algorithm . There
is no option to only return digests for which pcrHandle is allocated.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 165

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 84 — TPM2_EventSequenceComplete Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EventSequenceComplete {NV F}

TPMI_DH_PCR+ @pcrHandle

PCR to be extended with the Event data

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT @sequenceHandle

authorization for the sequence

Auth Index: 2

Auth Role: USER

TPM2B_MAX_BUFFER buffer data to be added to the Event

Table 85 — TPM2_EventSequenceComplete Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPML_DIGEST_VALUES results list of digests computed for the PCR

Part 3: Commands Trusted Platform Module Library

Page 166 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "EventSequenceComplete_fp.h"

3 #if CC_EventSequenceComplete // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY PCR extension is not allowed at the current locality

TPM_RC_MODE input handle is not a valid event sequence object

4 TPM_RC

5 TPM2_EventSequenceComplete(

6 EventSequenceComplete_In *in, // IN: input parameter list

7 EventSequenceComplete_Out *out // OUT: output parameter list

8)

9 {

10 HASH_OBJECT *hashObject;

11 UINT32 i;

12 TPM_ALG_ID hashAlg;

13 // Input validation

14 // get the event sequence object pointer

15 hashObject = (HASH_OBJECT *)HandleToObject(in->sequenceHandle);

16

17 // input handle must reference an event sequence object

18 if(hashObject->attributes.eventSeq != SET)

19 return TPM_RCS_MODE + RC_EventSequenceComplete_sequenceHandle;

20

21 // see if a PCR extend is requested in call

22 if(in->pcrHandle != TPM_RH_NULL)

23 {

24 // see if extend of the PCR is allowed at the locality of the command,

25 if(!PCRIsExtendAllowed(in->pcrHandle))

26 return TPM_RC_LOCALITY;

27 // if an extend is going to take place, then check to see if there has

28 // been an orderly shutdown. If so, and the selected PCR is one of the

29 // state saved PCR, then the orderly state has to change. The orderly state

30 // does not change for PCR that are not preserved.

31 // NOTE: This doesn't just check for Shutdown(STATE) because the orderly

32 // state will have to change if this is a state-saved PCR regardless

33 // of the current state. This is because a subsequent Shutdown(STATE) will

34 // check to see if there was an orderly shutdown and not do anything if

35 // there was. So, this must indicate that a future Shutdown(STATE) has

36 // something to do.

37 if(PCRIsStateSaved(in->pcrHandle))

38 RETURN_IF_ORDERLY;

39 }

40 // Command Output

41 out->results.count = 0;

42

43 for(i = 0; i < HASH_COUNT; i++)

44 {

45 hashAlg = CryptHashGetAlgByIndex(i);

46 // Update last piece of data

47 CryptDigestUpdate2B(&hashObject->state.hashState[i], &in->buffer.b);

48 // Complete hash

49 out->results.digests[out->results.count].hashAlg = hashAlg;

50 CryptHashEnd(&hashObject->state.hashState[i],

51 CryptHashGetDigestSize(hashAlg),

52 (BYTE *)&out->results.digests[out->results.count].digest);

53 // Extend PCR

54 if(in->pcrHandle != TPM_RH_NULL)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 167

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

55 PCRExtend(in->pcrHandle, hashAlg,

56 CryptHashGetDigestSize(hashAlg),

57 (BYTE *)&out->results.digests[out->results.count].digest);

58 out->results.count++;

59 }

60 // Internal Data Update

61 // mark sequence object as evict so it will be flushed on the way out

62 hashObject->attributes.evict = SET;

63

64 return TPM_RC_SUCCESS;

65 }

66 #endif // CC_EventSequenceComplete

Part 3: Commands Trusted Platform Module Library

Page 168 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

18 Attestation Commands

18.1 Introduction

The attestation commands cause the TPM to sign an internally generated data structure. The contents of

the data structure vary according to the command.

If the sign attribute is not SET in the key referenced by signHandle then the TPM shall return

TPM_RC_KEY.

All signing commands include a parameter (typically inScheme) for the caller to specify a scheme to be

used for the signing operation. This scheme will be applied only if the scheme of the key is

TPM_ALG_NULL or the key handle is TPM_RH_NULL. If the scheme for signHandle is not

TPM_ALG_NULL, then inScheme.scheme shall be TPM_ALG_NULL or the same as scheme in the

public area of the key. If the scheme for signHandle is TPM_ALG_NULL or the key handle is

TPM_RH_NULL, then inScheme will be used for the signing operation and may not be TPM_ALG_NULL.

The TPM shall return TPM_RC_SCHEME to indicate that the scheme is not appropriate.

For a signing key that is not restricted, the caller may specify the scheme to be used as long as the

scheme is compatible with the family of the key (for example, TPM_ALG_RSAPSS cannot be selected for

an ECC key). If the caller sets scheme to TPM_ALG_NULL, then the default scheme of the key is used.

For a restricted signing key, the key's scheme cannot be TPM_ALG_NULL and cannot be overridden.

If the handle for the signing key (signHandle) is TPM_RH_NULL, then all of the actions of the command

are performed and the attestation block is “signed” with the NULL Signature.

NOTE 1 This mechanism is provided so that additional commands are not required to access the data that
might be in an attestation structure.

NOTE 2 When signHandle is TPM_RH_NULL, scheme is still required to be a valid signing scheme (may be
TPM_ALG_NULL), but the scheme will have no effect on the format of the signature. It will always
be the NULL Signature.

TPM2_NV_Certify() is an attestation command that is documented in 1. The remaining attestation

commands are collected in the remainder of this clause.

Each of the attestation structures contains a TPMS_CLOCK_INFO structure and a firmware version

number. These values may be considered privacy-sensitive, because they would aid in the correlation of

attestations by different keys. To provide improved privacy, the resetCount, restartCount, and

firmwareVersion numbers are obfuscated when the signing key is not in the Endorsement or Platform

hierarchies.

The obfuscation value is computed by:

 obfuscation ≔ KDFa(signHandle→nameAlg, shProof, “OBFUSCATE”, signHandle→QN, 0, 128) (3)

Of the returned 128 bits, 64 bits are added to the versionNumber field of the attestation structure; 32 bits

are added to the clockInfo.resetCount and 32 bits are added to the clockInfo.restartCount. The order in

which the bits are added is implementation-dependent.

NOTE 3 The obfuscation value for each signing key will be unique to that key in a specific location. That is,
each version of a duplicated signing key will have a different obfuscation value.

When the signing key is TPM_RH_NULL, the data structure is produced but not signed; and the values in

the signed data structure are obfuscated. When computing the obfuscation value for TPM_RH_NULL, the

hash used for context integrity is used.

NOTE 4 The QN for TPM_RH_NULL is TPM_RH_NULL.

If the signing scheme of signHandle is an anonymous scheme, then the attestation blocks will not contain

the Qualified Name of the signHandle.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 169

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

Each of the attestation structures allows the caller to provide some qualifying data (qualifyingData). For

most signing schemes, this value will be placed in the TPMS_ATTEST.extraData parameter that is then

hashed and signed. However, for some schemes such as ECDAA, the qualifyingData is used in a

different manner (for details, see “ECDAA” in TPM 2.0 Part 1).

Part 3: Commands Trusted Platform Module Library

Page 170 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

18.2 TPM2_Certify

 General Description

The purpose of this command is to prove that an object with a specific Name is loaded in the TPM. By

certifying that the object is loaded, the TPM warrants that a public area with a given Name is self-

consistent and associated with a valid sensitive area. If a relying party has a public area that has the

same Name as a Name certified with this command, then the values in that public area are correct.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_Certify. This indicates that the

policy that is being used is a policy that is for certification, and not a policy that would approve another

use. That is, authority to use an object does not grant authority to certify the object.

The object may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary(). An object that

only has its public area loaded cannot be certified.

NOTE 2 The restriction occurs because the Name is used to identify the object being certified. If the TPM
has not validated that the public area is associated with a matched sensitive area, then the public
area may not represent a valid object and cannot be certified.

The certification includes the Name and Qualified Name of the certified object as well as the Name and

the Qualified Name of the certifying object.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 171

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 86 — TPM2_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Certify

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData user provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 87 — TPM2_Certify Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Part 3: Commands Trusted Platform Module Library

Page 172 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "Certify_fp.h"

4 #if CC_Certify // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the
modulus of signHandle, or the buffer for the result in signature is too
small (for an RSA key); invalid commit status (for an ECC key with a
split scheme)

5 TPM_RC

6 TPM2_Certify(

7 Certify_In *in, // IN: input parameter list

8 Certify_Out *out // OUT: output parameter list

9)

10 {

11 TPMS_ATTEST certifyInfo;

12 OBJECT *signObject = HandleToObject(in->signHandle);

13 OBJECT *certifiedObject = HandleToObject(in->objectHandle);

14 // Input validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_Certify_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_Certify_inScheme;

19

20 // Command Output

21 // Filling in attest information

22 // Common fields

23 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

24 &certifyInfo);

25

26 // Certify specific fields

27 certifyInfo.type = TPM_ST_ATTEST_CERTIFY;

28 // NOTE: the certified object is not allowed to be TPM_ALG_NULL so

29 // 'certifiedObject' will never be NULL

30 certifyInfo.attested.certify.name = certifiedObject->name;

31

32 // When using an anonymous signing scheme, need to set the qualified Name to the

33 // empty buffer to avoid correlation between keys

34 if(CryptIsSchemeAnonymous(in->inScheme.scheme))

35 certifyInfo.attested.certify.qualifiedName.t.size = 0;

36 else

37 certifyInfo.attested.certify.qualifiedName = certifiedObject->qualifiedName;

38

39 // Sign attestation structure. A NULL signature will be returned if

40 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

41 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned

42 // by SignAttestInfo()

43 return SignAttestInfo(signObject, &in->inScheme, &certifyInfo,

44 &in->qualifyingData, &out->certifyInfo, &out->signature);

45 }

46 #endif // CC_Certify

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 173

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

18.3 TPM2_CertifyCreation

 General Description

This command is used to prove the association between an object and its creation data. The TPM will

validate that the ticket was produced by the TPM and that the ticket validates the association between a

loaded public area and the provided hash of the creation data (creationHash).

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The TPM will create a test ticket using the Name associated with objectHandle and creationHash as:

 HMAC(proof, (TPM_ST_CREATION || objectHandle→Name || creationHash)) (4)

This ticket is then compared to creation ticket. If the tickets are not the same, the TPM shall return

TPM_RC_TICKET.

If the ticket is valid, then the TPM will create a TPMS_ATTEST structure and place creationHash of the

command in the creationHash field of the structure. The Name associated with objectHandle will be

included in the attestation data that is then signed using the key associated with signHandle.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

objectHandle may be any object that is loaded with TPM2_Load() or TPM2_CreatePrimary().

Part 3: Commands Trusted Platform Module Library

Page 174 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 88 — TPM2_CertifyCreation Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyCreation

TPMI_DH_OBJECT+ @signHandle

handle of the key that will sign the attestation block

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the object associated with the creation data

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPM2B_DIGEST creationHash
hash of the creation data produced by TPM2_Create()
or TPM2_CreatePrimary()

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPMT_TK_CREATION creationTicket
ticket produced by TPM2_Create() or
TPM2_CreatePrimary()

Table 89 — TPM2_CertifyCreation Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature the signature over certifyInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 175

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "CertifyCreation_fp.h"

4 #if CC_CertifyCreation // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is not compatible with signHandle

TPM_RC_TICKET creationTicket does not match objectHandle

TPM_RC_VALUE digest generated for inScheme is greater or has larger size than the
modulus of signHandle, or the buffer for the result in signature is too
small (for an RSA key); invalid commit status (for an ECC key with a
split scheme).

5 TPM_RC

6 TPM2_CertifyCreation(

7 CertifyCreation_In *in, // IN: input parameter list

8 CertifyCreation_Out *out // OUT: output parameter list

9)

10 {

11 TPMT_TK_CREATION ticket;

12 TPMS_ATTEST certifyInfo;

13 OBJECT *certified = HandleToObject(in->objectHandle);

14 OBJECT *signObject = HandleToObject(in->signHandle);

15 // Input Validation

16 if(!IsSigningObject(signObject))

17 return TPM_RCS_KEY + RC_CertifyCreation_signHandle;

18 if(!CryptSelectSignScheme(signObject, &in->inScheme))

19 return TPM_RCS_SCHEME + RC_CertifyCreation_inScheme;

20

21 // CertifyCreation specific input validation

22 // Re-compute ticket

23 TicketComputeCreation(in->creationTicket.hierarchy, &certified->name,

24 &in->creationHash, &ticket);

25 // Compare ticket

26 if(!MemoryEqual2B(&ticket.digest.b, &in->creationTicket.digest.b))

27 return TPM_RCS_TICKET + RC_CertifyCreation_creationTicket;

28

29 // Command Output

30 // Common fields

31 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

32 &certifyInfo);

33

34 // CertifyCreation specific fields

35 // Attestation type

36 certifyInfo.type = TPM_ST_ATTEST_CREATION;

37 certifyInfo.attested.creation.objectName = certified->name;

38

39 // Copy the creationHash

40 certifyInfo.attested.creation.creationHash = in->creationHash;

41

42 // Sign attestation structure. A NULL signature will be returned if

43 // signObject is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

44 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

45 // this point

46 return SignAttestInfo(signObject, &in->inScheme, &certifyInfo,

47 &in->qualifyingData, &out->certifyInfo,

48 &out->signature);

Part 3: Commands Trusted Platform Module Library

Page 176 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

49 }

50 #endif // CC_CertifyCreation

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 177

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

18.4 TPM2_Quote

 General Description

This command is used to quote PCR values.

The TPM will hash the list of PCR selected by PCRselect using the hash algorithm in the selected signing

scheme. If the selected signing scheme or the scheme hash algorithm is TPM_ALG_NULL, then the TPM

shall return TPM_RC_SCHEME.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The digest is computed as the hash of the concatenation of all of the digest values of the selected PCR.

The concatenation of PCR is described in TPM 2.0 Part 1, Selecting Multiple PCR.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

NOTE 3 A TPM may optionally return TPM_RC_SCHEME if signHandle is TPM_RH_NULL.

NOTE 4 Unlike TPM 1.2, TPM2_Quote does not return the PCR values. See Part 1, “Attesting to PCR” for a
discussion of this issue.

Part 3: Commands Trusted Platform Module Library

Page 178 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 90 — TPM2_Quote Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Quote

TPMI_DH_OBJECT+ @signHandle

handle of key that will perform signature

Auth Index: 1

Auth Role: USER

TPM2B_DATA qualifyingData data supplied by the caller

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPML_PCR_SELECTION PCRselect PCR set to quote

Table 91 — TPM2_Quote Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST quoted the quoted information

TPMT_SIGNATURE signature the signature over quoted

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 179

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "Quote_fp.h"

4 #if CC_Quote // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is
not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

5 TPM_RC

6 TPM2_Quote(

7 Quote_In *in, // IN: input parameter list

8 Quote_Out *out // OUT: output parameter list

9)

10 {

11 TPMI_ALG_HASH hashAlg;

12 TPMS_ATTEST quoted;

13 OBJECT *signObject = HandleToObject(in->signHandle);

14 // Input Validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_Quote_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_Quote_inScheme;

19

20 // Command Output

21

22 // Filling in attest information

23 // Common fields

24 // FillInAttestInfo may return TPM_RC_SCHEME or TPM_RC_KEY

25 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData, "ed);

26

27 // Quote specific fields

28 // Attestation type

29 quoted.type = TPM_ST_ATTEST_QUOTE;

30

31 // Get hash algorithm in sign scheme. This hash algorithm is used to

32 // compute PCR digest. If there is no algorithm, then the PCR cannot

33 // be digested and this command returns TPM_RC_SCHEME

34 hashAlg = in->inScheme.details.any.hashAlg;

35

36 if(hashAlg == TPM_ALG_NULL)

37 return TPM_RCS_SCHEME + RC_Quote_inScheme;

38

39 // Compute PCR digest

40 PCRComputeCurrentDigest(hashAlg, &in->PCRselect,

41 "ed.attested.quote.pcrDigest);

42

43 // Copy PCR select. "PCRselect" is modified in PCRComputeCurrentDigest

44 // function

45 quoted.attested.quote.pcrSelect = in->PCRselect;

46

47 // Sign attestation structure. A NULL signature will be returned if

48 // signObject is NULL.

49 return SignAttestInfo(signObject, &in->inScheme, "ed, &in->qualifyingData,

50 &out->quoted, &out->signature);

51 }

52 #endif // CC_Quote

Part 3: Commands Trusted Platform Module Library

Page 180 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

18.5 TPM2_GetSessionAuditDigest

 General Description

This command returns a digital signature of the audit session digest.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

If sessionHandle is not an audit session, the TPM shall return TPM_RC_TYPE.

NOTE 2 A session does not become an audit session until the successful completion of the command in
which the session is first used as an audit session.

This command requires authorization from the privacy administrator of the TPM (expressed with

Endorsement Authorization) as well as authorization to use the key associated with signHandle.

If this command is audited, then the audit digest that is signed will not include the digest of this command

because the audit digest is only updated when the command completes successfully.

This command does not cause the audit session to be closed and does not reset the digest value.

NOTE 3 If sessionHandle is used as an audit session for this command, the command is audited in the same
manner as any other command.

NOTE 4 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 181

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 92 — TPM2_GetSessionAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetSessionAuditDigest

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

handle of the signing key

Auth Index: 2

Auth Role: USER

TPMI_SH_HMAC sessionHandle
handle of the audit session

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data – may be zero-length

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 93 — TPM2_GetSessionAuditDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the audit information that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Part 3: Commands Trusted Platform Module Library

Page 182 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "GetSessionAuditDigest_fp.h"

4 #if CC_GetSessionAuditDigest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_TYPE sessionHandle does not reference an audit session

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

5 TPM_RC

6 TPM2_GetSessionAuditDigest(

7 GetSessionAuditDigest_In *in, // IN: input parameter list

8 GetSessionAuditDigest_Out *out // OUT: output parameter list

9)

10 {

11 SESSION *session = SessionGet(in->sessionHandle);

12 TPMS_ATTEST auditInfo;

13 OBJECT *signObject = HandleToObject(in->signHandle);

14 // Input Validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_GetSessionAuditDigest_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_GetSessionAuditDigest_inScheme;

19

20 // session must be an audit session

21 if(session->attributes.isAudit == CLEAR)

22 return TPM_RCS_TYPE + RC_GetSessionAuditDigest_sessionHandle;

23

24 // Command Output

25 // Fill in attest information common fields

26 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

27 &auditInfo);

28

29 // SessionAuditDigest specific fields

30 auditInfo.type = TPM_ST_ATTEST_SESSION_AUDIT;

31 auditInfo.attested.sessionAudit.sessionDigest = session->u2.auditDigest;

32

33 // Exclusive audit session

34 auditInfo.attested.sessionAudit.exclusiveSession

35 = (g_exclusiveAuditSession == in->sessionHandle);

36

37 // Sign attestation structure. A NULL signature will be returned if

38 // signObject is NULL.

39 return SignAttestInfo(signObject, &in->inScheme, &auditInfo,

40 &in->qualifyingData, &out->auditInfo,

41 &out->signature);

42 }

43 #endif // CC_GetSessionAuditDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 183

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

18.6 TPM2_GetCommandAuditDigest

 General Description

This command returns the current value of the command audit digest, a digest of the commands being

audited, and the audit hash algorithm. These values are placed in an attestation structure and signed with

the key referenced by signHandle.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

When this command completes successfully, and signHandle is not TPM_RH_NULL, the audit digest is

cleared. If signHandle is TPM_RH_NULL, signature is the Empty Buffer and the audit digest is not

cleared.

NOTE 2 The way that the TPM tracks that the digest is clear is vendor-dependent. The reference
implementation resets the size of the digest to zero.

If this command is being audited, then the signed digest produced by the command will not include the

command. At the end of this command, the audit digest will be extended with cpHash and the rpHash of

the command, which would change the command audit digest signed by the next invocation of this

command.

This command requires authorization from the privacy administrator of the TPM (expressed with

Endorsement Authorization) as well as authorization to use the key associated with signHandle.

Part 3: Commands Trusted Platform Module Library

Page 184 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 94 — TPM2_GetCommandAuditDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCommandAuditDigest {NV}

TPMI_RH_ENDORSEMENT @privacyHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the handle of the signing key

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData other data to associate with this audit digest

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 95 — TPM2_GetCommandAuditDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ATTEST auditInfo the auditInfo that was signed

TPMT_SIGNATURE signature the signature over auditInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 185

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "GetCommandAuditDigest_fp.h"

4 #if CC_GetCommandAuditDigest // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

5 TPM_RC

6 TPM2_GetCommandAuditDigest(

7 GetCommandAuditDigest_In *in, // IN: input parameter list

8 GetCommandAuditDigest_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 TPMS_ATTEST auditInfo;

13 OBJECT *signObject = HandleToObject(in->signHandle);

14 // Input validation

15 if(!IsSigningObject(signObject))

16 return TPM_RCS_KEY + RC_GetCommandAuditDigest_signHandle;

17 if(!CryptSelectSignScheme(signObject, &in->inScheme))

18 return TPM_RCS_SCHEME + RC_GetCommandAuditDigest_inScheme;

19

20 // Command Output

21 // Fill in attest information common fields

22 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

23 &auditInfo);

24

25 // CommandAuditDigest specific fields

26 auditInfo.type = TPM_ST_ATTEST_COMMAND_AUDIT;

27 auditInfo.attested.commandAudit.digestAlg = gp.auditHashAlg;

28 auditInfo.attested.commandAudit.auditCounter = gp.auditCounter;

29

30 // Copy command audit log

31 auditInfo.attested.commandAudit.auditDigest = gr.commandAuditDigest;

32 CommandAuditGetDigest(&auditInfo.attested.commandAudit.commandDigest);

33

34 // Sign attestation structure. A NULL signature will be returned if

35 // signHandle is TPM_RH_NULL. A TPM_RC_NV_UNAVAILABLE, TPM_RC_NV_RATE,

36 // TPM_RC_VALUE, TPM_RC_SCHEME or TPM_RC_ATTRIBUTES error may be returned at

37 // this point

38 result = SignAttestInfo(signObject, &in->inScheme, &auditInfo,

39 &in->qualifyingData, &out->auditInfo,

40 &out->signature);

41 // Internal Data Update

42 if(result == TPM_RC_SUCCESS && in->signHandle != TPM_RH_NULL)

43 // Reset log

44 gr.commandAuditDigest.t.size = 0;

45

46 return result;

47 }

Part 3: Commands Trusted Platform Module Library

Page 186 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

48 #endif // CC_GetCommandAuditDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 187

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

18.7 TPM2_GetTime

 General Description

This command returns the current values of Time and Clock.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

The values of Clock, resetCount and restartCount appear in two places in timeInfo: once in

TPMS_ATTEST.clockInfo and again in TPMS_ATTEST.attested.time.clockInfo. The firmware version

number also appears in two places (TPMS_ATTEST.firmwareVersion and

TPMS_ATTEST.attested.time.firmwareVersion). If signHandle is in the endorsement or platform

hierarchies, both copies of the data will be the same. However, if signHandle is in the storage hierarchy or

is TPM_RH_NULL, the values in TPMS_ATTEST.clockInfo and TPMS_ATTEST.firmwareVersion are

obfuscated but the values in TPMS_ATTEST.attested.time are not.

NOTE 2 The purpose of this duplication is to allow an entity who is trusted by the privacy Administrator to
correlate the obfuscated values with the clear-text values. This command requires Endorsement
Authorization.

NOTE 3 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

Part 3: Commands Trusted Platform Module Library

Page 188 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 96 — TPM2_GetTime Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetTime

TPMI_RH_ENDORSEMENT @privacyAdminHandle

handle of the privacy administrator
(TPM_RH_ENDORSEMENT)

Auth Index: 1

Auth Role: USER

TPMI_DH_OBJECT+ @signHandle

the keyHandle identifier of a loaded key that can
perform digital signatures

Auth Index: 2

Auth Role: USER

TPM2B_DATA qualifyingData data to tick stamp

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

Table 97 — TPM2_GetTime Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST timeInfo standard TPM-generated attestation block

TPMT_SIGNATURE signature the signature over timeInfo

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 189

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "GetTime_fp.h"

4 #if CC_GetTime // Conditional expansion of this file

Error Returns Meaning

TPM_RC_KEY key referenced by signHandle is not a signing key

TPM_RC_SCHEME inScheme is incompatible with signHandle type; or both scheme and
key's default scheme are empty; or scheme is empty while key's
default scheme requires explicit input scheme (split signing); or non-
empty default key scheme differs from scheme

TPM_RC_VALUE digest generated for the given scheme is greater than the modulus of
signHandle (for an RSA key); invalid commit status or failed to
generate r value (for an ECC key)

5 TPM_RC

6 TPM2_GetTime(

7 GetTime_In *in, // IN: input parameter list

8 GetTime_Out *out // OUT: output parameter list

9)

10 {

11 TPMS_ATTEST timeInfo;

12 OBJECT *signObject = HandleToObject(in->signHandle);

13 // Input Validation

14 if(!IsSigningObject(signObject))

15 return TPM_RCS_KEY + RC_GetTime_signHandle;

16 if(!CryptSelectSignScheme(signObject, &in->inScheme))

17 return TPM_RCS_SCHEME + RC_GetTime_inScheme;

18

19 // Command Output

20 // Fill in attest common fields

21 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData, &timeInfo);

22

23 // GetClock specific fields

24 timeInfo.type = TPM_ST_ATTEST_TIME;

25 timeInfo.attested.time.time.time = g_time;

26 TimeFillInfo(&timeInfo.attested.time.time.clockInfo);

27

28 // Firmware version in plain text

29 timeInfo.attested.time.firmwareVersion

30 = (((UINT64)gp.firmwareV1) << 32) + gp.firmwareV2;

31

32 // Sign attestation structure. A NULL signature will be returned if

33 // signObject is NULL.

34 return SignAttestInfo(signObject, &in->inScheme, &timeInfo, &in->qualifyingData,

35 &out->timeInfo, &out->signature);

36 }

37 #endif // CC_GetTime

18.8 TPM2_CertifyX509

 General Description

The purpose of this command is to generate an X.509 certificate that proves an object with a specific

public key and attributes is loaded in the TPM. In contrast to TPM2_Certify, which uses a TCG-defined

data structure to convey attestation information, TPM2_CertifyX509 encodes the attestation information in

Part 3: Commands Trusted Platform Module Library

Page 190 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

a DER-encoded X.509 certificate that is compliant with RFC5280 Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile.

As described in RFC, an X.509 certificate contains a collection of data that is hashed and signed. The full

signature is the combination of the to be signed (TBS) data, a description of the signature algorithm, and

the signature over the TBS data. The elements of the TBS data structure are DER-encoded values. They

are:

1) Version [0] – integer value of 2 indicating version 3

2) Certificate Serial Number – integer value

3) Signature Algorithm Identifier – values (usually a collection of OIDs) identifying the algorithm

used for the signature

4) Issuer Name – X.501 type Name to identify the entity that has authorized the use of

signHandle to create the certificate.

5) Validity – two time values indicating the period during which the certificate is valid

6) Subject Name – X.501 type Name that identifies the entity that authorized the use of

objectHandle

7) Subject Public Key Info – the public key associated with objectHandle,

8) Extensions [3] – a set of values that “provide methods for associating additional attributes

with users or public keys and for managing relationships between CAs.”

NOTE 1: The numbers in square brackets (e.g., [0]) indicate application -specific tag values that are used to
identify the type of the field.

NOTE 2: RFC 5280 describes two fields (issuerUniqueID and subjectUniqueID) but goes on to say: “CAs
conforming to this profile MUST NOT generate certificates with unique identifiers.” The TPM does
not allow them to be present.

The caller provides a partial certificate (partialCertificate) parameter that contains four or five of the

elements enumerated above in a DER encoded SEQUENCE. They are:

1) Signature Algorithm Identifier (optional)

2) Issuer (mandatory)

3) Validity (mandatory)

4) Subject Name (mandatory)

5) Extensions (mandatory)

The fields are required to be in the order in which they are listed above.

NOTE 3: The TPM determines if the Signature Algorithm Identifier element is present by counting the
elements.

The optional Signature Algorithm Identifier may be provided by the caller. If it is not present, the TPM will

generate the value based on the selected signing scheme. If the caller provides this value, then the TPM

will use it in the completed TBS. The TPM will not validate that the provided values are compatible with

the signing scheme. If the caller does not provide this field and the TPM does not have OID values for the

signing scheme, then the TPM will return an error (TPM_RC_SCHEME).

NOTE 4: The TPM may implement signing schemes for which OIDs are not defined at the time t he TPM was
manufactured. Those schemes may still be used if the caller can provide the Signature Algorithm
Identifier.

The Extensions element is required to contain a Key Usage extension. The TPM will extract the Key

Usage values and verify that the attributes of objectHandle are consistent with the selected values

(TPM_RC_ATTRIBUTES)(See Part 2, TPMA_X509_KEY_USAGE).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 191

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

The Extensions element may contain a TPMA_OBJECT extension. If present, the TPM will extract the

value and verify that the extension value exactly matches the TPMA_OBJECT of objectKey

(TPM_RC_ATTRIBUTES). The element uses the TCG OID tcg-tpmaObject, 2.23.133.10.1.1.1. It is a

SEQUENCE containing that OID and an OCTET STRING encapsulating a 4-byte BIT STRING holding

the big endian TPMA_OBJECT.

signHandle is required to have the sign attribute SET (TPM_RC_KEY).

NOTE 5: See 18.1 for description of how the signing scheme is selected.

Authorization for objectHandle requires ADMIN role authorization. If performed with a policy session, the

session shall have a policySession→commandCode set to TPM_CC_CertifyX509. This indicates that the

policy that is being used is a policy that is for certification, and not a policy that would approve another

use. That is, authority to use an object does not grant authority to certify the object.

If objectHandle does not have a sensitive area loaded, the TPM will return an error

(TPM_RC_AUTH_UNAVAILABLE).

NOTE 6: The command requires that authorization be provided for use of objectHandle. An object that only
has its publicArea loaded does not have an authorization value and the authPolicy has no meaning
as the sensitive area is not present.

The TPM will create the Version, the Certificate Serial Number, the Subject Public Key Info, and, if not

provided by the caller, the Signature Algorithm Identifier. These TPM-created values will be combined

with the provided values to make a full TBSCerfificate structure (See RFC 5280, clause 4.1). The TPM

will then sign the certificate using the selected signing scheme.

The TPM-created values will be returned in addedToCertificate. If the TPM creates the Signature

Algorithm Identifier, it will be in addedToCertificate before the Subject Public Key Info. The TPM returns

tbsDigest as a debugging aid.

NOTE 7: These returned fields allow the caller to unambiguously create a full RFC5280-defined
TBSCertificate.

NOTE 8: This command was added in revision 01.53.

Part 3: Commands Trusted Platform Module Library

Page 192 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 98 — TPM2_CertifyX509 Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CertifyX509

TPMI_DH_OBJECT @objectHandle

handle of the object to be certified

Auth Index: 1

Auth Role: ADMIN

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 2

Auth Role: USER

TPM2B_DATA reserved shall be an Empty Buffer

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

TPM2B_MAX_BUFFER partialCertificate a DER encoded partial certificate

Table 99 — TPM2_CertifyX509 Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_MAX_BUFFER addedToCertificate
a DER encoded SEQUENCE containing the DER
encoded fields added to partialCertificate to make it a
complete RFC5280 TBSCertificate.

TPM2B_DIGEST tbsDigest the digest that was signed

TPMT_SIGNATURE signature The signature over tbsDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 193

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "CertifyX509_fp.h"

3 #include "X509.h"

4 #include "TpmASN1_fp.h"

5 #include "X509_spt_fp.h"

6 #include "Attest_spt_fp.h"

7 #include "Platform_fp.h"

8 #if CC_CertifyX509 // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES the attributes of objectHandle are not compatible with the KeyUsage()
or TPMA_OBJECT values in the extensions fields

TPM_RC_BINDING the public and private portions of the key are not properly bound.

TPM_RC_HASH the hash algorithm in the scheme is not supported

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is
not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

TPM_RC_VALUE most likely a problem with the format of partialCertificate

9 TPM_RC

10 TPM2_CertifyX509(

11 CertifyX509_In *in, // IN: input parameter list

12 CertifyX509_Out *out // OUT: output parameter list

13)

14 {

15 TPM_RC result;

16 OBJECT *signKey = HandleToObject(in->signHandle);

17 OBJECT *object = HandleToObject(in->objectHandle);

18 HASH_STATE hash;

19 INT16 length; // length for a tagged element

20 ASN1UnmarshalContext ctx;

21 ASN1MarshalContext ctxOut;

22 // certTBS holds an array of pointers and lengths. Each entry references the

23 // corresponding value in a TBSCertificate structure. For example, the 1th

24 // element references the version number

25 stringRef certTBS[REF_COUNT] = {{0}};

26 #define ALLOWED_SEQUENCES (SUBJECT_PUBLIC_KEY_REF - SIGNATURE_REF)

27 stringRef partial[ALLOWED_SEQUENCES] = {{0}};

28 INT16 countOfSequences = 0;

29 INT16 i;

30 //

31 #if CERTIFYX509_DEBUG

32 DebugFileOpen();

33 DebugDumpBuffer(in->partialCertificate.t.size, in->partialCertificate.t.buffer,

34 "partialCertificate");

35 #endif

36

37 // Input Validation

38 if(in->reserved.b.size != 0)

39 return TPM_RC_SIZE + RC_CertifyX509_reserved;

40 // signing key must be able to sign

41 if(!IsSigningObject(signKey))

42 return TPM_RCS_KEY + RC_CertifyX509_signHandle;

43 // Pick a scheme for sign. If the input sign scheme is not compatible with

44 // the default scheme, return an error.

Part 3: Commands Trusted Platform Module Library

Page 194 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

45 if(!CryptSelectSignScheme(signKey, &in->inScheme))

46 return TPM_RCS_SCHEME + RC_CertifyX509_inScheme;

47 // Make sure that the public Key encoding is known

48 if(X509AddPublicKey(NULL, object) == 0)

49 return TPM_RCS_ASYMMETRIC + RC_CertifyX509_objectHandle;

50 // Unbundle 'partialCertificate'.

51 // Initialize the unmarshaling context

52 if(!ASN1UnmarshalContextInitialize(&ctx, in->partialCertificate.t.size,

53 in->partialCertificate.t.buffer))

54 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

55 // Make sure that this is a constructed SEQUENCE

56 length = ASN1NextTag(&ctx);

57 // Must be a constructed SEQUENCE that uses all of the input parameter

58 if((ctx.tag != (ASN1_CONSTRUCTED_SEQUENCE))

59 || ((ctx.offset + length) != in->partialCertificate.t.size))

60 return TPM_RCS_SIZE + RC_CertifyX509_partialCertificate;

61

62 // This scans through the contents of the outermost SEQUENCE. This would be the

63 // 'issuer', 'validity', 'subject', 'issuerUniqueID' (optional),

64 // 'subjectUniqueID' (optional), and 'extensions.'

65 while(ctx.offset < ctx.size)

66 {

67 INT16 startOfElement = ctx.offset;

68 //

69 // Read the next tag and length field.

70 length = ASN1NextTag(&ctx);

71 if(length < 0)

72 break;

73 if(ctx.tag == ASN1_CONSTRUCTED_SEQUENCE)

74 {

75 partial[countOfSequences].buf = &ctx.buffer[startOfElement];

76 ctx.offset += length;

77 partial[countOfSequences].len = (INT16)ctx.offset - startOfElement;

78 if(++countOfSequences > ALLOWED_SEQUENCES)

79 break;

80 }

81 else if(ctx.tag == X509_EXTENSIONS)

82 {

83 if(certTBS[EXTENSIONS_REF].len != 0)

84 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

85 certTBS[EXTENSIONS_REF].buf = &ctx.buffer[startOfElement];

86 ctx.offset += length;

87 certTBS[EXTENSIONS_REF].len =

88 (INT16)ctx.offset - startOfElement;

89 }

90 else

91 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

92 }

93 // Make sure that we used all of the data and found at least the required

94 // number of elements.

95 if((ctx.offset != ctx.size) || (countOfSequences < 3)

96 || (countOfSequences > 4)

97 || (certTBS[EXTENSIONS_REF].buf == NULL))

98 return TPM_RCS_VALUE + RC_CertifyX509_partialCertificate;

99 // Now that we know how many sequences there were, we can put them where they

100 // belong

101 for(i = 0; i < countOfSequences; i++)

102 certTBS[SUBJECT_KEY_REF - i] = partial[countOfSequences - 1 - i];

103

104 // If only three SEQUENCES, then the TPM needs to produce the signature algorithm.

105 // See if it can

106 if((countOfSequences == 3) &&

107 (X509AddSigningAlgorithm(NULL, signKey, &in->inScheme) == 0))

108 return TPM_RCS_SCHEME + RC_CertifyX509_signHandle;

109

110 // Process the extensions

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 195

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

111 result = X509ProcessExtensions(object, &certTBS[EXTENSIONS_REF]);

112 if(result != TPM_RC_SUCCESS)

113 // If the extension has the TPMA_OBJECT extension and the attributes don't

114 // match, then the error code will be TPM_RCS_ATTRIBUTES. Otherwise, the error

115 // indicates a malformed partialCertificate.

116 return result + ((result == TPM_RCS_ATTRIBUTES)

117 ? RC_CertifyX509_objectHandle

118 : RC_CertifyX509_partialCertificate);

119 // Command Output

120 // Create the addedToCertificate values

121

122 // Build the addedToCertificate from the bottom up.

123 // Initialize the context structure

124 ASN1InitialializeMarshalContext(&ctxOut, sizeof(out->addedToCertificate.t.buffer),

125 out->addedToCertificate.t.buffer);

126 // Place a marker for the overall context

127 ASN1StartMarshalContext(&ctxOut); // SEQUENCE for addedToCertificate

128

129 // Add the subject public key descriptor

130 certTBS[SUBJECT_PUBLIC_KEY_REF].len = X509AddPublicKey(&ctxOut, object);

131 certTBS[SUBJECT_PUBLIC_KEY_REF].buf = ctxOut.buffer + ctxOut.offset;

132 // If the caller didn't provide the algorithm identifier, create it

133 if(certTBS[SIGNATURE_REF].len == 0)

134 {

135 certTBS[SIGNATURE_REF].len = X509AddSigningAlgorithm(&ctxOut, signKey,

136 &in->inScheme);

137 certTBS[SIGNATURE_REF].buf = ctxOut.buffer + ctxOut.offset;

138 }

139 // Create the serial number value. Use the out->tbsDigest as scratch.

140 {

141 TPM2B *digest = &out->tbsDigest.b;

142 //

143 digest->size = (INT16)CryptHashStart(&hash, signKey->publicArea.nameAlg);

144 pAssert(digest->size != 0);

145

146 // The serial number size is the smaller of the digest and the vendor-defined

147 // value

148 digest->size = MIN(digest->size, SIZE_OF_X509_SERIAL_NUMBER);

149 // Add all the parts of the certificate other than the serial number

150 // and version number

151 for(i = SIGNATURE_REF; i < REF_COUNT; i++)

152 CryptDigestUpdate(&hash, certTBS[i].len, certTBS[i].buf);

153 // throw in the Name of the signing key...

154 CryptDigestUpdate2B(&hash, &signKey->name.b);

155 // ...and the Name of the signed key.

156 CryptDigestUpdate2B(&hash, &object->name.b);

157 // Done

158 CryptHashEnd2B(&hash, digest);

159 }

160

161 // Add the serial number

162 certTBS[SERIAL_NUMBER_REF].len =

163 ASN1PushInteger(&ctxOut, out->tbsDigest.t.size, out->tbsDigest.t.buffer);

164 certTBS[SERIAL_NUMBER_REF].buf = ctxOut.buffer + ctxOut.offset;

165

166 // Add the static version number

167 ASN1StartMarshalContext(&ctxOut);

168 ASN1PushUINT(&ctxOut, 2);

169 certTBS[VERSION_REF].len =

170 ASN1EndEncapsulation(&ctxOut, ASN1_APPLICAIION_SPECIFIC);

171 certTBS[VERSION_REF].buf = ctxOut.buffer + ctxOut.offset;

172

173 // Create a fake tag and length for the TBS in the space used for

174 // 'addedToCertificate'

175 {

176 for(length = 0, i = 0; i < REF_COUNT; i++)

Part 3: Commands Trusted Platform Module Library

Page 196 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

177 length += certTBS[i].len;

178 // Put a fake tag and length into the buffer for use in the tbsDigest

179 certTBS[ENCODED_SIZE_REF].len =

180 ASN1PushTagAndLength(&ctxOut, ASN1_CONSTRUCTED_SEQUENCE, length);

181 certTBS[ENCODED_SIZE_REF].buf = ctxOut.buffer + ctxOut.offset;

182 // Restore the buffer pointer to add back the number of octets used for the

183 // tag and length

184 ctxOut.offset += certTBS[ENCODED_SIZE_REF].len;

185 }

186 // sanity check

187 if(ctxOut.offset < 0)

188 return TPM_RC_FAILURE;

189 // Create the tbsDigest to sign

190 out->tbsDigest.t.size = CryptHashStart(&hash, in->inScheme.details.any.hashAlg);

191 for(i = 0; i < REF_COUNT; i++)

192 CryptDigestUpdate(&hash, certTBS[i].len, certTBS[i].buf);

193 CryptHashEnd2B(&hash, &out->tbsDigest.b);

194

195 #if CERTIFYX509_DEBUG

196 {

197 BYTE fullTBS[4096];

198 BYTE *fill = fullTBS;

199 int j;

200 for (j = 0; j < REF_COUNT; j++)

201 {

202 MemoryCopy(fill, certTBS[j].buf, certTBS[j].len);

203 fill += certTBS[j].len;

204 }

205 DebugDumpBuffer((int)(fill - &fullTBS[0]), fullTBS, "\nfull TBS");

206 }

207 #endif

208

209 // Finish up the processing of addedToCertificate

210 // Create the actual tag and length for the addedToCertificate structure

211 out->addedToCertificate.t.size =

212 ASN1EndEncapsulation(&ctxOut, ASN1_CONSTRUCTED_SEQUENCE);

213 // Now move all the addedToContext to the start of the buffer

214 MemoryCopy(out->addedToCertificate.t.buffer, ctxOut.buffer + ctxOut.offset,

215 out->addedToCertificate.t.size);

216 #if CERTIFYX509_DEBUG

217 DebugDumpBuffer(out->addedToCertificate.t.size, out->addedToCertificate.t.buffer,

218 "\naddedToCertificate");

219 #endif

220 // only thing missing is the signature

221 result = CryptSign(signKey, &in->inScheme, &out->tbsDigest, &out->signature);

222

223 return result;

224 }

225 #endif // CC_CertifyX509

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 197

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

19 Ephemeral EC Keys

19.1 Introduction

The TPM generates keys that have different lifetimes. TPM keys in a hierarchy can be persistent for as

long as the seed of the hierarchy is unchanged and these keys may be used multiple times. Other TPM-

generated keys are only useful for a single operation. Some of these single-use keys are used in the

command in which they are created. Examples of this use are TPM2_Duplicate() where an ephemeral

key is created for a single pass key exchange with another TPM. However, there are other cases, such

as anonymous attestation, where the protocol requires two passes where the public part of the ephemeral

key is used outside of the TPM before the final command "consumes" the ephemeral key.

For these uses, TPM2_Commit() or TPM2_EC_Ephemeral() may be used to have the TPM create an

ephemeral EC key and return the public part of the key for external use. Then in a subsequent command,

the caller provides a reference to the ephemeral key so that the TPM can retrieve or recreate the

associated private key.

When an ephemeral EC key is created, it is assigned a number and that number is returned to the caller

as the identifier for the key. This number is not a handle. A handle is assigned to a key that may be

context saved but these ephemeral EC keys may not be saved and do not have a full key context. When

a subsequent command uses the ephemeral key, the caller provides the number of the ephemeral key.

The TPM uses that number to either look up or recompute the associated private key. After the key is

used, the TPM records the fact that the key has been used so that it cannot be used again.

As mentioned, the TPM can keep each assigned private ephemeral key in memory until it is used.

However, this could consume a large amount of memory. To limit the memory size, the TPM is allowed to

restrict the number of pending private keys – keys that have been allocated but not used.

NOTE The minimum number of ephemeral keys is determined by a platform specific specification

To further reduce the memory requirements for the ephemeral private keys, the TPM is allowed to use

pseudo-random values for the ephemeral keys. Instead of keeping the full value of the key in memory, the

TPM can use a counter as input to a KDF. Incrementing the counter will cause the TPM to generate a

new pseudo-random value.

Using the counter to generate pseudo-random private ephemeral keys greatly simplifies tracking of key

usage. When a counter value is used to create a key, a bit in an array may be set to indicate that the key

use is pending. When the ephemeral key is consumed, the bit is cleared. This prevents the key from

being used more than once.

Since the TPM is allowed to restrict the number of pending ephemeral keys, the array size can be limited.

For example, a 128 bit array would allow 128 keys to be "pending".

The management of the array is described in greater detail in the Split Operations clause in Annex C of

TPM 2.0 Part 1.

Part 3: Commands Trusted Platform Module Library

Page 198 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

19.2 TPM2_Commit

 General Description

TPM2_Commit() performs the first part of an ECC anonymous signing operation. The TPM will perform

the point multiplications on the provided points and return intermediate signing values. The signHandle

parameter shall refer to an ECC key and the signing scheme must be anonymous (TPM_RC_SCHEME).

NOTE 1 Currently, TPM_ALG_ECDAA is the only defined anonymous scheme.

NOTE 2 This command cannot be used with a sign+decrypt key because that type of key is required to have
a scheme of TPM_ALG_NULL.

For this command, p1, s2 and y2 are optional parameters. If s2 is an Empty Buffer, then the TPM shall

return TPM_RC_SIZE if y2 is not an Empty Buffer.

The algorithm is specified in the TPM 2.0 Part 1 Annex for ECC, TPM2_Commit().

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 199

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 100 — TPM2_Commit Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Commit

TPMI_DH_OBJECT @signHandle

handle of the key that will be used in the signing

operation

Auth Index: 1

Auth Role: USER

TPM2B_ECC_POINT P1 a point (M) on the curve used by signHandle

TPM2B_SENSITIVE_DATA s2 octet array used to derive x-coordinate of a base point

TPM2B_ECC_PARAMETER y2 y coordinate of the point associated with s2

Table 101 — TPM2_Commit Response

Type Name Description

TPM_ST tag see 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT K ECC point K ≔ [ds](x2, y2)

TPM2B_ECC_POINT L ECC point L ≔ [r](x2, y2)

TPM2B_ECC_POINT E ECC point E ≔ [r]P1

UINT16 counter least-significant 16 bits of commitCount

Part 3: Commands Trusted Platform Module Library

Page 200 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Commit_fp.h"

3 #if CC_Commit // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle references a restricted key that is not a signing key

TPM_RC_ECC_POINT either P1 or the point derived from s2 is not on the curve of
keyHandle

TPM_RC_HASH invalid name algorithm in keyHandle

TPM_RC_KEY keyHandle does not reference an ECC key

TPM_RC_SCHEME the scheme of keyHandle is not an anonymous scheme

TPM_RC_NO_RESULT K, L or E was a point at infinity; or failed to generate r value

TPM_RC_SIZE s2 is empty but y2 is not or s2 provided but y2 is not

4 TPM_RC

5 TPM2_Commit(

6 Commit_In *in, // IN: input parameter list

7 Commit_Out *out // OUT: output parameter list

8)

9 {

10 OBJECT *eccKey;

11 TPMS_ECC_POINT P2;

12 TPMS_ECC_POINT *pP2 = NULL;

13 TPMS_ECC_POINT *pP1 = NULL;

14 TPM2B_ECC_PARAMETER r;

15 TPM2B_ECC_PARAMETER p;

16 TPM_RC result;

17 TPMS_ECC_PARMS *parms;

18

19 // Input Validation

20

21 eccKey = HandleToObject(in->signHandle);

22 parms = &eccKey->publicArea.parameters.eccDetail;

23

24 // Input key must be an ECC key

25 if(eccKey->publicArea.type != TPM_ALG_ECC)

26 return TPM_RCS_KEY + RC_Commit_signHandle;

27

28 // This command may only be used with a sign-only key using an anonymous

29 // scheme.

30 // NOTE: a sign + decrypt key has no scheme so it will not be an anonymous one

31 // and an unrestricted sign key might no have a signing scheme but it can't

32 // be use in Commit()

33 if(!CryptIsSchemeAnonymous(parms->scheme.scheme))

34 return TPM_RCS_SCHEME + RC_Commit_signHandle;

35

36 // Make sure that both parts of P2 are present if either is present

37 if((in->s2.t.size == 0) != (in->y2.t.size == 0))

38 return TPM_RCS_SIZE + RC_Commit_y2;

39

40 // Get prime modulus for the curve. This is needed later but getting this now

41 // allows confirmation that the curve exists.

42 if(!CryptEccGetParameter(&p, 'p', parms->curveID))

43 return TPM_RCS_KEY + RC_Commit_signHandle;

44

45 // Get the random value that will be used in the point multiplications

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 201

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

46 // Note: this does not commit the count.

47 if(!CryptGenerateR(&r, NULL, parms->curveID, &eccKey->name))

48 return TPM_RC_NO_RESULT;

49

50 // Set up P2 if s2 and Y2 are provided

51 if(in->s2.t.size != 0)

52 {

53 TPM2B_DIGEST x2;

54

55 pP2 = &P2;

56

57 // copy y2 for P2

58 P2.y = in->y2;

59

60 // Compute x2 HnameAlg(s2) mod p

61 // do the hash operation on s2 with the size of curve 'p'

62 x2.t.size = CryptHashBlock(eccKey->publicArea.nameAlg,

63 in->s2.t.size,

64 in->s2.t.buffer,

65 sizeof(x2.t.buffer),

66 x2.t.buffer);

67

68 // If there were error returns in the hash routine, indicate a problem

69 // with the hash algorithm selection

70 if(x2.t.size == 0)

71 return TPM_RCS_HASH + RC_Commit_signHandle;

72 // The size of the remainder will be same as the size of p. DivideB() will

73 // pad the results (leading zeros) if necessary to make the size the same

74 P2.x.t.size = p.t.size;

75 // set p2.x = hash(s2) mod p

76 if(DivideB(&x2.b, &p.b, NULL, &P2.x.b) != TPM_RC_SUCCESS)

77 return TPM_RC_NO_RESULT;

78

79 if(!CryptEccIsPointOnCurve(parms->curveID, pP2))

80 return TPM_RCS_ECC_POINT + RC_Commit_s2;

81

82 if(eccKey->attributes.publicOnly == SET)

83 return TPM_RCS_KEY + RC_Commit_signHandle;

84 }

85 // If there is a P1, make sure that it is on the curve

86 // NOTE: an "empty" point has two UINT16 values which are the size values

87 // for each of the coordinates.

88 if(in->P1.size > 4)

89 {

90 pP1 = &in->P1.point;

91 if(!CryptEccIsPointOnCurve(parms->curveID, pP1))

92 return TPM_RCS_ECC_POINT + RC_Commit_P1;

93 }

94

95 // Pass the parameters to CryptCommit.

96 // The work is not done in-line because it does several point multiplies

97 // with the same curve. It saves work by not having to reload the curve

98 // parameters multiple times.

99 result = CryptEccCommitCompute(&out->K.point,

100 &out->L.point,

101 &out->E.point,

102 parms->curveID,

103 pP1,

104 pP2,

105 &eccKey->sensitive.sensitive.ecc,

106 &r);

107 if(result != TPM_RC_SUCCESS)

108 return result;

109

110 // The commit computation was successful so complete the commit by setting

111 // the bit

Part 3: Commands Trusted Platform Module Library

Page 202 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

112 out->counter = CryptCommit();

113

114 return TPM_RC_SUCCESS;

115 }

116 #endif // CC_Commit

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 203

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

19.3 TPM2_EC_Ephemeral

 General Description

TPM2_EC_Ephemeral() creates an ephemeral key for use in a two-phase key exchange protocol.

The TPM will use the commit mechanism to assign an ephemeral key r and compute a public point Q ≔

[r]G where G is the generator point associated with curveID.

Part 3: Commands Trusted Platform Module Library

Page 204 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 102 — TPM2_EC_Ephemeral Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is

present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EC_Ephemeral

TPMI_ECC_CURVE curveID The curve for the computed ephemeral point

Table 103 — TPM2_EC_Ephemeral Response

Type Name Description

TPM_ST tag see 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_ECC_POINT Q ephemeral public key Q ≔ [r]G

UINT16 counter least-significant 16 bits of commitCount

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 205

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "EC_Ephemeral_fp.h"

3 #if CC_EC_Ephemeral // Conditional expansion of this file

Error Returns Meaning

TPM_RC_NO_RESULT the TPM is not able to generate an r value

4 TPM_RC

5 TPM2_EC_Ephemeral(

6 EC_Ephemeral_In *in, // IN: input parameter list

7 EC_Ephemeral_Out *out // OUT: output parameter list

8)

9 {

10 TPM2B_ECC_PARAMETER r;

11 TPM_RC result;

12 //

13 do

14 {

15 // Get the random value that will be used in the point multiplications

16 // Note: this does not commit the count.

17 if(!CryptGenerateR(&r, NULL, in->curveID, NULL))

18 return TPM_RC_NO_RESULT;

19 // do a point multiply

20 result = CryptEccPointMultiply(&out->Q.point, in->curveID, NULL, &r,

21 NULL, NULL);

22 // commit the count value if either the r value results in the point at

23 // infinity or if the value is good. The commit on the r value for infinity

24 // is so that the r value will be skipped.

25 if((result == TPM_RC_SUCCESS) || (result == TPM_RC_NO_RESULT))

26 out->counter = CryptCommit();

27 } while(result == TPM_RC_NO_RESULT);

28

29 return TPM_RC_SUCCESS;

30 }

31 #endif // CC_EC_Ephemeral

Part 3: Commands Trusted Platform Module Library

Page 206 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

20 Signing and Signature Verification

20.1 TPM2_VerifySignature

 General Description

This command uses loaded keys to validate a signature on a message with the message digest passed

to the TPM.

If the signature check succeeds, then the TPM will produce a TPMT_TK_VERIFIED. Otherwise, the TPM

shall return TPM_RC_SIGNATURE.

If the key is in the NULL hierarchy, then digest in the ticket will be the Empty Buffer.

NOTE 1 A valid ticket may be used in subsequent commands to provide proof to the TPM that the TPM has
validated the signature over the message using the key referenced by keyHandle.

If keyHandle references an asymmetric key, only the public portion of the key needs to be loaded. If

keyHandle references a symmetric key, both the public and private portions need to be loaded.

NOTE 2 The sensitive area of the symmetric object is required to allow verification of the symmetric
signature (the HMAC).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 207

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 104 — TPM2_VerifySignature Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_VerifySignature

TPMI_DH_OBJECT keyHandle
handle of public key that will be used in the validation

Auth Index: None

TPM2B_DIGEST digest digest of the signed message

TPMT_SIGNATURE signature signature to be tested

Table 105 — TPM2_VerifySignature Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_TK_VERIFIED validation

Part 3: Commands Trusted Platform Module Library

Page 208 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "VerifySignature_fp.h"

3 #if CC_VerifySignature // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES keyHandle does not reference a signing key

TPM_RC_SIGNATURE signature is not genuine

TPM_RC_SCHEME CryptValidateSignature()

TPM_RC_HANDLE the input handle is references an HMAC key but the private portion is
not loaded

4 TPM_RC

5 TPM2_VerifySignature(

6 VerifySignature_In *in, // IN: input parameter list

7 VerifySignature_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11 OBJECT *signObject = HandleToObject(in->keyHandle);

12 TPMI_RH_HIERARCHY hierarchy;

13

14 // Input Validation

15 // The object to validate the signature must be a signing key.

16 if(!IS_ATTRIBUTE(signObject->publicArea.objectAttributes, TPMA_OBJECT, sign))

17 return TPM_RCS_ATTRIBUTES + RC_VerifySignature_keyHandle;

18

19 // Validate Signature. TPM_RC_SCHEME, TPM_RC_HANDLE or TPM_RC_SIGNATURE

20 // error may be returned by CryptCVerifySignatrue()

21 result = CryptValidateSignature(in->keyHandle, &in->digest, &in->signature);

22 if(result != TPM_RC_SUCCESS)

23 return RcSafeAddToResult(result, RC_VerifySignature_signature);

24

25 // Command Output

26

27 hierarchy = GetHeriarchy(in->keyHandle);

28 if(hierarchy == TPM_RH_NULL

29 || signObject->publicArea.nameAlg == TPM_ALG_NULL)

30 {

31 // produce empty ticket if hierarchy is TPM_RH_NULL or nameAlg is

32 // TPM_ALG_NULL

33 out->validation.tag = TPM_ST_VERIFIED;

34 out->validation.hierarchy = TPM_RH_NULL;

35 out->validation.digest.t.size = 0;

36 }

37 else

38 {

39 // Compute ticket

40 TicketComputeVerified(hierarchy, &in->digest, &signObject->name,

41 &out->validation);

42 }

43

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_VerifySignature

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 209

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

20.2 TPM2_Sign

 General Description

This command causes the TPM to sign an externally provided hash with the specified symmetric or

asymmetric signing key.

NOTE 1 If keyhandle references an unrestricted signing key, a digest can be signed using either this
command or an HMAC command.

If keyHandle references a restricted signing key, then validation shall be provided, indicating that the TPM

performed the hash of the data and validation shall indicate that hashed data did not start with

TPM_GENERATED_VALUE.

NOTE 2 If the hashed data did start with TPM_GENERATED_VALUE, then the validation will be a NULL
ticket.

The x509sign attribute of keyHandle may not be SET (TPM_RC_ATTRIBUTES).

If the scheme of keyHandle is not TPM_ALG_NULL, then inScheme shall either be the same scheme as

keyHandle or TPM_ALG_NULL. If the sign attribute is not SET in the key referenced by handle then the

TPM shall return TPM_RC_KEY.

If the scheme of keyHandle is TPM_ALG_NULL, the TPM will sign using inScheme; otherwise, it will sign

using the scheme of keyHandle.

NOTE 3 When the signing scheme uses a hash algorithm, the algorithm is defined in the qualifying data of
the scheme. This is the same algorithm that is required to be used in producing digest. The size of
digest must match that of the hash algorithm in the scheme.

If inScheme is not a valid signing scheme for the type of keyHandle (or TPM_ALG_NULL), then the TPM

shall return TPM_RC_SCHEME.

If the scheme of keyHandle is an anonymous scheme, then inScheme shall have the same scheme

algorithm as keyHandle and inScheme will contain a counter value that will be used in the signing

process.

EXAMPLE For ECDAA, inScheme.details.ecdaa.count will contain the count value.

If validation is provided, then the hash algorithm used in computing the digest is required to be the hash

algorithm specified in the scheme of keyHandle (TPM_RC_TICKET).

If the validation parameter is not the Empty Buffer, then it will be checked even if the key referenced by

keyHandle is not a restricted signing key.

NOTE 4 If keyHandle is both a sign and decrypt key, keyHandle will have a scheme of TPM_ALG_NULL. If
validation is provided, then it must be a NULL validation ticket or the ticket validation will fail.

Part 3: Commands Trusted Platform Module Library

Page 210 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 106 — TPM2_Sign Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Sign

TPMI_DH_OBJECT @keyHandle

Handle of key that will perform signing

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST digest digest to be signed

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for keyHandle is
TPM_ALG_NULL

TPMT_TK_HASHCHECK validation

proof that digest was created by the TPM

If keyHandle is not a restricted signing key, then this
may be a NULL Ticket with tag =
TPM_ST_CHECKHASH.

Table 107 — TPM2_Sign Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_SIGNATURE signature the signature

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 211

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Sign_fp.h"

3 #if CC_Sign // Conditional expansion of this file

4 #include "Attest_spt_fp.h"

Error Returns Meaning

TPM_RC_BINDING The public and private portions of the key are not properly bound.

TPM_RC_KEY signHandle does not reference a signing key;

TPM_RC_SCHEME the scheme is not compatible with sign key type, or input scheme is
not compatible with default scheme, or the chosen scheme is not a
valid sign scheme

TPM_RC_TICKET validation is not a valid ticket

TPM_RC_VALUE the value to sign is larger than allowed for the type of keyHandle

5 TPM_RC

6 TPM2_Sign(

7 Sign_In *in, // IN: input parameter list

8 Sign_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 TPMT_TK_HASHCHECK ticket;

13 OBJECT *signObject = HandleToObject(in->keyHandle);

14 //

15 // Input Validation

16 if(!IsSigningObject(signObject))

17 return TPM_RCS_KEY + RC_Sign_keyHandle;

18

19 // A key that will be used for x.509 signatures can't be used in TPM2_Sign().

20 if(IS_ATTRIBUTE(signObject->publicArea.objectAttributes, TPMA_OBJECT, x509sign))

21 return TPM_RCS_ATTRIBUTES + RC_Sign_keyHandle;

22

23 // pick a scheme for sign. If the input sign scheme is not compatible with

24 // the default scheme, return an error.

25 if(!CryptSelectSignScheme(signObject, &in->inScheme))

26 return TPM_RCS_SCHEME + RC_Sign_inScheme;

27

28 // If validation is provided, or the key is restricted, check the ticket

29 if(in->validation.digest.t.size != 0

30 || IS_ATTRIBUTE(signObject->publicArea.objectAttributes,

31 TPMA_OBJECT, restricted))

32 {

33 // Compute and compare ticket

34 TicketComputeHashCheck(in->validation.hierarchy,

35 in->inScheme.details.any.hashAlg,

36 &in->digest, &ticket);

37

38 if(!MemoryEqual2B(&in->validation.digest.b, &ticket.digest.b))

39 return TPM_RCS_TICKET + RC_Sign_validation;

40 }

41 else

42 // If we don't have a ticket, at least verify that the provided 'digest'

43 // is the size of the scheme hashAlg digest.

44 // NOTE: this does not guarantee that the 'digest' is actually produced using

45 // the indicated hash algorithm, but at least it might be.

46 {

47 if(in->digest.t.size

Part 3: Commands Trusted Platform Module Library

Page 212 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

48 != CryptHashGetDigestSize(in->inScheme.details.any.hashAlg))

49 return TPM_RCS_SIZE + RC_Sign_digest;

50 }

51

52 // Command Output

53 // Sign the hash. A TPM_RC_VALUE or TPM_RC_SCHEME

54 // error may be returned at this point

55 result = CryptSign(signObject, &in->inScheme, &in->digest, &out->signature);

56

57 return result;

58 }

59 #endif // CC_Sign

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 213

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

21 Command Audit

21.1 Introduction

If a command has been selected for command audit, the command audit status will be updated when that

command completes successfully. The digest is updated as:

 commandAuditDigestnew ≔ HauditAlg(commandAuditDigestold || cpHash || rpHash) (5)

where

HauditAlg hash function using the algorithm of the audit sequence

commandAuditDigest accumulated digest

cpHash the command parameter hash

rpHash the response parameter hash

auditAlg, the hash algorithm, is set using TPM2_SetCommandCodeAuditStatus().

TPM2_Shutdown() cannot be audited but TPM2_Startup() can be audited. If the cpHash of the

TPM2_Startup() is TPM_SU_STATE, that would indicate that a TPM2_Shutdown() had been successfully

executed.

TPM2_SetCommandCodeAuditStatus() is always audited, except when it is used to change auditAlg.

If the TPM is in Failure mode, command audit is not functional.

Part 3: Commands Trusted Platform Module Library

Page 214 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

21.2 TPM2_SetCommandCodeAuditStatus

 General Description

This command may be used by the Privacy Administrator or platform to change the audit status of a

command or to set the hash algorithm used for the audit digest, but not both at the same time.

If the auditAlg parameter is a supported hash algorithm and not the same as the current algorithm, then

the TPM will check both setList and clearList are empty (zero length). If so, then the algorithm is changed,

and the audit digest is cleared. If auditAlg is TPM_ALG_NULL or the same as the current algorithm, then

the algorithm and audit digest are unchanged and the setList and clearList will be processed.

NOTE 1 Because the audit digest is cleared, the audit counter will increment the next time that an audited
command is executed.

Use of TPM2_SetCommandCodeAuditStatus() to change the list of audited commands is an audited

event. If TPM_CC_SetCommandCodeAuditStatus is in clearList, the fact that it is in clearList is ignored.

NOTE 2 Use of this command to change the audit hash algorithm is not audited and the digest is reset when
the command completes. The change in the audit hash algorithm is the evidence that this command
was used to change the algorithm.

The commands in setList indicate the commands to be added to the list of audited commands and the

commands in clearList indicate the commands that will no longer be audited. It is not an error if a

command in setList is already audited or is not implemented. It is not an error if a command in clearList is

not currently being audited or is not implemented.

If a command code is in both setList and clearList, then it will not be audited (that is, setList shall be

processed first).

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 215

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 108 — TPM2_SetCommandCodeAuditStatus Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetCommandCodeAuditStatus {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_ALG_HASH+ auditAlg
hash algorithm for the audit digest; if
TPM_ALG_NULL, then the hash is not changed

TPML_CC setList
list of commands that will be added to those that will
be audited

TPML_CC clearList list of commands that will no longer be audited

Table 109 — TPM2_SetCommandCodeAuditStatus Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 216 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SetCommandCodeAuditStatus_fp.h"

3 #if CC_SetCommandCodeAuditStatus // Conditional expansion of this file

4 TPM_RC

5 TPM2_SetCommandCodeAuditStatus(

6 SetCommandCodeAuditStatus_In *in // IN: input parameter list

7)

8 {

9

10 // The command needs NV update. Check if NV is available.

11 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

12 // this point

13 RETURN_IF_NV_IS_NOT_AVAILABLE;

14

15 // Internal Data Update

16

17 // Update hash algorithm

18 if(in->auditAlg != TPM_ALG_NULL && in->auditAlg != gp.auditHashAlg)

19 {

20 // Can't change the algorithm and command list at the same time

21 if(in->setList.count != 0 || in->clearList.count != 0)

22 return TPM_RCS_VALUE + RC_SetCommandCodeAuditStatus_auditAlg;

23

24 // Change the hash algorithm for audit

25 gp.auditHashAlg = in->auditAlg;

26

27 // Set the digest size to a unique value that indicates that the digest

28 // algorithm has been changed. The size will be cleared to zero in the

29 // command audit processing on exit.

30 gr.commandAuditDigest.t.size = 1;

31

32 // Save the change of command audit data (this sets g_updateNV so that NV

33 // will be updated on exit.)

34 NV_SYNC_PERSISTENT(auditHashAlg);

35 }

36 else

37 {

38 UINT32 i;

39 BOOL changed = FALSE;

40

41 // Process set list

42 for(i = 0; i < in->setList.count; i++)

43

44 // If change is made in CommandAuditSet, set changed flag

45 if(CommandAuditSet(in->setList.commandCodes[i]))

46 changed = TRUE;

47

48 // Process clear list

49 for(i = 0; i < in->clearList.count; i++)

50 // If change is made in CommandAuditClear, set changed flag

51 if(CommandAuditClear(in->clearList.commandCodes[i]))

52 changed = TRUE;

53

54 // if change was made to command list, update NV

55 if(changed)

56 // this sets g_updateNV so that NV will be updated on exit.

57 NV_SYNC_PERSISTENT(auditCommands);

58 }

59

60 return TPM_RC_SUCCESS;

61 }

62 #endif // CC_SetCommandCodeAuditStatus

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 217

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22 Integrity Collection (PCR)

22.1 Introduction

In TPM 1.2, an Event was hashed using SHA-1 and then the 20-octet digest was extended to a PCR

using TPM_Extend(). This specification allows the use of multiple PCR at a given Index, each using a

different hash algorithm. Rather than require that the external software generate multiple hashes of the

Event with each being extended to a different PCR, the Event data may be sent to the TPM for hashing.

This ensures that the resulting digests will properly reflect the algorithms chosen for the PCR even if the

calling software is unable to implement the hash algorithm.

NOTE 1 There is continued support for software hashing of events with TPM2_PCR_Extend().

To support recording of an Event that is larger than the TPM input buffer, the caller may use the

command sequence described in clause 1.

Change to a PCR requires authorization. The authorization may be with either an authorization value or

an authorization policy. The platform-specific specifications determine which PCR may be controlled by

policy. All other PCR are controlled by authorization.

If a PCR may be associated with a policy, then the algorithm ID of that policy determines whether the

policy is to be applied. If the algorithm ID is not TPM_ALG_NULL, then the policy digest associated with

the PCR must match the policySession→policyDigest in a policy session. If the algorithm ID is

TPM_ALG_NULL, then no policy is present and the authorization requires an EmptyAuth.

If a platform-specific specification indicates that PCR are grouped, then all the PCR in the group use the

same authorization policy or authorization value.

pcrUpdateCounter counter will be incremented on the successful completion of any command that

modifies (Extends or resets) a PCR unless the platform-specific specification explicitly excludes the PCR

from being counted.

NOTE 2 If a command causes PCR in multiple banks to change, the PCR Update Counter m ust be
incremented once for each bank. The commands that extend PCR are: TPM2_PCR_Extend,
TPM2_PCR_Event, and TPM2_EventSequenceComplete.

If a command resets PCR in multiple banks, the PCR Update Counter must be incremented only
once. The commands that reset PCR are: TPM2_PCR_Reset, and TPM2_Startup.

A platform-specific specification may designate a set of PCR that are under control of the TCB. These

PCR may not be modified without the proper authorization. Updates of these PCR shall not cause the

PCR Update Counter to increment.

EXAMPLE Updates of the TCB PCR will not cause the PCR update counter to increment beca use these PCR
are changed at the whim of the TCB and may not represent the trust state of the platform.

Part 3: Commands Trusted Platform Module Library

Page 218 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

22.2 TPM2_PCR_Extend

 General Description

This command is used to cause an update to the indicated PCR. The digests parameter contains one or

more tagged digest values identified by an algorithm ID. For each digest, the PCR associated with

pcrHandle is Extended into the bank identified by the tag (hashAlg).

EXAMPLE A SHA1 digest would be Extended into the SHA1 bank and a SHA256 digest would be Extended into
the SHA256 bank.

For each list entry, the TPM will check to see if pcrNum is implemented for that algorithm. If so, the TPM

shall perform the following operation:

 PCR.digestnew [pcrNum][alg] ≔ Halg(PCR.digestold [pcrNum][alg] || data[alg].buffer)) (6)

where

Halg() hash function using the hash algorithm associated with the PCR

instance

PCR.digest the digest value in a PCR

pcrNum the PCR numeric selector (pcrHandle)

alg the PCR algorithm selector for the digest

data[alg].buffer the bank-specific data to be extended

If no digest value is specified for a bank, then the PCR in that bank is not modified.

NOTE 1 This allows consistent operation of the digests list for all of the Event recording commands.

If a digest is present and the PCR in that bank is not implemented, the digest value is not used.

NOTE 2 If the caller includes digests for algorithms that are not implemented, then the TPM will fail the call
because the unmarshalling of digests will fail. Each of the entries in the list is a TPMT_HA, which is
a hash algorithm followed by a digest. If the algorithm is not implemented, unmarshalling of the
hashAlg will fail and the TPM will return TPM_RC_HASH.

If the TPM unmarshals the hashAlg of a list entry and the unmarshaled value is not a hash algorithm

implemented on the TPM, the TPM shall return TPM_RC_HASH.

The pcrHandle parameter is allowed to reference TPM_RH_NULL. If so, the input parameters are

processed but no action is taken by the TPM. This permits the caller to probe for implemented hash

algorithms as an alternative to TPM2_GetCapability.

NOTE 3 This command allows a list of digests so that PCR in all banks may be updated in a single
command. While the semantics of this command allow multiple extends to a single PCR bank, this is
not the preferred use and the limit on the number of entries in the list make this use somewhat
impractical.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 219

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 110 — TPM2_PCR_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Extend {NV}

TPMI_DH_PCR+ @pcrHandle

handle of the PCR

Auth Handle: 1

Auth Role: USER

TPML_DIGEST_VALUES digests list of tagged digest values to be extended

Table 111 — TPM2_PCR_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

Part 3: Commands Trusted Platform Module Library

Page 220 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Extend_fp.h"

3 #if CC_PCR_Extend // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR
referenced by pcrHandle

4 TPM_RC

5 TPM2_PCR_Extend(

6 PCR_Extend_In *in // IN: input parameter list

7)

8 {

9 UINT32 i;

10

11 // Input Validation

12

13 // NOTE: This function assumes that the unmarshaling function for 'digests' will

14 // have validated that all of the indicated hash algorithms are valid. If the

15 // hash algorithms are correct, the unmarshaling code will unmarshal a digest

16 // of the size indicated by the hash algorithm. If the overall size is not

17 // consistent, the unmarshaling code will run out of input data or have input

18 // data left over. In either case, it will cause an unmarshaling error and this

19 // function will not be called.

20

21 // For NULL handle, do nothing and return success

22 if(in->pcrHandle == TPM_RH_NULL)

23 return TPM_RC_SUCCESS;

24

25 // Check if the extend operation is allowed by the current command locality

26 if(!PCRIsExtendAllowed(in->pcrHandle))

27 return TPM_RC_LOCALITY;

28

29 // If PCR is state saved and we need to update orderlyState, check NV

30 // availability

31 if(PCRIsStateSaved(in->pcrHandle))

32 RETURN_IF_ORDERLY;

33

34 // Internal Data Update

35

36 // Iterate input digest list to extend

37 for(i = 0; i < in->digests.count; i++)

38 {

39 PCRExtend(in->pcrHandle, in->digests.digests[i].hashAlg,

40 CryptHashGetDigestSize(in->digests.digests[i].hashAlg),

41 (BYTE *)&in->digests.digests[i].digest);

42 }

43

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_PCR_Extend

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 221

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22.3 TPM2_PCR_Event

 General Description

This command is used to cause an update to the indicated PCR.

The data in eventData is hashed using the hash algorithm associated with each bank in which the

indicated PCR has been allocated. After the data is hashed, the digests list is returned. If the pcrHandle

references an implemented PCR and not TPM_RH_NULL, the digests list is processed as in

TPM2_PCR_Extend().

A TPM shall support an Event.size of zero through 1,024 inclusive (Event.size is an octet count). An

Event.size of zero indicates that there is no data but the indicated operations will still occur,

EXAMPLE 1 If the command implements PCR[2] in a SHA1 bank and a SHA256 bank, then an extend to PCR[2]
will cause eventData to be hashed twice, once with SHA1 and once with SHA256. The SHA1 hash of
eventData will be Extended to PCR[2] in the SHA1 bank and the SHA256 hash of eventData will be
Extended to PCR[2] of the SHA256 bank.

On successful command completion, digests will contain the list of tagged digests of eventData that was

computed in preparation for extending the data into the PCR. At the option of the TPM, the list may

contain a digest for each bank, or it may only contain a digest for each bank in which pcrHandle is extant.

If pcrHandle is TPM_RH_NULL, the TPM may return either an empty list or a digest for each bank.

EXAMPLE 2 Assume a TPM that implements a SHA1 bank and a SHA256 bank and that PCR[22] is only
implemented in the SHA1 bank. If pcrHandle references PCR[22], then digests may contain either a
SHA1 and a SHA256 digest or just a SHA1 digest.

Part 3: Commands Trusted Platform Module Library

Page 222 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 112 — TPM2_PCR_Event Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Event {NV}

TPMI_DH_PCR+ @pcrHandle

Handle of the PCR

Auth Handle: 1

Auth Role: USER

TPM2B_EVENT eventData Event data in sized buffer

Table 113 — TPM2_PCR_Event Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPML_DIGEST_VALUES digests

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 223

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Event_fp.h"

3 #if CC_PCR_Event // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to extend the PCR
referenced by pcrHandle

4 TPM_RC

5 TPM2_PCR_Event(

6 PCR_Event_In *in, // IN: input parameter list

7 PCR_Event_Out *out // OUT: output parameter list

8)

9 {

10 HASH_STATE hashState;

11 UINT32 i;

12 UINT16 size;

13

14 // Input Validation

15

16 // If a PCR extend is required

17 if(in->pcrHandle != TPM_RH_NULL)

18 {

19 // If the PCR is not allow to extend, return error

20 if(!PCRIsExtendAllowed(in->pcrHandle))

21 return TPM_RC_LOCALITY;

22

23 // If PCR is state saved and we need to update orderlyState, check NV

24 // availability

25 if(PCRIsStateSaved(in->pcrHandle))

26 RETURN_IF_ORDERLY;

27 }

28

29 // Internal Data Update

30

31 out->digests.count = HASH_COUNT;

32

33 // Iterate supported PCR bank algorithms to extend

34 for(i = 0; i < HASH_COUNT; i++)

35 {

36 TPM_ALG_ID hash = CryptHashGetAlgByIndex(i);

37 out->digests.digests[i].hashAlg = hash;

38 size = CryptHashStart(&hashState, hash);

39 CryptDigestUpdate2B(&hashState, &in->eventData.b);

40 CryptHashEnd(&hashState, size,

41 (BYTE *)&out->digests.digests[i].digest);

42 if(in->pcrHandle != TPM_RH_NULL)

43 PCRExtend(in->pcrHandle, hash, size,

44 (BYTE *)&out->digests.digests[i].digest);

45 }

46

47 return TPM_RC_SUCCESS;

48 }

49 #endif // CC_PCR_Event

Part 3: Commands Trusted Platform Module Library

Page 224 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

22.4 TPM2_PCR_Read

 General Description

This command returns the values of all PCR specified in pcrSelectionIn.

The TPM will process the list of TPMS_PCR_SELECTION in pcrSelectionIn in order. Within each

TPMS_PCR_SELECTION, the TPM will process the bits in the pcrSelect array in ascending PCR order

(see TPM 2.0 Part 1, Selecting Multiple PCR). If a bit is SET, and the indicated PCR is present, then the

TPM will add the digest of the PCR to the list of values to be returned in pcrValues.

The TPM will continue processing bits until all have been processed or until pcrValues would be too large

to fit into the output buffer if additional values were added.

The returned pcrSelectionOut will have a bit SET in its pcrSelect structures for each value present in

pcrValues.

The current value of the PCR Update Counter is returned in pcrUpdateCounter.

The returned list may be empty if none of the selected PCR are implemented.

NOTE If no PCR are returned from a bank, the selector for the bank will be present in pcrSelectionOut.

No authorization is required to read a PCR and any implemented PCR may be read from any locality.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 225

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 114 — TPM2_PCR_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Read

TPML_PCR_SELECTION pcrSelectionIn The selection of PCR to read

Table 115 — TPM2_PCR_Read Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

UINT32 pcrUpdateCounter the current value of the PCR update counter

TPML_PCR_SELECTION pcrSelectionOut the PCR in the returned list

TPML_DIGEST pcrValues
the contents of the PCR indicated in pcrSelectOut->
pcrSelection[] as tagged digests

Part 3: Commands Trusted Platform Module Library

Page 226 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Read_fp.h"

3 #if CC_PCR_Read // Conditional expansion of this file

4 TPM_RC

5 TPM2_PCR_Read(

6 PCR_Read_In *in, // IN: input parameter list

7 PCR_Read_Out *out // OUT: output parameter list

8)

9 {

10 // Command Output

11

12 // Call PCR read function. input pcrSelectionIn parameter could be changed

13 // to reflect the actual PCR being returned

14 PCRRead(&in->pcrSelectionIn, &out->pcrValues, &out->pcrUpdateCounter);

15

16 out->pcrSelectionOut = in->pcrSelectionIn;

17

18 return TPM_RC_SUCCESS;

19 }

20 #endif // CC_PCR_Read

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 227

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22.5 TPM2_PCR_Allocate

 General Description

This command is used to set the desired PCR allocation of PCR and algorithms. This command requires

Platform Authorization.

The TPM will evaluate the request and, if sufficient memory is available for the requested allocation, the

TPM will store the allocation request for use during the next _TPM_Init operation. The PCR allocation in

place when this command is executed will be retained until the next _TPM_Init. If this command is

received multiple times before a _TPM_Init, each one overwrites the previous stored allocation.

This command will only change the allocations of banks that are listed in pcrAllocation.

EXAMPLE 1 If a TPM supports SHA1 and SHA256, then it maintains an allocation for two banks (one of which
could be empty). If pcrAllocation only has a selector for the SHA1 bank, then only the allocation of
the SHA1 bank will be changed and the SHA256 bank will remain unchanged. To change the
allocation of a TPM from 24 SHA1 PCR and no SHA256 PCR to 24 SHA256 PCR and no SHA1 PCR,
the pcrAllocation would have to have two selections: one for the empty SHA1 bank and one for the
SHA256 bank with 24 PCR.

If a bank is listed more than once, then the last selection in the pcrAllocation list is the one that the TPM

will attempt to allocate.

NOTE 1 This does not mean to imply that pcrAllocation.count can exceed HASH_COUNT, the number of
digests implemented in the TPM.

EXAMPLE 2 If HASH_COUNT is 2, pcrAllocation can specify SHA-256 twice, and the second one is used.
However, if SHA_256 is specified three times, the unmarshaling may fail and the TPM may return an
error.

This command shall not allocate more PCR in any bank than there are PCR attribute definitions. The

PCR attribute definitions indicate how a PCR is to be managed – if it is resettable, the locality for update,

etc. In the response to this command, the TPM returns the maximum number of PCR allowed for any

bank.

When PCR are allocated, if DRTM_PCR is defined, the resulting allocation must have at least one bank

with the D-RTM PCR allocated. If HCRTM_PCR is defined, the resulting allocation must have at least one

bank with the HCRTM_PCR allocated. If not, the TPM returns TPM_RC_PCR.

The TPM may return TPM_RC_SUCCESS even though the request fails. This is to allow the TPM to

return information about the size needed for the requested allocation and the size available. If the

sizeNeeded parameter in the return is less than or equal to the sizeAvailable parameter, then the

allocationSuccess parameter will be YES. Alternatively, if the request fails, The TPM may return

TPM_RC_NO_RESULT.

NOTE 2 An example for this type of failure is a TPM that can only support one bank at a time and cannot
support arbitrary distribution of PCR among banks.

After this command, TPM2_Shutdown() is only allowed to have a startupType equal to TPM_SU_CLEAR

until after the next _TPM_Init.

NOTE 3 Even if this command does not cause the PCR allocation to change, the TPM cannot have its state
saved. This is done in order to simplify the implementation. There is no need to optimize this
command as it is not expected to be used more than once in the lifetime of the TPM (it can be used
any number of times but there is no justification for optimization).

Part 3: Commands Trusted Platform Module Library

Page 228 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 116 — TPM2_PCR_Allocate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Allocate {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPML_PCR_SELECTION pcrAllocation the requested allocation

Table 117 — TPM2_PCR_Allocate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO allocationSuccess YES if the allocation succeeded

UINT32 maxPCR maximum number of PCR that may be in a bank

UINT32 sizeNeeded number of octets required to satisfy the request

UINT32 sizeAvailable
Number of octets available. Computed before the
allocation.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 229

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Allocate_fp.h"

3 #if CC_PCR_Allocate // Conditional expansion of this file

Error Returns Meaning

TPM_RC_PCR the allocation did not have required PCR

TPM_RC_NV_UNAVAILABLE NV is not accessible

TPM_RC_NV_RATE NV is in a rate-limiting mode

4 TPM_RC

5 TPM2_PCR_Allocate(

6 PCR_Allocate_In *in, // IN: input parameter list

7 PCR_Allocate_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result;

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point.

15 // Note: These codes are not listed in the return values above because it is

16 // an implementation choice to check in this routine rather than in a common

17 // function that is called before these actions are called. These return values

18 // are described in the Response Code section of Part 3.

19 RETURN_IF_NV_IS_NOT_AVAILABLE;

20

21 // Command Output

22

23 // Call PCR Allocation function.

24 result = PCRAllocate(&in->pcrAllocation, &out->maxPCR,

25 &out->sizeNeeded, &out->sizeAvailable);

26 if(result == TPM_RC_PCR)

27 return result;

28

29 //

30 out->allocationSuccess = (result == TPM_RC_SUCCESS);

31

32 // if re-configuration succeeds, set the flag to indicate PCR configuration is

33 // going to be changed in next boot

34 if(out->allocationSuccess == YES)

35 g_pcrReConfig = TRUE;

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PCR_Allocate

Part 3: Commands Trusted Platform Module Library

Page 230 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

22.6 TPM2_PCR_SetAuthPolicy

 General Description

This command is used to associate a policy with a PCR or group of PCR. The policy determines the

conditions under which a PCR may be extended or reset.

A policy may only be associated with a PCR that has been defined by a platform-specific specification as

allowing a policy. If the TPM implementation does not allow a policy for pcrNum, the TPM shall return

TPM_RC_VALUE.

A platform-specific specification may group PCR so that they share a common policy. In such case, a

pcrNum that selects any of the PCR in the group will change the policy for all PCR in the group.

The policy setting is persistent and may only be changed by TPM2_PCR_SetAuthPolicy() or by

TPM2_ChangePPS().

Before this command is first executed on a TPM or after TPM2_ChangePPS(), the access control on the

PCR will be set to the default value defined in the platform-specific specification.

NOTE 1 It is expected that the typical default will be with the policy hash set to TPM_ALG_NULL and an
Empty Buffer for the authPolicy value. This will allow an EmptyAuth to be used as the authorization
value.

If the size of the data buffer in authPolicy is not the size of a digest produced by hashAlg, the TPM shall

return TPM_RC_SIZE.

NOTE 2 If hashAlg is TPM_ALG_NULL, then the size is required to be zero.

This command requires platformAuth/platformPolicy.

NOTE 3 If the PCR is in multiple policy sets, the policy will be changed in only one set. The set that is
changed will be implementation dependent.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 231

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 118 — TPM2_PCR_SetAuthPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthPolicy {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy the desired authPolicy

TPMI_ALG_HASH+ hashAlg the hash algorithm of the policy

TPMI_DH_PCR pcrNum the PCR for which the policy is to be set

Table 119 — TPM2_PCR_SetAuthPolicy Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 232 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_SetAuthPolicy_fp.h"

3 #if CC_PCR_SetAuthPolicy // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SIZE size of authPolicy is not the size of a digest produced by policyDigest

TPM_RC_VALUE PCR referenced by pcrNum is not a member of a PCR policy group

4 TPM_RC

5 TPM2_PCR_SetAuthPolicy(

6 PCR_SetAuthPolicy_In *in // IN: input parameter list

7)

8 {

9 UINT32 groupIndex;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 RETURN_IF_NV_IS_NOT_AVAILABLE;

15

16 // Input Validation:

17

18 // Check the authPolicy consistent with hash algorithm

19 if(in->authPolicy.t.size != CryptHashGetDigestSize(in->hashAlg))

20 return TPM_RCS_SIZE + RC_PCR_SetAuthPolicy_authPolicy;

21

22 // If PCR does not belong to a policy group, return TPM_RC_VALUE

23 if(!PCRBelongsPolicyGroup(in->pcrNum, &groupIndex))

24 return TPM_RCS_VALUE + RC_PCR_SetAuthPolicy_pcrNum;

25

26 // Internal Data Update

27

28 // Set PCR policy

29 gp.pcrPolicies.hashAlg[groupIndex] = in->hashAlg;

30 gp.pcrPolicies.policy[groupIndex] = in->authPolicy;

31

32 // Save new policy to NV

33 NV_SYNC_PERSISTENT(pcrPolicies);

34

35 return TPM_RC_SUCCESS;

36 }

37 #endif // CC_PCR_SetAuthPolicy

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 233

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22.7 TPM2_PCR_SetAuthValue

 General Description

This command changes the authValue of a PCR or group of PCR.

An authValue may only be associated with a PCR that has been defined by a platform-specific

specification as allowing an authorization value. If the TPM implementation does not allow an

authorization for pcrNum, the TPM shall return TPM_RC_VALUE. A platform-specific specification may

group PCR so that they share a common authorization value. In such case, a pcrNum that selects any of

the PCR in the group will change the authValue value for all PCR in the group.

The authorization setting is set to EmptyAuth on each STARTUP(CLEAR) or by TPM2_Clear(). The

authorization setting is preserved by SHUTDOWN(STATE).

Part 3: Commands Trusted Platform Module Library

Page 234 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 120 — TPM2_PCR_SetAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_SetAuthValue

TPMI_DH_PCR @pcrHandle

handle for a PCR that may have an authorization value
set

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST auth the desired authorization value

Table 121 — TPM2_PCR_SetAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 235

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_SetAuthValue_fp.h"

3 #if CC_PCR_SetAuthValue // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE PCR referenced by pcrHandle is not a member of a PCR
authorization group

4 TPM_RC

5 TPM2_PCR_SetAuthValue(

6 PCR_SetAuthValue_In *in // IN: input parameter list

7)

8 {

9 UINT32 groupIndex;

10 // Input Validation:

11

12 // If PCR does not belong to an auth group, return TPM_RC_VALUE

13 if(!PCRBelongsAuthGroup(in->pcrHandle, &groupIndex))

14 return TPM_RC_VALUE;

15

16 // The command may cause the orderlyState to be cleared due to the update of

17 // state clear data. If this is the case, Check if NV is available.

18 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

19 // this point

20 RETURN_IF_ORDERLY;

21

22 // Internal Data Update

23

24 // Set PCR authValue

25 MemoryRemoveTrailingZeros(&in->auth);

26 gc.pcrAuthValues.auth[groupIndex] = in->auth;

27

28 return TPM_RC_SUCCESS;

29 }

30 #endif // CC_PCR_SetAuthValue

Part 3: Commands Trusted Platform Module Library

Page 236 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

22.8 TPM2_PCR_Reset

 General Description

If the attribute of a PCR allows the PCR to be reset and proper authorization is provided, then this

command may be used to set the PCR in all banks to zero. The attributes of the PCR may restrict the

locality that can perform the reset operation.

NOTE 1 The definition of TPMI_DH_PCR in TPM 2.0 Part 2 indicates that if pcrHandle is out of the allowed
range for PCR, then the appropriate return value is TPM_RC_VALUE.

If pcrHandle references a PCR that cannot be reset, the TPM shall return TPM_RC_LOCALITY.

NOTE 2 TPM_RC_LOCALITY is returned because the reset attributes are defined on a per-locality basis.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 237

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 122 — TPM2_PCR_Reset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PCR_Reset {NV}

TPMI_DH_PCR @pcrHandle

the PCR to reset

Auth Index: 1

Auth Role: USER

Table 123 — TPM2_PCR_Reset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 238 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PCR_Reset_fp.h"

3 #if CC_PCR_Reset // Conditional expansion of this file

Error Returns Meaning

TPM_RC_LOCALITY current command locality is not allowed to reset the PCR referenced
by pcrHandle

4 TPM_RC

5 TPM2_PCR_Reset(

6 PCR_Reset_In *in // IN: input parameter list

7)

8 {

9 // Input Validation

10

11 // Check if the reset operation is allowed by the current command locality

12 if(!PCRIsResetAllowed(in->pcrHandle))

13 return TPM_RC_LOCALITY;

14

15 // If PCR is state saved and we need to update orderlyState, check NV

16 // availability

17 if(PCRIsStateSaved(in->pcrHandle))

18 RETURN_IF_ORDERLY;

19

20 // Internal Data Update

21

22 // Reset selected PCR in all banks to 0

23 PCRSetValue(in->pcrHandle, 0);

24

25 // Indicate that the PCR changed so that pcrCounter will be incremented if

26 // necessary.

27 PCRChanged(in->pcrHandle);

28

29 return TPM_RC_SUCCESS;

30 }

31 #endif // CC_PCR_Reset

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 239

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22.9 _TPM_Hash_Start

 Description

This indication from the TPM interface indicates the start of an H-CRTM measurement sequence. On

receipt of this indication, the TPM will initialize an H-CRTM Event Sequence context.

If no object memory is available for creation of the sequence context, the TPM will flush the context of an

object so that creation of the sequence context will always succeed.

A platform-specific specification may allow this indication before TPM2_Startup().

NOTE If this indication occurs after TPM2_Startup(), it is the responsibility of software to ensure that an
object context slot is available or to deal with the consequences of having the TPM sel ect an
arbitrary object to be flushed. If this indication occurs before TPM2_Startup() then all context slots
are available.

Part 3: Commands Trusted Platform Module Library

Page 240 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

This function is called to process a _TPM_Hash_Start() indication.

2 LIB_EXPORT void

3 _TPM_Hash_Start(

4 void

5)

6 {

7 TPM_RC result;

8 TPMI_DH_OBJECT handle;

9

10 // If a DRTM sequence object exists, free it up

11 if(g_DRTMHandle != TPM_RH_UNASSIGNED)

12 {

13 FlushObject(g_DRTMHandle);

14 g_DRTMHandle = TPM_RH_UNASSIGNED;

15 }

16

17 // Create an event sequence object and store the handle in global

18 // g_DRTMHandle. A TPM_RC_OBJECT_MEMORY error may be returned at this point

19 // The NULL value for the first parameter will cause the sequence structure to

20 // be allocated without being set as present. This keeps the sequence from

21 // being left behind if the sequence is terminated early.

22 result = ObjectCreateEventSequence(NULL, &g_DRTMHandle);

23

24 // If a free slot was not available, then free up a slot.

25 if(result != TPM_RC_SUCCESS)

26 {

27 // An implementation does not need to have a fixed relationship between

28 // slot numbers and handle numbers. To handle the general case, scan for

29 // a handle that is assigned and free it for the DRTM sequence.

30 // In the reference implementation, the relationship between handles and

31 // slots is fixed. So, if the call to ObjectCreateEvenSequence()

32 // failed indicating that all slots are occupied, then the first handle we

33 // are going to check (TRANSIENT_FIRST) will be occupied. It will be freed

34 // so that it can be assigned for use as the DRTM sequence object.

35 for(handle = TRANSIENT_FIRST; handle < TRANSIENT_LAST; handle++)

36 {

37 // try to flush the first object

38 if(IsObjectPresent(handle))

39 break;

40 }

41 // If the first call to find a slot fails but none of the slots is occupied

42 // then there's a big problem

43 pAssert(handle < TRANSIENT_LAST);

44

45 // Free the slot

46 FlushObject(handle);

47

48 // Try to create an event sequence object again. This time, we must

49 // succeed.

50 result = ObjectCreateEventSequence(NULL, &g_DRTMHandle);

51 if(result != TPM_RC_SUCCESS)

52 FAIL(FATAL_ERROR_INTERNAL);

53 }

54

55 return;

56 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 241

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22.10 _TPM_Hash_Data

 Description

This indication from the TPM interface indicates arrival of one or more octets of data that are to be

included in the H-CRTM Event Sequence sequence context created by the _TPM_Hash_Start indication.

The context holds data for each hash algorithm for each PCR bank implemented on the TPM.

If no H-CRTM Event Sequence context exists, this indication is discarded and no other action is

performed.

Part 3: Commands Trusted Platform Module Library

Page 242 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

This function is called to process a _TPM_Hash_Data() indication.

2 LIB_EXPORT void

3 _TPM_Hash_Data(

4 uint32_t dataSize, // IN: size of data to be extend

5 unsigned char *data // IN: data buffer

6)

7 {

8 UINT32 i;

9 HASH_OBJECT *hashObject;

10 TPMI_DH_PCR pcrHandle = TPMIsStarted()

11 ? PCR_FIRST + DRTM_PCR : PCR_FIRST + HCRTM_PCR;

12

13 // If there is no DRTM sequence object, then _TPM_Hash_Start

14 // was not called so this function returns without doing

15 // anything.

16 if(g_DRTMHandle == TPM_RH_UNASSIGNED)

17 return;

18

19 hashObject = (HASH_OBJECT *)HandleToObject(g_DRTMHandle);

20 pAssert(hashObject->attributes.eventSeq);

21

22 // For each of the implemented hash algorithms, update the digest with the

23 // data provided.

24 for(i = 0; i < HASH_COUNT; i++)

25 {

26 // make sure that the PCR is implemented for this algorithm

27 if(PcrIsAllocated(pcrHandle,

28 hashObject->state.hashState[i].hashAlg))

29 // Update sequence object

30 CryptDigestUpdate(&hashObject->state.hashState[i], dataSize, data);

31 }

32

33 return;

34 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 243

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

22.11 _TPM_Hash_End

 Description

This indication from the TPM interface indicates the end of the H-CRTM measurement. This indication is

discarded and no other action performed if the TPM does not contain an H-CRTM Event Sequence

context.

NOTE 1 An H-CRTM Event Sequence context is created by _TPM_Hash_Start().

If the H-CRTM Event Sequence occurs after TPM2_Startup(), the TPM will set all of the PCR designated

in the platform-specific specifications as resettable by this event to the value indicated in the platform

specific specification and increment restartCount. The TPM will then Extend the Event Sequence

digest/digests into the designated D-RTM PCR (PCR[17]).

 PCR[17][hashAlg] ≔ HhashAlg (initial_value || HhashAlg (hash_data)) (7)

where

hashAlg hash algorithm associated with a bank of PCR

initial_value initialization value specified in the platform-specific specification

(should be 0…0)

hash_data all the octets of data received in _TPM_Hash_Data indications

A _TPM_Hash_End indication that occurs after TPM2_Startup() will increment pcrUpdateCounter unless

a platform-specific specification excludes modifications of PCR[DRTM] from causing an increment.

A platform-specific specification may allow an H-CRTM Event Sequence before TPM2_Startup(). If so,

_TPM_Hash_End will complete the digest, initialize PCR[0] with a digest-size value of 4, and then extend

the H-CRTM Event Sequence data into PCR[0].

 PCR[0][hashAlg] ≔ HhashAlg (0…04 || HhashAlg (hash_data)) (8)

NOTE 2 The entire sequence of _TPM_Hash_Start, _TPM_Hash_Data, and _TPM_Hash_End are required to
complete before TPM2_Startup() or the sequence will have no effect on the TPM.

NOTE 3 PCR[0] does not need to be updated according to (8) until the end of TPM2_Startup().

Part 3: Commands Trusted Platform Module Library

Page 244 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

This function is called to process a _TPM_Hash_End() indication.

2 LIB_EXPORT void

3 _TPM_Hash_End(

4 void

5)

6 {

7 UINT32 i;

8 TPM2B_DIGEST digest;

9 HASH_OBJECT *hashObject;

10 TPMI_DH_PCR pcrHandle;

11

12 // If the DRTM handle is not being used, then either _TPM_Hash_Start has not

13 // been called, _TPM_Hash_End was previously called, or some other command

14 // was executed and the sequence was aborted.

15 if(g_DRTMHandle == TPM_RH_UNASSIGNED)

16 return;

17

18 // Get DRTM sequence object

19 hashObject = (HASH_OBJECT *)HandleToObject(g_DRTMHandle);

20

21 // Is this _TPM_Hash_End after Startup or before

22 if(TPMIsStarted())

23 {

24 // After

25

26 // Reset the DRTM PCR

27 PCRResetDynamics();

28

29 // Extend the DRTM_PCR.

30 pcrHandle = PCR_FIRST + DRTM_PCR;

31

32 // DRTM sequence increments restartCount

33 gr.restartCount++;

34 }

35 else

36 {

37 pcrHandle = PCR_FIRST + HCRTM_PCR;

38 g_DrtmPreStartup = TRUE;

39 }

40

41 // Complete hash and extend PCR, or if this is an HCRTM, complete

42 // the hash, reset the H-CRTM register (PCR[0]) to 0...04, and then

43 // extend the H-CRTM data

44 for(i = 0; i < HASH_COUNT; i++)

45 {

46 TPMI_ALG_HASH hash = CryptHashGetAlgByIndex(i);

47 // make sure that the PCR is implemented for this algorithm

48 if(PcrIsAllocated(pcrHandle,

49 hashObject->state.hashState[i].hashAlg))

50 {

51 // Complete hash

52 digest.t.size = CryptHashGetDigestSize(hash);

53 CryptHashEnd2B(&hashObject->state.hashState[i], &digest.b);

54

55 PcrDrtm(pcrHandle, hash, &digest);

56 }

57 }

58

59 // Flush sequence object.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 245

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

60 FlushObject(g_DRTMHandle);

61

62 g_DRTMHandle = TPM_RH_UNASSIGNED;

63

64 return;

65 }

Part 3: Commands Trusted Platform Module Library

Page 246 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

23 Enhanced Authorization (EA) Commands

23.1 Introduction

The commands in this clause 1 are used for policy evaluation. When successful, each command will

update the policySession→policyDigest in a policy session context in order to establish that the

authorizations required to use an object have been provided. Many of the commands will also modify

other parts of a policy context so that the caller may constrain the scope of the authorization that is

provided.

NOTE 1 Many of the terms used in this clause are described in detail in TPM 2.0 Part 1 and are not redefined
in this clause.

The policySession parameter of the command is the handle of the policy session context to be modified

by the command.

If the policySession parameter indicates a trial policy session, then the policySession→policyDigest will

be updated and the indicated validations are not performed. However, any authorizations required to

perform the policy command will be checked and dictionary attack logic invoked as necessary.

NOTE 2 If software is used to create policies, no authorization values are used. For example,
TPM_PolicySecret requires an authorization in a trial policy session, but not in a policy calculation
outside the TPM.

NOTE 3 A policy session is set to a trial policy by TPM2_StartAuthSession(sessionType = TPM_SE_TRIAL).

NOTE 4 Unless there is an unmarshaling error in the parameters of the command, these commands will
return TPM_RC_SUCCESS when policySession references a trial session.

NOTE 5 Policy context other than the policySession→policyDigest may be updated for a trial policy but it is
not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 247

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.2 Signed Authorization Actions

 Introduction

The TPM2_PolicySigned, TPM_PolicySecret, and TPM2_PolicyTicket commands use many of the same

functions. This clause consolidates those functions to simplify the document and to ensure uniformity of

the operations.

 Policy Parameter Checks

These parameter checks will be performed when indicated in the description of each of the commands:

 nonceTPM – If this parameter is not the Empty Buffer, and it does not match

policySession→nonceTPM, then the TPM shall return TPM_RC_VALUE.

 expiration – If this parameter is not zero, then:

1) if nonceTPM is not an Empty Buffer, then the absolute value of expiration is converted to

milliseconds and added to policySession→startTime to create the timeout value and proceed to

c).

2) If nonceTPM is an Empty Buffer, then the absolute value of expiration is converted to

milliseconds and used as the timeout value and proceed to c).

However, timeout can only be changed to a smaller value.

 timeout – If timeout is less than the current value of Time, or the current timeEpoch is not the same

as policySession→timeEpoch, the TPM shall return TPM_RC_EXPIRED

 cpHashA – If this parameter is not an Empty Buffer

NOTE 2 cpHashA is the hash of the command to be executed using this policy session in the
authorization. The algorithm used to compute this hash is required to be the algorithm of the
policy session.

1) the TPM shall return TPM_RC_CPHASH if policySession→cpHash is set and the contents of

policySession→cpHash are not the same as cpHashA; or

NOTE 3 cpHash is the expected cpHash value held in the policy session context.

2) the TPM shall return TPM_RC_SIZE if cpHashA is not the same size as

policySession→policyDigest.

NOTE 4 policySession→policyDigest is the size of the digest produced by the hash algorithm used
to compute policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 248 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Policy Digest Update Function (PolicyUpdate())

This is the update process for policySession→policyDigest used by TPM2_PolicySigned(),

TPM2_PolicySecret(), TPM2_PolicyTicket(), and TPM2_PolicyAuthorize(). The function prototype for the

update function is:

 PolicyUpdate(commandCode, arg2, arg3) (9)

where

arg2 a TPM2B_NAME

arg3 a TPM2B

These parameters are used to update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || commandCode || arg2.name) (10)

followed by

 policyDigestnew+1 ≔ HpolicyAlg(policyDigestnew || arg3.buffer) (11)

where

HpolicyAlg() the hash algorithm chosen when the policy session was started

NOTE 1 If arg3 is a TPM2B_NAME, then arg3.buffer will actually be an arg3.name.

NOTE 2 The arg2.size and arg3.size fields are not included in the hashes.

NOTE 3 PolicyUpdate() uses two hash operations because arg2 and arg3 are variable-sized and the
concatenation of arg2 and arg3 in a single hash could produce the same digest even though arg2
and arg3 are different. For example, arg2 = 1 2 3 and arg3 = 4 5 6 would produce the same digest
as arg2 = 1 2 and arg3 = 3 4 5 6. Processing of the arguments separately in different Extend
operation ensures that the digest produced by PolicyUpdate() will be different if arg2 and arg3 are
different.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 249

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Policy Context Updates

When a policy command modifies some part of the policy session context other than the

policySession→policyDigest, the following rules apply.

• cpHash – this parameter may only be changed if it contains its initialization value (an Empty Buffer).
If cpHash is not the Empty Buffer when a policy command attempts to update it, the TPM will return
an error (TPM_RC_CPHASH) if the current and update values are not the same.

• timeOut – this parameter may only be changed to a smaller value. If a command attempts to update
this value with a larger value (longer into the future), the TPM will discard the update value. This is
not an error condition.

• commandCode – once set by a policy command, this value may not be changed except by
TPM2_PolicyRestart(). If a policy command tries to change this to a different value, an error is
returned (TPM_RC_POLICY_CC).

• pcrUpdateCounter – this parameter is updated by TPM2_PolicyPCR(). This value may only be set
once during a policy. Each time TPM2_PolicyPCR() executes, it checks to see if
policySession→pcrUpdateCounter has its default state, indicating that this is the first
TPM2_PolicyPCR(). If it has its default value, then policySession→pcrUpdateCounter is set to the
current value of pcrUpdateCounter. If policySession→pcrUpdateCounter does not have its default
value and its value is not the same as pcrUpdateCounter, the TPM shall return
TPM_RC_PCR_CHANGED.

NOTE 1 If this parameter and pcrUpdateCounter are not the same, it indicates that PCR have changed
since checked by the previous TPM2_PolicyPCR(). Since they have changed, the previous PCR
validation is no longer valid.

• commandLocality – this parameter is the logical AND of all enabled localities. All localities are
enabled for a policy when the policy session is created. TPM2_PolicyLocalities() selectively disables
localities. Once use of a policy for a locality has been disabled, it cannot be enabled except by
TPM2_PolicyRestart().

• isPPRequired – once SET, this parameter may only be CLEARed by TPM2_PolicyRestart().

• isAuthValueNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyPassword()
or TPM2_PolicyRestart().

• isPasswordNeeded – once SET, this parameter may only be CLEARed by TPM2_PolicyAuthValue()
or TPM2_PolicyRestart(),

NOTE 2 Both TPM2_PolicyAuthValue() and TPM2_PolicyPassword() change policySession→policyDigest in
the same way. The different commands simply indicate to the TPM the format used for the authValue
(HMAC or clear text). Both commands could be in the same policy. The final instance of these
commands determines the format.

Part 3: Commands Trusted Platform Module Library

Page 250 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Policy Ticket Creation

For TPM2_PolicySigned() or TPM2_PolicySecret(), if the caller specified a negative value for expiration,

then the TPM will return a ticket that includes a value indicating when the authorization expires.

Otherwise, the TPM will return a NULL Ticket.

NOTE 1 If the authHandle in TPM2_PolicySecret() references a PIN Pass Index, then the command may
succeed but a NULL Ticket will be returned.

The required computation for the digest in the authorization ticket is:

HMACcontextAlg(proof, (TPM_ST_AUTH_xxx || cpHash || policyRef || authName
|| timeout || [timeEpoch] || [resetCount])) (12)

where

HMACcontextAlg() an HMAC using the context integrity hash

proof a TPM secret value associated with the hierarchy of the object

associated with authName

TPM_ST_AUTH_xxx either TPM_ST_AUTH_SIGNED or TPM_ST_AUTH_SECRET;
used to ensure that the ticket is properly used

cpHash optional hash of the authorized command

policyRef optional reference to a policy value

authName Name of the object that signed the authorization

timeout implementation-specific value indicating when the authorization

expires

timeEpoch implementation-specific representation of the timeEpoch at the

time the ticket was created

NOTE 2 Not included if timeout is zero.

resetCount implementation-specific representation of the TPM’s

totalResetCount

NOTE 3 Not included it timeout is zero or if nonceTPM was include in the authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 251

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.3 TPM2_PolicySigned

 General Description

This command includes a signed authorization in a policy. The command ties the policy to a signing key

by including the Name of the signing key in the policyDigest

If policySession is a trial session, the TPM will not check the signature and will update

policySession→policyDigest as described in 23.2.3 as if a properly signed authorization was received, but

no ticket will be produced.

If policySession is not a trial session, the TPM will validate auth and only perform the update if it is a valid

signature over the fields of the command.

The authorizing entity will sign a digest of the authorization qualifiers: nonceTPM, expiration, cpHashA,

and policyRef. The digest is computed as:

 aHash ≔ HauthAlg(nonceTPM || expiration || cpHashA || policyRef) (13)

where

HauthAlg() the hash associated with the auth parameter of this command

NOTE 1 Each signature and key combination indicates the scheme and each scheme has an
associated hash.

nonceTPM the nonceTPM parameter from the TPM2_StartAuthSession()

response. If the authorization is not limited to this session, the
size of this value is zero.

expiration time limit on authorization set by authorizing object. This 32-bit

value is set to zero if the expiration time is not being set.

cpHashA digest of the command parameters for the command being

approved using the hash algorithm of the policy session. Set to
an Empty Digest if the authorization is not limited to a specific
command.

NOTE 3 This is not the cpHash of this TPM2_PolicySigned() command.

policyRef an opaque value determined by the authorizing entity. Set to the

Empty Buffer if no value is present.

NOTE 4 The nonceTPM, cpHashA, and policyRef qualifiers used to compute aHash use the TPM2B buffer
but do not prepend the size.

EXAMPLE The computation for an aHash if there are no restrictions is:

 aHash ≔ HauthAlg(00 00 00 0016)

 which is the hash of an expiration time of zero.

The aHash is signed by the key associated with a key whose handle is authObject. The signature and

signing parameters are combined to create the auth parameter.

The TPM will perform the parameter checks listed in 23.2.2

If the parameter checks succeed, the TPM will construct a test digest (tHash) over the provided

parameters using the same formulation as shown in equation (13) above.

If tHash does not match the digest of the signed aHash, then the authorization fails and the TPM shall

return TPM_RC_POLICY_FAIL and make no change to policySession→policyDigest.

Part 3: Commands Trusted Platform Module Library

Page 252 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

23.2.3).

 PolicyUpdate(TPM_CC_PolicySigned, authObject→Name, policyRef) (14)

authObject→Name is a TPM2B_NAME. policySession is updated as described in 23.2.4. The TPM will

optionally produce a ticket as described in 23.2.5.

Authorization to use authObject is not required.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 253

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 124 — TPM2_PolicySigned Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit, encrypt, or decrypt
session is present; otherwise,
TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySigned

TPMI_DH_OBJECT authObject
handle for a key that will validate the signature

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM
the policy nonce for the session

This can be the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This is not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

INT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

TPMT_SIGNATURE auth signed authorization (not optional)

Table 125 — TPM2_PolicySigned Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout

implementation-specific time value, used to indicate to
the TPM when the ticket expires

NOTE If policyTicket is a NULL Ticket, then this shall
be the Empty Buffer.

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero; this ticket will use the
TPMT_ST_AUTH_SIGNED structure tag. See 23.2.5

Part 3: Commands Trusted Platform Module Library

Page 254 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "Policy_spt_fp.h"

3 #include "PolicySigned_fp.h"

4 #if CC_PolicySigned // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH cpHash was previously set to a different value

TPM_RC_EXPIRED expiration indicates a time in the past or expiration is non-zero but no
nonceTPM is present

TPM_RC_NONCE nonceTPM is not the nonce associated with the policySession

TPM_RC_SCHEME the signing scheme of auth is not supported by the TPM

TPM_RC_SIGNATURE the signature is not genuine

TPM_RC_SIZE input cpHash has wrong size

5 TPM_RC

6 TPM2_PolicySigned(

7 PolicySigned_In *in, // IN: input parameter list

8 PolicySigned_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 SESSION *session;

13 TPM2B_NAME entityName;

14 TPM2B_DIGEST authHash;

15 HASH_STATE hashState;

16 UINT64 authTimeout = 0;

17 // Input Validation

18 // Set up local pointers

19 session = SessionGet(in->policySession); // the session structure

20

21 // Only do input validation if this is not a trial policy session

22 if(session->attributes.isTrialPolicy == CLEAR)

23 {

24 authTimeout = ComputeAuthTimeout(session, in->expiration, &in->nonceTPM);

25

26 result = PolicyParameterChecks(session, authTimeout,

27 &in->cpHashA, &in->nonceTPM,

28 RC_PolicySigned_nonceTPM,

29 RC_PolicySigned_cpHashA,

30 RC_PolicySigned_expiration);

31 if(result != TPM_RC_SUCCESS)

32 return result;

33 // Re-compute the digest being signed

34

35 // Start hash

36 authHash.t.size = CryptHashStart(&hashState,

37 CryptGetSignHashAlg(&in->auth));

38 // If there is no digest size, then we don't have a verification function

39 // for this algorithm (e.g. TPM_ALG_ECDAA) so indicate that it is a

40 // bad scheme.

41 if(authHash.t.size == 0)

42 return TPM_RCS_SCHEME + RC_PolicySigned_auth;

43

44 // nonceTPM

45 CryptDigestUpdate2B(&hashState, &in->nonceTPM.b);

46

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 255

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

47 // expiration

48 CryptDigestUpdateInt(&hashState, sizeof(UINT32), in->expiration);

49

50 // cpHashA

51 CryptDigestUpdate2B(&hashState, &in->cpHashA.b);

52

53 // policyRef

54 CryptDigestUpdate2B(&hashState, &in->policyRef.b);

55

56 // Complete digest

57 CryptHashEnd2B(&hashState, &authHash.b);

58

59 // Validate Signature. A TPM_RC_SCHEME, TPM_RC_HANDLE or TPM_RC_SIGNATURE

60 // error may be returned at this point

61 result = CryptValidateSignature(in->authObject, &authHash, &in->auth);

62 if(result != TPM_RC_SUCCESS)

63 return RcSafeAddToResult(result, RC_PolicySigned_auth);

64 }

65 // Internal Data Update

66 // Update policy with input policyRef and name of authorization key

67 // These values are updated even if the session is a trial session

68 PolicyContextUpdate(TPM_CC_PolicySigned,

69 EntityGetName(in->authObject, &entityName),

70 &in->policyRef,

71 &in->cpHashA, authTimeout, session);

72 // Command Output

73 // Create ticket and timeout buffer if in->expiration < 0 and this is not

74 // a trial session.

75 // NOTE: PolicyParameterChecks() makes sure that nonceTPM is present

76 // when expiration is non-zero.

77 if(in->expiration < 0

78 && session->attributes.isTrialPolicy == CLEAR)

79 {

80 BOOL expiresOnReset = (in->nonceTPM.t.size == 0);

81 // Compute policy ticket

82 authTimeout &= ~EXPIRATION_BIT;

83

84 TicketComputeAuth(TPM_ST_AUTH_SIGNED, EntityGetHierarchy(in->authObject),

85 authTimeout, expiresOnReset, &in->cpHashA, &in->policyRef,

86 &entityName, &out->policyTicket);

87 // Generate timeout buffer. The format of output timeout buffer is

88 // TPM-specific.

89 // Note: In this implementation, the timeout buffer value is computed after

90 // the ticket is produced so, when the ticket is checked, the expiration

91 // flag needs to be extracted before the ticket is checked.

92 // In the Windows compatible version, the least-significant bit of the

93 // timeout value is used as a flag to indicate if the authorization expires

94 // on reset. The flag is the MSb.

95 out->timeout.t.size = sizeof(authTimeout);

96 if(expiresOnReset)

97 authTimeout |= EXPIRATION_BIT;

98 UINT64_TO_BYTE_ARRAY(authTimeout, out->timeout.t.buffer);

99 }

100 else

101 {

102 // Generate a null ticket.

103 // timeout buffer is null

104 out->timeout.t.size = 0;

105

106 // authorization ticket is null

107 out->policyTicket.tag = TPM_ST_AUTH_SIGNED;

108 out->policyTicket.hierarchy = TPM_RH_NULL;

109 out->policyTicket.digest.t.size = 0;

110 }

111 return TPM_RC_SUCCESS;

112 }

Part 3: Commands Trusted Platform Module Library

Page 256 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

113 #endif // CC_PolicySigned

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 257

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.4 TPM2_PolicySecret

 General Description

This command includes a secret-based authorization to a policy. The caller proves knowledge of the

secret value using an authorization session using the authValue associated with authHandle. A password

session, an HMAC session, or a policy session containing TPM2_PolicyAuthValue() or

TPM2_PolicyPassword() will satisfy this requirement.

If a policy session is used and use of the authValue of authHandle is not required, the TPM will return

TPM_RC_MODE. That is, the session for authHandle must have either isAuthValueNeeded or

isPasswordNeeded SET.

The secret is the authValue of the entity whose handle is authHandle, which may be any TPM entity with

a handle and an associated authValue. This includes the reserved handles (for example, Platform,

Storage, and Endorsement), NV Indexes, and loaded objects. authEntity is the entity referenced by

authHandle. If authEntity references an Ordinary object, it must have userWithAuth SET.

NOTE 1 The userWithAuth requirement permits the implementation to use common authorization code.

If authEntity references a non-PIN Index. TPMA_NV_AUTHREAD is required to be SET in the Index. If

authEntity references an NV PIN index, TPMA_NV_WRITTEN is required to be SET and pinCount must

be less than pinLimit.

NOTE 2 The authorization value for a hierarchy cannot be used in this command if the hierarchy is disabled.

If the authorization check fails, then the normal dictionary attack logic is invoked.

If the authorization provided by the authorization session is valid, the command parameters are checked

as described in 23.2.2.

When all validations have succeeded, policySession→policyDigest is updated by PolicyUpdate() (see

23.2.3).

 PolicyUpdate(TPM_CC_PolicySecret, authEntity→Name, policyRef) (15)

authEntity→Name is a TPM2B_NAME. policySession is updated as described in 23.2.4. The TPM will

optionally produce a ticket as described in 23.2.5.

If the session is a trial session, policySession→policyDigest is updated if the authorization is valid.

NOTE 2 If an HMAC is used to convey the authorization, a separate session is needed for the authorization.
Because the HMAC in that authorization will include a nonce that prevents replay of the
authorization, the value of the nonceTPM parameter in this command is limited. It is retained mostly
to provide processing consistency with TPM2_PolicySigned().

Part 3: Commands Trusted Platform Module Library

Page 258 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 126 — TPM2_PolicySecret Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicySecret

TPMI_DH_ENTITY @authHandle

handle for an entity providing the authorization

Auth Index: 1

Auth Role: USER

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NONCE nonceTPM
the policy nonce for the session

This can be the Empty Buffer.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

This not the cpHash for this command but the cpHash
for the command to which this policy session will be
applied. If it is not limited, the parameter will be the
Empty Buffer.

TPM2B_NONCE policyRef

a reference to a policy relating to the authorization –
may be the Empty Buffer

Size is limited to be no larger than the nonce size
supported on the TPM.

INT32 expiration

time when authorization will expire, measured in
seconds from the time that nonceTPM was generated

If expiration is non-negative, a NULL Ticket is returned.
See 23.2.5.

Table 127 — TPM2_PolicySecret Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_TIMEOUT timeout
implementation-specific time value used to indicate to
the TPM when the ticket expires

TPMT_TK_AUTH policyTicket
produced if the command succeeds and expiration in
the command was non-zero (See 23.2.5). This ticket
will use the TPMT_ST_AUTH_SECRET structure tag

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 259

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicySecret_fp.h"

3 #if CC_PolicySecret // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

5 #include "NV_spt_fp.h"

Error Returns Meaning

TPM_RC_CPHASH cpHash for policy was previously set to a value that is not the same
as cpHashA

TPM_RC_EXPIRED expiration indicates a time in the past

TPM_RC_NONCE nonceTPM does not match the nonce associated with policySession

TPM_RC_SIZE cpHashA is not the size of a digest for the hash associated with
policySession

6 TPM_RC

7 TPM2_PolicySecret(

8 PolicySecret_In *in, // IN: input parameter list

9 PolicySecret_Out *out // OUT: output parameter list

10)

11 {

12 TPM_RC result;

13 SESSION *session;

14 TPM2B_NAME entityName;

15 UINT64 authTimeout = 0;

16 // Input Validation

17 // Get pointer to the session structure

18 session = SessionGet(in->policySession);

19

20 //Only do input validation if this is not a trial policy session

21 if(session->attributes.isTrialPolicy == CLEAR)

22 {

23 authTimeout = ComputeAuthTimeout(session, in->expiration, &in->nonceTPM);

24

25 result = PolicyParameterChecks(session, authTimeout,

26 &in->cpHashA, &in->nonceTPM,

27 RC_PolicySecret_nonceTPM,

28 RC_PolicySecret_cpHashA,

29 RC_PolicySecret_expiration);

30 if(result != TPM_RC_SUCCESS)

31 return result;

32 }

33 // Internal Data Update

34 // Update policy context with input policyRef and name of authorizing key

35 // This value is computed even for trial sessions. Possibly update the cpHash

36 PolicyContextUpdate(TPM_CC_PolicySecret,

37 EntityGetName(in->authHandle, &entityName), &in->policyRef,

38 &in->cpHashA, authTimeout, session);

39 // Command Output

40 // Create ticket and timeout buffer if in->expiration < 0 and this is not

41 // a trial session.

42 // NOTE: PolicyParameterChecks() makes sure that nonceTPM is present

43 // when expiration is non-zero.

44 if(in->expiration < 0

45 && session->attributes.isTrialPolicy == CLEAR

46 && !NvIsPinPassIndex(in->authHandle))

47 {

48 BOOL expiresOnReset = (in->nonceTPM.t.size == 0);

49 // Compute policy ticket

Part 3: Commands Trusted Platform Module Library

Page 260 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

50 authTimeout &= ~EXPIRATION_BIT;

51 TicketComputeAuth(TPM_ST_AUTH_SECRET, EntityGetHierarchy(in->authHandle),

52 authTimeout, expiresOnReset, &in->cpHashA, &in->policyRef,

53 &entityName, &out->policyTicket);

54 // Generate timeout buffer. The format of output timeout buffer is

55 // TPM-specific.

56 // Note: In this implementation, the timeout buffer value is computed after

57 // the ticket is produced so, when the ticket is checked, the expiration

58 // flag needs to be extracted before the ticket is checked.

59 out->timeout.t.size = sizeof(authTimeout);

60 // In the Windows compatible version, the least-significant bit of the

61 // timeout value is used as a flag to indicate if the authorization expires

62 // on reset. The flag is the MSb.

63 if(expiresOnReset)

64 authTimeout |= EXPIRATION_BIT;

65 UINT64_TO_BYTE_ARRAY(authTimeout, out->timeout.t.buffer);

66 }

67 else

68 {

69 // timeout buffer is null

70 out->timeout.t.size = 0;

71

72 // authorization ticket is null

73 out->policyTicket.tag = TPM_ST_AUTH_SECRET;

74 out->policyTicket.hierarchy = TPM_RH_NULL;

75 out->policyTicket.digest.t.size = 0;

76 }

77 return TPM_RC_SUCCESS;

78 }

79 #endif // CC_PolicySecret

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 261

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.5 TPM2_PolicyTicket

 General Description

This command is similar to TPM2_PolicySigned() except that it takes a ticket instead of a signed

authorization. The ticket represents a validated authorization that had an expiration time associated with

it.

The parameters of this command are checked as described in 23.2.2.

If the checks succeed, the TPM uses the timeout, cpHashA, policyRef, and authName to construct a

ticket to compare with the value in ticket. If these tickets match, then the TPM will create a TPM2B_NAME

(objectName) using authName and update the context of policySession by PolicyUpdate() (see 23.2.3).

 PolicyUpdate(commandCode, authName, policyRef) (16)

If the structure tag of ticket is TPM_ST_AUTH_SECRET, then commandCode will be

TPM_CC_PolicySecret. If the structure tag of ticket is TPM_ST_AUTH_SIGNED, then commandCode will

be TPM_CC_PolicySIgned.

policySession is updated as described in 23.2.4.

Part 3: Commands Trusted Platform Module Library

Page 262 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 128 — TPM2_PolicyTicket Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTicket

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_TIMEOUT timeout

time when authorization will expire

The contents are TPM specific. This shall be the value
returned when ticket was produced.

TPM2B_DIGEST cpHashA

digest of the command parameters to which this
authorization is limited

If it is not limited, the parameter will be the Empty
Buffer.

TPM2B_NONCE policyRef
reference to a qualifier for the policy – may be the
Empty Buffer

TPM2B_NAME authName name of the object that provided the authorization

TPMT_TK_AUTH ticket
an authorization ticket returned by the TPM in response
to a TPM2_PolicySigned() or TPM2_PolicySecret()

Table 129 — TPM2_PolicyTicket Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 263

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyTicket_fp.h"

3 #if CC_PolicyTicket // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_CPHASH policy's cpHash was previously set to a different value

TPM_RC_EXPIRED timeout value in the ticket is in the past and the ticket has expired

TPM_RC_SIZE timeout or cpHash has invalid size for the

TPM_RC_TICKET ticket is not valid

5 TPM_RC

6 TPM2_PolicyTicket(

7 PolicyTicket_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 UINT64 authTimeout;

13 TPMT_TK_AUTH ticketToCompare;

14 TPM_CC commandCode = TPM_CC_PolicySecret;

15 BOOL expiresOnReset;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // NOTE: A trial policy session is not allowed to use this command.

23 // A ticket is used in place of a previously given authorization. Since

24 // a trial policy doesn't actually authenticate, the validated

25 // ticket is not necessary and, in place of using a ticket, one

26 // should use the intended authorization for which the ticket

27 // would be a substitute.

28 if(session->attributes.isTrialPolicy)

29 return TPM_RCS_ATTRIBUTES + RC_PolicyTicket_policySession;

30 // Restore timeout data. The format of timeout buffer is TPM-specific.

31 // In this implementation, the most significant bit of the timeout value is

32 // used as the flag to indicate that the ticket expires on TPM Reset or

33 // TPM Restart. The flag has to be removed before the parameters and ticket

34 // are checked.

35 if(in->timeout.t.size != sizeof(UINT64))

36 return TPM_RCS_SIZE + RC_PolicyTicket_timeout;

37 authTimeout = BYTE_ARRAY_TO_UINT64(in->timeout.t.buffer);

38

39 // extract the flag

40 expiresOnReset = (authTimeout & EXPIRATION_BIT) != 0;

41 authTimeout &= ~EXPIRATION_BIT;

42

43 // Do the normal checks on the cpHashA and timeout values

44 result = PolicyParameterChecks(session, authTimeout,

45 &in->cpHashA,

46 NULL, // no nonce

47 0, // no bad nonce return

48 RC_PolicyTicket_cpHashA,

49 RC_PolicyTicket_timeout);

50 if(result != TPM_RC_SUCCESS)

51 return result;

Part 3: Commands Trusted Platform Module Library

Page 264 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

52 // Validate Ticket

53 // Re-generate policy ticket by input parameters

54 TicketComputeAuth(in->ticket.tag, in->ticket.hierarchy,

55 authTimeout, expiresOnReset, &in->cpHashA, &in->policyRef,

56 &in->authName, &ticketToCompare);

57 // Compare generated digest with input ticket digest

58 if(!MemoryEqual2B(&in->ticket.digest.b, &ticketToCompare.digest.b))

59 return TPM_RCS_TICKET + RC_PolicyTicket_ticket;

60

61 // Internal Data Update

62

63 // Is this ticket to take the place of a TPM2_PolicySigned() or

64 // a TPM2_PolicySecret()?

65 if(in->ticket.tag == TPM_ST_AUTH_SIGNED)

66 commandCode = TPM_CC_PolicySigned;

67 else if(in->ticket.tag == TPM_ST_AUTH_SECRET)

68 commandCode = TPM_CC_PolicySecret;

69 else

70 // There could only be two possible tag values. Any other value should

71 // be caught by the ticket validation process.

72 FAIL(FATAL_ERROR_INTERNAL);

73

74 // Update policy context

75 PolicyContextUpdate(commandCode, &in->authName, &in->policyRef,

76 &in->cpHashA, authTimeout, session);

77

78 return TPM_RC_SUCCESS;

79 }

80 #endif // CC_PolicyTicket

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 265

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.6 TPM2_PolicyOR

 General Description

This command allows options in authorizations without requiring that the TPM evaluate all of the options.

If a policy may be satisfied by different sets of conditions, the TPM need only evaluate one set that

satisfies the policy. This command will indicate that one of the required sets of conditions has been

satisfied.

PolicySession→policyDigest is compared against the list of provided values. If the current

policySession→policyDigest does not match any value in the list, the TPM shall return TPM_RC_VALUE.

Otherwise, the TPM will reset policySession→policyDigest to a Zero Digest. Then

policySession→policyDigest is extended by the concatenation of TPM_CC_PolicyOR and the

concatenation of all of the digests.

If policySession is a trial session, the TPM will assume that policySession→policyDigest matches one of

the list entries and compute the new value of policyDigest.

The algorithm for computing the new value for policyDigest of policySession is:

 Concatenate all the digest values in pHashList:

 digests ≔ pHashList.digests[1].buffer || … || pHashList.digests[n].buffer (17)

NOTE 1 The TPM will not return an error if the size of an entry is not the same as the size of the digest
of the policy. However, that entry cannot match policyDigest.

 Reset policyDigest to a Zero Digest.

 Extend the command code and the hashes computed in step a) above:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyOR || digests) (18)

NOTE 2 The computation in b) and c) above is equivalent to:

 policyDigestnew ≔ HpolicyAlg(0…0 || TPM_CC_PolicyOR || digests)

A TPM shall support a list with at least eight tagged digest values.

NOTE 3 If policies are to be portable between TPMs, then they should not use more than eight values.

Part 3: Commands Trusted Platform Module Library

Page 266 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 130 — TPM2_PolicyOR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyOR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPML_DIGEST pHashList the list of hashes to check for a match

Table 131 — TPM2_PolicyOR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 267

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyOR_fp.h"

3 #if CC_PolicyOR // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_VALUE no digest in pHashList matched the current value of policyDigest for
policySession

5 TPM_RC

6 TPM2_PolicyOR(

7 PolicyOR_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 UINT32 i;

12

13 // Input Validation and Update

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // Compare and Update Internal Session policy if match

19 for(i = 0; i < in->pHashList.count; i++)

20 {

21 if(session->attributes.isTrialPolicy == SET

22 || (MemoryEqual2B(&session->u2.policyDigest.b,

23 &in->pHashList.digests[i].b)))

24 {

25 // Found a match

26 HASH_STATE hashState;

27 TPM_CC commandCode = TPM_CC_PolicyOR;

28

29 // Start hash

30 session->u2.policyDigest.t.size

31 = CryptHashStart(&hashState, session->authHashAlg);

32 // Set policyDigest to 0 string and add it to hash

33 MemorySet(session->u2.policyDigest.t.buffer, 0,

34 session->u2.policyDigest.t.size);

35 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

36

37 // add command code

38 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

39

40 // Add each of the hashes in the list

41 for(i = 0; i < in->pHashList.count; i++)

42 {

43 // Extend policyDigest

44 CryptDigestUpdate2B(&hashState, &in->pHashList.digests[i].b);

45 }

46 // Complete digest

47 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

48

49 return TPM_RC_SUCCESS;

50 }

51 }

52 // None of the values in the list matched the current policyDigest

53 return TPM_RCS_VALUE + RC_PolicyOR_pHashList;

54 }

55 #endif // CC_PolicyOR

Part 3: Commands Trusted Platform Module Library

Page 268 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

23.7 TPM2_PolicyPCR

 General Description

This command is used to cause conditional gating of a policy based on PCR. This command together

with TPM2_PolicyOR() allows one group of authorizations to occur when PCR are in one state and a

different set of authorizations when the PCR are in a different state.

The TPM will modify the pcrs parameter so that bits that correspond to unimplemented PCR are CLEAR.

If policySession is not a trial policy session, the TPM will use the modified value of pcrs to select PCR

values to hash according to TPM 2.0 Part 1, Selecting Multiple PCR. The hash algorithm of the policy

session is used to compute a digest (digestTPM) of the selected PCR. If pcrDigest does not have a length

of zero, then it is compared to digestTPM; and if the values do not match, the TPM shall return

TPM_RC_VALUE and make no change to policySession→policyDigest. If the values match, or if the

length of pcrDigest is zero, then policySession→policyDigest is extended by:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || digestTPM) (19)

where

pcrs the pcrs parameter with bits corresponding to unimplemented

PCR set to 0

digestTPM the digest of the selected PCR using the hash algorithm of the

policy session

NOTE 1 If the caller provides the expected PCR value, the intention is that the policy evaluation stop at that
point if the PCR do not match. If the caller does not provide the expected PCR value, then the
validity of the settings will not be determined until an attempt is made to use the policy for
authorization. If the policy is constructed such that the PCR check comes before user author ization
checks, this early termination would allow software to avoid unnecessary prompts for user input to
satisfy a policy that would fail later due to incorrect PCR values.

After this command completes successfully, the TPM shall return TPM_RC_PCR_CHANGED if the policy

session is used for authorization and the PCR are not known to be correct.

The TPM uses a “generation” number (pcrUpdateCounter) that is incremented each time PCR are

updated (unless the PCR being changed is specified not to cause a change to this counter). The value of

this counter is stored in the policy session context (policySession→pcrUpdateCounter) when this

command is executed. When the policy is used for authorization, the current value of the counter is

compared to the value in the policy session context and the authorization will fail if the values are not the

same.

When this command is executed, policySession→pcrUpdateCounter is checked to see if it has been

previously set (in the reference implementation, it has a value of zero if not previously set). If it has been

set, it will be compared with the current value of pcrUpdateCounter to determine if any PCR changes

have occurred. If the values are different, the TPM shall return TPM_RC_PCR_CHANGED.

NOTE 2 Since the pcrUpdateCounter is updated if any PCR is extended (except those specified not to do
so), this means that the command will fail even if a PCR not specified in the pol icy is updated. This
is an optimization for the purposes of conserving internal TPM memory. This would be a rare
occurrence, and, if this should occur, the policy could be reset using the TPM2_PolicyRestart
command and rerun.

If policySession→pcrUpdateCounter has not been set, then it is set to the current value of

pcrUpdateCounter.

If this command is used for a trial policySession, policySession→policyDigest will be updated using the

values from the command rather than the values from a digest of the TPM PCR. If the caller does not

provide PCR settings (pcrDigest has a length of zero), the TPM may (and it is preferred to) use the

current TPM PCR settings (digestTPM) in the calculation for the new policyDigest. The TPM may return

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 269

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

an error if the caller does not provide a PCR digest for a trial policy session but this is not the preferred

behavior.

The TPM will not check any PCR and will compute:

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPCR || pcrs || pcrDigest) (20)

In this computation, pcrs is the input parameter without modification.

NOTE 3 The pcrs parameter is expected to match the configuration of the TPM for which the policy is being
computed which may not be the same as the TPM on which the trial policy is being compute d.

NOTE 4 Although no PCR are checked in a trial policy session, pcrDigest is expected to correspond to some
useful PCR values. It is legal, but pointless, to have the TPM aid in calculating a policyDigest
corresponding to PCR values that are not useful in practice.

Part 3: Commands Trusted Platform Module Library

Page 270 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 132 — TPM2_PolicyPCR Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPCR

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST pcrDigest
expected digest value of the selected PCR using the
hash algorithm of the session; may be zero length

TPML_PCR_SELECTION pcrs the PCR to include in the check digest

Table 133 — TPM2_PolicyPCR Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 271

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyPCR_fp.h"

3 #if CC_PolicyPCR // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE if provided, pcrDigest does not match the current PCR settings

TPM_RC_PCR_CHANGED a previous TPM2_PolicyPCR() set pcrCounter and it has changed

4 TPM_RC

5 TPM2_PolicyPCR(

6 PolicyPCR_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM2B_DIGEST pcrDigest;

11 BYTE pcrs[sizeof(TPML_PCR_SELECTION)];

12 UINT32 pcrSize;

13 BYTE *buffer;

14 TPM_CC commandCode = TPM_CC_PolicyPCR;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // Compute current PCR digest

23 PCRComputeCurrentDigest(session->authHashAlg, &in->pcrs, &pcrDigest);

24

25 // Do validation for non trial session

26 if(session->attributes.isTrialPolicy == CLEAR)

27 {

28 // Make sure that this is not going to invalidate a previous PCR check

29 if(session->pcrCounter != 0 && session->pcrCounter != gr.pcrCounter)

30 return TPM_RC_PCR_CHANGED;

31

32 // If the caller specified the PCR digest and it does not

33 // match the current PCR settings, return an error..

34 if(in->pcrDigest.t.size != 0)

35 {

36 if(!MemoryEqual2B(&in->pcrDigest.b, &pcrDigest.b))

37 return TPM_RCS_VALUE + RC_PolicyPCR_pcrDigest;

38 }

39 }

40 else

41 {

42 // For trial session, just use the input PCR digest if one provided

43 // Note: It can't be too big because it is a TPM2B_DIGEST and the size

44 // would have been checked during unmarshaling

45 if(in->pcrDigest.t.size != 0)

46 pcrDigest = in->pcrDigest;

47 }

48 // Internal Data Update

49 // Update policy hash

50 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyPCR

51 // || PCRS || pcrDigest)

52 // Start hash

53 CryptHashStart(&hashState, session->authHashAlg);

54

Part 3: Commands Trusted Platform Module Library

Page 272 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

55 // add old digest

56 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

57

58 // add commandCode

59 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

60

61 // add PCRS

62 buffer = pcrs;

63 pcrSize = TPML_PCR_SELECTION_Marshal(&in->pcrs, &buffer, NULL);

64 CryptDigestUpdate(&hashState, pcrSize, pcrs);

65

66 // add PCR digest

67 CryptDigestUpdate2B(&hashState, &pcrDigest.b);

68

69 // complete the hash and get the results

70 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

71

72 // update pcrCounter in session context for non trial session

73 if(session->attributes.isTrialPolicy == CLEAR)

74 {

75 session->pcrCounter = gr.pcrCounter;

76 }

77

78 return TPM_RC_SUCCESS;

79 }

80 #endif // CC_PolicyPCR

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 273

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.8 TPM2_PolicyLocality

 General Description

This command indicates that the authorization will be limited to a specific locality.

policySession→commandLocality is a parameter kept in the session context. When the policy session is

started, this parameter is initialized to a value that allows the policy to apply to any locality.

If locality has a value greater than 31, then an extended locality is indicated. For an extended locality, the

TPM will validate that policySession→commandLocality has not previously been set or that the current

value of policySession→commandLocality is the same as locality (TPM_RC_RANGE).

When locality is not an extended locality, the TPM will validate that the policySession→commandLocality

is not set to an extended locality value (TPM_RC_RANGE). If not the TPM will disable any locality not

SET in the locality parameter. If the result of disabling localities results in no locality being enabled, the

TPM will return TPM_RC_RANGE.

If no error occurred in the validation of locality, policySession→policyDigest is extended with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyLocality || locality) (21)

Then policySession→commandLocality is updated to indicate which localities are still allowed after

execution of TPM2_PolicyLocality().

When the policy session is used to authorize a command, the authorization will fail if the locality used for

the command is not one of the enabled localities in policySession→commandLocality.

Part 3: Commands Trusted Platform Module Library

Page 274 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 134 — TPM2_PolicyLocality Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyLocality

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMA_LOCALITY locality the allowed localities for the policy

Table 135 — TPM2_PolicyLocality Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 275

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyLocality_fp.h"

3 #if CC_PolicyLocality // Conditional expansion of this file

Error Returns Meaning

TPM_RC_RANGE all the locality values selected by locality have been disabled by
previous TPM2_PolicyLocality() calls.

4 TPM_RC

5 TPM2_PolicyLocality(

6 PolicyLocality_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 BYTE marshalBuffer[sizeof(TPMA_LOCALITY)];

11 BYTE prevSetting[sizeof(TPMA_LOCALITY)];

12 UINT32 marshalSize;

13 BYTE *buffer;

14 TPM_CC commandCode = TPM_CC_PolicyLocality;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // Get new locality setting in canonical form

23 marshalBuffer[0] = 0; // Code analysis says that this is not initialized

24 buffer = marshalBuffer;

25 marshalSize = TPMA_LOCALITY_Marshal(&in->locality, &buffer, NULL);

26

27 // Its an error if the locality parameter is zero

28 if(marshalBuffer[0] == 0)

29 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

30

31 // Get existing locality setting in canonical form

32 prevSetting[0] = 0; // Code analysis says that this is not initialized

33 buffer = prevSetting;

34 TPMA_LOCALITY_Marshal(&session->commandLocality, &buffer, NULL);

35

36 // If the locality has previously been set

37 if(prevSetting[0] != 0

38 // then the current locality setting and the requested have to be the same

39 // type (that is, either both normal or both extended

40 && ((prevSetting[0] < 32) != (marshalBuffer[0] < 32)))

41 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

42

43 // See if the input is a regular or extended locality

44 if(marshalBuffer[0] < 32)

45 {

46 // if there was no previous setting, start with all normal localities

47 // enabled

48 if(prevSetting[0] == 0)

49 prevSetting[0] = 0x1F;

50

51 // AND the new setting with the previous setting and store it in prevSetting

52 prevSetting[0] &= marshalBuffer[0];

53

54 // The result setting can not be 0

55 if(prevSetting[0] == 0)

Part 3: Commands Trusted Platform Module Library

Page 276 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

56 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

57 }

58 else

59 {

60 // for extended locality

61 // if the locality has already been set, then it must match the

62 if(prevSetting[0] != 0 && prevSetting[0] != marshalBuffer[0])

63 return TPM_RCS_RANGE + RC_PolicyLocality_locality;

64

65 // Setting is OK

66 prevSetting[0] = marshalBuffer[0];

67 }

68

69 // Internal Data Update

70

71 // Update policy hash

72 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyLocality || locality)

73 // Start hash

74 CryptHashStart(&hashState, session->authHashAlg);

75

76 // add old digest

77 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

78

79 // add commandCode

80 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

81

82 // add input locality

83 CryptDigestUpdate(&hashState, marshalSize, marshalBuffer);

84

85 // complete the digest

86 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

87

88 // update session locality by unmarshal function. The function must succeed

89 // because both input and existing locality setting have been validated.

90 buffer = prevSetting;

91 TPMA_LOCALITY_Unmarshal(&session->commandLocality, &buffer,

92 (INT32 *)&marshalSize);

93

94 return TPM_RC_SUCCESS;

95 }

96 #endif // CC_PolicyLocality

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 277

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.9 TPM2_PolicyNV

 General Description

This command is used to cause conditional gating of a policy based on the contents of an NV Index. It is

an immediate assertion. The NV index is validated during the TPM2_PolicyNV() command, not when the

session is used for authorization.

The authorization to read the NV Index must succeed even if policySession is a trial policy session.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (22) and (23) below and return TPM_RC_SUCCESS. It will not perform any further validation.

The remainder of this general description would apply only if policySession is not a trial policy session.

An authorization session providing authorization to read the NV Index shall be provided.

If TPMA_NV_WRITTEN is not SET in the NV Index, the TPM shall return TPM_RC_NV_UNINITIALIZED.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

operandA begins at offset into the NV index contents and has a size equal to the size of operandB. The

TPM will perform the indicated arithmetic check using operandA and operandB. If the check fails, the

TPM shall return TPM_RC_POLICY and not change policySession→policyDigest. If the check succeeds,

the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (22)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB the value used for the comparison

offset offset from the start of the NV Index data to start the comparison

operation the operation parameter indicating the comparison being

performed

The value of args and the Name of the NV Index are extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNV || args || nvIndex→Name) (23)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (22)

nvIndex→Name the Name of the NV Index

The signed arithmetic operations are performed using twos-compliment.

Magnitude comparisons assume that the octet at offset zero in the referenced NV location and in

operandB contain the most significant octet of the data.

Part 3: Commands Trusted Platform Module Library

Page 278 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 136 — TPM2_PolicyNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the octet offset in the NV Index for the start of operand
A

TPM_EO operation the comparison to make

Table 137 — TPM2_PolicyNV Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 279

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyNV_fp.h"

3 #if CC_PolicyNV // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_AUTH_TYPE NV index authorization type is not correct

TPM_RC_NV_LOCKED NV index read locked

TPM_RC_NV_UNINITIALIZED the NV index has not been initialized

TPM_RC_POLICY the comparison to the NV contents failed

TPM_RC_SIZE the size of nvIndex data starting at offset is less than the size of
operandB

TPM_RC_VALUE offset is too large

5 TPM_RC

6 TPM2_PolicyNV(

7 PolicyNV_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 SESSION *session;

12 NV_REF locator;

13 NV_INDEX *nvIndex;

14 BYTE nvBuffer[sizeof(in->operandB.t.buffer)];

15 TPM2B_NAME nvName;

16 TPM_CC commandCode = TPM_CC_PolicyNV;

17 HASH_STATE hashState;

18 TPM2B_DIGEST argHash;

19

20 // Input Validation

21

22 // Get pointer to the session structure

23 session = SessionGet(in->policySession);

24

25 //If this is a trial policy, skip all validations and the operation

26 if(session->attributes.isTrialPolicy == CLEAR)

27 {

28 // No need to access the actual NV index information for a trial policy.

29 nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

30

31 // Common read access checks. NvReadAccessChecks() may return

32 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

33 result = NvReadAccessChecks(in->authHandle,

34 in->nvIndex,

35 nvIndex->publicArea.attributes);

36 if(result != TPM_RC_SUCCESS)

37 return result;

38

39 // Make sure that offset is withing range

40 if(in->offset > nvIndex->publicArea.dataSize)

41 return TPM_RCS_VALUE + RC_PolicyNV_offset;

42

43 // Valid NV data size should not be smaller than input operandB size

44 if((nvIndex->publicArea.dataSize - in->offset) < in->operandB.t.size)

45 return TPM_RCS_SIZE + RC_PolicyNV_operandB;

46

Part 3: Commands Trusted Platform Module Library

Page 280 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

47 // Get NV data. The size of NV data equals the input operand B size

48 NvGetIndexData(nvIndex, locator, in->offset, in->operandB.t.size, nvBuffer);

49

50 // Check to see if the condition is valid

51 if(!PolicySptCheckCondition(in->operation, nvBuffer,

52 in->operandB.t.buffer, in->operandB.t.size))

53 return TPM_RC_POLICY;

54 }

55 // Internal Data Update

56

57 // Start argument hash

58 argHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

59

60 // add operandB

61 CryptDigestUpdate2B(&hashState, &in->operandB.b);

62

63 // add offset

64 CryptDigestUpdateInt(&hashState, sizeof(UINT16), in->offset);

65

66 // add operation

67 CryptDigestUpdateInt(&hashState, sizeof(TPM_EO), in->operation);

68

69 // complete argument digest

70 CryptHashEnd2B(&hashState, &argHash.b);

71

72 // Update policyDigest

73 // Start digest

74 CryptHashStart(&hashState, session->authHashAlg);

75

76 // add old digest

77 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

78

79 // add commandCode

80 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

81

82 // add argument digest

83 CryptDigestUpdate2B(&hashState, &argHash.b);

84

85 // Adding nvName

86 CryptDigestUpdate2B(&hashState, &EntityGetName(in->nvIndex, &nvName)->b);

87

88 // complete the digest

89 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

90

91 return TPM_RC_SUCCESS;

92 }

93 #endif // CC_PolicyNV

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 281

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.10 TPM2_PolicyCounterTimer

 General Description

This command is used to cause conditional gating of a policy based on the contents of the

TPMS_TIME_INFO structure.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equations (24) and (25) below and return TPM_RC_SUCCESS. It will not perform any validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

The TPM will perform the indicated arithmetic check on the indicated portion of the TPMS_TIME_INFO

structure. If the check fails, the TPM shall return TPM_RC_POLICY and not change

policySession→policyDigest. If the check succeeds, the TPM will hash the arguments:

 args ≔ HpolicyAlg(operandB.buffer || offset || operation) (24)

where

HpolicyAlg() hash function using the algorithm of the policy session

operandB.buffer the value used for the comparison

offset offset from the start of the TPMS_TIME_INFO structure at which

the comparison starts

operation the operation parameter indicating the comparison being

performed

NOTE There is no security related reason for the double hash.

The value of args is extended to policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCounterTimer || args) (25)

where

HpolicyAlg() hash function using the algorithm of the policy session

args value computed in equation (24)

The signed arithmetic operations are performed using twos-compliment. The indicated portion of the

TPMS_TIME_INFO structure begins at offset and has a length of operandB.size. If the number of octets

to be compared overflows the TPMS_TIME_INFO structure, the TPM returns TPM_RC_RANGE. If offset

is greater than the size of the marshaled TPMS_TIME_INFO structure, the TPM returns

TPM_RC_VALUE. The structure is marshaled into its canonical form with no padding. The TPM does not

check for alignment of the offset with a TPMS_TIME_INFO structure member.

Magnitude comparisons assume that the octet at offset zero in the referenced location and in operandB

contain the most significant octet of the data.

Part 3: Commands Trusted Platform Module Library

Page 282 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 138 — TPM2_PolicyCounterTimer Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCounterTimer

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_OPERAND operandB the second operand

UINT16 offset
the octet offset in the TPMS_TIME_INFO structure for
the start of operand A

TPM_EO operation the comparison to make

Table 139 — TPM2_PolicyCounterTimer Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 283

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyCounterTimer_fp.h"

3 #if CC_PolicyCounterTimer // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_POLICY the comparison of the selected portion of the TPMS_TIME_INFO with
operandB failed

TPM_RC_RANGE offset + size exceed size of TPMS_TIME_INFO structure

5 TPM_RC

6 TPM2_PolicyCounterTimer(

7 PolicyCounterTimer_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TIME_INFO infoData; // data buffer of TPMS_TIME_INFO

12 BYTE *pInfoData = (BYTE *)&infoData;

13 UINT16 infoDataSize;

14 TPM_CC commandCode = TPM_CC_PolicyCounterTimer;

15 HASH_STATE hashState;

16 TPM2B_DIGEST argHash;

17

18 // Input Validation

19 // Get a marshaled time structure

20 infoDataSize = TimeGetMarshaled(&infoData);

21 // Make sure that the referenced stays within the bounds of the structure.

22 // NOTE: the offset checks are made even for a trial policy because the policy

23 // will not make any sense if the references are out of bounds of the timer

24 // structure.

25 if(in->offset > infoDataSize)

26 return TPM_RCS_VALUE + RC_PolicyCounterTimer_offset;

27 if((UINT32)in->offset + (UINT32)in->operandB.t.size > infoDataSize)

28 return TPM_RCS_RANGE;

29 // Get pointer to the session structure

30 session = SessionGet(in->policySession);

31

32 //If this is a trial policy, skip the check to see if the condition is met.

33 if(session->attributes.isTrialPolicy == CLEAR)

34 {

35 // If the command is going to use any part of the counter or timer, need

36 // to verify that time is advancing.

37 // The time and clock vales are the first two 64-bit values in the clock

38 if(in->offset < sizeof(UINT64) + sizeof(UINT64))

39 {

40 // Using Clock or Time so see if clock is running. Clock doesn't

41 // run while NV is unavailable.

42 // TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned here.

43 RETURN_IF_NV_IS_NOT_AVAILABLE;

44 }

45 // offset to the starting position

46 pInfoData = (BYTE *)infoData;

47 // Check to see if the condition is valid

48 if(!PolicySptCheckCondition(in->operation, pInfoData + in->offset,

49 in->operandB.t.buffer, in->operandB.t.size))

50 return TPM_RC_POLICY;

51 }

52 // Internal Data Update

53 // Start argument list hash

Part 3: Commands Trusted Platform Module Library

Page 284 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

54 argHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

55 // add operandB

56 CryptDigestUpdate2B(&hashState, &in->operandB.b);

57 // add offset

58 CryptDigestUpdateInt(&hashState, sizeof(UINT16), in->offset);

59 // add operation

60 CryptDigestUpdateInt(&hashState, sizeof(TPM_EO), in->operation);

61 // complete argument hash

62 CryptHashEnd2B(&hashState, &argHash.b);

63

64 // update policyDigest

65 // start hash

66 CryptHashStart(&hashState, session->authHashAlg);

67

68 // add old digest

69 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

70

71 // add commandCode

72 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

73

74 // add argument digest

75 CryptDigestUpdate2B(&hashState, &argHash.b);

76

77 // complete the digest

78 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

79

80 return TPM_RC_SUCCESS;

81 }

82 #endif // CC_PolicyCounterTimer

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 285

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.11 TPM2_PolicyCommandCode

 General Description

This command indicates that the authorization will be limited to a specific command code.

If policySession→commandCode has its default value, then it will be set to code. If

policySession→commandCode does not have its default value, then the TPM will return

TPM_RC_VALUE if the two values are not the same.

If code is not implemented, the TPM will return TPM_RC_POLICY_CC.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCommandCode || code) (26)

NOTE 1 If a previous TPM2_PolicyCommandCode() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error if code is the same.

NOTE 2 A TPM2_PolicyOR() would be used to allow an authorization to be used for multiple commands.

When the policy session is used to authorize a command, the TPM will fail the command if the

commandCode of that command does not match policySession→commandCode.

This command, or TPM2_PolicyDuplicationSelect(), is required to enable the policy to be used for ADMIN

role authorization.

EXAMPLE Before TPM2_Certify() can be executed, TPM2_PolicyCommandCode() with code set to
TPM_CC_Certify is required.

Part 3: Commands Trusted Platform Module Library

Page 286 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 140 — TPM2_PolicyCommandCode Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCommandCode

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM_CC code the allowed commandCode

Table 141 — TPM2_PolicyCommandCode Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 287

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyCommandCode_fp.h"

3 #if CC_PolicyCommandCode // Conditional expansion of this file

Error Returns Meaning

TPM_RC_VALUE commandCode of policySession previously set to a different value

4 TPM_RC

5 TPM2_PolicyCommandCode(

6 PolicyCommandCode_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyCommandCode;

11 HASH_STATE hashState;

12

13 // Input validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 if(session->commandCode != 0 && session->commandCode != in->code)

19 return TPM_RCS_VALUE + RC_PolicyCommandCode_code;

20 if(CommandCodeToCommandIndex(in->code) == UNIMPLEMENTED_COMMAND_INDEX)

21 return TPM_RCS_POLICY_CC + RC_PolicyCommandCode_code;

22

23 // Internal Data Update

24 // Update policy hash

25 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCommandCode || code)

26 // Start hash

27 CryptHashStart(&hashState, session->authHashAlg);

28

29 // add old digest

30 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

31

32 // add commandCode

33 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

34

35 // add input commandCode

36 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), in->code);

37

38 // complete the hash and get the results

39 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

40

41 // update commandCode value in session context

42 session->commandCode = in->code;

43

44 return TPM_RC_SUCCESS;

45 }

46 #endif // CC_PolicyCommandCode

Part 3: Commands Trusted Platform Module Library

Page 288 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

23.12 TPM2_PolicyPhysicalPresence

 General Description

This command indicates that physical presence will need to be asserted at the time the authorization is

performed.

If this command is successful, policySession→isPPRequired will be SET to indicate that this check is

required when the policy is used for authorization. Additionally, policySession→policyDigest is extended

with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyPhysicalPresence) (27)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 289

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 142 — TPM2_PolicyPhysicalPresence Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPhysicalPresence

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 143 — TPM2_PolicyPhysicalPresence Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 290 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyPhysicalPresence_fp.h"

3 #if CC_PolicyPhysicalPresence // Conditional expansion of this file

4 TPM_RC

5 TPM2_PolicyPhysicalPresence(

6 PolicyPhysicalPresence_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyPhysicalPresence;

11 HASH_STATE hashState;

12

13 // Internal Data Update

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // Update policy hash

19 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyPhysicalPresence)

20 // Start hash

21 CryptHashStart(&hashState, session->authHashAlg);

22

23 // add old digest

24 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

25

26 // add commandCode

27 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

28

29 // complete the digest

30 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

31

32 // update session attribute

33 session->attributes.isPPRequired = SET;

34

35 return TPM_RC_SUCCESS;

36 }

37 #endif // CC_PolicyPhysicalPresence

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 291

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.13 TPM2_PolicyCpHash

 General Description

This command is used to allow a policy to be bound to a specific command and command parameters.

TPM2_PolicySigned(), TPM2_PolicySecret(), and TPM2_PolicyTIcket() are designed to allow an

authorizing entity to execute an arbitrary command as the cpHashA parameter of those commands is not

included in policySession→policyDigest. TPM2_PolicyCommandCode() allows the policy to be bound to a

specific Command Code so that only certain entities may authorize specific command codes. This

command allows the policy to be restricted such that an entity may only authorize a command with a

specific set of parameters.

If policySession→cpHash is already set and not the same as cpHashA, then the TPM shall return

TPM_RC_CPHASH. If cpHashA does not have the size of the policySession→policyDigest, the TPM shall

return TPM_RC_SIZE.

NOTE 1 If a previous TPM2_PolicyCpHash() had been executed, then it is probable that the policy
expression is improperly formed but the TPM does not return an error if cpHash is the same.

If the cpHashA checks succeed, policySession→cpHash is set to cpHashA and

policySession→policyDigest is updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyCpHash || cpHashA) (28)

Part 3: Commands Trusted Platform Module Library

Page 292 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 144 — TPM2_PolicyCpHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyCpHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST cpHashA the cpHash added to the policy

Table 145 — TPM2_PolicyCpHash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 293

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyCpHash_fp.h"

3 #if CC_PolicyCpHash // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH cpHash of policySession has previously been set to a different value

TPM_RC_SIZE cpHashA is not the size of a digest produced by the hash algorithm
associated with policySession

4 TPM_RC

5 TPM2_PolicyCpHash(

6 PolicyCpHash_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyCpHash;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // A valid cpHash must have the same size as session hash digest

19 // NOTE: the size of the digest can't be zero because TPM_ALG_NULL

20 // can't be used for the authHashAlg.

21 if(in->cpHashA.t.size != CryptHashGetDigestSize(session->authHashAlg))

22 return TPM_RCS_SIZE + RC_PolicyCpHash_cpHashA;

23

24 // error if the cpHash in session context is not empty and is not the same

25 // as the input or is not a cpHash

26 if((session->u1.cpHash.t.size != 0)

27 && (!session->attributes.isCpHashDefined

28 || !MemoryEqual2B(&in->cpHashA.b, &session->u1.cpHash.b)))

29 return TPM_RC_CPHASH;

30

31 // Internal Data Update

32

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCpHash || cpHashA)

35 // Start hash

36 CryptHashStart(&hashState, session->authHashAlg);

37

38 // add old digest

39 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

40

41 // add commandCode

42 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

43

44 // add cpHashA

45 CryptDigestUpdate2B(&hashState, &in->cpHashA.b);

46

47 // complete the digest and get the results

48 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

49

50 // update cpHash in session context

51 session->u1.cpHash = in->cpHashA;

52 session->attributes.isCpHashDefined = SET;

53

Part 3: Commands Trusted Platform Module Library

Page 294 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

54 return TPM_RC_SUCCESS;

55 }

56 #endif // CC_PolicyCpHash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 295

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.14 TPM2_PolicyNameHash

 General Description

This command allows a policy to be bound to a specific set of TPM entities without being bound to the

parameters of the command. This is most useful for commands such as TPM2_Duplicate() and for

TPM2_PCR_Event() when the referenced PCR requires a policy.

The nameHash parameter should contain the digest of the Names associated with the handles to be used

in the authorized command.

EXAMPLE For the TPM2_Duplicate() command, two handles are provided. One is the handle of the object
being duplicated and the other is the handle of the new parent. For that command, nameHash would
contain:

nameHash ≔ HpolicyAlg(objectHandle→Name || newParentHandle→Name)

If policySession→cpHash is already set, the TPM shall return TPM_RC_CPHASH. If the size of

nameHash is not the size of policySession→policyDigest, the TPM shall return TPM_RC_SIZE.

Otherwise, policySession→cpHash is set to nameHash.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the Names associated with the handles in the command will be used.

NOTE 1 This allows the space normally used to hold policySession→cpHash to be used for
policySession→nameHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNameHash || nameHash) (29)

NOTE 2 This command can only be used with TPM2_PolicyAuthorize() or TPM2_PolicyAuthorizeNV. The
owner of the object being duplicated provides approval for their object to be migrated to a specific
new parent.

Without this approval, the Name of the Object would need to be known at the time that Object's
policy is created. However, since the Name of the Object includes its policy, the Name is not known.
The Name can be known by the authorizing entity.

Part 3: Commands Trusted Platform Module Library

Page 296 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 146 — TPM2_PolicyNameHash Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNameHash

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST nameHash the digest to be added to the policy

Table 147 — TPM2_PolicyNameHash Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 297

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyNameHash_fp.h"

3 #if CC_PolicyNameHash // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH nameHash has been previously set to a different value

TPM_RC_SIZE nameHash is not the size of the digest produced by the hash
algorithm associated with policySession

4 TPM_RC

5 TPM2_PolicyNameHash(

6 PolicyNameHash_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyNameHash;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // A valid nameHash must have the same size as session hash digest

19 // Since the authHashAlg for a session cannot be TPM_ALG_NULL, the digest size

20 // is always non-zero.

21 if(in->nameHash.t.size != CryptHashGetDigestSize(session->authHashAlg))

22 return TPM_RCS_SIZE + RC_PolicyNameHash_nameHash;

23

24 // u1 in the policy session context cannot otherwise be occupied

25 if(session->u1.cpHash.b.size != 0

26 || session->attributes.isBound

27 || session->attributes.isCpHashDefined

28 || session->attributes.isTemplateSet)

29 return TPM_RC_CPHASH;

30

31 // Internal Data Update

32

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyNameHash || nameHash)

35 // Start hash

36 CryptHashStart(&hashState, session->authHashAlg);

37

38 // add old digest

39 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

40

41 // add commandCode

42 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

43

44 // add nameHash

45 CryptDigestUpdate2B(&hashState, &in->nameHash.b);

46

47 // complete the digest

48 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

49

50 // update nameHash in session context

51 session->u1.cpHash = in->nameHash;

52

53 return TPM_RC_SUCCESS;

Part 3: Commands Trusted Platform Module Library

Page 298 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

54 }

55 #endif // CC_PolicyNameHash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 299

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.15 TPM2_PolicyDuplicationSelect

 General Description

This command allows qualification of duplication to allow duplication to a selected new parent.

If this command not used in conjunction with a PolicyAuthorize Command, then only the new parent is

selected and includeObject should be CLEAR.

EXAMPLE When an object is created when the list of allowed duplication targets is known, the policy would be
created with includeObject CLEAR.

NOTE 1 Only the new parent may be selected because, without TPM2_PolicyAuthorize(), the Name of the
Object to be duplicated would need to be known at the time that Object's policy is created. However,
since the Name of the Object includes its policy, the Name is not known. The Name can be known
by the authorizing entity (a PolicyAuthorize Command) in which case includeObject may be SET.

If used in conjunction with TPM2_PolicyAuthorize(), then the authorizer of the new policy has the option

of selecting just the new parent or of selecting both the new parent and the duplication Object.

NOTE 2 If the authorizing entity for an TPM2_PolicyAuthorize() only specifies the new parent, then that
authorization may be applied to the duplication of any number of other Objects. If the authorizing
entity specifies both a new parent and the duplicated Object, then the authorization only applies to
that pairing of Object and new parent.

If either policySession→cpHash or policySession→nameHash has been previously set, the TPM shall

return TPM_RC_CPHASH. Otherwise, policySession→nameHash will be set to:

 nameHash ≔ HpolicyAlg(objectName.name || newParentName.name) (30)

NOTE 3 It is allowed that policySesion→nameHash and policySession→cpHash share the same memory
space.

NOTE 4 The Name in these equations uses Name.name, indicating that the UINT16 size is not included in
the hash.

The policySession→policyDigest will be updated according to the setting of includeObject. If equal to

YES, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
objectName .name || newParentName.name || includeObject) (31)

If includeObject is NO, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyDuplicationSelect ||
newParentName.name || includeObject) (32)

NOTE 5 policySession→nameHash receives the digest of both Names so that the check performed in
TPM2_Duplicate() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_PolicyDuplicationSelect() is executed, it
is only valid for a specific pair of duplication object and new parent.

If the command succeeds, policySession→commandCode is set to TPM_CC_Duplicate.

NOTE 6 The normal use of this command is before a TPM2_PolicyAuthorize(). An authorized entity would
approve a policyDigest that allowed duplication to a specific new parent. The authorizing entity may
want to limit the authorization so that the approval allows only a specific object to be duplicated to
the new parent. In that case, the authorizing entity would approve the policyDigest of equation (31).

Part 3: Commands Trusted Platform Module Library

Page 300 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 148 — TPM2_PolicyDuplicationSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyDuplicationSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the object to be duplicated

TPM2B_NAME newParentName the Name of the new parent

TPMI_YES_NO includeObject
if YES, the objectName will be included in the value in
policySession→policyDigest

Table 149 — TPM2_PolicyDuplicationSelect Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 301

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyDuplicationSelect_fp.h"

3 #if CC_PolicyDuplicationSelect // Conditional expansion of this file

Error Returns Meaning

TPM_RC_COMMAND_CODE commandCode of 'policySession; is not empty

TPM_RC_CPHASH cpHash of policySession is not empty

4 TPM_RC

5 TPM2_PolicyDuplicationSelect(

6 PolicyDuplicationSelect_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 HASH_STATE hashState;

11 TPM_CC commandCode = TPM_CC_PolicyDuplicationSelect;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // cpHash in session context must be empty

19 if(session->u1.cpHash.t.size != 0)

20 return TPM_RC_CPHASH;

21

22 // commandCode in session context must be empty

23 if(session->commandCode != 0)

24 return TPM_RC_COMMAND_CODE;

25

26 // Internal Data Update

27

28 // Update name hash

29 session->u1.cpHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

30

31 // add objectName

32 CryptDigestUpdate2B(&hashState, &in->objectName.b);

33

34 // add new parent name

35 CryptDigestUpdate2B(&hashState, &in->newParentName.b);

36

37 // complete hash

38 CryptHashEnd2B(&hashState, &session->u1.cpHash.b);

39

40 // update policy hash

41 // Old policyDigest size should be the same as the new policyDigest size since

42 // they are using the same hash algorithm

43 session->u2.policyDigest.t.size

44 = CryptHashStart(&hashState, session->authHashAlg);

45 // add old policy

46 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

47

48 // add command code

49 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

50

51 // add objectName

52 if(in->includeObject == YES)

53 CryptDigestUpdate2B(&hashState, &in->objectName.b);

54

Part 3: Commands Trusted Platform Module Library

Page 302 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

55 // add new parent name

56 CryptDigestUpdate2B(&hashState, &in->newParentName.b);

57

58 // add includeObject

59 CryptDigestUpdateInt(&hashState, sizeof(TPMI_YES_NO), in->includeObject);

60

61 // complete digest

62 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

63

64 // set commandCode in session context

65 session->commandCode = TPM_CC_Duplicate;

66

67 return TPM_RC_SUCCESS;

68 }

69 #endif // CC_PolicyDuplicationSelect

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 303

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.16 TPM2_PolicyAuthorize

 General Description

This command allows policies to change. If a policy were static, then it would be difficult to add users to a

policy. This command lets a policy authority sign a new policy so that it may be used in an existing policy.

The authorizing entity signs a structure that contains

 aHash ≔ HaHashAlg(approvedPolicy || policyRef) (33)

The aHashAlg is required to be the nameAlg of the key used to sign the aHash. The aHash value is then

signed (symmetric or asymmetric) by keySign. That signature is then checked by the TPM in 20.1

TPM2_VerifySignature() which produces a ticket by

 HMAC(proof, (TPM_ST_VERIFIED || aHash || keySign→Name)) (34)

NOTE 1 The reason for the validation is because of the expectation that the policy will be used multiple times
and it is more efficient to check a ticket than to load an object each time to check a signature.

The ticket is then used in TPM2_PolicyAuthorize() to validate the parameters.

The keySign parameter is required to be a valid object name using nameAlg other than TPM_ALG_NULL.

If the first two octets of keySign are not a valid hash algorithm, the TPM shall return TPM_RC_HASH. If

the remainder of the Name is not the size of the indicated digest, the TPM shall return TPM_RC_SIZE.

The TPM validates that the approvedPolicy matches the current value of policySession→policyDigest and

if not, shall return TPM_RC_VALUE.

The TPM then validates that the parameters to TPM2_PolicyAuthorize() match the values used to

generate the ticket. If so, the TPM will reset policySession→policyDigest to a Zero Digest. Then it will

update policySession→policyDigest with PolicyUpdate() (see 23.2.3).

 PolicyUpdate(TPM_CC_PolicyAuthorize, keySign, policyRef) (35)

If the ticket is not valid, the TPM shall return TPM_RC_POLICY.

If policySession is a trial session, policySession→policyDigest is extended as if the ticket is valid without

actual verification.

NOTE 2 The unmarshaling process requires that a proper TPMT_TK_VERIFIED be provided for checkTicket
but it may be a NULL Ticket. A NULL ticket is useful in a trial policy, where the caller uses the TPM
to perform policy calculations but does not have a valid authorization ticket.

Part 3: Commands Trusted Platform Module Library

Page 304 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 150 — TPM2_PolicyAuthorize Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorize

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST approvedPolicy digest of the policy being approved

TPM2B_NONCE policyRef a policy qualifier

TPM2B_NAME keySign Name of a key that can sign a policy addition

TPMT_TK_VERIFIED checkTicket
ticket validating that approvedPolicy and policyRef were
signed by keySign

Table 151 — TPM2_PolicyAuthorize Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 305

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyAuthorize_fp.h"

3 #if CC_PolicyAuthorize // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_HASH hash algorithm in keyName is not supported

TPM_RC_SIZE keyName is not the correct size for its hash algorithm

TPM_RC_VALUE the current policyDigest of policySession does not match
approvedPolicy; or checkTicket doesn't match the provided values

5 TPM_RC

6 TPM2_PolicyAuthorize(

7 PolicyAuthorize_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TPM2B_DIGEST authHash;

12 HASH_STATE hashState;

13 TPMT_TK_VERIFIED ticket;

14 TPM_ALG_ID hashAlg;

15 UINT16 digestSize;

16

17 // Input Validation

18

19 // Get pointer to the session structure

20 session = SessionGet(in->policySession);

21

22 // Extract from the Name of the key, the algorithm used to compute it's Name

23 hashAlg = BYTE_ARRAY_TO_UINT16(in->keySign.t.name);

24

25 // 'keySign' parameter needs to use a supported hash algorithm, otherwise

26 // can't tell how large the digest should be

27 if(!CryptHashIsValidAlg(hashAlg, FALSE))

28 return TPM_RCS_HASH + RC_PolicyAuthorize_keySign;

29

30 digestSize = CryptHashGetDigestSize(hashAlg);

31 if(digestSize != (in->keySign.t.size - 2))

32 return TPM_RCS_SIZE + RC_PolicyAuthorize_keySign;

33

34 //If this is a trial policy, skip all validations

35 if(session->attributes.isTrialPolicy == CLEAR)

36 {

37 // Check that "approvedPolicy" matches the current value of the

38 // policyDigest in policy session

39 if(!MemoryEqual2B(&session->u2.policyDigest.b,

40 &in->approvedPolicy.b))

41 return TPM_RCS_VALUE + RC_PolicyAuthorize_approvedPolicy;

42

43 // Validate ticket TPMT_TK_VERIFIED

44 // Compute aHash. The authorizing object sign a digest

45 // aHash := hash(approvedPolicy || policyRef).

46 // Start hash

47 authHash.t.size = CryptHashStart(&hashState, hashAlg);

48

49 // add approvedPolicy

50 CryptDigestUpdate2B(&hashState, &in->approvedPolicy.b);

51

Part 3: Commands Trusted Platform Module Library

Page 306 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

52 // add policyRef

53 CryptDigestUpdate2B(&hashState, &in->policyRef.b);

54

55 // complete hash

56 CryptHashEnd2B(&hashState, &authHash.b);

57

58 // re-compute TPMT_TK_VERIFIED

59 TicketComputeVerified(in->checkTicket.hierarchy, &authHash,

60 &in->keySign, &ticket);

61

62 // Compare ticket digest. If not match, return error

63 if(!MemoryEqual2B(&in->checkTicket.digest.b, &ticket.digest.b))

64 return TPM_RCS_VALUE + RC_PolicyAuthorize_checkTicket;

65 }

66

67 // Internal Data Update

68

69 // Set policyDigest to zero digest

70 PolicyDigestClear(session);

71

72 // Update policyDigest

73 PolicyContextUpdate(TPM_CC_PolicyAuthorize, &in->keySign, &in->policyRef,

74 NULL, 0, session);

75

76 return TPM_RC_SUCCESS;

77 }

78 #endif // CC_PolicyAuthorize

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 307

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.17 TPM2_PolicyAuthValue

 General Description

This command allows a policy to be bound to the authorization value of the authorized entity.

When this command completes successfully, policySession→isAuthValueNeeded is SET to indicate that

the authValue will be included in hmacKey when the authorization HMAC is computed for the command

being authorized using this session. Additionally, policySession→isPasswordNeeded will be CLEAR.

NOTE If a policy does not use this command, then the hmacKey for the authorized command would only
use sessionKey. If sessionKey is not present, then the hmacKey is an Empty Buffer and no HMAC
would be computed.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (36)

Part 3: Commands Trusted Platform Module Library

Page 308 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 152 — TPM2_PolicyAuthValue Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthValue

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 153 — TPM2_PolicyAuthValue Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 309

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyAuthValue_fp.h"

3 #if CC_PolicyAuthValue // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

5 TPM_RC

6 TPM2_PolicyAuthValue(

7 PolicyAuthValue_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TPM_CC commandCode = TPM_CC_PolicyAuthValue;

12 HASH_STATE hashState;

13

14 // Internal Data Update

15

16 // Get pointer to the session structure

17 session = SessionGet(in->policySession);

18

19 // Update policy hash

20 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyAuthValue)

21 // Start hash

22 CryptHashStart(&hashState, session->authHashAlg);

23

24 // add old digest

25 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

26

27 // add commandCode

28 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

29

30 // complete the hash and get the results

31 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

32

33 // update isAuthValueNeeded bit in the session context

34 session->attributes.isAuthValueNeeded = SET;

35 session->attributes.isPasswordNeeded = CLEAR;

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PolicyAuthValue

Part 3: Commands Trusted Platform Module Library

Page 310 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

23.18 TPM2_PolicyPassword

 General Description

This command allows a policy to be bound to the authorization value of the authorized object.

When this command completes successfully, policySession→isPasswordNeeded is SET to indicate that

authValue of the authorized object will be checked when the session is used for authorization. The caller

will provide the authValue in clear text in the hmac parameter of the authorization. The comparison of

hmac to authValue is performed as if the authorization is a password.

NOTE 1 The parameter field in the policy session where the authorization value is provided is called hmac. If
TPM2_PolicyPassword() is part of the sequence, then the field will contain a password and not an
HMAC.

If successful, policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthValue) (37)

NOTE 2 This is the same extend value as used with TPM2_PolicyAuthValue so that the evaluation may be
done using either an HMAC or a password with no change to the authPolicy of the object. The
reason that two commands are present is to indicate to the TPM if the hmac field in the authorization
will contain an HMAC or a password value.

When this command is successful, policySession→isAuthValueNeeded will be CLEAR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 311

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 154 — TPM2_PolicyPassword Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyPassword

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 155 — TPM2_PolicyPassword Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 312 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyPassword_fp.h"

3 #if CC_PolicyPassword // Conditional expansion of this file

4 #include "Policy_spt_fp.h"

5 TPM_RC

6 TPM2_PolicyPassword(

7 PolicyPassword_In *in // IN: input parameter list

8)

9 {

10 SESSION *session;

11 TPM_CC commandCode = TPM_CC_PolicyAuthValue;

12 HASH_STATE hashState;

13

14 // Internal Data Update

15

16 // Get pointer to the session structure

17 session = SessionGet(in->policySession);

18

19 // Update policy hash

20 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyAuthValue)

21 // Start hash

22 CryptHashStart(&hashState, session->authHashAlg);

23

24 // add old digest

25 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

26

27 // add commandCode

28 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

29

30 // complete the digest

31 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

32

33 // Update isPasswordNeeded bit

34 session->attributes.isPasswordNeeded = SET;

35 session->attributes.isAuthValueNeeded = CLEAR;

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PolicyPassword

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 313

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.19 TPM2_PolicyGetDigest

 General Description

This command returns the current policyDigest of the session. This command allows the TPM to be used

to perform the actions required to pre-compute the authPolicy for an object.

Part 3: Commands Trusted Platform Module Library

Page 314 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 156 — TPM2_PolicyGetDigest Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyGetDigest

TPMI_SH_POLICY policySession
handle for the policy session

Auth Index: None

Table 157 — TPM2_PolicyGetDigest Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_DIGEST policyDigest the current value of the policySession→policyDigest

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 315

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyGetDigest_fp.h"

3 #if CC_PolicyGetDigest // Conditional expansion of this file

4 TPM_RC

5 TPM2_PolicyGetDigest(

6 PolicyGetDigest_In *in, // IN: input parameter list

7 PolicyGetDigest_Out *out // OUT: output parameter list

8)

9 {

10 SESSION *session;

11

12 // Command Output

13

14 // Get pointer to the session structure

15 session = SessionGet(in->policySession);

16

17 out->policyDigest = session->u2.policyDigest;

18

19 return TPM_RC_SUCCESS;

20 }

21 #endif // CC_PolicyGetDigest

Part 3: Commands Trusted Platform Module Library

Page 316 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

23.20 TPM2_PolicyNvWritten

 General Description

This command allows a policy to be bound to the TPMA_NV_WRITTEN attributes. This is a deferred

assertion. Values are stored in the policy session context and checked when the policy is used for

authorization.

If policySession→checkNVWritten is CLEAR, it is SET and policySession→nvWrittenState is set to

writtenSet. If policySession→checkNVWritten is SET, the TPM will return TPM_RC_VALUE if

policySession→nvWrittenState and writtenSet are not the same.

If the TPM does not return an error, it will update policySession→policyDigest by

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyNvWritten || writtenSet) (38)

When the policy session is used to authorize a command, the TPM will fail the command if

policySession→checkNVWritten is SET and nvIndex→attributes→TPMA_NV_WRITTEN does not match

policySession→nvWrittenState.

NOTE 1 A typical use case is a simple policy for the first write during manufacturing provisioning that would
require TPMA_NV_WRITTEN CLEAR and a more complex policy for later use that would require
TPMA_NV_WRITTEN SET.

NOTE 2 When an Index is written, it has a different authorization name than an Index that has not been
written. It is possible to use this change in the NV Index to create a write -once Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 317

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 158 — TPM2_PolicyNvWritten Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyNvWritten

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPMI_YES_NO writtenSet
YES if NV Index is required to have been written

NO if NV Index is required not to have been written

Table 159 — TPM2_PolicyNvWritten Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 318 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyNvWritten_fp.h"

3 #if CC_PolicyNvWritten // Conditional expansion of this file

Make an NV Index policy dependent on the state of the TPMA_NV_WRITTEN attribute of the index.

Error Returns Meaning

TPM_RC_VALUE a conflicting request for the attribute has already been processed

4 TPM_RC

5 TPM2_PolicyNvWritten(

6 PolicyNvWritten_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyNvWritten;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // If already set is this a duplicate (the same setting)? If it

19 // is a conflicting setting, it is an error

20 if(session->attributes.checkNvWritten == SET)

21 {

22 if(((session->attributes.nvWrittenState == SET)

23 != (in->writtenSet == YES)))

24 return TPM_RCS_VALUE + RC_PolicyNvWritten_writtenSet;

25 }

26

27 // Internal Data Update

28

29 // Set session attributes so that the NV Index needs to be checked

30 session->attributes.checkNvWritten = SET;

31 session->attributes.nvWrittenState = (in->writtenSet == YES);

32

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyNvWritten

35 // || writtenSet)

36 // Start hash

37 CryptHashStart(&hashState, session->authHashAlg);

38

39 // add old digest

40 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

41

42 // add commandCode

43 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

44

45 // add the byte of writtenState

46 CryptDigestUpdateInt(&hashState, sizeof(TPMI_YES_NO), in->writtenSet);

47

48 // complete the digest

49 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

50

51 return TPM_RC_SUCCESS;

52 }

53 #endif // CC_PolicyNvWritten

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 319

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.21 TPM2_PolicyTemplate

 General Description

This command allows a policy to be bound to a specific creation template. This is most useful for an

object creation command such as TPM2_Create(), TPM2_CreatePrimary(), or TPM2_CreateLoaded().

The templateHash parameter should contain the digest of the template that will be required for the

inPublic parameter of an Object creation command.

If policySession→isTemplateHash is SET and policySession→cpHash is not equal to templateHash, the

TPM shall return TPM_RC_VALUE.

NOTE 1 Revision 01.38 of this specification permitted the TPM to return TPM_RC_CPHASH.

Otherwise, if policySession→cpHash is already set, the TPM shall return TPM_RC_CPHASH.

NOTE 2 Revision 01.38 of this specification permitted the TPM to return TPM_RC_VALUE.

If the size of templateHash is not the size of policySession→policyDigest, the TPM shall return

TPM_RC_SIZE. Otherwise, policySession→cpHash is set to templateHash.

NOTE 3 The digest calculation includes the TPM2B buffer but not the TPM2B size.

If this command completes successfully, the cpHash of the authorized command will not be used for

validation. Only the digest of the inPublic parameter will be used.

NOTE 4 This allows the space normally used to hold policySession→cpHash to be used for
policySession→templateHash instead.

The policySession→policyDigest will be updated with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyTemplate || templateHash) (39)

Part 3: Commands Trusted Platform Module Library

Page 320 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 160 — TPM2_PolicyTemplate Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyTemplate

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_DIGEST templateHash the digest to be added to the policy

Table 161 — TPM2_PolicyTemplate Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 321

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PolicyTemplate_fp.h"

3 #if CC_PolicyTemplate // Conditional expansion of this file

Error Returns Meaning

TPM_RC_CPHASH cpHash of policySession has previously been set to a different value

TPM_RC_SIZE templateHash is not the size of a digest produced by the hash
algorithm associated with policySession

4 TPM_RC

5 TPM2_PolicyTemplate(

6 PolicyTemplate_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 TPM_CC commandCode = TPM_CC_PolicyTemplate;

11 HASH_STATE hashState;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // If the template is set, make sure that it is the same as the input value

19 if(session->attributes.isTemplateSet)

20 {

21 if(!MemoryEqual2B(&in->templateHash.b, &session->u1.cpHash.b))

22 return TPM_RCS_VALUE + RC_PolicyTemplate_templateHash;

23 }

24 // error if cpHash contains something that is not a template

25 else if(session->u1.templateHash.t.size != 0)

26 return TPM_RC_CPHASH;

27

28 // A valid templateHash must have the same size as session hash digest

29 if(in->templateHash.t.size != CryptHashGetDigestSize(session->authHashAlg))

30 return TPM_RCS_SIZE + RC_PolicyTemplate_templateHash;

31

32 // Internal Data Update

33 // Update policy hash

34 // policyDigestnew = hash(policyDigestold || TPM_CC_PolicyCpHash

35 // || cpHashA.buffer)

36 // Start hash

37 CryptHashStart(&hashState, session->authHashAlg);

38

39 // add old digest

40 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

41

42 // add commandCode

43 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

44

45 // add cpHashA

46 CryptDigestUpdate2B(&hashState, &in->templateHash.b);

47

48 // complete the digest and get the results

49 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

50

51 // update cpHash in session context

52 session->u1.templateHash = in->templateHash;

53 session->attributes.isTemplateSet = SET;

Part 3: Commands Trusted Platform Module Library

Page 322 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

54

55 return TPM_RC_SUCCESS;

56 }

57 #endif // CC_PolicyTemplateHash

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 323

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

23.22 TPM2_PolicyAuthorizeNV

 General Description

This command provides a capability that is the equivalent of a revocable policy. With

TPM2_PolicyAuthorize(), the authorization ticket never expires, so the authorization may not be

withdrawn. With this command, the approved policy is kept in an NV Index location so that the policy may

be changed as needed to render the old policy unusable.

NOTE 1 This command is useful for Objects but of limited value for other policies that are persistently stored
in TPM NV, such as the OwnerPolicy.

An authorization session providing authorization to read the NV Index shall be provided.

The authorization to read the NV Index must succeed even if policySession is a trial policy session.

If policySession is a trial policy session, the TPM will update policySession→policyDigest as shown in

equation (40) below and return TPM_RC_SUCCESS. It will not perform any further validation. The

remainder of this general description would apply only if policySession is not a trial policy session.

NOTE 2 If read access is controlled by policy, the policy should include a branch that authorizes a
TPM2_PolicyAuthorizeNV().

If TPMA_NV_WRITTEN is not SET in the Index referenced by nvIndex, the TPM shall return

TPM_RC_NV_UNINITIALIZED. If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall

return TPM_RC_NV_LOCKED.

The dataSize of the NV Index referenced by nvIndex is required to be at least large enough to hold a

properly formatted TPMT_HA (TPM_RC_INSUFFICIENT).

NOTE 3 A TPMT_HA contains a TPM_ALG_ID followed a digest that is consistent in size with the hash
algorithm indicated by the TPM_ALG_ID.

It is an error (TPM_RC_HASH) if the first two octets of the Index are not a TPM_ALG_ID for a hash

algorithm implemented on the TPM or if the indicated hash algorithm does not match

policySession→authHash.

NOTE 4 The TPM_ALG_ID is stored in the first two octets in big endian format.

The TPM will compare policySession→policyDigest to the contents of the NV Index, starting at the first

octet after the TPM_ALG_ID (the third octet) and return TPM_RC_VALUE if they are not the same.

NOTE 5 If the Index does not contain enough bytes for the compare, then TPM_RC_INSUFFICENT is
generated as indicated above.

NOTE 6 The dataSize of the Index may be larger than is required for this command. This permits the Index to
include metadata.

If the comparison is successful, the TPM will reset policySession→policyDigest to a Zero Digest. Then it

will update policySession→policyDigest with

 policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_PolicyAuthorizeNV || nvIndex→Name) (40)

Part 3: Commands Trusted Platform Module Library

Page 324 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 162 — TPM2_PolicyAuthorizeNV Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PolicyAuthorizeNV

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to read

Auth Index: None

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

Table 163 — TPM2_PolicyAuthorizeNV Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 325

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #if CC_PolicyAuthorizeNV // Conditional expansion of this file

3 #include "PolicyAuthorizeNV_fp.h"

4 #include "Policy_spt_fp.h"

Error Returns Meaning

TPM_RC_HASH hash algorithm in keyName is not supported or is not the same as the
hash algorithm of the policy session

TPM_RC_SIZE keyName is not the correct size for its hash algorithm

TPM_RC_VALUE the current policyDigest of policySession does not match
approvedPolicy; or checkTicket doesn't match the provided values

5 TPM_RC

6 TPM2_PolicyAuthorizeNV(

7 PolicyAuthorizeNV_In *in

8)

9 {

10 SESSION *session;

11 TPM_RC result;

12 NV_REF locator;

13 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

14 TPM2B_NAME name;

15 TPMT_HA policyInNv;

16 BYTE nvTemp[sizeof(TPMT_HA)];

17 BYTE *buffer = nvTemp;

18 INT32 size;

19

20 // Input Validation

21 // Get pointer to the session structure

22 session = SessionGet(in->policySession);

23

24 // Skip checks if this is a trial policy

25 if(!session->attributes.isTrialPolicy)

26 {

27 // Check the authorizations for reading

28 // Common read access checks. NvReadAccessChecks() returns

29 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

30 // error may be returned at this point

31 result = NvReadAccessChecks(in->authHandle, in->nvIndex,

32 nvIndex->publicArea.attributes);

33 if(result != TPM_RC_SUCCESS)

34 return result;

35

36 // Read the contents of the index into a temp buffer

37 size = MIN(nvIndex->publicArea.dataSize, sizeof(TPMT_HA));

38 NvGetIndexData(nvIndex, locator, 0, (UINT16)size, nvTemp);

39

40 // Unmarshal the contents of the buffer into the internal format of a

41 // TPMT_HA so that the hash and digest elements can be accessed from the

42 // structure rather than the byte array that is in the Index (written by

43 // user of the Index).

44 result = TPMT_HA_Unmarshal(&policyInNv, &buffer, &size, FALSE);

45 if(result != TPM_RC_SUCCESS)

46 return result;

47

48 // Verify that the hash is the same

49 if(policyInNv.hashAlg != session->authHashAlg)

50 return TPM_RC_HASH;

Part 3: Commands Trusted Platform Module Library

Page 326 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

51

52 // See if the contents of the digest in the Index matches the value

53 // in the policy

54 if(!MemoryEqual(&policyInNv.digest, &session->u2.policyDigest.t.buffer,

55 session->u2.policyDigest.t.size))

56 return TPM_RC_VALUE;

57 }

58

59 // Internal Data Update

60

61 // Set policyDigest to zero digest

62 PolicyDigestClear(session);

63

64 // Update policyDigest

65 PolicyContextUpdate(TPM_CC_PolicyAuthorizeNV, EntityGetName(in->nvIndex, &name),

66 NULL, NULL, 0, session);

67

68 return TPM_RC_SUCCESS;

69 }

70 #endif // CC_PolicyAuthorize

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 327

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

24 Hierarchy Commands

24.1 TPM2_CreatePrimary

 General Description

This command is used to create a Primary Object under one of the Primary Seeds or a Temporary Object

under TPM_RH_NULL. The command uses a TPM2B_PUBLIC as a template for the object to be created.

The size of the unique field shall not be checked for consistency with the other object parameters. The

command will create and load a Primary Object. The sensitive area is not returned.

NOTE 1 Since the sensitive data is not returned, the key cannot be reloaded. It can either be made
persistent or it can be recreated.

NOTE 2 For interoperability, the unique field should not be set to a value that is larger than allowed by object
parameters, so that the unmarshaling will not fail.

NOTE 3 An Empty Buffer is a legal unique field value.

EXAMPLE 1 A TPM_ALG_RSA object with a keyBits of 2048 in the objects parameters should have a unique field
that is no larger than 256 bytes.

EXAMPLE 2 A TPM_ALG_KEYEDHASH or a TPM_ALG_SYMCIPHER object should have a unique field this is no
larger than the digest produced by the object’s nameAlg.

Any type of object and attributes combination that is allowed by TPM2_Create() may be created by this

command. The constraints on templates and parameters are the same as TPM2_Create() except that a

Primary Storage Key and a Temporary Storage Key are not constrained to use the algorithms of their

parents.

For setting of the attributes of the created object, fixedParent, fixedTPM, decrypt, and restricted are

implied to be SET in the parent (a Permanent Handle). The remaining attributes are implied to be CLEAR.

The TPM will derive the object from the Primary Seed indicated in primaryHandle using an approved

KDF. All of the bits of the template are used in the creation of the Primary Key. Methods for creating a

Primary Object from a Primary Seed are described in TPM 2.0 Part 1 and implemented in TPM 2.0 Part 4.

If this command is called multiple times with the same inPublic parameter, inSensitive.data, and Primary

Seed, the TPM shall produce the same Primary Object.

NOTE 4 If the Primary Seed is changed, the Primary Objects generated with the new seed shall be
statistically unique even if the parameters of the call are the same.

This command requires authorization. Authorization for a Primary Object attached to the Platform Primary

Seed (PPS) shall be provided by platformAuth or platformPolicy. Authorization for a Primary Object

attached to the Storage Primary Seed (SPS) shall be provided by ownerAuth or ownerPolicy.

Authorization for a Primary Key attached to the Endorsement Primary Seed (EPS) shall be provided by

endorsementAuth or endorsementPolicy.

Part 3: Commands Trusted Platform Module Library

Page 328 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 164 — TPM2_CreatePrimary Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_CreatePrimary

TPMI_RH_HIERARCHY+ @primaryHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM+{PP}, or TPM_RH_NULL

Auth Index: 1

Auth Role: USER

TPM2B_SENSITIVE_CREATE inSensitive the sensitive data, see TPM 2.0 Part 1 Sensitive Values

TPM2B_PUBLIC inPublic the public template

TPM2B_DATA outsideInfo
data that will be included in the creation data for this
object to provide permanent, verifiable linkage between
this object and some object owner data

TPML_PCR_SELECTION creationPCR PCR that will be used in creation data

Table 165 — TPM2_CreatePrimary Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM_HANDLE objectHandle
handle of type TPM_HT_TRANSIENT for created
Primary Object

TPM2B_PUBLIC outPublic the public portion of the created object

TPM2B_CREATION_DATA creationData contains a TPMT_CREATION_DATA

TPM2B_DIGEST creationHash digest of creationData using nameAlg of outPublic

TPMT_TK_CREATION creationTicket
ticket used by TPM2_CertifyCreation() to validate that
the creation data was produced by the TPM

TPM2B_NAME name the name of the created object

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 329

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "CreatePrimary_fp.h"

3 #if CC_CreatePrimary // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES sensitiveDataOrigin is CLEAR when sensitive.data is an Empty Buffer
fixedTPM, fixedParent, or encryptedDuplication attributes are
inconsistent between themselves or with those of the parent object;
inconsistent restricted, decrypt and sign attributes attempt to inject
sensitive data for an asymmetric key;

TPM_RC_KDF incorrect KDF specified for decrypting keyed hash object

TPM_RC_KEY a provided symmetric key value is not allowed

TPM_RC_OBJECT_MEMORY there is no free slot for the object

TPM_RC_SCHEME inconsistent attributes decrypt, sign, restricted and key's scheme ID;
or hash algorithm is inconsistent with the scheme ID for keyed hash
object

TPM_RC_SIZE size of public authorization policy or sensitive authorization value
does not match digest size of the name algorithm; or sensitive data
size for the keyed hash object is larger than is allowed for the
scheme

TPM_RC_SYMMETRIC a storage key with no symmetric algorithm specified; or non-storage
key with symmetric algorithm different from TPM_ALG_NULL

TPM_RC_TYPE unknown object type

4 TPM_RC

5 TPM2_CreatePrimary(

6 CreatePrimary_In *in, // IN: input parameter list

7 CreatePrimary_Out *out // OUT: output parameter list

8)

9 {

10 TPM_RC result = TPM_RC_SUCCESS;

11 TPMT_PUBLIC *publicArea;

12 DRBG_STATE rand;

13 OBJECT *newObject;

14 TPM2B_NAME name;

15

16 // Input Validation

17 // Will need a place to put the result

18 newObject = FindEmptyObjectSlot(&out->objectHandle);

19 if(newObject == NULL)

20 return TPM_RC_OBJECT_MEMORY;

21 // Get the address of the public area in the new object

22 // (this is just to save typing)

23 publicArea = &newObject->publicArea;

24

25 *publicArea = in->inPublic.publicArea;

26

27 // Check attributes in input public area. CreateChecks() checks the things that

28 // are unique to creation and then validates the attributes and values that are

29 // common to create and load.

30 result = CreateChecks(NULL, publicArea,

31 in->inSensitive.sensitive.data.t.size);

32 if(result != TPM_RC_SUCCESS)

33 return RcSafeAddToResult(result, RC_CreatePrimary_inPublic);

34 // Validate the sensitive area values

Part 3: Commands Trusted Platform Module Library

Page 330 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

35 if(!AdjustAuthSize(&in->inSensitive.sensitive.userAuth,

36 publicArea->nameAlg))

37 return TPM_RCS_SIZE + RC_CreatePrimary_inSensitive;

38 // Command output

39 // Compute the name using out->name as a scratch area (this is not the value

40 // that ultimately will be returned, then instantiate the state that will be

41 // used as a random number generator during the object creation.

42 // The caller does not know the seed values so the actual name does not have

43 // to be over the input, it can be over the unmarshaled structure.

44 result = DRBG_InstantiateSeeded(&rand,

45 &HierarchyGetPrimarySeed(in->primaryHandle)->b,

46 PRIMARY_OBJECT_CREATION,

47 (TPM2B *)PublicMarshalAndComputeName(publicArea, &name),

48 &in->inSensitive.sensitive.data.b);

49 if(result == TPM_RC_SUCCESS)

50 {

51 newObject->attributes.primary = SET;

52 if(in->primaryHandle == TPM_RH_ENDORSEMENT)

53 newObject->attributes.epsHierarchy = SET;

54

55 // Create the primary object.

56 result = CryptCreateObject(newObject, &in->inSensitive.sensitive,

57 (RAND_STATE *)&rand);

58 }

59 if(result != TPM_RC_SUCCESS)

60 return result;

61

62 // Set the publicArea and name from the computed values

63 out->outPublic.publicArea = newObject->publicArea;

64 out->name = newObject->name;

65

66 // Fill in creation data

67 FillInCreationData(in->primaryHandle, publicArea->nameAlg,

68 &in->creationPCR, &in->outsideInfo, &out->creationData,

69 &out->creationHash);

70

71 // Compute creation ticket

72 TicketComputeCreation(EntityGetHierarchy(in->primaryHandle), &out->name,

73 &out->creationHash, &out->creationTicket);

74

75 // Set the remaining attributes for a loaded object

76 ObjectSetLoadedAttributes(newObject, in->primaryHandle);

77 return result;

78 }

79 #endif // CC_CreatePrimary

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 331

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

24.2 TPM2_HierarchyControl

 General Description

This command enables and disables use of a hierarchy and its associated NV storage. The command

allows phEnable, phEnableNV, shEnable, and ehEnable to be changed when the proper authorization is

provided.

This command may be used to CLEAR phEnable and phEnableNV if platformAuth/platformPolicy is

provided. phEnable may not be SET using this command.

This command may be used to CLEAR shEnable if either platformAuth/platformPolicy or

ownerAuth/ownerPolicy is provided. shEnable may be SET if platformAuth/platformPolicy is provided.

This command may be used to CLEAR ehEnable if either platformAuth/platformPolicy or

endorsementAuth/endorsementPolicy is provided. ehEnable may be SET if platformAuth/platformPolicy is

provided.

When this command is used to CLEAR phEnable, shEnable, or ehEnable, the TPM will disable use of

any persistent entity associated with the disabled hierarchy and will flush any transient objects associated

with the disabled hierarchy.

When this command is used to CLEAR shEnable, the TPM will disable access to any NV index that has

TPMA_NV_PLATFORMCREATE CLEAR (indicating that the NV Index was defined using Owner

Authorization). As long as shEnable is CLEAR, the TPM will return an error in response to any command

that attempts to operate upon an NV index that has TPMA_NV_PLATFORMCREATE CLEAR.

When this command is used to CLEAR phEnableNV, the TPM will disable access to any NV index that

has TPMA_NV_PLATFORMCREATE SET (indicating that the NV Index was defined using Platform

Authorization). As long as phEnableNV is CLEAR, the TPM will return an error in response to any

command that attempts to operate upon an NV index that has TPMA_NV_PLATFORMCREATE SET.

Part 3: Commands Trusted Platform Module Library

Page 332 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 166 — TPM2_HierarchyControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyControl {NV E}

TPMI_RH_HIERARCHY @authHandle

TPM_RH_ENDORSEMENT, TPM_RH_OWNER or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_ENABLES enable

the enable being modified

TPM_RH_ENDORSEMENT, TPM_RH_OWNER,
TPM_RH_PLATFORM, or TPM_RH_PLATFORM_NV

TPMI_YES_NO state
YES if the enable should be SET, NO if the enable
should be CLEAR

Table 167 — TPM2_HierarchyControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 333

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "HierarchyControl_fp.h"

3 #if CC_HierarchyControl // Conditional expansion of this file

Error Returns Meaning

TPM_RC_AUTH_TYPE authHandle is not applicable to hierarchy in its current state

4 TPM_RC

5 TPM2_HierarchyControl(

6 HierarchyControl_In *in // IN: input parameter list

7)

8 {

9 BOOL select = (in->state == YES);

10 BOOL *selected = NULL;

11

12 // Input Validation

13 switch(in->enable)

14 {

15 // Platform hierarchy has to be disabled by PlatformAuth

16 // If the platform hierarchy has already been disabled, only a reboot

17 // can enable it again

18 case TPM_RH_PLATFORM:

19 case TPM_RH_PLATFORM_NV:

20 if(in->authHandle != TPM_RH_PLATFORM)

21 return TPM_RC_AUTH_TYPE;

22 break;

23

24 // ShEnable may be disabled if PlatformAuth/PlatformPolicy or

25 // OwnerAuth/OwnerPolicy is provided. If ShEnable is disabled, then it

26 // may only be enabled if PlatformAuth/PlatformPolicy is provided.

27 case TPM_RH_OWNER:

28 if(in->authHandle != TPM_RH_PLATFORM

29 && in->authHandle != TPM_RH_OWNER)

30 return TPM_RC_AUTH_TYPE;

31 if(gc.shEnable == FALSE && in->state == YES

32 && in->authHandle != TPM_RH_PLATFORM)

33 return TPM_RC_AUTH_TYPE;

34 break;

35

36 // EhEnable may be disabled if either PlatformAuth/PlatformPolicy or

37 // EndosementAuth/EndorsementPolicy is provided. If EhEnable is disabled,

38 // then it may only be enabled if PlatformAuth/PlatformPolicy is

39 // provided.

40 case TPM_RH_ENDORSEMENT:

41 if(in->authHandle != TPM_RH_PLATFORM

42 && in->authHandle != TPM_RH_ENDORSEMENT)

43 return TPM_RC_AUTH_TYPE;

44 if(gc.ehEnable == FALSE && in->state == YES

45 && in->authHandle != TPM_RH_PLATFORM)

46 return TPM_RC_AUTH_TYPE;

47 break;

48 default:

49 FAIL(FATAL_ERROR_INTERNAL);

50 break;

51 }

52

53 // Internal Data Update

54

55 // Enable or disable the selected hierarchy

56 // Note: the authorization processing for this command may keep these

Part 3: Commands Trusted Platform Module Library

Page 334 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

57 // command actions from being executed. For example, if phEnable is

58 // CLEAR, then platformAuth cannot be used for authorization. This

59 // means that would not be possible to use platformAuth to change the

60 // state of phEnable from CLEAR to SET.

61 // If it is decided that platformPolicy can still be used when phEnable

62 // is CLEAR, then this code could SET phEnable when proper platform

63 // policy is provided.

64 switch(in->enable)

65 {

66 case TPM_RH_OWNER:

67 selected = &gc.shEnable;

68 break;

69 case TPM_RH_ENDORSEMENT:

70 selected = &gc.ehEnable;

71 break;

72 case TPM_RH_PLATFORM:

73 selected = &g_phEnable;

74 break;

75 case TPM_RH_PLATFORM_NV:

76 selected = &gc.phEnableNV;

77 break;

78 default:

79 FAIL(FATAL_ERROR_INTERNAL);

80 break;

81 }

82 if(selected != NULL && *selected != select)

83 {

84 // Before changing the internal state, make sure that NV is available.

85 // Only need to update NV if changing the orderly state

86 RETURN_IF_ORDERLY;

87

88 // state is changing and NV is available so modify

89 *selected = select;

90 // If a hierarchy was just disabled, flush it

91 if(select == CLEAR && in->enable != TPM_RH_PLATFORM_NV)

92 // Flush hierarchy

93 ObjectFlushHierarchy(in->enable);

94

95 // orderly state should be cleared because of the update to state clear data

96 // This gets processed in ExecuteCommand() on the way out.

97 g_clearOrderly = TRUE;

98 }

99 return TPM_RC_SUCCESS;

100 }

101 #endif // CC_HierarchyControl

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 335

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

24.3 TPM2_SetPrimaryPolicy

 General Description

This command allows setting of the authorization policy for the lockout (lockoutPolicy), the platform

hierarchy (platformPolicy), the storage hierarchy (ownerPolicy), and the endorsement hierarchy

(endorsementPolicy). On TPMs implementing Authenticated Countdown Timers (ACT), this command

may also be used to set the authorization policy for an ACT.

The command requires an authorization session. The session shall use the current authValue or satisfy

the current authPolicy for the referenced hierarchy, or the ACT.

The policy that is changed is the policy associated with authHandle.

If the enable associated with authHandle is not SET, then the associated authorization values (authValue

or authPolicy) may not be used, and the TPM returns TPM_RC_HIERARCHY.

When hashAlg is not TPM_ALG_NULL, if the size of authPolicy is not consistent with the hash algorithm,

the TPM returns TPM_RC_SIZE.

Part 3: Commands Trusted Platform Module Library

Page 336 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 168 — TPM2_SetPrimaryPolicy Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetPrimaryPolicy {NV}

TPMI_RH_HIERARCHY_POLICY @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER, TPMI_RH_ACT or
TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_DIGEST authPolicy

an authorization policy digest; may be the Empty Buffer

If hashAlg is TPM_ALG_NULL, then this shall be an
Empty Buffer.

TPMI_ALG_HASH+ hashAlg

the hash algorithm to use for the policy

If the authPolicy is an Empty Buffer, then this field shall
be TPM_ALG_NULL.

Table 169 — TPM2_SetPrimaryPolicy Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 337

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "SetPrimaryPolicy_fp.h"

3 #if CC_SetPrimaryPolicy // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SIZE size of input authPolicy is not consistent with input hash algorithm

4 TPM_RC

5 TPM2_SetPrimaryPolicy(

6 SetPrimaryPolicy_In *in // IN: input parameter list

7)

8 {

9 // Input Validation

10

11 // Check the authPolicy consistent with hash algorithm. If the policy size is

12 // zero, then the algorithm is required to be TPM_ALG_NULL

13 if(in->authPolicy.t.size != CryptHashGetDigestSize(in->hashAlg))

14 return TPM_RCS_SIZE + RC_SetPrimaryPolicy_authPolicy;

15

16 // The command need NV update for OWNER and ENDORSEMENT hierarchy, and

17 // might need orderlyState update for PLATFROM hierarchy.

18 // Check if NV is available. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE

19 // error may be returned at this point

20 RETURN_IF_NV_IS_NOT_AVAILABLE;

21

22 // Internal Data Update

23

24 // Set hierarchy policy

25 switch(in->authHandle)

26 {

27 case TPM_RH_OWNER:

28 gp.ownerAlg = in->hashAlg;

29 gp.ownerPolicy = in->authPolicy;

30 NV_SYNC_PERSISTENT(ownerAlg);

31 NV_SYNC_PERSISTENT(ownerPolicy);

32 break;

33 case TPM_RH_ENDORSEMENT:

34 gp.endorsementAlg = in->hashAlg;

35 gp.endorsementPolicy = in->authPolicy;

36 NV_SYNC_PERSISTENT(endorsementAlg);

37 NV_SYNC_PERSISTENT(endorsementPolicy);

38 break;

39 case TPM_RH_PLATFORM:

40 gc.platformAlg = in->hashAlg;

41 gc.platformPolicy = in->authPolicy;

42 // need to update orderly state

43 g_clearOrderly = TRUE;

44 break;

45 case TPM_RH_LOCKOUT:

46 gp.lockoutAlg = in->hashAlg;

47 gp.lockoutPolicy = in->authPolicy;

48 NV_SYNC_PERSISTENT(lockoutAlg);

49 NV_SYNC_PERSISTENT(lockoutPolicy);

50 break;

51

52 #define SET_ACT_POLICY(N) \

53 case TPM_RH_ACT_##N: \

54 go.ACT_##N.hashAlg = in->hashAlg; \

55 go.ACT_##N.authPolicy = in->authPolicy; \

56 g_clearOrderly = TRUE; \

Part 3: Commands Trusted Platform Module Library

Page 338 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

57 break;

58

59 FOR_EACH_ACT(SET_ACT_POLICY)

60

61 default:

62 FAIL(FATAL_ERROR_INTERNAL);

63 break;

64 }

65

66 return TPM_RC_SUCCESS;

67 }

68 #endif // CC_SetPrimaryPolicy

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 339

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

24.4 TPM2_ChangePPS

 General Description

This replaces the current platform primary seed (PPS) with a value from the RNG and sets platformPolicy

to the default initialization value (the Empty Buffer).

NOTE 1 A policy that is the Empty Buffer can match no policy.

NOTE 2 Platform Authorization is not changed.

All resident transient and persistent objects in the Platform hierarchy are flushed.

Saved contexts in the Platform hierarchy that were created under the old PPS will no longer be able to be

loaded.

The policy hash algorithm for PCR is reset to TPM_ALG_NULL.

This command does not clear any NV Index values.

NOTE 3 Index values belonging to the Platform are preserved because the indexes may have configuration
information that will be the same after the PPS changes. The Platform may remove the inde xes that
are no longer needed using TPM2_NV_UndefineSpace().

This command requires Platform Authorization.

Part 3: Commands Trusted Platform Module Library

Page 340 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 170 — TPM2_ChangePPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangePPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 171 — TPM2_ChangePPS Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 341

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ChangePPS_fp.h"

3 #if CC_ChangePPS // Conditional expansion of this file

4 TPM_RC

5 TPM2_ChangePPS(

6 ChangePPS_In *in // IN: input parameter list

7)

8 {

9 UINT32 i;

10

11 // Check if NV is available. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE

12 // error may be returned at this point

13 RETURN_IF_NV_IS_NOT_AVAILABLE;

14

15 // Input parameter is not reference in command action

16 NOT_REFERENCED(in);

17

18 // Internal Data Update

19

20 // Reset platform hierarchy seed from RNG

21 CryptRandomGenerate(sizeof(gp.PPSeed.t.buffer), gp.PPSeed.t.buffer);

22

23 // Create a new phProof value from RNG to prevent the saved platform

24 // hierarchy contexts being loaded

25 CryptRandomGenerate(sizeof(gp.phProof.t.buffer), gp.phProof.t.buffer);

26

27 // Set platform authPolicy to null

28 gc.platformAlg = TPM_ALG_NULL;

29 gc.platformPolicy.t.size = 0;

30

31 // Flush loaded object in platform hierarchy

32 ObjectFlushHierarchy(TPM_RH_PLATFORM);

33

34 // Flush platform evict object and index in NV

35 NvFlushHierarchy(TPM_RH_PLATFORM);

36

37 // Save hierarchy changes to NV

38 NV_SYNC_PERSISTENT(PPSeed);

39 NV_SYNC_PERSISTENT(phProof);

40

41 // Re-initialize PCR policies

42 #if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0

43 for(i = 0; i < NUM_POLICY_PCR_GROUP; i++)

44 {

45 gp.pcrPolicies.hashAlg[i] = TPM_ALG_NULL;

46 gp.pcrPolicies.policy[i].t.size = 0;

47 }

48 NV_SYNC_PERSISTENT(pcrPolicies);

49 #endif

50

51 // orderly state should be cleared because of the update to state clear data

52 g_clearOrderly = TRUE;

53

54 return TPM_RC_SUCCESS;

55 }

56 #endif // CC_ChangePPS

Part 3: Commands Trusted Platform Module Library

Page 342 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

24.5 TPM2_ChangeEPS

 General Description

This replaces the current endorsement primary seed (EPS) with a value from the RNG and sets the

Endorsement hierarchy controls to their default initialization values: ehEnable is SET, endorsementAuth

and endorsementPolicy are both set to the Empty Buffer. It will flush any resident objects (transient or

persistent) in the Endorsement hierarchy and not allow objects in the hierarchy associated with the

previous EPS to be loaded.

NOTE In the reference implementation, ehProof is a non-volatile value from the RNG. It is allowed that the
ehProof be generated by a KDF using both the EPS and SPS as inputs. If generated with a KDF, the
ehProof can be generated on an as-needed basis or made a non-volatile value.

This command requires Platform Authorization.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 343

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 172 — TPM2_ChangeEPS Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ChangeEPS {NV E}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 173 — TPM2_ChangeEPS Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 344 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ChangeEPS_fp.h"

3 #if CC_ChangeEPS // Conditional expansion of this file

4 TPM_RC

5 TPM2_ChangeEPS(

6 ChangeEPS_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update. Check if NV is available.

10 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

11 // this point

12 RETURN_IF_NV_IS_NOT_AVAILABLE;

13

14 // Input parameter is not reference in command action

15 NOT_REFERENCED(in);

16

17 // Internal Data Update

18

19 // Reset endorsement hierarchy seed from RNG

20 CryptRandomGenerate(sizeof(gp.EPSeed.t.buffer), gp.EPSeed.t.buffer);

21

22 // Create new ehProof value from RNG

23 CryptRandomGenerate(sizeof(gp.ehProof.t.buffer), gp.ehProof.t.buffer);

24

25 // Enable endorsement hierarchy

26 gc.ehEnable = TRUE;

27

28 // set authValue buffer to zeros

29 MemorySet(gp.endorsementAuth.t.buffer, 0, gp.endorsementAuth.t.size);

30 // Set endorsement authValue to null

31 gp.endorsementAuth.t.size = 0;

32

33 // Set endorsement authPolicy to null

34 gp.endorsementAlg = TPM_ALG_NULL;

35 gp.endorsementPolicy.t.size = 0;

36

37 // Flush loaded object in endorsement hierarchy

38 ObjectFlushHierarchy(TPM_RH_ENDORSEMENT);

39

40 // Flush evict object of endorsement hierarchy stored in NV

41 NvFlushHierarchy(TPM_RH_ENDORSEMENT);

42

43 // Save hierarchy changes to NV

44 NV_SYNC_PERSISTENT(EPSeed);

45 NV_SYNC_PERSISTENT(ehProof);

46 NV_SYNC_PERSISTENT(endorsementAuth);

47 NV_SYNC_PERSISTENT(endorsementAlg);

48 NV_SYNC_PERSISTENT(endorsementPolicy);

49

50 // orderly state should be cleared because of the update to state clear data

51 g_clearOrderly = TRUE;

52

53 return TPM_RC_SUCCESS;

54 }

55 #endif // CC_ChangeEPS

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 345

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

24.6 TPM2_Clear

 General Description

This command removes all TPM context associated with a specific Owner.

The clear operation will:

• flush resident objects (persistent and volatile) in the Storage and Endorsement hierarchies;

• delete any NV Index with TPMA_NV_PLATFORMCREATE == CLEAR;

• change the storage primary seed (SPS) to a new value from the TPM’s random number generator
(RNG),

• change shProof and ehProof,

NOTE 1 The proof values may be set from the RNG or derived from the associated new Primary Seed. If
derived from the Primary Seeds, the derivation of ehProof shall use both the SPS and EPS. The
computation shall use the SPS as an HMAC key and the derived value may then be a parameter
in a second HMAC in which the EPS is the HMAC key. The reference design uses values from
the RNG.

• SET shEnable and ehEnable;

• set ownerAuth, endorsementAuth, and lockoutAuth to the Empty Buffer;

• set ownerPolicy, endorsementPolicy, and lockoutPolicy to the Empty Buffer;

• set Clock to zero;

• set resetCount to zero;

• set restartCount to zero; and

• set Safe to YES.

• increment pcrUpdateCounter

NOTE 2 This permits an application to create a policy session that is invalidated on TPM2_Clear. The
policy needs, ideally as the first term, TPM2_PolicyPCR(). The session is invalidated even if the
PCR selection is empty.

This command requires Platform Authorization or Lockout Authorization. If TPM2_ClearControl() has

disabled this command, the TPM shall return TPM_RC_DISABLED.

If this command is authorized using lockoutAuth, the HMAC in the response shall use the new

lockoutAuth value (that is, the Empty Buffer) when computing the response HMAC.

Part 3: Commands Trusted Platform Module Library

Page 346 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 174 — TPM2_Clear Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Clear {NV E}

TPMI_RH_CLEAR @authHandle

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

Table 175 — TPM2_Clear Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 347

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Clear_fp.h"

3 #if CC_Clear // Conditional expansion of this file

Error Returns Meaning

TPM_RC_DISABLED Clear command has been disabled

4 TPM_RC

5 TPM2_Clear(

6 Clear_In *in // IN: input parameter list

7)

8 {

9 // Input parameter is not reference in command action

10 NOT_REFERENCED(in);

11

12 // The command needs NV update. Check if NV is available.

13 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

14 // this point

15 RETURN_IF_NV_IS_NOT_AVAILABLE;

16

17 // Input Validation

18

19 // If Clear command is disabled, return an error

20 if(gp.disableClear)

21 return TPM_RC_DISABLED;

22

23 // Internal Data Update

24

25 // Reset storage hierarchy seed from RNG

26 CryptRandomGenerate(sizeof(gp.SPSeed.t.buffer), gp.SPSeed.t.buffer);

27

28 // Create new shProof and ehProof value from RNG

29 CryptRandomGenerate(sizeof(gp.shProof.t.buffer), gp.shProof.t.buffer);

30 CryptRandomGenerate(sizeof(gp.ehProof.t.buffer), gp.ehProof.t.buffer);

31

32 // Enable storage and endorsement hierarchy

33 gc.shEnable = gc.ehEnable = TRUE;

34

35 // set the authValue buffers to zero

36 MemorySet(&gp.ownerAuth, 0, sizeof(gp.ownerAuth));

37 MemorySet(&gp.endorsementAuth, 0, sizeof(gp.endorsementAuth));

38 MemorySet(&gp.lockoutAuth, 0, sizeof(gp.lockoutAuth));

39

40 // Set storage, endorsement, and lockout authPolicy to null

41 gp.ownerAlg = gp.endorsementAlg = gp.lockoutAlg = TPM_ALG_NULL;

42 MemorySet(&gp.ownerPolicy, 0, sizeof(gp.ownerPolicy));

43 MemorySet(&gp.endorsementPolicy, 0, sizeof(gp.endorsementPolicy));

44 MemorySet(&gp.lockoutPolicy, 0, sizeof(gp.lockoutPolicy));

45

46 // Flush loaded object in storage and endorsement hierarchy

47 ObjectFlushHierarchy(TPM_RH_OWNER);

48 ObjectFlushHierarchy(TPM_RH_ENDORSEMENT);

49

50 // Flush owner and endorsement object and owner index in NV

51 NvFlushHierarchy(TPM_RH_OWNER);

52 NvFlushHierarchy(TPM_RH_ENDORSEMENT);

53

54 // Initialize dictionary attack parameters

55 DAPreInstall_Init();

56

Part 3: Commands Trusted Platform Module Library

Page 348 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

57 // Reset clock

58 go.clock = 0;

59 go.clockSafe = YES;

60 NvWrite(NV_ORDERLY_DATA, sizeof(ORDERLY_DATA), &go);

61

62 // Reset counters

63 gp.resetCount = gr.restartCount = gr.clearCount = 0;

64 gp.auditCounter = 0;

65

66 // Save persistent data changes to NV

67 // Note: since there are so many changes to the persistent data structure, the

68 // entire PERSISTENT_DATA structure is written as a unit

69 NvWrite(NV_PERSISTENT_DATA, sizeof(PERSISTENT_DATA), &gp);

70

71 // Reset the PCR authValues (this does not change the PCRs)

72 PCR_ClearAuth();

73

74 // Bump the PCR counter

75 PCRChanged(0);

76

77 // orderly state should be cleared because of the update to state clear data

78 g_clearOrderly = TRUE;

79

80 return TPM_RC_SUCCESS;

81 }

82 #endif // CC_Clear

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 349

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

24.7 TPM2_ClearControl

 General Description

TPM2_ClearControl() disables and enables the execution of TPM2_Clear().

The TPM will SET the TPM’s TPMA_PERMANENT.disableClear attribute if disable is YES and will

CLEAR the attribute if disable is NO. When the attribute is SET, TPM2_Clear() may not be executed.

NOTE This is to simplify the logic of TPM2_Clear(). TPM2_ClearControl() can be called using Platform
Authorization to CLEAR the disableClear attribute and then execute TPM2_Clear().

Lockout Authorization may be used to SET disableClear but not to CLEAR it.

Platform Authorization may be used to SET or CLEAR disableClear.

Part 3: Commands Trusted Platform Module Library

Page 350 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 176 — TPM2_ClearControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClearControl {NV}

TPMI_RH_CLEAR @auth

TPM_RH_LOCKOUT or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_YES_NO disable
YES if the disableOwnerClear flag is to be SET, NO if
the flag is to be CLEAR.

Table 177 — TPM2_ClearControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 351

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ClearControl_fp.h"

3 #if CC_ClearControl // Conditional expansion of this file

Error Returns Meaning

TPM_RC_AUTH_FAIL authorization is not properly given

4 TPM_RC

5 TPM2_ClearControl(

6 ClearControl_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update.

10 RETURN_IF_NV_IS_NOT_AVAILABLE;

11

12 // Input Validation

13

14 // LockoutAuth may be used to set disableLockoutClear to TRUE but not to FALSE

15 if(in->auth == TPM_RH_LOCKOUT && in->disable == NO)

16 return TPM_RC_AUTH_FAIL;

17

18 // Internal Data Update

19

20 if(in->disable == YES)

21 gp.disableClear = TRUE;

22 else

23 gp.disableClear = FALSE;

24

25 // Record the change to NV

26 NV_SYNC_PERSISTENT(disableClear);

27

28 return TPM_RC_SUCCESS;

29 }

30 #endif // CC_ClearControl

Part 3: Commands Trusted Platform Module Library

Page 352 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

24.8 TPM2_HierarchyChangeAuth

 General Description

This command allows the authorization secret for a hierarchy or lockout to be changed using the current

authorization value as the command authorization.

If authHandle is TPM_RH_PLATFORM, then platformAuth is changed. If authHandle is

TPM_RH_OWNER, then ownerAuth is changed. If authHandle is TPM_RH_ENDORSEMENT, then

endorsementAuth is changed. If authHandle is TPM_RH_LOCKOUT, then lockoutAuth is changed. The

HMAC in the response shall use the new authorization value when computing the response HMAC.

If authHandle is TPM_RH_PLATFORM, then Physical Presence may need to be asserted for this

command to succeed (see 26.2, TPM2_PP_Commands).

The authorization value may be no larger than the digest produced by the hash algorithm used for context

integrity.

EXAMPLE If SHA384 is used in the computation of the integrity values for saved contexts, then the largest
authorization value is 48 octets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 353

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 178 — TPM2_HierarchyChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_HierarchyChangeAuth {NV}

TPMI_RH_HIERARCHY_AUTH @authHandle

TPM_RH_LOCKOUT, TPM_RH_ENDORSEMENT,
TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH newAuth new authorization value

Table 179 — TPM2_HierarchyChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 354 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "HierarchyChangeAuth_fp.h"

3 #if CC_HierarchyChangeAuth // Conditional expansion of this file

4 #include "Object_spt_fp.h"

Error Returns Meaning

TPM_RC_SIZE newAuth size is greater than that of integrity hash digest

5 TPM_RC

6 TPM2_HierarchyChangeAuth(

7 HierarchyChangeAuth_In *in // IN: input parameter list

8)

9 {

10 // The command needs NV update.

11 RETURN_IF_NV_IS_NOT_AVAILABLE;

12

13 // Make sure that the authorization value is a reasonable size (not larger than

14 // the size of the digest produced by the integrity hash. The integrity

15 // hash is assumed to produce the longest digest of any hash implemented

16 // on the TPM. This will also remove trailing zeros from the authValue.

17 if(MemoryRemoveTrailingZeros(&in->newAuth) > CONTEXT_INTEGRITY_HASH_SIZE)

18 return TPM_RCS_SIZE + RC_HierarchyChangeAuth_newAuth;

19

20 // Set hierarchy authValue

21 switch(in->authHandle)

22 {

23 case TPM_RH_OWNER:

24 gp.ownerAuth = in->newAuth;

25 NV_SYNC_PERSISTENT(ownerAuth);

26 break;

27 case TPM_RH_ENDORSEMENT:

28 gp.endorsementAuth = in->newAuth;

29 NV_SYNC_PERSISTENT(endorsementAuth);

30 break;

31 case TPM_RH_PLATFORM:

32 gc.platformAuth = in->newAuth;

33 // orderly state should be cleared

34 g_clearOrderly = TRUE;

35 break;

36 case TPM_RH_LOCKOUT:

37 gp.lockoutAuth = in->newAuth;

38 NV_SYNC_PERSISTENT(lockoutAuth);

39 break;

40 default:

41 FAIL(FATAL_ERROR_INTERNAL);

42 break;

43 }

44

45 return TPM_RC_SUCCESS;

46 }

47 #endif // CC_HierarchyChangeAuth

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 355

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

25 Dictionary Attack Functions

25.1 Introduction

A TPM is required to have support for logic that will help prevent a dictionary attack on an authorization

value. The protection is provided by a counter that increments when a password authorization or an

HMAC authorization fails. When the counter reaches a predefined value, the TPM will not accept, for

some time interval, further requests that require authorization and the TPM is in Lockout mode. While the

TPM is in Lockout mode, the TPM will return TPM_RC_LOCKOUT if the command requires use of an

object’s or Index’s authValue unless the authorization applies to an entry in the Platform hierarchy.

NOTE 1 Authorizations for objects and NV Index values in the Platform hierarchy are never locked out.
However, a command that requires multiple authorizations will not be accepted when the TPM is in
Lockout mode unless all of the authorizations reference objects and indexes in t he Platform
hierarchy.

If the TPM is continuously powered for the duration of newRecoveryTime and no authorization failures

occur, the authorization failure counter will be decremented by one. This property is called “self-healing.”

Self-healing shall not cause the count of failed attempts to decrement below zero.

The count of failed attempts, the lockout interval, and self-healing interval are settable using

TPM2_DictionaryAttackParameters(). The lockout parameters and the current value of the lockout

counter can be read with TPM2_GetCapability().

Dictionary attack protection does not apply to an entity associated with a permanent handle (handle type ==
TPM_HT_PERMANENT) other than TPM_RH_LOCKOUT

25.2 TPM2_DictionaryAttackLockReset

 General Description

This command cancels the effect of a TPM lockout due to a number of successive authorization failures.

If this command is properly authorized, the lockout counter is set to zero.

Only one lockoutAuth authorization failure is allowed for this command during a lockoutRecovery interval

(set using TPM2_DictionaryAttackParameters().

Part 3: Commands Trusted Platform Module Library

Page 356 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 180 — TPM2_DictionaryAttackLockReset Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackLockReset {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

Table 181 — TPM2_DictionaryAttackLockReset Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 357

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "DictionaryAttackLockReset_fp.h"

3 #if CC_DictionaryAttackLockReset // Conditional expansion of this file

4 TPM_RC

5 TPM2_DictionaryAttackLockReset(

6 DictionaryAttackLockReset_In *in // IN: input parameter list

7)

8 {

9 // Input parameter is not reference in command action

10 NOT_REFERENCED(in);

11

12 // The command needs NV update.

13 RETURN_IF_NV_IS_NOT_AVAILABLE;

14

15 // Internal Data Update

16

17 // Set failed tries to 0

18 gp.failedTries = 0;

19

20 // Record the changes to NV

21 NV_SYNC_PERSISTENT(failedTries);

22

23 return TPM_RC_SUCCESS;

24 }

25 #endif // CC_DictionaryAttackLockReset

Part 3: Commands Trusted Platform Module Library

Page 358 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

25.3 TPM2_DictionaryAttackParameters

 General Description

This command changes the lockout parameters.

The command requires Lockout Authorization.

The timeout parameters (newRecoveryTime and lockoutRecovery) indicate values that are measured with

respect to the Time and not Clock.

NOTE Use of Time means that the TPM shall be continuously powered for the duration of a timeout.

If newRecoveryTime is zero, then DA protection is disabled. Authorizations are checked but authorization

failures will not cause the TPM to enter lockout.

If newMaxTries is zero, the TPM will be in lockout and use of DA protected entities will be disabled.

If lockoutRecovery is zero, then the recovery interval is _TPM_Init followed by TPM2_Startup().

Only one lockoutAuth authorization failure is allowed for this command during a lockoutRecovery interval.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 359

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 182 — TPM2_DictionaryAttackParameters Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_DictionaryAttackParameters {NV}

TPMI_RH_LOCKOUT @lockHandle

TPM_RH_LOCKOUT

Auth Index: 1

Auth Role: USER

UINT32 newMaxTries
count of authorization failures before the lockout is
imposed

UINT32 newRecoveryTime

time in seconds before the authorization failure count
is automatically decremented

A value of zero indicates that DA protection is
disabled.

UINT32 lockoutRecovery

time in seconds after a lockoutAuth failure before use
of lockoutAuth is allowed

A value of zero indicates that a reboot is required.

Table 183 — TPM2_DictionaryAttackParameters Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 360 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "DictionaryAttackParameters_fp.h"

3 #if CC_DictionaryAttackParameters // Conditional expansion of this file

4 TPM_RC

5 TPM2_DictionaryAttackParameters(

6 DictionaryAttackParameters_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update.

10 RETURN_IF_NV_IS_NOT_AVAILABLE;

11

12 // Internal Data Update

13

14 // Set dictionary attack parameters

15 gp.maxTries = in->newMaxTries;

16 gp.recoveryTime = in->newRecoveryTime;

17 gp.lockoutRecovery = in->lockoutRecovery;

18

19 #if 0 // Errata eliminates this code

20 // This functionality has been disabled. The preferred implementation is now

21 // to leave failedTries unchanged when the parameters are changed. This could

22 // have the effect of putting the TPM into DA lockout if in->newMaxTries is

23 // not greater than the current value of gp.failedTries.

24 // Set failed tries to 0

25 gp.failedTries = 0;

26 #endif

27

28 // Record the changes to NV

29 NV_SYNC_PERSISTENT(failedTries);

30 NV_SYNC_PERSISTENT(maxTries);

31 NV_SYNC_PERSISTENT(recoveryTime);

32 NV_SYNC_PERSISTENT(lockoutRecovery);

33

34 return TPM_RC_SUCCESS;

35 }

36 #endif // CC_DictionaryAttackParameters

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 361

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

26 Miscellaneous Management Functions

26.1 Introduction

This clause contains commands that do not logically group with any other commands.

26.2 TPM2_PP_Commands

 General Description

This command is used to determine which commands require assertion of Physical Presence (PP) in

addition to platformAuth/platformPolicy.

This command requires that auth is TPM_RH_PLATFORM and that Physical Presence be asserted.

After this command executes successfully, the commands listed in setList will be added to the list of

commands that require that Physical Presence be asserted when the handle associated with the

authorization is TPM_RH_PLATFORM. The commands in clearList will no longer require assertion of

Physical Presence in order to authorize a command.

If a command is not in either list, its state is not changed. If a command is in both lists, then it will no

longer require Physical Presence (for example, setList is processed first).

Only commands with handle types of TPMI_RH_PLATFORM, TPMI_RH_PROVISION,

TPMI_RH_CLEAR, or TPMI_RH_HIERARCHY can be gated with Physical Presence. If any other

command is in either list, it is discarded.

When a command requires that Physical Presence be provided, then Physical Presence shall be

asserted for either an HMAC or a Policy authorization.

NOTE 1 Physical Presence may be made a requirement of any policy.

NOTE 2 If the TPM does not implement this command, the command list is vendor specific . A platform-
specific specification may require that the command list be initialized in a specific way.

TPM2_PP_Commands() always requires assertion of Physical Presence.

Part 3: Commands Trusted Platform Module Library

Page 362 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 184 — TPM2_PP_Commands Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_PP_Commands {NV}

TPMI_RH_PLATFORM @auth

TPM_RH_PLATFORM+PP

Auth Index: 1

Auth Role: USER + Physical Presence

TPML_CC setList
list of commands to be added to those that will require
that Physical Presence be asserted

TPML_CC clearList
list of commands that will no longer require that
Physical Presence be asserted

Table 185 — TPM2_PP_Commands Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 363

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "PP_Commands_fp.h"

3 #if CC_PP_Commands // Conditional expansion of this file

4 TPM_RC

5 TPM2_PP_Commands(

6 PP_Commands_In *in // IN: input parameter list

7)

8 {

9 UINT32 i;

10

11 // The command needs NV update. Check if NV is available.

12 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

13 // this point

14 RETURN_IF_NV_IS_NOT_AVAILABLE;

15

16 // Internal Data Update

17

18 // Process set list

19 for(i = 0; i < in->setList.count; i++)

20 // If command is implemented, set it as PP required. If the input

21 // command is not a PP command, it will be ignored at

22 // PhysicalPresenceCommandSet().

23 // Note: PhysicalPresenceCommandSet() checks if the command is implemented.

24 PhysicalPresenceCommandSet(in->setList.commandCodes[i]);

25

26 // Process clear list

27 for(i = 0; i < in->clearList.count; i++)

28 // If command is implemented, clear it as PP required. If the input

29 // command is not a PP command, it will be ignored at

30 // PhysicalPresenceCommandClear(). If the input command is

31 // TPM2_PP_Commands, it will be ignored as well

32 PhysicalPresenceCommandClear(in->clearList.commandCodes[i]);

33

34 // Save the change of PP list

35 NV_SYNC_PERSISTENT(ppList);

36

37 return TPM_RC_SUCCESS;

38 }

39 #endif // CC_PP_Commands

Part 3: Commands Trusted Platform Module Library

Page 364 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

26.3 TPM2_SetAlgorithmSet

 General Description

This command allows the platform to change the set of algorithms that are used by the TPM. The

algorithmSet setting is a vendor-dependent value.

If the changing of the algorithm set results in a change of the algorithms of PCR banks, then the TPM will

need to be reset (_TPM_Init and TPM2_Startup(TPM_SU_CLEAR)) before the new PCR settings take

effect. After this command executes successfully, if startupType in the next TPM2_Startup() is not

TPM_SU_CLEAR, the TPM shall return TPM_RC_VALUE and may enter Failure mode.

Other than PCR, when an algorithm is no longer supported, the behavior of this command is vendor-

dependent.

EXAMPLE Entities may remain resident. Persistent objects, transient objects, or sessions may be flushed. NV
Indexes may be undefined. Policies may be erased.

NOTE The reference implementation does not have support for this command. In particular, it does not
support use of this command to selectively disable algorithms. Proper support would require
modification of the unmarshaling code so that each time an algorithm is unmarshaled, it would be
verified as being enabled.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 365

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 186 — TPM2_SetAlgorithmSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_SetAlgorithmSet {NV}

TPMI_RH_PLATFORM @authHandle

TPM_RH_PLATFORM

Auth Index: 1

Auth Role: USER

UINT32 algorithmSet
a TPM vendor-dependent value indicating the
algorithm set selection

Table 187 — TPM2_SetAlgorithmSet Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 366 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "SetAlgorithmSet_fp.h"

3 #if CC_SetAlgorithmSet // Conditional expansion of this file

4 TPM_RC

5 TPM2_SetAlgorithmSet(

6 SetAlgorithmSet_In *in // IN: input parameter list

7)

8 {

9 // The command needs NV update. Check if NV is available.

10 // A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may be returned at

11 // this point

12 RETURN_IF_NV_IS_NOT_AVAILABLE;

13

14 // Internal Data Update

15 gp.algorithmSet = in->algorithmSet;

16

17 // Write the algorithm set changes to NV

18 NV_SYNC_PERSISTENT(algorithmSet);

19

20 return TPM_RC_SUCCESS;

21 }

22 #endif // CC_SetAlgorithmSet

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 367

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

27 Field Upgrade

27.1 Introduction

This clause contains the commands for managing field upgrade of the firmware in the TPM. The field

upgrade scheme may be used for replacement or augmentation of the firmware installed in the TPM.

EXAMPLE 1 If an algorithm is found to be flawed, a patch of that algorithm might be installed using the firmware
upgrade process. The patch might be a replacement of a portion of the code or a complete
replacement of the firmware.

EXAMPLE 2 If an additional set of ECC parameters is needed, the firmware process may be used to add the
parameters to the TPM data set.

The field upgrade process uses two commands (TPM2_FieldUpgradeStart() and

TPM2_FieldUpgradeData()). TPM2_FieldUpgradeStart() validates that a signature on the provided digest

is from the TPM manufacturer and that proper authorization is provided using platformPolicy.

NOTE 1 The platformPolicy for field upgraded is defined by the PM and may include requirements that the
upgrade be signed by the PM or the TPM owner and include any other constraints that are desired
by the PM.

If the proper authorization is given, the TPM will retain the signed digest and enter the Field Upgrade

mode (FUM). While in FUM, the TPM will accept TPM2_FieldUpgradeData() commands. It may accept

other commands if it is able to complete them using the previously installed firmware. Otherwise, it will

return TPM_RC_UPGRADE.

Each block of the field upgrade shall contain the digest of the next block of the field upgrade data. That

digest shall be included in the digest of the previous block. The digest of the first block is signed by the

TPM manufacturer. That signature and first block digest are the parameters for

TPM2_FieldUpgradeStart(). The digest is saved in the TPM as the required digest for the next field

upgrade data block and as the identifier of the field upgrade sequence.

For each field upgrade data block that is sent to the TPM by TPM2_FieldUpgradeData(), the TPM shall

validate that the digest matches the required digest and if not, shall return TPM_RC_VALUE. The TPM

shall extract the digest of the next expected block and return that value to the caller, along with the digest

of the first data block of the update sequence.

The system may attempt to abandon the firmware upgrade by using a zero-length buffer in

TPM2_FieldUpdateData(). If the TPM is able to resume operation using the firmware present when the

upgrade started, then the TPM will indicate that it has abandon the update by setting the digest of the

next block to the Empty Buffer. If the TPM cannot abandon the update, it will return the expected next

digest.

The system may also attempt to abandon the update because of a power interruption. If the TPM is able

to resume normal operations, then it will respond normally to TPM2_Startup(). If the TPM is not able to

resume normal operations, then it will respond to any command but TPM2_FieldUpgradeData() with

TPM_RC_UPGRADE.

After a _TPM_Init, system software may not be able to resume the field upgrade that was in process

when the power interruption occurred. In such case, the TPM firmware may be reset to one of two other

values:

• the original firmware that was installed at the factory (“initial firmware”); or

• the firmware that was in the TPM when the field upgrade process started (“previous firmware”).

The TPM retains the digest of the first block for these firmware images and checks to see if the first block

after _TPM_Init matches either of those digests. If so, the firmware update process restarts and the

original firmware may be loaded.

Part 3: Commands Trusted Platform Module Library

Page 368 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

NOTE 2 The TPM is required to accept the previous firmware as either a vendor -provided update or as
recovered from the TPM using TPM2_FirmwareRead().

When the last block of the firmware upgrade is loaded into the TPM (indicated to the TPM by data in the

data block in a TPM vendor-specific manner), the TPM will complete the upgrade process. If the TPM is

able to resume normal operations without a reboot, it will set the hash algorithm of the next block to

TPM_ALG_NULL and return TPM_RC_SUCCESS. If a reboot is required, the TPM shall return

TPM_RC_REBOOT in response to the last TPM2_FieldUpgradeData() and all subsequent TPM

commands until a _TPM_Init is received.

NOTE 3 Because no additional data is allowed when the response code is not TPM_RC_SUCCESS, the TPM
returns TPM_RC_SUCCESS for all calls to TPM2_FieldUpgradeData() except the last. In this
manner, the TPM is able to indicate the digest of the next block. If a _TPM_Init occurs while the
TPM is in FUM, the next block may be the digest for the first block of the original firmware. If it is
not, then the TPM will not accept the original firmware until the next _TPM_Init when the TPM is in
FUM.

During the field upgrade process, either the one specified in this clause or a vendor proprietary field

upgrade process, the TPM should preserve:

• Primary Seeds;

• Hierarchy authValue, authPolicy, and proof values;

• Lockout authValue and authorization failure count values;

• PCR authValue and authPolicy values;

• NV Index allocations and contents;

• Persistent object allocations and contents; and

• Clock.

NOTE 4 A platform manufacturer may provide a means to change preserved data to accommodate a case
where a field upgrade fixes a flaw that might have compromised TPM secrets.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 369

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

27.2 TPM2_FieldUpgradeStart

 General Description

This command uses platformPolicy and a TPM Vendor Authorization Key to authorize a Field Upgrade

Manifest.

If the signature checks succeed, the authorization is valid and the TPM will accept

TPM2_FieldUpgradeData().

This signature is checked against the loaded key referenced by keyHandle. This key will have a Name

that is the same as a value that is part of the TPM firmware data. If the signature is not valid, the TPM

shall return TPM_RC_SIGNATURE.

NOTE A loaded key is used rather than a hard-coded key to reduce the amount of memory needed for this
key data in case more than one vendor key is needed.

Part 3: Commands Trusted Platform Module Library

Page 370 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 188 — TPM2_FieldUpgradeStart Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeStart

TPMI_RH_PLATFORM @authorization

TPM_RH_PLATFORM+{PP}

Auth Index:1

Auth Role: ADMIN

TPMI_DH_OBJECT keyHandle

handle of a public area that contains the TPM Vendor
Authorization Key that will be used to validate
manifestSignature

Auth Index: None

TPM2B_DIGEST fuDigest digest of the first block in the field upgrade sequence

TPMT_SIGNATURE manifestSignature
signature over fuDigest using the key associated with
keyHandle (not optional)

Table 189 — TPM2_FieldUpgradeStart Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 371

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "FieldUpgradeStart_fp.h"

3 #if CC_FieldUpgradeStart // Conditional expansion of this file

4 TPM_RC

5 TPM2_FieldUpgradeStart(

6 FieldUpgradeStart_In *in // IN: input parameter list

7)

8 {

9 // Not implemented

10 UNUSED_PARAMETER(in);

11 return TPM_RC_SUCCESS;

12 }

13 #endif

Part 3: Commands Trusted Platform Module Library

Page 372 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

27.3 TPM2_FieldUpgradeData

 General Description

This command will take the actual field upgrade image to be installed on the TPM. The exact format of

fuData is vendor-specific. This command is only possible following a successful

TPM2_FieldUpgradeStart(). If the TPM has not received a properly authorized

TPM2_FieldUpgradeStart(), then the TPM shall return TPM_RC_FIELDUPGRADE.

The TPM will validate that the digest of fuData matches an expected value. If so, the TPM may buffer or

immediately apply the update. If the digest of fuData does not match an expected value, the TPM shall

return TPM_RC_VALUE.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 373

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 190 — TPM2_FieldUpgradeData Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or decrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FieldUpgradeData {NV}

TPM2B_MAX_BUFFER fuData field upgrade image data

Table 191 — TPM2_FieldUpgradeData Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMT_HA+ nextDigest
tagged digest of the next block

TPM_ALG_NULL if field update is complete

TPMT_HA firstDigest tagged digest of the first block of the sequence

Part 3: Commands Trusted Platform Module Library

Page 374 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "FieldUpgradeData_fp.h"

3 #if CC_FieldUpgradeData // Conditional expansion of this file

4 TPM_RC

5 TPM2_FieldUpgradeData(

6 FieldUpgradeData_In *in, // IN: input parameter list

7 FieldUpgradeData_Out *out // OUT: output parameter list

8)

9 {

10 // Not implemented

11 UNUSED_PARAMETER(in);

12 UNUSED_PARAMETER(out);

13 return TPM_RC_SUCCESS;

14 }

15 #endif

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 375

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

27.4 TPM2_FirmwareRead

 General Description

This command is used to read a copy of the current firmware installed in the TPM.

The presumption is that the data will be returned in reverse order so that the last block in the sequence

would be the first block given to the TPM in case of a failure recovery. If the TPM2_FirmwareRead

sequence completes successfully, then the data provided from the TPM will be sufficient to allow the TPM

to recover from an abandoned upgrade of this firmware.

To start the sequence of retrieving the data, the caller sets sequenceNumber to zero. When the TPM has

returned all the firmware data, the TPM will return the Empty Buffer as fuData.

The contents of fuData are opaque to the caller.

NOTE 1 The caller should retain the ordering of the update blocks so that the blocks sent to the TPM have
the same size and inverse order as the blocks returned by a sequence of calls to this command.

NOTE 2 Support for this command is optional even if the TPM implements TPM2_FieldUpgradeStart() and
TPM2_FieldUpgradeData().

Part 3: Commands Trusted Platform Module Library

Page 376 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 192 — TPM2_FirmwareRead Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FirmwareRead

UINT32 sequenceNumber

the number of previous calls to this command in this
sequence

set to 0 on the first call

Table 193 — TPM2_FirmwareRead Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_BUFFER fuData field upgrade image data

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 377

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "FirmwareRead_fp.h"

3 #if CC_FirmwareRead // Conditional expansion of this file

4 TPM_RC

5 TPM2_FirmwareRead(

6 FirmwareRead_In *in, // IN: input parameter list

7 FirmwareRead_Out *out // OUT: output parameter list

8)

9 {

10 // Not implemented

11 UNUSED_PARAMETER(in);

12 UNUSED_PARAMETER(out);

13 return TPM_RC_SUCCESS;

14 }

15 #endif // CC_FirmwareRead

Part 3: Commands Trusted Platform Module Library

Page 378 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

28 Context Management

28.1 Introduction

Three of the commands in this clause (TPM2_ContextSave(), TPM2_ContextLoad(), and

TPM2_FlushContext()) implement the resource management described in the "Context Management"

clause in TPM 2.0 Part 1.

The fourth command in this clause (TPM2_EvictControl()) is used to control the persistence of loadable

objects in TPM memory. Background for this command may be found in the "Owner and Platform Evict

Objects" clause in TPM 2.0 Part 1.

28.2 TPM2_ContextSave

 General Description

This command saves a session context, object context, or sequence object context outside the TPM.

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS.

NOTE This preclusion avoids complex issues of dealing with the same session in handle and in the session
area. While it might be possible to provide specificity, it would add unnecessary complexity to the
TPM and, because this capability would provide no application benefit, use of authorization sessions
for audit or encryption is prohibited.

The TPM shall encrypt and integrity protect the TPM2B_CONTEXT_SENSITIVE context as described in

the "Context Protections" clause in TPM 2.0 Part 1.

See the “Context Data” clause in TPM 2.0 Part 2 for a description of the context structure in the response.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 379

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 194 — TPM2_ContextSave Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextSave

TPMI_DH_CONTEXT saveHandle
handle of the resource to save

Auth Index: None

Table 195 — TPM2_ContextSave Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_CONTEXT context

Part 3: Commands Trusted Platform Module Library

Page 380 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ContextSave_fp.h"

3 #if CC_ContextSave // Conditional expansion of this file

4 #include "Context_spt_fp.h"

Error Returns Meaning

TPM_RC_CONTEXT_GAP a contextID could not be assigned for a session context save

TPM_RC_TOO_MANY_CONTEXTS no more contexts can be saved as the counter has maxed out

5 TPM_RC

6 TPM2_ContextSave(

7 ContextSave_In *in, // IN: input parameter list

8 ContextSave_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result = TPM_RC_SUCCESS;

12 UINT16 fingerprintSize; // The size of fingerprint in context

13 // blob.

14 UINT64 contextID = 0; // session context ID

15 TPM2B_SYM_KEY symKey;

16 TPM2B_IV iv;

17

18 TPM2B_DIGEST integrity;

19 UINT16 integritySize;

20 BYTE *buffer;

21

22 // This command may cause the orderlyState to be cleared due to

23 // the update of state reset data. If the state is orderly and

24 // cannot be changed, exit early.

25 RETURN_IF_ORDERLY;

26

27 // Internal Data Update

28

29 // This implementation does not do things in quite the same way as described in

30 // Part 2 of the specification. In Part 2, it indicates that the

31 // TPMS_CONTEXT_DATA contains two TPM2B values. That is not how this is

32 // implemented. Rather, the size field of the TPM2B_CONTEXT_DATA is used to

33 // determine the amount of data in the encrypted data. That part is not

34 // independently sized. This makes the actual size 2 bytes smaller than

35 // calculated using Part 2. Since this is opaque to the caller, it is not

36 // necessary to fix. The actual size is returned by TPM2_GetCapabilties().

37

38 // Initialize output handle. At the end of command action, the output

39 // handle of an object will be replaced, while the output handle

40 // for a session will be the same as input

41 out->context.savedHandle = in->saveHandle;

42

43 // Get the size of fingerprint in context blob. The sequence value in

44 // TPMS_CONTEXT structure is used as the fingerprint

45 fingerprintSize = sizeof(out->context.sequence);

46

47 // Compute the integrity size at the beginning of context blob

48 integritySize = sizeof(integrity.t.size)

49 + CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG);

50

51 // Perform object or session specific context save

52 switch(HandleGetType(in->saveHandle))

53 {

54 case TPM_HT_TRANSIENT:

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 381

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

55 {

56 OBJECT *object = HandleToObject(in->saveHandle);

57 ANY_OBJECT_BUFFER *outObject;

58 UINT16 objectSize = ObjectIsSequence(object)

59 ? sizeof(HASH_OBJECT) : sizeof(OBJECT);

60

61 outObject = (ANY_OBJECT_BUFFER *)(out->context.contextBlob.t.buffer

62 + integritySize + fingerprintSize);

63

64 // Set size of the context data. The contents of context blob is vendor

65 // defined. In this implementation, the size is size of integrity

66 // plus fingerprint plus the whole internal OBJECT structure

67 out->context.contextBlob.t.size = integritySize +

68 fingerprintSize + objectSize;

69 #if ALG_RSA

70 // For an RSA key, make sure that the key has had the private exponent

71 // computed before saving.

72 if(object->publicArea.type == TPM_ALG_RSA &&

73 !(object->attributes.publicOnly))

74 CryptRsaLoadPrivateExponent(&object->publicArea, &object->sensitive);

75 #endif

76 // Make sure things fit

77 pAssert(out->context.contextBlob.t.size

78 <= sizeof(out->context.contextBlob.t.buffer));

79 // Copy the whole internal OBJECT structure to context blob

80 MemoryCopy(outObject, object, objectSize);

81

82 // Increment object context ID

83 gr.objectContextID++;

84 // If object context ID overflows, TPM should be put in failure mode

85 if(gr.objectContextID == 0)

86 FAIL(FATAL_ERROR_INTERNAL);

87

88 // Fill in other return values for an object.

89 out->context.sequence = gr.objectContextID;

90 // For regular object, savedHandle is 0x80000000. For sequence object,

91 // savedHandle is 0x80000001. For object with stClear, savedHandle

92 // is 0x80000002

93 if(ObjectIsSequence(object))

94 {

95 out->context.savedHandle = 0x80000001;

96 SequenceDataExport((HASH_OBJECT *)object,

97 (HASH_OBJECT_BUFFER *)outObject);

98 }

99 else

100 out->context.savedHandle = (object->attributes.stClear == SET)

101 ? 0x80000002 : 0x80000000;

102 // Get object hierarchy

103 out->context.hierarchy = ObjectGetHierarchy(object);

104

105 break;

106 }

107 case TPM_HT_HMAC_SESSION:

108 case TPM_HT_POLICY_SESSION:

109 {

110 SESSION *session = SessionGet(in->saveHandle);

111

112 // Set size of the context data. The contents of context blob is vendor

113 // defined. In this implementation, the size of context blob is the

114 // size of a internal session structure plus the size of

115 // fingerprint plus the size of integrity

116 out->context.contextBlob.t.size = integritySize +

117 fingerprintSize + sizeof(*session);

118

119 // Make sure things fit

120 pAssert(out->context.contextBlob.t.size

Part 3: Commands Trusted Platform Module Library

Page 382 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

121 < sizeof(out->context.contextBlob.t.buffer));

122

123 // Copy the whole internal SESSION structure to context blob.

124 // Save space for fingerprint at the beginning of the buffer

125 // This is done before anything else so that the actual context

126 // can be reclaimed after this call

127 pAssert(sizeof(*session) <= sizeof(out->context.contextBlob.t.buffer)

128 - integritySize - fingerprintSize);

129 MemoryCopy(out->context.contextBlob.t.buffer + integritySize

130 + fingerprintSize, session, sizeof(*session));

131 // Fill in the other return parameters for a session

132 // Get a context ID and set the session tracking values appropriately

133 // TPM_RC_CONTEXT_GAP is a possible error.

134 // SessionContextSave() will flush the in-memory context

135 // so no additional errors may occur after this call.

136 result = SessionContextSave(out->context.savedHandle, &contextID);

137 if(result != TPM_RC_SUCCESS)

138 return result;

139 // sequence number is the current session contextID

140 out->context.sequence = contextID;

141

142 // use TPM_RH_NULL as hierarchy for session context

143 out->context.hierarchy = TPM_RH_NULL;

144

145 break;

146 }

147 default:

148 // SaveContext may only take an object handle or a session handle.

149 // All the other handle type should be filtered out at unmarshal

150 FAIL(FATAL_ERROR_INTERNAL);

151 break;

152 }

153

154 // Save fingerprint at the beginning of encrypted area of context blob.

155 // Reserve the integrity space

156 pAssert(sizeof(out->context.sequence) <=

157 sizeof(out->context.contextBlob.t.buffer) - integritySize);

158 MemoryCopy(out->context.contextBlob.t.buffer + integritySize,

159 &out->context.sequence, sizeof(out->context.sequence));

160

161 // Compute context encryption key

162 ComputeContextProtectionKey(&out->context, &symKey, &iv);

163

164 // Encrypt context blob

165 CryptSymmetricEncrypt(out->context.contextBlob.t.buffer + integritySize,

166 CONTEXT_ENCRYPT_ALG, CONTEXT_ENCRYPT_KEY_BITS,

167 symKey.t.buffer, &iv, ALG_CFB_VALUE,

168 out->context.contextBlob.t.size - integritySize,

169 out->context.contextBlob.t.buffer + integritySize);

170

171 // Compute integrity hash for the object

172 // In this implementation, the same routine is used for both sessions

173 // and objects.

174 ComputeContextIntegrity(&out->context, &integrity);

175

176 // add integrity at the beginning of context blob

177 buffer = out->context.contextBlob.t.buffer;

178 TPM2B_DIGEST_Marshal(&integrity, &buffer, NULL);

179

180 // orderly state should be cleared because of the update of state reset and

181 // state clear data

182 g_clearOrderly = TRUE;

183

184 return result;

185 }

186 #endif // CC_ContextSave

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 383

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

28.3 TPM2_ContextLoad

 General Description

This command is used to reload a context that has been saved by TPM2_ContextSave().

No authorization sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 28.2.1).

The TPM will return TPM_RC_HIERARCHY if the context is associated with a hierarchy that is disabled.

NOTE Contexts for authorization sessions and for sequence objects belong to the NULL hierarchy, which is
never disabled.

See the “Context Data” clause in TPM 2.0 Part 2 for a description of the values in the context parameter.

If the integrity HMAC of the saved context is not valid, the TPM shall return TPM_RC_INTEGRITY.

The TPM shall perform a check on the decrypted context as described in the "Context Confidentiality

Protection" clause of TPM 2.0 Part 1 and enter failure mode if the check fails.

Part 3: Commands Trusted Platform Module Library

Page 384 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 196 — TPM2_ContextLoad Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ContextLoad

TPMS_CONTEXT context the context blob

Table 197 — TPM2_ContextLoad Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_DH_CONTEXT loadedHandle
the handle assigned to the resource after it has been
successfully loaded

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 385

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ContextLoad_fp.h"

3 #if CC_ContextLoad // Conditional expansion of this file

4 #include "Context_spt_fp.h"

Error Returns Meaning

TPM_RC_CONTEXT_GAP there is only one available slot and this is not the oldest saved
session context

TPM_RC_HANDLE context.savedHandle' does not reference a saved session

TPM_RC_HIERARCHY context.hierarchy is disabled

TPM_RC_INTEGRITY context integrity check fail

TPM_RC_OBJECT_MEMORY no free slot for an object

TPM_RC_SESSION_MEMORY no free session slots

TPM_RC_SIZE incorrect context blob size

5 TPM_RC

6 TPM2_ContextLoad(

7 ContextLoad_In *in, // IN: input parameter list

8 ContextLoad_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 TPM2B_DIGEST integrityToCompare;

13 TPM2B_DIGEST integrity;

14 BYTE *buffer; // defined to save some typing

15 INT32 size; // defined to save some typing

16 TPM_HT handleType;

17 TPM2B_SYM_KEY symKey;

18 TPM2B_IV iv;

19

20 // Input Validation

21

22 // See discussion about the context format in TPM2_ContextSave Detailed Actions

23

24 // IF this is a session context, make sure that the sequence number is

25 // consistent with the version in the slot

26

27 // Check context blob size

28 handleType = HandleGetType(in->context.savedHandle);

29

30 // Get integrity from context blob

31 buffer = in->context.contextBlob.t.buffer;

32 size = (INT32)in->context.contextBlob.t.size;

33 result = TPM2B_DIGEST_Unmarshal(&integrity, &buffer, &size);

34 if(result != TPM_RC_SUCCESS)

35 return result;

36

37 // the size of the integrity value has to match the size of digest produced

38 // by the integrity hash

39 if(integrity.t.size != CryptHashGetDigestSize(CONTEXT_INTEGRITY_HASH_ALG))

40 return TPM_RCS_SIZE + RC_ContextLoad_context;

41

42 // Make sure that the context blob has enough space for the fingerprint. This

43 // is elastic pants to go with the belt and suspenders we already have to make

44 // sure that the context is complete and untampered.

Part 3: Commands Trusted Platform Module Library

Page 386 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

45 if((unsigned)size < sizeof(in->context.sequence))

46 return TPM_RCS_SIZE + RC_ContextLoad_context;

47

48 // After unmarshaling the integrity value, 'buffer' is pointing at the first

49 // byte of the integrity protected and encrypted buffer and 'size' is the number

50 // of integrity protected and encrypted bytes.

51

52 // Compute context integrity

53 ComputeContextIntegrity(&in->context, &integrityToCompare);

54

55 // Compare integrity

56 if(!MemoryEqual2B(&integrity.b, &integrityToCompare.b))

57 return TPM_RCS_INTEGRITY + RC_ContextLoad_context;

58 // Compute context encryption key

59 ComputeContextProtectionKey(&in->context, &symKey, &iv);

60

61 // Decrypt context data in place

62 CryptSymmetricDecrypt(buffer, CONTEXT_ENCRYPT_ALG, CONTEXT_ENCRYPT_KEY_BITS,

63 symKey.t.buffer, &iv, ALG_CFB_VALUE, size, buffer);

64 // See if the fingerprint value matches. If not, it is symptomatic of either

65 // a broken TPM or that the TPM is under attack so go into failure mode.

66 if(!MemoryEqual(buffer, &in->context.sequence, sizeof(in->context.sequence)))

67 FAIL(FATAL_ERROR_INTERNAL);

68

69 // step over fingerprint

70 buffer += sizeof(in->context.sequence);

71

72 // set the remaining size of the context

73 size -= sizeof(in->context.sequence);

74

75 // Perform object or session specific input check

76 switch(handleType)

77 {

78 case TPM_HT_TRANSIENT:

79 {

80 OBJECT *outObject;

81

82 if(size > (INT32)sizeof(OBJECT))

83 FAIL(FATAL_ERROR_INTERNAL);

84

85 // Discard any changes to the handle that the TRM might have made

86 in->context.savedHandle = TRANSIENT_FIRST;

87

88 // If hierarchy is disabled, no object context can be loaded in this

89 // hierarchy

90 if(!HierarchyIsEnabled(in->context.hierarchy))

91 return TPM_RCS_HIERARCHY + RC_ContextLoad_context;

92

93 // Restore object. If there is no empty space, indicate as much

94 outObject = ObjectContextLoad((ANY_OBJECT_BUFFER *)buffer,

95 &out->loadedHandle);

96 if(outObject == NULL)

97 return TPM_RC_OBJECT_MEMORY;

98

99 break;

100 }

101 case TPM_HT_POLICY_SESSION:

102 case TPM_HT_HMAC_SESSION:

103 {

104 if(size != sizeof(SESSION))

105 FAIL(FATAL_ERROR_INTERNAL);

106

107 // This command may cause the orderlyState to be cleared due to

108 // the update of state reset data. If this is the case, check if NV is

109 // available first

110 RETURN_IF_ORDERLY;

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 387

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

111

112 // Check if input handle points to a valid saved session and that the

113 // sequence number makes sense

114 if(!SequenceNumberForSavedContextIsValid(&in->context))

115 return TPM_RCS_HANDLE + RC_ContextLoad_context;

116

117 // Restore session. A TPM_RC_SESSION_MEMORY, TPM_RC_CONTEXT_GAP error

118 // may be returned at this point

119 result = SessionContextLoad((SESSION_BUF *)buffer,

120 &in->context.savedHandle);

121 if(result != TPM_RC_SUCCESS)

122 return result;

123

124 out->loadedHandle = in->context.savedHandle;

125

126 // orderly state should be cleared because of the update of state

127 // reset and state clear data

128 g_clearOrderly = TRUE;

129

130 break;

131 }

132 default:

133 // Context blob may only have an object handle or a session handle.

134 // All the other handle type should be filtered out at unmarshal

135 FAIL(FATAL_ERROR_INTERNAL);

136 break;

137 }

138

139 return TPM_RC_SUCCESS;

140 }

141 #endif // CC_ContextLoad

Part 3: Commands Trusted Platform Module Library

Page 388 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

28.4 TPM2_FlushContext

 General Description

This command causes all context associated with a loaded object, sequence object, or session to be

removed from TPM memory.

This command may not be used to remove a persistent object from the TPM. Use TPM2_EvictControl to

remove a persistent object.

A session does not have to be loaded in TPM memory to have its context flushed. The saved session

context associated with the indicated handle is invalidated. When flushing a session, the upper byte of the

handle is ignored.

EXAMPLE A command to flush session handle 0x20000000 will flush session handle 0x03000000.

No sessions of any type are allowed with this command and tag is required to be

TPM_ST_NO_SESSIONS (see note in 28.2.1).

If the handle is for a Transient Object and the handle is not associated with a loaded object, then the TPM

shall return TPM_RC_HANDLE.

If the handle is for an authorization session and the handle does not reference a loaded or active session,

then the TPM shall return TPM_RC_HANDLE.

NOTE flushHandle is a parameter and not a handle. If it were in the handle area, the TPM would validate
that the context for the referenced entity is in the TPM. When a TPM2_FlushContext references a
saved session context, it is not necessary for the context to be in the TPM. When the flushHandle is
in the parameter area, the TPM does not validate that associated context is actually in the TPM.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 389

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 198 — TPM2_FlushContext Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_FlushContext

TPMI_DH_CONTEXT flushHandle
the handle of the item to flush

NOTE This is a use of a handle as a parameter.

Table 199 — TPM2_FlushContext Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 390 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "FlushContext_fp.h"

3 #if CC_FlushContext // Conditional expansion of this file

Error Returns Meaning

TPM_RC_HANDLE flushHandle does not reference a loaded object or session

4 TPM_RC

5 TPM2_FlushContext(

6 FlushContext_In *in // IN: input parameter list

7)

8 {

9 // Internal Data Update

10

11 // Call object or session specific routine to flush

12 switch(HandleGetType(in->flushHandle))

13 {

14 case TPM_HT_TRANSIENT:

15 if(!IsObjectPresent(in->flushHandle))

16 return TPM_RCS_HANDLE + RC_FlushContext_flushHandle;

17 // Flush object

18 FlushObject(in->flushHandle);

19 break;

20 case TPM_HT_HMAC_SESSION:

21 case TPM_HT_POLICY_SESSION:

22 if(!SessionIsLoaded(in->flushHandle)

23 && !SessionIsSaved(in->flushHandle)

24)

25 return TPM_RCS_HANDLE + RC_FlushContext_flushHandle;

26

27 // If the session to be flushed is the exclusive audit session, then

28 // indicate that there is no exclusive audit session any longer.

29 if(in->flushHandle == g_exclusiveAuditSession)

30 g_exclusiveAuditSession = TPM_RH_UNASSIGNED;

31

32 // Flush session

33 SessionFlush(in->flushHandle);

34 break;

35 default:

36 // This command only takes object or session handle. Other handles

37 // should be filtered out at handle unmarshal

38 FAIL(FATAL_ERROR_INTERNAL);

39 break;

40 }

41

42 return TPM_RC_SUCCESS;

43 }

44 #endif // CC_FlushContext

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 391

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

28.5 TPM2_EvictControl

 General Description

This command allows certain Transient Objects to be made persistent or a persistent object to be evicted.

NOTE 1 A transient object is one that may be removed from TPM memory using either TPM2_FlushContext
or TPM2_Startup(). A persistent object is not removed from TPM memory by TPM2_FlushContext()
or TPM2_Startup().

If objectHandle is a Transient Object, then this call makes a persistent copy of the object and assigns

persistentHandle to the persistent version of the object. If objectHandle is a persistent object, then the call

evicts the persistent object. The call does not affect the transient object.

Before execution of TPM2_EvictControl code below, the TPM verifies that objectHandle references an

object that is resident on the TPM and that persistentHandle is a valid handle for a persistent object.

NOTE 2 This requirement simplifies the unmarshaling code so that it only need check that persistentHandle
is always a persistent object.

If objectHandle references a Transient Object:

 The TPM shall return TPM_RC_ATTRIBUTES if

1) it is in the hierarchy of TPM_RH_NULL,

2) only the public portion of the object is loaded, or

NOTE 3 This is for NV space efficiency. Loading an object whose private part is empty would
unnecessarily consume NV resources.

3) the stClear is SET in the object or in an ancestor key.

 The TPM shall return TPM_RC_HIERARCHY if the object is not in the proper hierarchy as

determined by auth.

1) If auth is TPM_RH_PLATFORM, the proper hierarchy is the Platform hierarchy.

2) If auth is TPM_RH_OWNER, the proper hierarchy is either the Storage or the Endorsement

hierarchy.

 The TPM shall return TPM_RC_RANGE if persistentHandle is not in the proper range as determined

by auth.

1) If auth is TPM_RH_OWNER, then persistentHandle shall be in the inclusive range of

81 00 00 0016 to 81 7F FF FF16.

2) If auth is TPM_RH_PLATFORM, then persistentHandle shall be in the inclusive range of

81 80 00 0016 to 81 FF FF FF16.

NOTE 4 This separation permits the platform (the platform OEM) a range of indexes that will not
interfere with indexes used by the TPM owner (the OS or applications).

 The TPM shall return TPM_RC_NV_DEFINED if a persistent object exists with the same handle as

persistentHandle.

 The TPM shall return TPM_RC_NV_SPACE if insufficient space is available to make the object

persistent.

 The TPM shall return TPM_RC_NV_SPACE if execution of this command will prevent the TPM from

being able to hold two transient objects of any kind.

NOTE 5 This requirement anticipates that a TPM may be implemented such that all TPM memory is non -
volatile and not subject to endurance issues. In such case, there is no movement of an object

Part 3: Commands Trusted Platform Module Library

Page 392 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

between memory of different types and it is necessary that the TPM ensure that it is always
possible for the management software to move objects to/from TPM memory in order to ensure
that the objects required for command execution can be context restored.

 If the TPM returns TPM_RC_SUCCESS, the object referenced by objectHandle will not be flushed

and both objectHandle and persistentHandle may be used to access the object.

If objectHandle references a persistent object:

 The TPM shall return TPM_RC_RANGE if objectHandle is not in the proper range as determined by

auth. If auth is TPM_RC_OWNER, objectHandle shall be in the inclusive range of 81 00 00 0016 to

81 7F FF FF16. If auth is TPM_RC_PLATFORM, objectHandle may be any valid persistent object

handle.

 If objectHandle is not the same value as persistentHandle, return TPM_RC_HANDLE.

 If the TPM returns TPM_RC_SUCCESS, objectHandle will be removed from persistent memory and

no longer be accessible.

NOTE 5 The persistent object is not converted to a transient object, as this would prevent the immediate
revocation of an object by removing it from persistent memory.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 393

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 200 — TPM2_EvictControl Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_EvictControl {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPMI_DH_OBJECT objectHandle
the handle of a loaded object

Auth Index: None

TPMI_DH_PERSISTENT persistentHandle

if objectHandle is a transient object handle, then this is
the persistent handle for the object

if objectHandle is a persistent object handle, then it
shall be the same value as persistentHandle

Table 201 — TPM2_EvictControl Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 394 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "EvictControl_fp.h"

3 #if CC_EvictControl // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES an object with temporary, stClear or publicOnly attribute SET cannot
be made persistent

TPM_RC_HIERARCHY auth cannot authorize the operation in the hierarchy of evictObject

TPM_RC_HANDLE evictHandle of the persistent object to be evicted is not the same as
the persistentHandle argument

TPM_RC_NV_HANDLE persistentHandle is unavailable

TPM_RC_NV_SPACE no space in NV to make evictHandle persistent

TPM_RC_RANGE persistentHandle is not in the range corresponding to the hierarchy of
evictObject

4 TPM_RC

5 TPM2_EvictControl(

6 EvictControl_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 OBJECT *evictObject;

11

12 // Input Validation

13

14 // Get internal object pointer

15 evictObject = HandleToObject(in->objectHandle);

16

17 // Temporary, stClear or public only objects can not be made persistent

18 if(evictObject->attributes.temporary == SET

19 || evictObject->attributes.stClear == SET

20 || evictObject->attributes.publicOnly == SET)

21 return TPM_RCS_ATTRIBUTES + RC_EvictControl_objectHandle;

22

23 // If objectHandle refers to a persistent object, it should be the same as

24 // input persistentHandle

25 if(evictObject->attributes.evict == SET

26 && evictObject->evictHandle != in->persistentHandle)

27 return TPM_RCS_HANDLE + RC_EvictControl_objectHandle;

28

29 // Additional authorization validation

30 if(in->auth == TPM_RH_PLATFORM)

31 {

32 // To make persistent

33 if(evictObject->attributes.evict == CLEAR)

34 {

35 // PlatformAuth can not set evict object in storage or endorsement

36 // hierarchy

37 if(evictObject->attributes.ppsHierarchy == CLEAR)

38 return TPM_RCS_HIERARCHY + RC_EvictControl_objectHandle;

39 // Platform cannot use a handle outside of platform persistent range.

40 if(!NvIsPlatformPersistentHandle(in->persistentHandle))

41 return TPM_RCS_RANGE + RC_EvictControl_persistentHandle;

42 }

43 // PlatformAuth can delete any persistent object

44 }

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 395

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

45 else if(in->auth == TPM_RH_OWNER)

46 {

47 // OwnerAuth can not set or clear evict object in platform hierarchy

48 if(evictObject->attributes.ppsHierarchy == SET)

49 return TPM_RCS_HIERARCHY + RC_EvictControl_objectHandle;

50

51 // Owner cannot use a handle outside of owner persistent range.

52 if(evictObject->attributes.evict == CLEAR

53 && !NvIsOwnerPersistentHandle(in->persistentHandle))

54 return TPM_RCS_RANGE + RC_EvictControl_persistentHandle;

55 }

56 else

57 {

58 // Other authorization is not allowed in this command and should have been

59 // filtered out in unmarshal process

60 FAIL(FATAL_ERROR_INTERNAL);

61 }

62 // Internal Data Update

63 // Change evict state

64 if(evictObject->attributes.evict == CLEAR)

65 {

66 // Make object persistent

67 if(NvFindHandle(in->persistentHandle) != 0)

68 return TPM_RC_NV_DEFINED;

69 // A TPM_RC_NV_HANDLE or TPM_RC_NV_SPACE error may be returned at this

70 // point

71 result = NvAddEvictObject(in->persistentHandle, evictObject);

72 }

73 else

74 {

75 // Delete the persistent object in NV

76 result = NvDeleteEvict(evictObject->evictHandle);

77 }

78 return result;

79 }

80 #endif // CC_EvictControl

Part 3: Commands Trusted Platform Module Library

Page 396 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

29 Clocks and Timers

29.1 TPM2_ReadClock

 General Description

This command reads the current TPMS_TIME_INFO structure that contains the current setting of Time,

Clock, resetCount, and restartCount.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 397

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 202 — TPM2_ReadClock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ReadClock

Table 203 — TPM2_ReadClock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_TIME_INFO currentTime

Part 3: Commands Trusted Platform Module Library

Page 398 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ReadClock_fp.h"

3 #if CC_ReadClock // Conditional expansion of this file

4 TPM_RC

5 TPM2_ReadClock(

6 ReadClock_Out *out // OUT: output parameter list

7)

8 {

9 // Command Output

10

11 out->currentTime.time = g_time;

12 TimeFillInfo(&out->currentTime.clockInfo);

13

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_ReadClock

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 399

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

29.2 TPM2_ClockSet

 General Description

This command is used to advance the value of the TPM’s Clock. The command will fail if newTime is less

than the current value of Clock or if the new time is greater than FF FF 00 00 00 00 00 0016. If both of

these checks succeed, Clock is set to newTime. If either of these checks fails, the TPM shall return

TPM_RC_VALUE and make no change to Clock.

NOTE This maximum setting would prevent Clock from rolling over to zero for approximately 8,000 years at
the real time Clock update rate. If the Clock update rate was set so that TPM time was passing 33
percent faster than real time, it would still be more than 6,000 years before Clock would roll over to
zero. Because Clock will not roll over in the lifetime of the TPM, there is no need for external
software to deal with the possibility that Clock may wrap around.

If the value of Clock after the update makes the volatile and non-volatile versions of

TPMS_CLOCK_INFO.clock differ by more than the reported update interval, then the TPM shall update

the non-volatile version of TPMS_CLOCK_INFO.clock before returning.

This command requires Platform Authorization or Owner Authorization.

Part 3: Commands Trusted Platform Module Library

Page 400 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 204 — TPM2_ClockSet Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockSet {NV}

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

UINT64 newTime new Clock setting in milliseconds

Table 205 — TPM2_ClockSet Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 401

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ClockSet_fp.h"

3 #if CC_ClockSet // Conditional expansion of this file

Read the current TPMS_TIMER_INFO structure settings

Error Returns Meaning

TPM_RC_NV_RATE NV is unavailable because of rate limit

TPM_RC_NV_UNAVAILABLE NV is inaccessible

TPM_RC_VALUE invalid new clock

4 TPM_RC

5 TPM2_ClockSet(

6 ClockSet_In *in // IN: input parameter list

7)

8 {

9 // Input Validation

10 // new time can not be bigger than 0xFFFF000000000000 or smaller than

11 // current clock

12 if(in->newTime > 0xFFFF000000000000ULL

13 || in->newTime < go.clock)

14 return TPM_RCS_VALUE + RC_ClockSet_newTime;

15

16 // Internal Data Update

17 // Can't modify the clock if NV is not available.

18 RETURN_IF_NV_IS_NOT_AVAILABLE;

19

20 TimeClockUpdate(in->newTime);

21 return TPM_RC_SUCCESS;

22 }

23 #endif // CC_ClockSet

Part 3: Commands Trusted Platform Module Library

Page 402 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

29.3 TPM2_ClockRateAdjust

 General Description

This command adjusts the rate of advance of Clock and Time to provide a better approximation to real

time.

The rateAdjust value is relative to the current rate and not the nominal rate of advance.

EXAMPLE 1 If this command had been called three times with rateAdjust = TPM_CLOCK_COARSE_SLOWER
and once with rateAdjust = TPM_CLOCK_COARSE_FASTER, the net effect will be as if the
command had been called twice with rateAdjust = TPM_CLOCK_COARSE_SLOWER.

The range of adjustment shall be sufficient to allow Clock and Time to advance at real time but no more.

If the requested adjustment would make the rate advance faster or slower than the nominal accuracy of

the input frequency, the TPM shall return TPM_RC_VALUE.

EXAMPLE 2 If the frequency tolerance of the TPM's input clock is +/ -10 percent, then the TPM will return
TPM_RC_VALUE if the adjustment would make Clock run more than 10 percent faster or slower than
nominal. That is, if the input oscillator were nominally 100 megahertz (MHz), then 1 millisecond (ms)
would normally take 100,000 counts. The update Clock should be adjustable so that 1 ms is between
90,000 and 110,000 counts.

The interpretation of “fine” and “coarse” adjustments is implementation-specific.

The nominal rate of advance for Clock and Time shall be accurate to within 15 percent. That is, with no

adjustment applied, Clock and Time shall be advanced at a rate within 15 percent of actual time.

NOTE If the adjustments are incorrect, it will be possible to make the difference between advance of
Clock/Time and real time to be as much as 1.152 or ~1.33.

Changes to the current Clock update rate adjustment need not be persisted across TPM power cycles.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 403

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 206 — TPM2_ClockRateAdjust Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ClockRateAdjust

TPMI_RH_PROVISION @auth

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Handle: 1

Auth Role: USER

TPM_CLOCK_ADJUST rateAdjust Adjustment to current Clock update rate

Table 207 — TPM2_ClockRateAdjust Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 404 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "ClockRateAdjust_fp.h"

3 #if CC_ClockRateAdjust // Conditional expansion of this file

4 TPM_RC

5 TPM2_ClockRateAdjust(

6 ClockRateAdjust_In *in // IN: input parameter list

7)

8 {

9 // Internal Data Update

10 TimeSetAdjustRate(in->rateAdjust);

11

12 return TPM_RC_SUCCESS;

13 }

14 #endif // CC_ClockRateAdjust

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 405

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

30 Capability Commands

30.1 Introduction

The TPM has numerous values that indicate the state, capabilities, and properties of the TPM. These

values are needed for proper management of the TPM. The TPM2_GetCapability() command is used to

access these values.

TPM2_GetCapability() allows reporting of multiple values in a single call. The values are grouped

according to type.

NOTE TPM2_TestParms()is used to determine if a TPM supports a particular combination of algorithm
parameters

30.2 TPM2_GetCapability

 General Description

This command returns various information regarding the TPM and its current state.

The capability parameter determines the category of data returned. The property parameter selects the

first value of the selected category to be returned. If there is no property that corresponds to the value of

property, the next higher value is returned, if it exists.

EXAMPLE 1 The list of handles of transient objects currently loaded in the TPM may be read one at a time. On
the first read, set the property to TRANSIENT_FIRST and propertyCount to one. If a transient object
is present, the lowest numbered handle is returned and moreData will be YES if transient objects
with higher handles are loaded. On the subsequent call, use returned handle value plus 1 in order to
access the next higher handle.

The propertyCount parameter indicates the number of capabilities in the indicated group that are

requested. The TPM will return no more than the number of requested values (propertyCount) or until the

last property of the requested type has been returned.

NOTE 1 The type of the capability is derived from a combination of capability and property.

NOTE 2 If the property selects an unimplemented property, the next higher implemented property is returned.

When all of the properties of the requested type have been returned, the moreData parameter in the

response will be set to NO. Otherwise, it will be set to YES.

NOTE 3 The moreData parameter will be YES if there are more properties even if the requested number of
capabilities has been returned.

The TPM is not required to return more than one value at a time. It is not required to provide the same

number of values in response to subsequent requests.

EXAMPLE 2 A TPM may return 4 properties in response to a TPM2_GetCapability(capability =
TPM_CAP_TPM_PROPERTY, property = TPM_PT_MANUFACTURER, propertyCount = 8) and for a
latter request with the same parameters, the TPM may return as few as one and as many as 8
values.

When the TPM is in Failure mode, a TPM is required to allow use of this command for access of the

following capabilities:

Part 3: Commands Trusted Platform Module Library

Page 406 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

• TPM_PT_MANUFACTURER

• TPM_PT_VENDOR_STRING_1

• TPM_PT_VENDOR_STRING_2 (NOTE 4)

• TPM_PT_VENDOR_STRING_3 (NOTE 4)

• TPM_PT_VENDOR_STRING_4 (NOTE 4)

• TPM_PT_VENDOR_TPM_TYPE

• TPM_PT_FIRMWARE_VERSION_1

• TPM_PT_FIRMWARE_VERSION_2

NOTE 4 If the vendor string does not require one of these values, the property type does not need to exist.

A vendor may optionally allow the TPM to return other values.

If in Failure mode and a capability is requested that is not available in Failure mode, the TPM shall return

no value.

EXAMPLE 3 Assume the TPM is in Failure mode and the TPM only supports reporting of the minimum required
set of properties (the limited subset of TPML_TAGGED_TPM_PROPERTY values). If a
TPM2_GetCapability is received requesting a capability that has a property type value greater than
TPM_PT_FIRMWARE_VERSION_2, the TPM may return a zero length list with the moreData
parameter set to NO or return the property TPM_PT_FIRMWARE_VERSION_2. If the property type
is less than TPM_PT_MANUFACTURER, the TPM will return properties beginning with
TPM_PT_MANUFACTURER.

In Failure mode, tag is required to be TPM_ST_NO_SESSIONS or the TPM shall return

TPM_RC_FAILURE.

The capability categories and the types of the return values are:

capability property Return Type

TPM_CAP_ALGS TPM_ALG_ID(1) TPML_ALG_PROPERTY

TPM_CAP_HANDLES TPM_HANDLE TPML_HANDLE

TPM_CAP_COMMANDS TPM_CC TPML_CCA

TPM_CAP_PP_COMMANDS TPM_CC TPML_CC

TPM_CAP_AUDIT_COMMANDS TPM_CC TPML_CC

TPM_CAP_PCRS Reserved TPML_PCR_SELECTION

TPM_CAP_TPM_PROPERTIES TPM_PT TPML_TAGGED_TPM_PROPERTY

TPM_CAP_PCR_PROPERTIES TPM_PT_PCR TPML_TAGGED_PCR_PROPERTY

TPM_CAP_ECC_CURVES TPM_ECC_CURVE(1) TPML_ECC_CURVE

TPM_CAP_AUTH_POLICIES (3) TPM_HANDLE(2) TPML_TAGGED_POLICY

TPM_CAP_ACT(4) TPM_HANDLE(2) TPML_ACT_DATA

TPM_CAP_VENDOR_PROPERTY manufacturer specific manufacturer-specific values

NOTES:

(1) The TPM_ALG_ID or TPM_ECC_CURVE is cast to a UINT32

(2) The TPM will return TPM_RC_VALUE if the handle does not reference the range for permanent handles.

(3) TPM_CAP_AUTH_POLICIES was added in revision 01.32.

(4) TPM_CAP_ACT was added in revision 01.56.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 407

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

• TPM_CAP_ALGS – Returns a list of TPMS_ALG_PROPERTIES. Each entry is an algorithm ID and a
set of properties of the algorithm.

• TPM_CAP_HANDLES – Returns a list of all of the handles within the handle range of the property
parameter. The range of the returned handles is determined by the handle type (the most-significant
octet (MSO) of the property). Any of the defined handle types is allowed

EXAMPLE 4 If the MSO of property is TPM_HT_NV_INDEX, then the TPM will return a list of NV Index
values.

EXAMPLE 5 If the MSO of property is TPM_HT_PCR, then the TPM will return a list of PCR.

• For this capability, use of TPM_HT_LOADED_SESSION and TPM_HT_SAVED_SESSION is
allowed. Requesting handles with a handle type of TPM_HT_LOADED_SESSION will return handles
for loaded sessions. The returned handle values will have a handle type of either
TPM_HT_HMAC_SESSION or TPM_HT_POLICY_SESSION. If saved sessions are requested, all
returned values will have the TPM_HT_HMAC_SESSION handle type because the TPM does not
track the session type of saved sessions.

NOTE 5 TPM_HT_LOADED_SESSION and TPM_HT_HMAC_SESSION have the same value, as do
TPM_HT_SAVED_SESSION and TPM_HT_POLICY_SESSION. It is not possible to request that
the TPM return a list of loaded HMAC sessions without including the policy sessions.

• TPM_CAP_COMMANDS – Returns a list of the command attributes for all of the commands
implemented in the TPM, starting with the TPM_CC indicated by the property parameter. If vendor
specific commands are implemented, the vendor-specific command attribute with the lowest
commandIndex, is returned after the non-vendor-specific (base) command.

NOTE 6 The type of the property parameter is a TPM_CC while the type of the returned list is
TPML_CCA.

• TPM_CAP_PP_COMMANDS – Returns a list of all of the commands currently requiring Physical
Presence for confirmation of platform authorization. The list will start with the TPM_CC indicated by
property.

• TPM_CAP_AUDIT_COMMANDS – Returns a list of all of the commands currently set for command
audit.

• TPM_CAP_PCRS – Returns the current allocation of PCR in a TPML_PCR_SELECTION. The
property parameter shall be zero. The TPM will always respond to this command with the full PCR
allocation and moreData will be NO.

The TPML_PCR_SELECTION must include a TPMS_PCR_SELECTION for each PCR bank in which
there is at least one allocated PCR. The TPML_PCR_SELECTION may return a
TPMS_PCR_SELECTION for each implemented PCR bank. The TPML_PCR_SELECTION may
return a TPMS_PCR_SELECTION for each implemented hash algorithm.

• TPM_CAP_TPM_PROPERTIES – Returns a list of tagged properties. The tag is a TPM_PT and the
property is a 32-bit value. The properties are returned in groups. Each property group is on a 256-
value boundary (that is, the boundary occurs when the TPM_PT is evenly divisible by 256). The TPM
will only return values in the same group as the property parameter in the command.

• TPM_CAP_PCR_PROPERTIES – Returns a list of tagged PCR properties. The tag is a
TPM_PT_PCR and the property is a TPMS_PCR_SELECT.

The input command property is a TPM_PT_PCR (see TPM 2.0 Part 2 for PCR properties to be

requested) that specifies the first property to be returned. If propertyCount is greater than 1, the

list of properties begins with that property and proceeds in TPM_PT_PCR sequence.

Each item in the list is a TPMS_PCR_SELECT structure that contains a bitmap of all PCR.

NOTE 7 A PCR index in all banks (all hash algorithms) has the same properties, so the hash algorithm is
not specified here.

Part 3: Commands Trusted Platform Module Library

Page 408 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

• TPM_CAP_TPM_ECC_CURVES – Returns a list of ECC curve identifiers currently available for use
in the TPM.

• TPM_CAP_AUTH_POLICIES - Returns a list of tagged policies reporting the authorization policies for
the permanent handles.

• TPM_CAP_ACT – Returns a list of TPMS_ACT_DATA, each of which contains the handle for the
ACT, the remaining time before it expires, and the ACT attributes.

The moreData parameter will have a value of YES if there are more values of the requested type that

were not returned.

If no next capability exists, the TPM will return a zero-length list and moreData will have a value of NO.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 409

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 208 — TPM2_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_GetCapability

TPM_CAP capability group selection; determines the format of the response

UINT32 property further definition of information

UINT32 propertyCount number of properties of the indicated type to return

Table 209 — TPM2_GetCapability Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMI_YES_NO moreData flag to indicate if there are more values of this type

TPMS_CAPABILITY_DATA capabilityData the capability data

Part 3: Commands Trusted Platform Module Library

Page 410 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "GetCapability_fp.h"

3 #if CC_GetCapability // Conditional expansion of this file

Error Returns Meaning

TPM_RC_HANDLE value of property is in an unsupported handle range for the
TPM_CAP_HANDLES capability value

TPM_RC_VALUE invalid capability; or property is not 0 for the TPM_CAP_PCRS
capability value

4 TPM_RC

5 TPM2_GetCapability(

6 GetCapability_In *in, // IN: input parameter list

7 GetCapability_Out *out // OUT: output parameter list

8)

9 {

10 TPMU_CAPABILITIES *data = &out->capabilityData.data;

11 // Command Output

12

13 // Set output capability type the same as input type

14 out->capabilityData.capability = in->capability;

15

16 switch(in->capability)

17 {

18 case TPM_CAP_ALGS:

19 out->moreData = AlgorithmCapGetImplemented((TPM_ALG_ID)in->property,

20 in->propertyCount,

21 &data->algorithms);

22 break;

23 case TPM_CAP_HANDLES:

24 switch(HandleGetType((TPM_HANDLE)in->property))

25 {

26 case TPM_HT_TRANSIENT:

27 // Get list of handles of loaded transient objects

28 out->moreData = ObjectCapGetLoaded((TPM_HANDLE)in->property,

29 in->propertyCount,

30 &data->handles);

31 break;

32 case TPM_HT_PERSISTENT:

33 // Get list of handles of persistent objects

34 out->moreData = NvCapGetPersistent((TPM_HANDLE)in->property,

35 in->propertyCount,

36 &data->handles);

37 break;

38 case TPM_HT_NV_INDEX:

39 // Get list of defined NV index

40 out->moreData = NvCapGetIndex((TPM_HANDLE)in->property,

41 in->propertyCount,

42 &data->handles);

43 break;

44 case TPM_HT_LOADED_SESSION:

45 // Get list of handles of loaded sessions

46 out->moreData = SessionCapGetLoaded((TPM_HANDLE)in->property,

47 in->propertyCount,

48 &data->handles);

49 break;

50 #ifdef TPM_HT_SAVED_SESSION

51 case TPM_HT_SAVED_SESSION:

52 #else

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 411

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

53 case TPM_HT_ACTIVE_SESSION:

54 #endif

55 // Get list of handles of

56 out->moreData = SessionCapGetSaved((TPM_HANDLE)in->property,

57 in->propertyCount,

58 &data->handles);

59 break;

60 case TPM_HT_PCR:

61 // Get list of handles of PCR

62 out->moreData = PCRCapGetHandles((TPM_HANDLE)in->property,

63 in->propertyCount,

64 &data->handles);

65 break;

66 case TPM_HT_PERMANENT:

67 // Get list of permanent handles

68 out->moreData = PermanentCapGetHandles((TPM_HANDLE)in->property,

69 in->propertyCount,

70 &data->handles);

71 break;

72 default:

73 // Unsupported input handle type

74 return TPM_RCS_HANDLE + RC_GetCapability_property;

75 break;

76 }

77 break;

78 case TPM_CAP_COMMANDS:

79 out->moreData = CommandCapGetCCList((TPM_CC)in->property,

80 in->propertyCount,

81 &data->command);

82 break;

83 case TPM_CAP_PP_COMMANDS:

84 out->moreData = PhysicalPresenceCapGetCCList((TPM_CC)in->property,

85 in->propertyCount,

86 &data->ppCommands);

87 break;

88 case TPM_CAP_AUDIT_COMMANDS:

89 out->moreData = CommandAuditCapGetCCList((TPM_CC)in->property,

90 in->propertyCount,

91 &data->auditCommands);

92 break;

93 case TPM_CAP_PCRS:

94 // Input property must be 0

95 if(in->property != 0)

96 return TPM_RCS_VALUE + RC_GetCapability_property;

97 out->moreData = PCRCapGetAllocation(in->propertyCount,

98 &data->assignedPCR);

99 break;

100 case TPM_CAP_PCR_PROPERTIES:

101 out->moreData = PCRCapGetProperties((TPM_PT_PCR)in->property,

102 in->propertyCount,

103 &data->pcrProperties);

104 break;

105 case TPM_CAP_TPM_PROPERTIES:

106 out->moreData = TPMCapGetProperties((TPM_PT)in->property,

107 in->propertyCount,

108 &data->tpmProperties);

109 break;

110 #if ALG_ECC

111 case TPM_CAP_ECC_CURVES:

112 out->moreData = CryptCapGetECCCurve((TPM_ECC_CURVE)in->property,

113 in->propertyCount,

114 &data->eccCurves);

115 break;

116 #endif // ALG_ECC

117 case TPM_CAP_AUTH_POLICIES:

118 if(HandleGetType((TPM_HANDLE)in->property) != TPM_HT_PERMANENT)

Part 3: Commands Trusted Platform Module Library

Page 412 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

119 return TPM_RCS_VALUE + RC_GetCapability_property;

120 out->moreData = PermanentHandleGetPolicy((TPM_HANDLE)in->property,

121 in->propertyCount,

122 &data->authPolicies);

123 break;

124 case TPM_CAP_ACT:

125 if(((TPM_RH)in->property < TPM_RH_ACT_0)

126 || ((TPM_RH)in->property > TPM_RH_ACT_F))

127 return TPM_RCS_VALUE + RC_GetCapability_property;

128 out->moreData = ActGetCapabilityData((TPM_HANDLE)in->property,

129 in->propertyCount,

130 &data->actData);

131 break;

132 case TPM_CAP_VENDOR_PROPERTY:

133 // vendor property is not implemented

134 default:

135 // Unsupported TPM_CAP value

136 return TPM_RCS_VALUE + RC_GetCapability_capability;

137 break;

138 }

139

140 return TPM_RC_SUCCESS;

141 }

142 #endif // CC_GetCapability

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 413

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

30.3 TPM2_TestParms

 General Description

This command is used to check to see if specific combinations of algorithm parameters are supported.

The TPM will unmarshal the provided TPMT_PUBLIC_PARMS. If the parameters unmarshal correctly,

then the TPM will return TPM_RC_SUCCESS, indicating that the parameters are valid for the TPM. The

TPM will return the appropriate unmarshaling error if a parameter is not valid.

Part 3: Commands Trusted Platform Module Library

Page 414 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 210 — TPM2_TestParms Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_TestParms

TPMT_PUBLIC_PARMS parameters algorithm parameters to be validated

Table 211 — TPM2_TestParms Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode TPM_RC

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 415

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "TestParms_fp.h"

3 #if CC_TestParms // Conditional expansion of this file

4 TPM_RC

5 TPM2_TestParms(

6 TestParms_In *in // IN: input parameter list

7)

8 {

9 // Input parameter is not reference in command action

10 NOT_REFERENCED(in);

11

12 // The parameters are tested at unmarshal process. We do nothing in command

13 // action

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_TestParms

Part 3: Commands Trusted Platform Module Library

Page 416 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31 Non-volatile Storage

31.1 Introduction

The NV commands are used to create, update, read, and delete allocations of space in NV memory.

Before an Index may be used, it must be defined (TPM2_NV_DefineSpace()).

An Index may be modified if the proper write authorization is provided or read if the proper read

authorization is provided. Different controls are available for reading and writing.

An Index may have an Index-specific authValue and authPolicy. The authValue may be used to authorize

reading if TPMA_NV_AUTHREAD is SET and writing if TPMA_NV_AUTHWRITE is SET. The authPolicy

may be used to authorize reading if TPMA_NV_POLICYREAD is SET and writing if

TPMA_NV_POLICYWRITE is SET.

For commands that have both authHandle and nvIndex parameters, authHandle can be an NV Index,

Platform Authorization, or Owner Authorization. If authHandle is an NV Index, it must be the same as

nvIndex (TPM_RC_NV_AUTHORIZATION).

TPMA_NV_PPREAD and TPMA_NV_PPWRITE indicate if reading or writing of the NV Index may be

authorized by platformAuth or platformPolicy.

TPMA_NV_OWNERREAD and TPMA_NV_OWNERWRITE indicate if reading or writing of the NV Index

may be authorized by ownerAuth or ownerPolicy.

If an operation on an NV index requires authorization, and the authHandle parameter is the handle of an

NV Index, then the nvIndex parameter must have the same value or the TPM will return

TPM_RC_NV_AUTHORIZATION.

NOTE 1 This check ensures that the authorization that was provided is associated with the NV Index being
authorized.

For creating an Index, Owner Authorization may not be used if shEnable is CLEAR and Platform

Authorization may not be used if phEnableNV is CLEAR.

If an Index was defined using Platform Authorization, then that Index is not accessible when phEnableNV

is CLEAR. If an Index was defined using Owner Authorization, then that Index is not accessible when

shEnable is CLEAR.

For read access control, any combination of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD,

TPMA_NV_AUTHREAD, or TPMA_NV_POLICYREAD is allowed as long as at least one is SET.

For write access control, any combination of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE,

TPMA_NV_AUTHWRITE, or TPMA_NV_POLICYWRITE is allowed as long as at least one is SET.

If an Index has been defined and not written, then any operation on the NV Index that requires read

authorization will fail (TPM_RC_NV_INITIALIZED). This check may be made before or after other

authorization checks but shall be performed before checking the NV Index authValue. An authorization

failure due to the NV Index not having been written shall not be logged by the dictionary attack logic.

If TPMA_NV_CLEAR_STCLEAR is SET, then the TPMA_NV_WRITTEN will be CLEAR on each

TPM2_Startup(TPM_SU_CLEAR). TPMA_NV_CLEAR_STCLEAR shall not be SET if the nvIndexType is

TPM_NT_COUNTER.

The code in the “Detailed Actions” clause of each command is written to interface with an implementation-

dependent library that allows access to NV memory. The actions assume no specific layout of the

structure of the NV data.

Only one NV Index may be directly referenced in a command.

NOTE 2 This means that, if authHandle references an NV Index, then nvIndex will have the same value.
However, this does not limit the number of changes that may occur as side effects. For example, any
number of NV Indexes might be relocated as a result of deleting or adding a NV Index.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 417

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.2 NV Counters

When an Index has the TPM_NT_COUNTER attribute, it behaves as a monotonic counter and may only

be updated using TPM2_NV_Increment().

When an NV counter is created, the TPM shall initialize the 8-octet counter value with a number that is

greater than any count value for any NV counter on the TPM since the time of TPM manufacture.

An NV counter may be defined with the TPMA_NV_ORDERLY attribute to indicate that the NV Index is

expected to be modified at a high frequency and that the data is only required to persist when the TPM

goes through an orderly shutdown process. The TPM may update the counter value in RAM and

occasionally update the non-volatile version of the counter. An orderly shutdown is one occasion to

update the non-volatile count. If the difference between the volatile and non-volatile version of the counter

becomes as large as MAX_ORDERLY_COUNT, this shall be another occasion for updating the non-

volatile count.

Before an NV counter can be used, the TPM shall validate that the count is not less than a previously

reported value. If the TPMA_NV_ORDERLY attribute is not SET, or if the TPM experienced an orderly

shutdown, then the count is assumed to be correct. If the TPMA_NV_ORDERLY attribute is SET, and the

TPM shutdown was not orderly, then the TPM shall OR MAX_ORDERLY_COUNT to the contents of the

non-volatile counter and set that as the current count.

NOTE 1 Because the TPM would have updated the NV Index if the difference between the count values was
equal to MAX_ORDERLY_COUNT + 1, the highest value that could have been in the NV Index is
MAX_ORDERLY_COUNT so it is safe to restore that value.

NOTE 2 The TPM may implement the RAM portion of the counter such that the effective value of the NV
counter is the sum of both the volatile and non-volatile parts. If so, then the TPM may initialize the
RAM version of the counter to MAX_ORDERLY_COUNT and no update of NV is necessary.

NOTE 3 When a new NV counter is created, the TPM may search all the counters to determine which has the
highest value. In this search, the TPM would use the sum of the non-volatile and RAM portions of
the counter. The RAM portion of the counter shall be properly initialized to reflect shutdown process
(orderly or not) of the TPM.

Part 3: Commands Trusted Platform Module Library

Page 418 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31.3 TPM2_NV_DefineSpace

 General Description

This command defines the attributes of an NV Index and causes the TPM to reserve space to hold the

data associated with the NV Index. If a definition already exists at the NV Index, the TPM will return

TPM_RC_NV_DEFINED.

The TPM will return TPM_RC_ATTRIBUTES if nvIndexType has a reserved value in publicInfo.

NOTE 1 It is not required that any of these three attributes be set.

The TPM shall return TPM_RC_ATTRIBUTES if TPMA_NV_WRITTEN, TPMA_NV_READLOCKED, or

TPMA_NV_WRITELOCKED is SET.

If nvIndexType is TPM_NT_COUNTER, TPM_NT_BITS, TPM_NT_PIN_FAIL, or TPM_NT_PIN_PASS,

then publicInfo→dataSize shall be set to eight (8) or the TPM shall return TPM_RC_SIZE.

If nvIndexType is TPM_NT_EXTEND, then publicInfo→dataSize shall match the digest size of the

publicInfo.nameAlg or the TPM shall return TPM_RC_SIZE.

NOTE 2 TPM_RC_ATTRIBUTES could be returned by a TPM that is based on the reference code of older
versions of the specification but the correct response for this error is TPM_RC_SIZE.

If the NV Index is an ordinary Index and publicInfo→dataSize is larger than supported by the TPM

implementation then the TPM shall return TPM_RC_SIZE.

NOTE 3 The limit for the data size may vary according to the type of the index. For example, if the index has
TPMA_NV_ORDERLY SET, then the maximum size of an ordinary NV Index may be less than the
size of an ordinary NV Index that has TPMA_NV_ORDERLY CLEAR.

At least one of TPMA_NV_PPREAD, TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, or

TPMA_NV_POLICYREAD shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

At least one of TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, or

TPMA_NV_POLICYWRITE shall be SET or the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_CLEAR_STCLEAR is SET, then nvIndexType shall not be TPM_NT_COUNTER or the TPM

shall return TPM_RC_ATTRIBUTES.

If platformAuth/platformPolicy is used for authorization, then TPMA_NV_PLATFORMCREATE shall be

SET in publicInfo. If ownerAuth/ownerPolicy is used for authorization, TPMA_NV_PLATFORMCREATE

shall be CLEAR in publicInfo. If TPMA_NV_PLATFORMCREATE is not set correctly for the authorization,

the TPM shall return TPM_RC_ATTRIBUTES.

If TPMA_NV_POLICY_DELETE is SET, then the authorization shall be with Platform Authorization or the

TPM shall return TPM_RC_ATTRIBUTES.

If nvIndexType is TPM_NT_PIN_FAIL, then TPMA_NV_NO_DA shall be SET. Otherwise, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE 4 The intent of a PIN Fail index is that its DA protection is on a per-index basis, not based on the
global DA protection. This avoids conflict over which type of dictionary attack protection is in use.

If nvIndexType is TPM_NT_PIN_FAIL or TPM_NT_PIN_PASS, then at least one of

TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE, or TPMA_NV_POLICYWRITE shall be SET or the

TPM shall return TPM_RC_ATTRIBUTES. TPMA_NV_AUTHWRITE shall be CLEAR. Otherwise, the

TPM shall return TPM_RC_ATTRIBUTES.

NOTE 5 If TPMA_NV_AUTHWRITE was SET for a PIN Pass index, a user knowing the authorization value
could decrease pinCount or increase pinLimit, defeating the purpose of a PIN Pass index. The
requirement is also enforced for a PIN Fail index for consistency.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 419

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

If the implementation does not support TPM2_NV_Increment(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_COUNTER.

If the implementation does not support TPM2_NV_SetBits(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_BITS.

If the implementation does not support TPM2_NV_Extend(), the TPM shall return

TPM_RC_ATTRIBUTES if nvIndexType is TPM_NT_EXTEND.

If the implementation does not support TPM2_NV_UndefineSpaceSpecial(), the TPM shall return

TPM_RC_ATTRIBUTES if TPMA_NV_POLICY_DELETE is SET.

After the successful completion of this command, the NV Index exists but TPMA_NV_WRITTEN will be

CLEAR. Any access of the NV data will return TPM_RC_NV_UNINITIALIZED.

In some implementations, an NV Index with the TPM_NT_COUNTER attribute may require special TPM

resources that provide higher endurance than regular NV. For those implementations, if this command

fails because of lack of resources, the TPM will return TPM_RC_NV_SPACE.

The value of auth is saved in the created structure. The size of auth is limited to be no larger than the size

of the digest produced by the NV Index's nameAlg (TPM_RC_SIZE).

Part 3: Commands Trusted Platform Module Library

Page 420 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 212 — TPM2_NV_DefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_DefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPM2B_AUTH auth the authorization value

TPM2B_NV_PUBLIC publicInfo the public parameters of the NV area

Table 213 — TPM2_NV_DefineSpace Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 421

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_DefineSpace_fp.h"

3 #if CC_NV_DefineSpace // Conditional expansion of this file

Error Returns Meaning

TPM_RC_HIERARCHY for authorizations using TPM_RH_PLATFORM phEnable_NV is clear
preventing access to NV data in the platform hierarchy.

TPM_RC_ATTRIBUTES attributes of the index are not consistent

TPM_RC_NV_DEFINED index already exists

TPM_RC_NV_SPACE insufficient space for the index

TPM_RC_SIZE 'auth->size' or 'publicInfo->authPolicy.size' is larger than the digest
size of 'publicInfo->nameAlg'; or 'publicInfo->dataSize' is not
consistent with 'publicInfo->attributes' (this includes the case when
the index is larger than a MAX_NV_BUFFER_SIZE but the
TPMA_NV_WRITEALL attribute is SET)

4 TPM_RC

5 TPM2_NV_DefineSpace(

6 NV_DefineSpace_In *in // IN: input parameter list

7)

8 {

9 TPMA_NV attributes = in->publicInfo.nvPublic.attributes;

10 UINT16 nameSize;

11

12 nameSize = CryptHashGetDigestSize(in->publicInfo.nvPublic.nameAlg);

13

14 // Input Validation

15

16 // Checks not specific to type

17

18 // If the UndefineSpaceSpecial command is not implemented, then can't have

19 // an index that can only be deleted with policy

20 #if CC_NV_UndefineSpaceSpecial == NO

21 if(IS_ATTRIBUTE(attributes, TPMA_NV, POLICY_DELETE))

22 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

23 #endif

24

25 // check that the authPolicy consistent with hash algorithm

26

27 if(in->publicInfo.nvPublic.authPolicy.t.size != 0

28 && in->publicInfo.nvPublic.authPolicy.t.size != nameSize)

29 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

30

31 // make sure that the authValue is not too large

32 if(MemoryRemoveTrailingZeros(&in->auth)

33 > CryptHashGetDigestSize(in->publicInfo.nvPublic.nameAlg))

34 return TPM_RCS_SIZE + RC_NV_DefineSpace_auth;

35

36 // If an index is being created by the owner and shEnable is

37 // clear, then we would not reach this point because ownerAuth

38 // can't be given when shEnable is CLEAR. However, if phEnable

39 // is SET but phEnableNV is CLEAR, we have to check here

40 if(in->authHandle == TPM_RH_PLATFORM && gc.phEnableNV == CLEAR)

41 return TPM_RCS_HIERARCHY + RC_NV_DefineSpace_authHandle;

42

43 // Attribute checks

44 // Eliminate the unsupported types

Part 3: Commands Trusted Platform Module Library

Page 422 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

45 switch(GET_TPM_NT(attributes))

46 {

47 #if CC_NV_Increment == YES

48 case TPM_NT_COUNTER:

49 #endif

50 #if CC_NV_SetBits == YES

51 case TPM_NT_BITS:

52 #endif

53 #if CC_NV_Extend == YES

54 case TPM_NT_EXTEND:

55 #endif

56 #if CC_PolicySecret == YES && defined TPM_NT_PIN_PASS

57 case TPM_NT_PIN_PASS:

58 case TPM_NT_PIN_FAIL:

59 #endif

60 case TPM_NT_ORDINARY:

61 break;

62 default:

63 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

64 break;

65 }

66 // Check that the sizes are OK based on the type

67 switch(GET_TPM_NT(attributes))

68 {

69 case TPM_NT_ORDINARY:

70 // Can't exceed the allowed size for the implementation

71 if(in->publicInfo.nvPublic.dataSize > MAX_NV_INDEX_SIZE)

72 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

73 break;

74 case TPM_NT_EXTEND:

75 if(in->publicInfo.nvPublic.dataSize != nameSize)

76 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

77 break;

78 default:

79 // Everything else needs a size of 8

80 if(in->publicInfo.nvPublic.dataSize != 8)

81 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

82 break;

83 }

84 // Handle other specifics

85 switch(GET_TPM_NT(attributes))

86 {

87 case TPM_NT_COUNTER:

88 // Counter can't have TPMA_NV_CLEAR_STCLEAR SET (don't clear counters)

89 if(IS_ATTRIBUTE(attributes, TPMA_NV, CLEAR_STCLEAR))

90 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

91 break;

92 #ifdef TPM_NT_PIN_FAIL

93 case TPM_NT_PIN_FAIL:

94 // NV_NO_DA must be SET and AUTHWRITE must be CLEAR

95 // NOTE: As with a PIN_PASS index, the authValue of the index is not

96 // available until the index is written. If AUTHWRITE is the only way to

97 // write then index, it could never be written. Rather than go through

98 // all of the other possible ways to write the Index, it is simply

99 // prohibited to write the index with the authValue. Other checks

100 // below will insure that there seems to be a way to write the index

101 // (i.e., with platform authorization , owner authorization,

102 // or with policyAuth.)

103 // It is not allowed to create a PIN Index that can't be modified.

104 if(!IS_ATTRIBUTE(attributes, TPMA_NV, NO_DA))

105 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

106 #endif

107 #ifdef TPM_NT_PIN_PASS

108 case TPM_NT_PIN_PASS:

109 // AUTHWRITE must be CLEAR (see note above to TPM_NT_PIN_FAIL)

110 if(IS_ATTRIBUTE(attributes, TPMA_NV, AUTHWRITE)

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 423

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

111 || IS_ATTRIBUTE(attributes, TPMA_NV, GLOBALLOCK)

112 || IS_ATTRIBUTE(attributes, TPMA_NV, WRITEDEFINE))

113 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

114 #endif // this comes before break because PIN_FAIL falls through

115 break;

116 default:

117 break;

118 }

119

120 // Locks may not be SET and written cannot be SET

121 if(IS_ATTRIBUTE(attributes, TPMA_NV, WRITTEN)

122 || IS_ATTRIBUTE(attributes, TPMA_NV, WRITELOCKED)

123 || IS_ATTRIBUTE(attributes, TPMA_NV, READLOCKED))

124 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

125

126 // There must be a way to read the index.

127 if(!IS_ATTRIBUTE(attributes, TPMA_NV, OWNERREAD)

128 && !IS_ATTRIBUTE(attributes, TPMA_NV, PPREAD)

129 && !IS_ATTRIBUTE(attributes, TPMA_NV, AUTHREAD)

130 && !IS_ATTRIBUTE(attributes, TPMA_NV, POLICYREAD))

131 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

132

133 // There must be a way to write the index

134 if(!IS_ATTRIBUTE(attributes, TPMA_NV, OWNERWRITE)

135 && !IS_ATTRIBUTE(attributes, TPMA_NV, PPWRITE)

136 && !IS_ATTRIBUTE(attributes, TPMA_NV, AUTHWRITE)

137 && !IS_ATTRIBUTE(attributes, TPMA_NV, POLICYWRITE))

138 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

139

140 // An index with TPMA_NV_CLEAR_STCLEAR can't have TPMA_NV_WRITEDEFINE SET

141 if(IS_ATTRIBUTE(attributes, TPMA_NV, CLEAR_STCLEAR)

142 && IS_ATTRIBUTE(attributes, TPMA_NV, WRITEDEFINE))

143 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

144

145 // Make sure that the creator of the index can delete the index

146 if((IS_ATTRIBUTE(attributes, TPMA_NV, PLATFORMCREATE)

147 && in->authHandle == TPM_RH_OWNER)

148 || (!IS_ATTRIBUTE(attributes, TPMA_NV, PLATFORMCREATE)

149 && in->authHandle == TPM_RH_PLATFORM))

150 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_authHandle;

151

152 // If TPMA_NV_POLICY_DELETE is SET, then the index must be defined by

153 // the platform

154 if(IS_ATTRIBUTE(attributes, TPMA_NV, POLICY_DELETE)

155 && TPM_RH_PLATFORM != in->authHandle)

156 return TPM_RCS_ATTRIBUTES + RC_NV_DefineSpace_publicInfo;

157

158 // Make sure that the TPMA_NV_WRITEALL is not set if the index size is larger

159 // than the allowed NV buffer size.

160 if(in->publicInfo.nvPublic.dataSize > MAX_NV_BUFFER_SIZE

161 && IS_ATTRIBUTE(attributes, TPMA_NV, WRITEALL))

162 return TPM_RCS_SIZE + RC_NV_DefineSpace_publicInfo;

163

164 // And finally, see if the index is already defined.

165 if(NvIndexIsDefined(in->publicInfo.nvPublic.nvIndex))

166 return TPM_RC_NV_DEFINED;

167

168 // Internal Data Update

169 // define the space. A TPM_RC_NV_SPACE error may be returned at this point

170 return NvDefineIndex(&in->publicInfo.nvPublic, &in->auth);

171 }

172 #endif // CC_NV_DefineSpace

Part 3: Commands Trusted Platform Module Library

Page 424 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31.4 TPM2_NV_UndefineSpace

 General Description

This command removes an Index from the TPM.

If nvIndex is not defined, the TPM shall return TPM_RC_HANDLE.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE attribute SET, the TPM shall

return TPM_RC_NV_AUTHORIZATION unless Platform Authorization is provided.

If nvIndex references an Index that has its TPMA_NV_POLICY_DELETE attribute SET, the TPM shall

return TPM_RC_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with Platform Authorization
as long as shEnable is SET. If shEnable is CLEAR, indexes created using Owner Authorization are
not accessible even for deletion by the platform.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 425

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 214 — TPM2_NV_UndefineSpace Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpace {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to remove from NV space

Auth Index: None

Table 215 — TPM2_NV_UndefineSpace Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 426 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_UndefineSpace_fp.h"

3 #if CC_NV_UndefineSpace // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_POLICY_DELETE is SET in the Index referenced by
nvIndex so this command may not be used to delete this Index (see
TPM2_NV_UndefineSpaceSpecial())

TPM_RC_NV_AUTHORIZATION attempt to use ownerAuth to delete an index created by the platform

4 TPM_RC

5 TPM2_NV_UndefineSpace(

6 NV_UndefineSpace_In *in // IN: input parameter list

7)

8 {

9 NV_REF locator;

10 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

11

12 // Input Validation

13 // This command can't be used to delete an index with TPMA_NV_POLICY_DELETE SET

14 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, POLICY_DELETE))

15 return TPM_RCS_ATTRIBUTES + RC_NV_UndefineSpace_nvIndex;

16

17 // The owner may only delete an index that was defined with ownerAuth. The

18 // platform may delete an index that was created with either authorization.

19 if(in->authHandle == TPM_RH_OWNER

20 && IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, PLATFORMCREATE))

21 return TPM_RC_NV_AUTHORIZATION;

22

23 // Internal Data Update

24

25 // Call implementation dependent internal routine to delete NV index

26 return NvDeleteIndex(nvIndex, locator);

27 }

28 #endif // CC_NV_UndefineSpace

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 427

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.5 TPM2_NV_UndefineSpaceSpecial

 General Description

This command allows removal of a platform-created NV Index that has TPMA_NV_POLICY_DELETE

SET.

This command requires that the policy of the NV Index be satisfied before the NV Index may be deleted.

Because administrative role is required, the policy must contain a command that sets the policy command

code to TPM_CC_NV_UndefineSpaceSpecial. This indicates that the policy that is being used is a policy

that is for this command, and not a policy that would approve another use. That is, authority to use an

entity does not grant authority to undefine the entity.

Since the index is deleted, the Empty Buffer is used as the authValue when generating the response

HMAC.

If nvIndex is not defined, the TPM shall return TPM_RC_HANDLE.

If nvIndex references an Index that has its TPMA_NV_PLATFORMCREATE or

TPMA_NV_POLICY_DELETE attribute CLEAR, the TPM shall return TPM_RC_ATTRIBUTES.

NOTE An Index with TPMA_NV_PLATFORMCREATE CLEAR may be deleted with
TPM2_UndefineSpace()as long as shEnable is SET. If shEnable is CLEAR, indexes created using
Owner Authorization are not accessible even for deletion by the platform.

Part 3: Commands Trusted Platform Module Library

Page 428 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 216 — TPM2_NV_UndefineSpaceSpecial Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_UndefineSpaceSpecial {NV}

TPMI_RH_NV_INDEX @nvIndex

Index to be deleted

Auth Index: 1

Auth Role: ADMIN

TPMI_RH_PLATFORM @platform

TPM_RH_PLATFORM + {PP}

Auth Index: 2

Auth Role: USER

Table 217 — TPM2_NV_UndefineSpaceSpecial Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 429

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_UndefineSpaceSpecial_fp.h"

3 #include "SessionProcess_fp.h"

4 #if CC_NV_UndefineSpaceSpecial // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_POLICY_DELETE is not SET in the Index referenced by
nvIndex

5 TPM_RC

6 TPM2_NV_UndefineSpaceSpecial(

7 NV_UndefineSpaceSpecial_In *in // IN: input parameter list

8)

9 {

10 TPM_RC result;

11 NV_REF locator;

12 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

13 // Input Validation

14 // This operation only applies when the TPMA_NV_POLICY_DELETE attribute is SET

15 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, POLICY_DELETE))

16 return TPM_RCS_ATTRIBUTES + RC_NV_UndefineSpaceSpecial_nvIndex;

17 // Internal Data Update

18 // Call implementation dependent internal routine to delete NV index

19 result = NvDeleteIndex(nvIndex, locator);

20

21 // If we just removed the index providing the authorization, make sure that the

22 // authorization session computation is modified so that it doesn't try to

23 // access the authValue of the just deleted index

24 if(result == TPM_RC_SUCCESS)

25 SessionRemoveAssociationToHandle(in->nvIndex);

26 return result;

27 }

28 #endif // CC_NV_UndefineSpaceSpecial

Part 3: Commands Trusted Platform Module Library

Page 430 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31.6 TPM2_NV_ReadPublic

 General Description

This command is used to read the public area and Name of an NV Index. The public area of an Index is

not privacy-sensitive and no authorization is required to read this data.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 431

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 218 — TPM2_NV_ReadPublic Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit or encrypt session is
present; otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadPublic

TPMI_RH_NV_INDEX nvIndex
the NV Index

Auth Index: None

Table 219 — TPM2_NV_ReadPublic Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_NV_PUBLIC nvPublic the public area of the NV Index

TPM2B_NAME nvName the Name of the nvIndex

Part 3: Commands Trusted Platform Module Library

Page 432 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_ReadPublic_fp.h"

3 #if CC_NV_ReadPublic // Conditional expansion of this file

4 TPM_RC

5 TPM2_NV_ReadPublic(

6 NV_ReadPublic_In *in, // IN: input parameter list

7 NV_ReadPublic_Out *out // OUT: output parameter list

8)

9 {

10 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, NULL);

11

12 // Command Output

13

14 // Copy index public data to output

15 out->nvPublic.nvPublic = nvIndex->publicArea;

16

17 // Compute NV name

18 NvGetIndexName(nvIndex, &out->nvName);

19

20 return TPM_RC_SUCCESS;

21 }

22 #endif // CC_NV_ReadPublic

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 433

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.7 TPM2_NV_Write

 General Description

This command writes a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPWRITE;

TPMA_NV_OWNERWRITE; TPMA_NV_AUTHWRITE; and, if TPMA_NV_POLICY_WRITE is SET, the

authPolicy of the NV Index.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 1 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

If nvIndexType is TPM_NT_COUNTER, TPM_NT_BITS or TPM_NT_EXTEND, then the TPM shall return

TPM_RC_ATTRIBUTES.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

If the TPMA_NV_WRITEALL attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_RANGE if the size of the data parameter of the command is not the same as the data field

of the NV Index.

If all checks succeed, the TPM will merge the data.size octets of data.buffer value into the nvIndex→data

starting at nvIndex→data[offset]. If the NV memory is implemented with a technology that has endurance

limitations, the TPM shall check that the merged data is different from the current contents of the NV

Index and only perform a write to NV memory if they differ.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 2 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined or the NV Index is
cleared.

Part 3: Commands Trusted Platform Module Library

Page 434 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 220 — TPM2_NV_Write Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Write {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to write

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to write

UINT16 offset the octet offset into the NV Area

Table 221 — TPM2_NV_Write Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 435

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Write_fp.h"

3 #if CC_NV_Write // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES Index referenced by nvIndex has either TPMA_NV_BITS,
TPMA_NV_COUNTER, or TPMA_NV_EVENT attribute SET

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED Index referenced by nvIndex is write locked

TPM_RC_NV_RANGE if TPMA_NV_WRITEALL is SET then the write is not the size of the
Index referenced by nvIndex; otherwise, the write extends beyond the
limits of the Index

4 TPM_RC

5 TPM2_NV_Write(

6 NV_Write_In *in // IN: input parameter list

7)

8 {

9 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, NULL);

10 TPMA_NV attributes = nvIndex->publicArea.attributes;

11 TPM_RC result;

12

13 // Input Validation

14

15 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

16 // or TPM_RC_NV_LOCKED

17 result = NvWriteAccessChecks(in->authHandle,

18 in->nvIndex,

19 attributes);

20 if(result != TPM_RC_SUCCESS)

21 return result;

22

23 // Bits index, extend index or counter index may not be updated by

24 // TPM2_NV_Write

25 if(IsNvCounterIndex(attributes)

26 || IsNvBitsIndex(attributes)

27 || IsNvExtendIndex(attributes))

28 return TPM_RC_ATTRIBUTES;

29

30 // Make sure that the offset is not too large

31 if(in->offset > nvIndex->publicArea.dataSize)

32 return TPM_RCS_VALUE + RC_NV_Write_offset;

33

34 // Make sure that the selection is within the range of the Index

35 if(in->data.t.size > (nvIndex->publicArea.dataSize - in->offset))

36 return TPM_RC_NV_RANGE;

37

38 // If this index requires a full sized write, make sure that input range is

39 // full sized.

40 // Note: if the requested size is the same as the Index data size, then offset

41 // will have to be zero. Otherwise, the range check above would have failed.

42 if(IS_ATTRIBUTE(attributes, TPMA_NV, WRITEALL)

43 && in->data.t.size < nvIndex->publicArea.dataSize)

44 return TPM_RC_NV_RANGE;

45

46 // Internal Data Update

47

Part 3: Commands Trusted Platform Module Library

Page 436 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

48 // Perform the write. This called routine will SET the TPMA_NV_WRITTEN

49 // attribute if it has not already been SET. If NV isn't available, an error

50 // will be returned.

51 return NvWriteIndexData(nvIndex, in->offset, in->data.t.size,

52 in->data.t.buffer);

53 }

54 #endif // CC_NV_Write

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 437

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.8 TPM2_NV_Increment

 General Description

This command is used to increment the value in an NV Index that has the TPM_NT_COUNTER attribute.

The data value of the NV Index is incremented by one.

NOTE 1 The NV Index counter is an unsigned value.

If nvIndexType is not TPM_NT_COUNTER in the indicated NV Index, the TPM shall return

TPM_RC_ATTRIBUTES.

If TPMA_NV_WRITELOCKED is SET, the TPM shall return TPM_RC_NV_LOCKED.

If TPMA_NV_WRITTEN is CLEAR, it will be SET.

If TPMA_NV_ORDERLY is SET, and the difference between the volatile and non-volatile versions of this

field is greater than MAX_ORDERLY_COUNT, then the non-volatile version of the counter is updated.

NOTE 2 If a TPM implements TPMA_NV_ORDERLY and an Index is defined with TPMA_NV_ORDERLY and
TPM_NT_COUNTER both SET, then in the Event of a non-orderly shutdown, the non-volatile value
for the counter Index will be advanced by MAX_ORDERLY_COUNT at the next TPM2_Startup().

NOTE 3 An allowed implementation would keep a counter value in NV and a resettable counter in RAM. The
reported value of the NV Index would be the sum of the two values. When the RAM count increments
past the maximum allowed value (MAX_ORDERLY_COUNT), the non-volatile version of the count is
updated with the sum of the values and the RAM count is reset to zero.

Part 3: Commands Trusted Platform Module Library

Page 438 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 222 — TPM2_NV_Increment Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Increment {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to increment

Auth Index: None

Table 223 — TPM2_NV_Increment Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 439

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Increment_fp.h"

3 #if CC_NV_Increment // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES NV index is not a counter

TPM_RC_NV_AUTHORIZATION authorization failure

TPM_RC_NV_LOCKED Index is write locked

4 TPM_RC

5 TPM2_NV_Increment(

6 NV_Increment_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 UINT64 countValue;

13

14 // Input Validation

15

16 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

17 // or TPM_RC_NV_LOCKED

18 result = NvWriteAccessChecks(in->authHandle,

19 in->nvIndex,

20 nvIndex->publicArea.attributes);

21 if(result != TPM_RC_SUCCESS)

22 return result;

23

24 // Make sure that this is a counter

25 if(!IsNvCounterIndex(nvIndex->publicArea.attributes))

26 return TPM_RCS_ATTRIBUTES + RC_NV_Increment_nvIndex;

27

28 // Internal Data Update

29

30 // If counter index is not been written, initialize it

31 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

32 countValue = NvReadMaxCount();

33 else

34 // Read NV data in native format for TPM CPU.

35 countValue = NvGetUINT64Data(nvIndex, locator);

36

37 // Do the increment

38 countValue++;

39

40 // Write NV data back. A TPM_RC_NV_UNAVAILABLE or TPM_RC_NV_RATE error may

41 // be returned at this point. If necessary, this function will set the

42 // TPMA_NV_WRITTEN attribute

43 result = NvWriteUINT64Data(nvIndex, countValue);

44 if(result == TPM_RC_SUCCESS)

45 {

46 // If a counter just rolled over, then force the NV update.

47 // Note, if this is an orderly counter, then the write-back needs to be

48 // forced, for other counters, the write-back will happen anyway

49 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, ORDERLY)

50 && (countValue & MAX_ORDERLY_COUNT) == 0)

51 {

52 // Need to force an NV update of orderly data

Part 3: Commands Trusted Platform Module Library

Page 440 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

53 SET_NV_UPDATE(UT_ORDERLY);

54 }

55 }

56 return result;

57 }

58 #endif // CC_NV_Increment

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 441

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.9 TPM2_NV_Extend

 General Description

This command extends a value to an area in NV memory that was previously defined by

TPM2_NV_DefineSpace.

If nvIndexType is not TPM_NT_EXTEND, then the TPM shall return TPM_RC_ATTRIBUTES.

Proper write authorizations are required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE 1 Once SET, TPMA_NV_WRITTEN remains SET until the NV Index is undefined, un less the
TPMA_NV_CLEAR_STCLEAR attribute is SET and a TPM Reset or TPM Restart occurs.

If the TPMA_NV_WRITELOCKED attribute of the NV Index is SET, then the TPM shall return

TPM_RC_NV_LOCKED.

NOTE 2 If authorization sessions are present, they are checked before checks to see if writes to the NV
Index are locked.

The data.buffer parameter may be larger than the defined size of the NV Index.

The Index will be updated by:

 nvIndex→datanew ≔ HnameAkg(nvIndex→dataold || data.buffer) (41)

where

nvIndex→datanew the value of the data field in the NV Index after the command

returns

HnameAkg() the hash algorithm indicated in nvIndex→nameAlg

nvIndex→dataold the value of the data field in the NV Index before the command is

called

data.buffer the data buffer of the command parameter

NOTE 3 If TPMA_NV_WRITTEN is CLEAR, then nvIndex→dataold is a Zero Digest.

Part 3: Commands Trusted Platform Module Library

Page 442 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 224 — TPM2_NV_Extend Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Extend {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to extend

Auth Index: None

TPM2B_MAX_NV_BUFFER data the data to extend

Table 225 — TPM2_NV_Extend Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 443

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Extend_fp.h"

3 #if CC_NV_Extend // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES the TPMA_NV_EXTEND attribute is not SET in the Index referenced
by nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is locked for writing

4 TPM_RC

5 TPM2_NV_Extend(

6 NV_Extend_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12

13 TPM2B_DIGEST oldDigest;

14 TPM2B_DIGEST newDigest;

15 HASH_STATE hashState;

16

17 // Input Validation

18

19 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

20 // or TPM_RC_NV_LOCKED

21 result = NvWriteAccessChecks(in->authHandle,

22 in->nvIndex,

23 nvIndex->publicArea.attributes);

24 if(result != TPM_RC_SUCCESS)

25 return result;

26

27 // Make sure that this is an extend index

28 if(!IsNvExtendIndex(nvIndex->publicArea.attributes))

29 return TPM_RCS_ATTRIBUTES + RC_NV_Extend_nvIndex;

30

31 // Internal Data Update

32

33 // Perform the write.

34 oldDigest.t.size = CryptHashGetDigestSize(nvIndex->publicArea.nameAlg);

35 pAssert(oldDigest.t.size <= sizeof(oldDigest.t.buffer));

36 if(IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

37 {

38 NvGetIndexData(nvIndex, locator, 0, oldDigest.t.size, oldDigest.t.buffer);

39 }

40 else

41 {

42 MemorySet(oldDigest.t.buffer, 0, oldDigest.t.size);

43 }

44 // Start hash

45 newDigest.t.size = CryptHashStart(&hashState, nvIndex->publicArea.nameAlg);

46

47 // Adding old digest

48 CryptDigestUpdate2B(&hashState, &oldDigest.b);

49

50 // Adding new data

Part 3: Commands Trusted Platform Module Library

Page 444 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

51 CryptDigestUpdate2B(&hashState, &in->data.b);

52

53 // Complete hash

54 CryptHashEnd2B(&hashState, &newDigest.b);

55

56 // Write extended hash back.

57 // Note, this routine will SET the TPMA_NV_WRITTEN attribute if necessary

58 return NvWriteIndexData(nvIndex, 0, newDigest.t.size, newDigest.t.buffer);

59 }

60 #endif // CC_NV_Extend

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 445

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.10 TPM2_NV_SetBits

 General Description

This command is used to SET bits in an NV Index that was created as a bit field. Any number of bits from

0 to 64 may be SET. The contents of bits are ORed with the current contents of the NV Index.

If TPMA_NV_WRITTEN is not SET, then, for the purposes of this command, the NV Index is considered

to contain all zero bits and data is ORed with that value.

If TPM_NT_BITS is not SET, then the TPM shall return TPM_RC_ATTRIBUTES.

After successful completion of this command, TPMA_NV_WRITTEN for the NV Index will be SET.

NOTE TPMA_NV_WRITTEN will be SET even if no bits were SET.

Part 3: Commands Trusted Platform Module Library

Page 446 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 226 — TPM2_NV_SetBits Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_SetBits {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
NV Index of the area in which the bit is to be set

Auth Index: None

UINT64 bits the data to OR with the current contents

Table 227 — TPM2_NV_SetBits Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 447

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_SetBits_fp.h"

3 #if CC_NV_SetBits // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES the TPMA_NV_BITS attribute is not SET in the Index referenced by
nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is locked for writing

4 TPM_RC

5 TPM2_NV_SetBits(

6 NV_SetBits_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 UINT64 oldValue;

13 UINT64 newValue;

14

15 // Input Validation

16

17 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

18 // or TPM_RC_NV_LOCKED

19 result = NvWriteAccessChecks(in->authHandle,

20 in->nvIndex,

21 nvIndex->publicArea.attributes);

22 if(result != TPM_RC_SUCCESS)

23 return result;

24

25 // Make sure that this is a bit field

26 if(!IsNvBitsIndex(nvIndex->publicArea.attributes))

27 return TPM_RCS_ATTRIBUTES + RC_NV_SetBits_nvIndex;

28

29 // If index is not been written, initialize it

30 if(!IS_ATTRIBUTE(nvIndex->publicArea.attributes, TPMA_NV, WRITTEN))

31 oldValue = 0;

32 else

33 // Read index data

34 oldValue = NvGetUINT64Data(nvIndex, locator);

35

36 // Figure out what the new value is going to be

37 newValue = oldValue | in->bits;

38

39 // Internal Data Update

40 return NvWriteUINT64Data(nvIndex, newValue);

41 }

42 #endif // CC_NV_SetBits

Part 3: Commands Trusted Platform Module Library

Page 448 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31.11 TPM2_NV_WriteLock

 General Description

If the TPMA_NV_WRITEDEFINE or TPMA_NV_WRITE_STCLEAR attributes of an NV location are SET,

then this command may be used to inhibit further writes of the NV Index.

Proper write authorization is required for this command as determined by TPMA_NV_PPWRITE,

TPMA_NV_OWNERWRITE, TPMA_NV_AUTHWRITE, and the authPolicy of the NV Index.

It is not an error if TPMA_NV_WRITELOCKED for the NV Index is already SET.

If neither TPMA_NV_WRITEDEFINE nor TPMA_NV_WRITE_STCLEAR of the NV Index is SET, then the

TPM shall return TPM_RC_ATTRIBUTES.

If the command is properly authorized and TPMA_NV_WRITE_STCLEAR or TPMA_NV_WRITEDEFINE

is SET, then the TPM shall SET TPMA_NV_WRITELOCKED for the NV Index.

TPMA_NV_WRITELOCKED will be clear on the next TPM2_Startup(TPM_SU_CLEAR) if either

TPMA_NV_WRITEDEFINE is CLEAR or TPMA_NV_WRITTEN is CLEAR.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 449

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 228 — TPM2_NV_WriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_WriteLock {NV}

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index of the area to lock

Auth Index: None

Table 229 — TPM2_NV_WriteLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 450 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_WriteLock_fp.h"

3 #if CC_NV_WriteLock // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES neither TPMA_NV_WRITEDEFINE nor
TPMA_NV_WRITE_STCLEAR is SET in Index referenced by
nvIndex

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to write to the Index referenced by nvIndex

4 TPM_RC

5 TPM2_NV_WriteLock(

6 NV_WriteLock_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 TPMA_NV nvAttributes = nvIndex->publicArea.attributes;

13

14 // Input Validation:

15

16 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

17 // or TPM_RC_NV_LOCKED

18 result = NvWriteAccessChecks(in->authHandle, in->nvIndex, nvAttributes);

19 if(result != TPM_RC_SUCCESS)

20 {

21 if(result == TPM_RC_NV_AUTHORIZATION)

22 return result;

23 // If write access failed because the index is already locked, then it is

24 // no error.

25 return TPM_RC_SUCCESS;

26 }

27 // if neither TPMA_NV_WRITEDEFINE nor TPMA_NV_WRITE_STCLEAR is set, the index

28 // can not be write-locked

29 if(!IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITEDEFINE)

30 && !IS_ATTRIBUTE(nvAttributes, TPMA_NV, WRITE_STCLEAR))

31 return TPM_RCS_ATTRIBUTES + RC_NV_WriteLock_nvIndex;

32 // Internal Data Update

33 // Set the WRITELOCK attribute.

34 // Note: if TPMA_NV_WRITELOCKED were already SET, then the write access check

35 // above would have failed and this code isn't executed.

36 SET_ATTRIBUTE(nvAttributes, TPMA_NV, WRITELOCKED);

37

38 // Write index info back

39 return NvWriteIndexAttributes(nvIndex->publicArea.nvIndex, locator,

40 nvAttributes);

41 }

42 #endif // CC_NV_WriteLock

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 451

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.12 TPM2_NV_GlobalWriteLock

 General Description

The command will SET TPMA_NV_WRITELOCKED for all indexes that have their

TPMA_NV_GLOBALLOCK attribute SET.

If an Index has both TPMA_NV_GLOBALLOCK and TPMA_NV_WRITEDEFINE SET, then this command

will permanently lock the NV Index for writing unless TPMA_NV_WRITTEN is CLEAR.

NOTE If an Index is defined with TPMA_NV_GLOBALLOCK SET, then the global lock does not apply until
the next time this command is executed.

This command requires either platformAuth/platformPolicy or ownerAuth/ownerPolicy.

Part 3: Commands Trusted Platform Module Library

Page 452 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 230 — TPM2_NV_GlobalWriteLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_GlobalWriteLock {NV}

TPMI_RH_PROVISION @authHandle

TPM_RH_OWNER or TPM_RH_PLATFORM+{PP}

Auth Index: 1

Auth Role: USER

Table 231 — TPM2_NV_GlobalWriteLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 453

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_GlobalWriteLock_fp.h"

3 #if CC_NV_GlobalWriteLock // Conditional expansion of this file

4 TPM_RC

5 TPM2_NV_GlobalWriteLock(

6 NV_GlobalWriteLock_In *in // IN: input parameter list

7)

8 {

9 // Input parameter (the authorization handle) is not reference in command action.

10 NOT_REFERENCED(in);

11

12 // Internal Data Update

13

14 // Implementation dependent method of setting the global lock

15 return NvSetGlobalLock();

16 }

17 #endif // CC_NV_GlobalWriteLock

Part 3: Commands Trusted Platform Module Library

Page 454 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31.13 TPM2_NV_Read

 General Description

This command reads a value from an area in NV memory previously defined by

TPM2_NV_DefineSpace().

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

If TPMA_NV_READLOCKED of the NV Index is SET, then the TPM shall return TPM_RC_NV_LOCKED.

If offset and the size field of data add to a value that is greater than the dataSize field of the NV Index

referenced by nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may

return an error (TPM_RC_VALUE) if it performs an additional check and determines that offset is greater

than the dataSize field of the NV Index.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

NOTE 1 If authorization sessions are present, they are checked before the read-lock status of the NV Index
is checked.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UNINITIALIZED even if size is zero.

The data parameter in the response may be encrypted using parameter encryption.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 455

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 232 — TPM2_NV_Read Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Read

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be read

Auth Index: None

UINT16 size number of octets to read

UINT16 offset

octet offset into the NV area

This value shall be less than or equal to the size of the
nvIndex data.

Table 233 — TPM2_NV_Read Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPM2B_MAX_NV_BUFFER data the data read

Part 3: Commands Trusted Platform Module Library

Page 456 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_Read_fp.h"

3 #if CC_NV_Read // Conditional expansion of this file

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

TPM_RC_NV_LOCKED the Index referenced by nvIndex is read locked

TPM_RC_NV_RANGE read range defined by size and offset is outside the range of the
Index referenced by nvIndex

TPM_RC_NV_UNINITIALIZED the Index referenced by nvIndex has not been initialized (written)

TPM_RC_VALUE the read size is larger than the MAX_NV_BUFFER_SIZE

4 TPM_RC

5 TPM2_NV_Read(

6 NV_Read_In *in, // IN: input parameter list

7 NV_Read_Out *out // OUT: output parameter list

8)

9 {

10 NV_REF locator;

11 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

12 TPM_RC result;

13

14 // Input Validation

15 // Common read access checks. NvReadAccessChecks() may return

16 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

17 result = NvReadAccessChecks(in->authHandle, in->nvIndex,

18 nvIndex->publicArea.attributes);

19 if(result != TPM_RC_SUCCESS)

20 return result;

21

22 // Make sure the data will fit the return buffer

23 if(in->size > MAX_NV_BUFFER_SIZE)

24 return TPM_RCS_VALUE + RC_NV_Read_size;

25

26 // Verify that the offset is not too large

27 if(in->offset > nvIndex->publicArea.dataSize)

28 return TPM_RCS_VALUE + RC_NV_Read_offset;

29

30 // Make sure that the selection is within the range of the Index

31 if(in->size > (nvIndex->publicArea.dataSize - in->offset))

32 return TPM_RC_NV_RANGE;

33

34 // Command Output

35 // Set the return size

36 out->data.t.size = in->size;

37

38 // Perform the read

39 NvGetIndexData(nvIndex, locator, in->offset, in->size, out->data.t.buffer);

40

41 return TPM_RC_SUCCESS;

42 }

43 #endif // CC_NV_Read

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 457

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.14 TPM2_NV_ReadLock

 General Description

If TPMA_NV_READ_STCLEAR is SET in an Index, then this command may be used to prevent further

reads of the NV Index until the next TPM2_Startup (TPM_SU_CLEAR).

Proper authorizations are required for this command as determined by TPMA_NV_PPREAD,

TPMA_NV_OWNERREAD, TPMA_NV_AUTHREAD, and the authPolicy of the NV Index.

NOTE Only an entity that may read an Index is allowed to lock the NV Index for read.

If the command is properly authorized and TPMA_NV_READ_STCLEAR of the NV Index is SET, then the

TPM shall SET TPMA_NV_READLOCKED for the NV Index. If TPMA_NV_READ_STCLEAR of the NV

Index is CLEAR, then the TPM shall return TPM_RC_ATTRIBUTES. TPMA_NV_READLOCKED will be

CLEAR by the next TPM2_Startup(TPM_SU_CLEAR).

It is not an error to use this command for an Index that is already locked for reading.

An Index that had not been written may be locked for reading.

Part 3: Commands Trusted Platform Module Library

Page 458 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 234 — TPM2_NV_ReadLock Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ReadLock {NV}

TPMI_RH_NV_AUTH @authHandle

the handle indicating the source of the authorization
value

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
the NV Index to be locked

Auth Index: None

Table 235 — TPM2_NV_ReadLock Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 459

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_ReadLock_fp.h"

3 #if CC_NV_ReadLock // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES TPMA_NV_READ_STCLEAR is not SET so Index referenced by
nvIndex may not be write locked

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

4 TPM_RC

5 TPM2_NV_ReadLock(

6 NV_ReadLock_In *in // IN: input parameter list

7)

8 {

9 TPM_RC result;

10 NV_REF locator;

11 // The referenced index has been checked multiple times before this is called

12 // so it must be present and will be loaded into cache

13 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

14 TPMA_NV nvAttributes = nvIndex->publicArea.attributes;

15

16 // Input Validation

17 // Common read access checks. NvReadAccessChecks() may return

18 // TPM_RC_NV_AUTHORIZATION, TPM_RC_NV_LOCKED, or TPM_RC_NV_UNINITIALIZED

19 result = NvReadAccessChecks(in->authHandle,

20 in->nvIndex,

21 nvAttributes);

22 if(result == TPM_RC_NV_AUTHORIZATION)

23 return TPM_RC_NV_AUTHORIZATION;

24 // Index is already locked for write

25 else if(result == TPM_RC_NV_LOCKED)

26 return TPM_RC_SUCCESS;

27

28 // If NvReadAccessChecks return TPM_RC_NV_UNINITALIZED, then continue.

29 // It is not an error to read lock an uninitialized Index.

30

31 // if TPMA_NV_READ_STCLEAR is not set, the index can not be read-locked

32 if(!IS_ATTRIBUTE(nvAttributes, TPMA_NV, READ_STCLEAR))

33 return TPM_RCS_ATTRIBUTES + RC_NV_ReadLock_nvIndex;

34

35 // Internal Data Update

36

37 // Set the READLOCK attribute

38 SET_ATTRIBUTE(nvAttributes, TPMA_NV, READLOCKED);

39

40 // Write NV info back

41 return NvWriteIndexAttributes(nvIndex->publicArea.nvIndex,

42 locator,

43 nvAttributes);

44 }

45 #endif // CC_NV_ReadLock

Part 3: Commands Trusted Platform Module Library

Page 460 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

31.15 TPM2_NV_ChangeAuth

 General Description

This command allows the authorization secret for an NV Index to be changed.

If successful, the authorization secret (authValue) of the NV Index associated with nvIndex is changed.

This command requires that a policy session be used for authorization of nvIndex so that the ADMIN role

may be asserted and that commandCode in the policy session context shall be

TPM_CC_NV_ChangeAuth. That is, the policy must contain a specific authorization for changing the

authorization value of the referenced entity.

NOTE The reason for this restriction is to ensure that the administrative actions on nvIndex require explicit
approval while other commands may use policy that is not command-dependent.

The size of the newAuth value may be no larger than the size of the digest produced by the nameAlg of

the NV Index.

Since the NV Index authorization is changed before the response HMAC is calculated, the newAuth value

is used when generating the response HMAC key if required. See TPM 2.0 Part 4

ComputeResponseHMAC().

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 461

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 236 — TPM2_NV_ChangeAuth Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_ChangeAuth {NV}

TPMI_RH_NV_INDEX @nvIndex

handle of the entity

Auth Index: 1

Auth Role: ADMIN

TPM2B_AUTH newAuth new authorization value

Table 237 — TPM2_NV_ChangeAuth Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Part 3: Commands Trusted Platform Module Library

Page 462 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "NV_ChangeAuth_fp.h"

3 #if CC_NV_ChangeAuth // Conditional expansion of this file

Error Returns Meaning

TPM_RC_SIZE newAuth size is larger than the digest size of the Name algorithm for
the Index referenced by 'nvIndex

4 TPM_RC

5 TPM2_NV_ChangeAuth(

6 NV_ChangeAuth_In *in // IN: input parameter list

7)

8 {

9 NV_REF locator;

10 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

11

12 // Input Validation

13

14 // Remove trailing zeros and make sure that the result is not larger than the

15 // digest of the nameAlg.

16 if(MemoryRemoveTrailingZeros(&in->newAuth)

17 > CryptHashGetDigestSize(nvIndex->publicArea.nameAlg))

18 return TPM_RCS_SIZE + RC_NV_ChangeAuth_newAuth;

19

20 // Internal Data Update

21 // Change authValue

22 return NvWriteIndexAuth(locator, &in->newAuth);

23 }

24 #endif // CC_NV_ChangeAuth

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 463

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

31.16 TPM2_NV_Certify

 General Description

The purpose of this command is to certify the contents of an NV Index or portion of an NV Index.

If the sign attribute is not SET in the key referenced by signHandle then the TPM shall return

TPM_RC_KEY.

If the NV Index has been defined but the TPMA_NV_WRITTEN attribute is CLEAR, then this command

shall return TPM_RC_NV_UNINITIALIZED even if size is zero.

If proper authorization for reading the NV Index is provided, the portion of the NV Index selected by size

and offset are included in an attestation block and signed using the key indicated by signHandle. The

attestation includes size and offset so that the range of the data can be determined. It also includes the

NV index Name.

For an NV Index with the TPM_NT_COUNTER or TPM_NT_BITS attribute SET, the TPM may ignore the

offset parameter and use an offset of 0. Therefore, it is recommended that the caller set the offset

parameter to 0 for interoperability.

If offset and size add to a value that is greater than the dataSize field of the NV Index referenced by

nvIndex, the TPM shall return an error (TPM_RC_NV_RANGE). The implementation may return an error

(TPM_RC_VALUE) if it performs an additional check and determines that offset is greater than the

dataSize field of the NV Index, or if size is greater than MAX_NV_BUFFER_SIZE.

NOTE 1 See 18.1 for description of how the signing scheme is selected.

NOTE 2 If signHandle is TPM_RH_NULL, the TPMS_ATTEST structure is returned and signature is a NULL
Signature.

If size and offset are both zero (0), then certifyInfo in the response will contain a

TPMS_NV_DIGEST_CERTIFY_INFO, otherwise, it will contain a TPMS_NV_CERTIFY_INFO. The digest

in the TPMS_NV_DIGEST_CERTIFY_INFO is created using the digest of the selected signing scheme.

NOTE 3 TPMS_NV_DIGEST_CERTIFY_INFO was added in revision 01.53. It permits TPM2_NV_Certify() to
certify NV Index contents that are larger than MAX_NV_BUFFER_SIZE.

Part 3: Commands Trusted Platform Module Library

Page 464 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 238 — TPM2_NV_Certify Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_NV_Certify

TPMI_DH_OBJECT+ @signHandle

handle of the key used to sign the attestation structure

Auth Index: 1

Auth Role: USER

TPMI_RH_NV_AUTH @authHandle

handle indicating the source of the authorization value
for the NV Index

Auth Index: 2

Auth Role: USER

TPMI_RH_NV_INDEX nvIndex
Index for the area to be certified

Auth Index: None

TPM2B_DATA qualifyingData user-provided qualifying data

TPMT_SIG_SCHEME+ inScheme
signing scheme to use if the scheme for signHandle is
TPM_ALG_NULL

UINT16 size number of octets to certify

UINT16 offset

octet offset into the NV area

This value shall be less than or equal to the size of the
nvIndex data.

Table 239 — TPM2_NV_Certify Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPM2B_ATTEST certifyInfo the structure that was signed

TPMT_SIGNATURE signature
the asymmetric signature over certifyInfo using the key
referenced by signHandle

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 465

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Attest_spt_fp.h"

3 #include "NV_Certify_fp.h"

4 #if CC_NV_Certify // Conditional expansion of this file

Error Returns Meaning

TPM_RC_NV_AUTHORIZATION the authorization was valid but the authorizing entity (authHandle) is
not allowed to read from the Index referenced by nvIndex

TPM_RC_KEY signHandle does not reference a signing key

TPM_RC_NV_LOCKED Index referenced by nvIndex is locked for reading

TPM_RC_NV_RANGE offset plus size extends outside of the data range of the Index
referenced by nvIndex

TPM_RC_NV_UNINITIALIZED Index referenced by nvIndex has not been written

TPM_RC_SCHEME inScheme is not an allowed value for the key definition

5 TPM_RC

6 TPM2_NV_Certify(

7 NV_Certify_In *in, // IN: input parameter list

8 NV_Certify_Out *out // OUT: output parameter list

9)

10 {

11 TPM_RC result;

12 NV_REF locator;

13 NV_INDEX *nvIndex = NvGetIndexInfo(in->nvIndex, &locator);

14 TPMS_ATTEST certifyInfo;

15 OBJECT *signObject = HandleToObject(in->signHandle);

16 // Input Validation

17 if(!IsSigningObject(signObject))

18 return TPM_RCS_KEY + RC_NV_Certify_signHandle;

19 if(!CryptSelectSignScheme(signObject, &in->inScheme))

20 return TPM_RCS_SCHEME + RC_NV_Certify_inScheme;

21

22 // Common access checks, NvWriteAccessCheck() may return TPM_RC_NV_AUTHORIZATION

23 // or TPM_RC_NV_LOCKED

24 result = NvReadAccessChecks(in->authHandle, in->nvIndex,

25 nvIndex->publicArea.attributes);

26 if(result != TPM_RC_SUCCESS)

27 return result;

28

29 // make sure that the selection is within the range of the Index (cast to avoid

30 // any wrap issues with addition)

31 if((UINT32)in->size + (UINT32)in->offset > (UINT32)nvIndex->publicArea.dataSize)

32 return TPM_RC_NV_RANGE;

33 // Make sure the data will fit the return buffer.

34 // NOTE: This check may be modified if the output buffer will not hold the

35 // maximum sized NV buffer as part of the certified data. The difference in

36 // size could be substantial if the signature scheme was produced a large

37 // signature (e.g., RSA 4096).

38 if(in->size > MAX_NV_BUFFER_SIZE)

39 return TPM_RCS_VALUE + RC_NV_Certify_size;

40

41 // Command Output

42

43 // Fill in attest information common fields

44 FillInAttestInfo(in->signHandle, &in->inScheme, &in->qualifyingData,

45 &certifyInfo);

Part 3: Commands Trusted Platform Module Library

Page 466 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

46

47 // Get the name of the index

48 NvGetIndexName(nvIndex, &certifyInfo.attested.nv.indexName);

49

50 // See if this is old format or new format

51 if ((in->size != 0) || (in->offset != 0))

52 {

53 // NV certify specific fields

54 // Attestation type

55 certifyInfo.type = TPM_ST_ATTEST_NV;

56

57 // Set the return size

58 certifyInfo.attested.nv.nvContents.t.size = in->size;

59

60 // Set the offset

61 certifyInfo.attested.nv.offset = in->offset;

62

63 // Perform the read

64 NvGetIndexData(nvIndex, locator, in->offset, in->size,

65 certifyInfo.attested.nv.nvContents.t.buffer);

66 }

67 else

68 {

69 HASH_STATE hashState;

70 // This is to sign a digest of the data

71 certifyInfo.type = TPM_ST_ATTEST_NV_DIGEST;

72 // Initialize the hash before calling the function to add the Index data to

73 // the hash.

74 certifyInfo.attested.nvDigest.nvDigest.t.size =

75 CryptHashStart(&hashState, in->inScheme.details.any.hashAlg);

76 NvHashIndexData(&hashState, nvIndex, locator, 0,

77 nvIndex->publicArea.dataSize);

78 CryptHashEnd2B(&hashState, &certifyInfo.attested.nvDigest.nvDigest.b);

79 }

80 // Sign attestation structure. A NULL signature will be returned if

81 // signObject is NULL.

82 return SignAttestInfo(signObject, &in->inScheme, &certifyInfo,

83 &in->qualifyingData, &out->certifyInfo, &out->signature);

84 }

85 #endif // CC_NV_Certify

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 467

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

32 Attached Components

32.1 Introduction

This section contains commands that allow interaction with an Attached Component (AC).

NOTE The Attached Component feature was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 468 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

32.2 TPM2_AC_GetCapability

 General Description

The purpose of this command is to obtain information about an Attached Component referenced by an

AC handle.

The returned list contains 0 or more values starting at the first tagged value that is equal to or greater

than capability.

The list returned in capabilitiesData contains tagged values that indicate the type of the value.

The TPM will return the lesser of a) the available values, b) the number requested in count, or c) the

number that will fit within the available response buffer. If additional values with higher capability numbers

are available, moreData will be YES.

NOTE TPM2_AC_GetCapability() was added in revision 01.40.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 469

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 240 — TPM2_AC_GetCapability Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_AC_GetCapability

TPMI_RH_AC ac
handle indicating the Attached Component

Auth Index: None

TPM_AT capability starting info type

UINT32 count maximum number of values to return

Table 241 — TPM2_AC_GetCapability Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode .

TPMI_YES_NO moreData flag to indicate whether there are more values

TPML_AC_CAPABILITIES capabilitiesData list of capabilities

Part 3: Commands Trusted Platform Module Library

Page 470 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #include "AC_GetCapability_fp.h"

3 #include "AC_spt_fp.h"

4 #if CC_AC_GetCapability // Conditional expansion of this file

5 TPM_RC

6 TPM2_AC_GetCapability(

7 AC_GetCapability_In *in, // IN: input parameter list

8 AC_GetCapability_Out *out // OUT: output parameter list

9)

10 {

11 // Command Output

12 out->moreData = AcCapabilitiesGet(in->ac, in->count, &out->capabilitiesData);

13

14 return TPM_RC_SUCCESS;

15 }

16 #endif // CC_AC_GetCapability

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 471

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

32.3 TPM2_AC_Send

 General Description

The purpose of this command is to send (copy) a loaded object from the TPM to an Attached Component.

The Object referenced by sendObject is required to have fixedTpm, fixedParent, and

encryptedDuplication attributes CLEAR (TPM_RC_ATTRIBUTES). Authorization for sendObject is

required to be a policy session. The policySession→commandCode of the policy session context is

required to be TPM_CC_AC_Send (TPM_RC_POLICY_FAIL) to demonstrate that the policy is specific for

this command.

Authorization to send to the ac is provided by the session associated with authHandle.

If an NV Alias is not defined for ac, then authHandle is required to be either TPM_RH_OWNER or

TPM_RH_PLATFORM (TPM_RC_HANDLE).

If an NV Alias is defined for ac, then the authorization for authHandle is required to be compatible with the

write authorization attributes (TPMA_NV_PPWRITE, TPMA_NV_OWNERWRITE

TPMA_NV_AUTHWRITE, and TPMA_NV_POLICYWRITE) in the NV Alias

(TPM_RC_NV_AUTHORIZATION).

NOTE 1 If authorization for authHandle is the handle of an NV Index, then it is required to be the NV Alias
value for ac (TPM_RC_NV_AUTHORIZATION).

If authorization succeeds, the TPM will attempt to send acDataIn and relevant portions of sendObject to

the AC referenced by ac.

The TPM will return TPM_RC_SUCCESS if it succeeds in performing all the required authorizations and

validations. If problems occur in the process of sending the object from the TPM to the AC, the response

code will be TPM_RC_SUCCESS with the AC-dependent error reported in acDataOut.

NOTE 2 TPM2_AC_Send() was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 472 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 242 — TPM2_AC_Send Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_AC_Send

TPMI_DH_OBJECT @sendObject

handle of the object being sent to ac

Auth Index: 1

Auth Role: DUP

TPMI_RH_NV_AUTH @authHandle the handle indicating the source of the authorization
value

Auth Index: 2

Auth Role: USER

TPMI_RH_AC ac

handle indicating the Attached Component to which the
object will be sent

Auth Index: None

TPM2B_MAX_BUFFER acDataIn Optional non sensitive information related to the object

Table 243 — TPM2_AC_Send Response

Type Name Description

TPM_ST Tag see clause 6

UINT32 responseSize

TPM_RC responseCode

TPMS_AC_OUTPUT acDataOut
May include AC specific data or information about an
error.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 473

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "AC_Send_fp.h"

3 #include "AC_spt_fp.h"

4 #if CC_AC_Send // Conditional expansion of this file

Error Returns Meaning

TPM_RC_ATTRIBUTES key to duplicate has fixedParent SET

TPM_RC_HASH for an RSA key, the nameAlg digest size for the newParent is not
compatible with the key size

TPM_RC_HIERARCHY encryptedDuplication is SET and newParentHandle specifies Null
Hierarchy

TPM_RC_KEY newParentHandle references invalid ECC key (public point not on the
curve)

TPM_RC_SIZE input encryption key size does not match the size specified in
symmetric algorithm

TPM_RC_SYMMETRIC encryptedDuplication is SET but no symmetric algorithm is provided

TPM_RC_TYPE newParentHandle is neither a storage key nor TPM_RH_NULL; or
the object has a NULL nameAlg

TPM_RC_VALUE for an RSA newParent, the sizes of the digest and the encryption key
are too large to be OAEP encoded

5 TPM_RC

6 TPM2_AC_Send(

7 AC_Send_In *in, // IN: input parameter list

8 AC_Send_Out *out // OUT: output parameter list

9)

10 {

11 NV_REF locator;

12 TPM_HANDLE nvAlias = ((in->ac - AC_FIRST) + NV_AC_FIRST);

13 NV_INDEX *nvIndex = NvGetIndexInfo(nvAlias, &locator);

14 OBJECT *object = HandleToObject(in->sendObject);

15 TPM_RC result;

16 // Input validation

17 // If there is an NV alias, then the index must allow the authorization provided

18 if(nvIndex != NULL)

19 {

20 // Common access checks, NvWriteAccessCheck() may return

21 // TPM_RC_NV_AUTHORIZATION or TPM_RC_NV_LOCKED

22 result = NvWriteAccessChecks(in->authHandle, nvAlias,

23 nvIndex->publicArea.attributes);

24 if(result != TPM_RC_SUCCESS)

25 return result;

26 }

27 // If 'ac' did not have an alias then the authorization had to be with either

28 // platform or owner authorization. The type of TPMI_RH_NV_AUTH only allows

29 // owner or platform or an NV index. If it was a valid index, it would have had

30 // an alias and be processed above, so only success here is if this is a

31 // permanent handle.

32 else if(HandleGetType(in->authHandle) != TPM_HT_PERMANENT)

33 return TPM_RCS_HANDLE + RC_AC_Send_authHandle;

34 // Make sure that the object to be duplicated has the right attributes

35 if(IS_ATTRIBUTE(object->publicArea.objectAttributes,

36 TPMA_OBJECT, encryptedDuplication)

37 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT,

38 fixedParent)

Part 3: Commands Trusted Platform Module Library

Page 474 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

39 || IS_ATTRIBUTE(object->publicArea.objectAttributes, TPMA_OBJECT, fixedTPM))

40 return TPM_RCS_ATTRIBUTES + RC_AC_Send_sendObject;

41 // Command output

42 // Do the implementation dependent send

43 return AcSendObject(in->ac, object, &out->acDataOut);

44 }

45 #endif // TPM_CC_AC_Send

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 475

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

32.4 TPM2_Policy_AC_SendSelect

 General Description

This command allows qualification of the sending (copying) of an Object to an Attached Component (AC).

Qualification includes selection of the receiving AC and the method of authentication for the AC, and, in

certain circumstances, the Object to be sent may be specified.

If this command is not used in conjunction with TPM2_PolicyAuthorize(), then only the authHandleName

and acName are selected and includeObject should be CLEAR.

NOTE 1 In the absence of TPM2_PolicyAuthorize(), a policy session cannot create a policyDigest that
simultaneously equals the authPolicy in an Object and names that Object. This is because the
authPolicy recorded in an Object is unable to include the Name of the Object as the Name of an
Object depends on the Object’s authPolicy.

NOTE 2 An object’s authPolicy can incorporate the use of TPM2_PolicyAuthorize(). If the authorizing entity
for the TPM2_PolicyAuthorize() command specifies only the ac and the authHandle, then the
resultant policyDigest may be applied to the sending of any number of Objects. If the authorizing
entity for the TPM2_PolicyAuthorize() specifies also the Name of the Object to be sent, then the
resultant policyDigest applies only to that specific Object.

If either policySession→cpHash or policySession→nameHash has been previously
set, the TPM shall return TPM_RC_CPHASH. Otherwise, policySession→nameHash
will be set to:nameHash ≔ HpolicyAlg(objectName || authHandleName || acName)(42)

NOTE 3 A policy cannot specify both cpHash and nameHash because policySession→nameHash and
policySession→cpHash may share the same memory space.

If the command succeeds, policySession→policyDigest will be updated according to the setting of the

input parameter includeObject. If includeObject is SET, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_Policy_AC_SendSelect ||
objectName || authHandleName || acName || includeObject) (43)

but if includeObject is CLEAR, policySession→policyDigest is updated by:

policyDigestnew ≔ HpolicyAlg(policyDigestold || TPM_CC_Policy_AC_SendSelect ||
authHandleName || acName || includeObject) (44)

NOTE 4 policySession→nameHash receives the digest of all Names so that the check performed in
TPM2_AC_Send() may be the same regardless of which Names are included in
policySession→policyDigest. This means that, when TPM2_Policy_AC_SendSelect() is executed, it
is only valid for a specific triple of objectName, authHandleName, and acName.

If the command succeeds, policySession→commandCode is set to TPM_CC_AC_Send.

NOTE 5 The normal use of TPM2_Policy_AC_SendSelect() is before a TPM2_PolicyAuthorize(). An
authorized entity would approve a policyDigest that allows sending to a specific Attached
Component. The authorizing entity may want to limit the authorization so tha t the approval allows
only a specific Object to be sent to the Attached Component. In that case, the authorizing entity
would approve the policyDigest of equation (44).

NOTE 6 TPM2_Policy_AC_SendSelect() was added in revision 01.40.

Part 3: Commands Trusted Platform Module Library

Page 476 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 244 — TPM2_Policy_AC_SendSelect Command

Type Name Description

TPMI_ST_COMMAND_TAG Tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Policy_AC_SendSelect

TPMI_SH_POLICY policySession
handle for the policy session being extended

Auth Index: None

TPM2B_NAME objectName the Name of the Object to be sent

TPM2B_NAME authHandleName
the Name associated with authHandle used in the
TPM2_AC_Send() command

TPM2B_NAME acName
the Name of the Attached Component to which the
Object will be sent

TPMI_YES_NO includeObject
if SET, objectName will be included in the value in
policySession→policyDigest

Table 245 — TPM2_Policy_AC_SendSelect Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 477

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "Policy_AC_SendSelect_fp.h"

3 #if CC_Policy_AC_SendSelect // Conditional expansion of this file

Error Returns Meaning

TPM_RC_COMMAND_CODE commandCode of 'policySession; is not empty

TPM_RC_CPHASH cpHash of policySession is not empty

4 TPM_RC

5 TPM2_Policy_AC_SendSelect(

6 Policy_AC_SendSelect_In *in // IN: input parameter list

7)

8 {

9 SESSION *session;

10 HASH_STATE hashState;

11 TPM_CC commandCode = TPM_CC_Policy_AC_SendSelect;

12

13 // Input Validation

14

15 // Get pointer to the session structure

16 session = SessionGet(in->policySession);

17

18 // cpHash in session context must be empty

19 if(session->u1.cpHash.t.size != 0)

20 return TPM_RC_CPHASH;

21 // commandCode in session context must be empty

22 if(session->commandCode != 0)

23 return TPM_RC_COMMAND_CODE;

24 // Internal Data Update

25 // Update name hash

26 session->u1.cpHash.t.size = CryptHashStart(&hashState, session->authHashAlg);

27

28 // add objectName

29 CryptDigestUpdate2B(&hashState, &in->objectName.b);

30

31 // add authHandleName

32 CryptDigestUpdate2B(&hashState, &in->authHandleName.b);

33

34 // add ac name

35 CryptDigestUpdate2B(&hashState, &in->acName.b);

36

37 // complete hash

38 CryptHashEnd2B(&hashState, &session->u1.cpHash.b);

39

40 // update policy hash

41 // Old policyDigest size should be the same as the new policyDigest size since

42 // they are using the same hash algorithm

43 session->u2.policyDigest.t.size

44 = CryptHashStart(&hashState, session->authHashAlg);

45 // add old policy

46 CryptDigestUpdate2B(&hashState, &session->u2.policyDigest.b);

47

48 // add command code

49 CryptDigestUpdateInt(&hashState, sizeof(TPM_CC), commandCode);

50

51 // add objectName

52 if(in->includeObject == YES)

53 CryptDigestUpdate2B(&hashState, &in->objectName.b);

54

Part 3: Commands Trusted Platform Module Library

Page 478 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

55 // add authHandleName

56 CryptDigestUpdate2B(&hashState, &in->authHandleName.b);

57

58 // add acName

59 CryptDigestUpdate2B(&hashState, &in->acName.b);

60

61 // add includeObject

62 CryptDigestUpdateInt(&hashState, sizeof(TPMI_YES_NO), in->includeObject);

63

64 // complete digest

65 CryptHashEnd2B(&hashState, &session->u2.policyDigest.b);

66

67 // set commandCode in session context

68 session->commandCode = TPM_CC_AC_Send;

69

70 return TPM_RC_SUCCESS;

71 }

72 #endif // CC_Policy_AC_SendSelect

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 479

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

33 Authenticated Countdown Timer

33.1 Introduction

This section contains commands that allow interaction with an Authenticated Countdown Timer (ACT).

NOTE The Authenticated Countdown Timer was added in revision 01.56.

33.2 TPM2_ACT_SetTimeout

 General Description

This command is used to set the time remaining before an Authenticated Countdown Timer (ACT)

expires.

This command sets TPMS_ACT_DATA.timeout (ACT Timeout) to startTimeout. The startTimeout value is

an integer number of seconds and may be zero. The startTimeout parameter may be greater, equal, or

less than the current value of ACT Timeout.

When ACT Timeout is non-zero, it will count down, once per second until it reaches zero, at which time

the signaled attribute of the TPMA_ACT associated with actHandle is SET.

When ACT Timeout is zero and the signaled attribute is SET, writing a startTimeout of FF FF FF FF16 will

clear signaled and stop the counting.

There are four states for ACT Timeout and startTimeout. The signaled attribute will be set as follows:

1) If ACT Timeout is zero and startTimeout is non-zero, then signaled will be CLEAR.

2) If ACT Timeout is non-zero and startTimeout is non-zero, then signaled will be CLEAR.

3) If ACT Timeout is zero and startTimeout is zero, then signaled will be unchanged.

4) If ACT Timeout is non-zero and startTimeout is zero, then signaled will be SET.

NOTE 1 The ACT signals on a transition from non-zero to zero. The transition can occur either due to
TPM2_ACT_SetTimeout() or a decrement. The effect of signaled is platform dependent.

NOTE 2 It may take up to one second until ACT Timeout will be set and signaled will be CLEAR or SET by
TPM2_ACT_SetTimeout() or TPM2_Startup(STATE). This allows the counting and signaling to take
place synchronously with the hardware clock tick.

NOTE 3 TPM2_ACT_SetTimeout() was added in revision 01.56.

Part 3: Commands Trusted Platform Module Library

Page 480 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Command and Response

Table 246 — TPM2_ACT_SetTimeout Command

Type Name Description

TPMI_ST_COMMAND_TAG tag TPM_ST_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_ACT_SetTimeout

TPMI_RH_ACT @actHandle

Handle of the selected ACT

Auth Index: 1

Auth Role: USER

UINT32 startTimeout the start timeout value for the ACT in seconds

Table 247 — TPM2_ACT_SetTimeout Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 481

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Detailed Actions

1 #include "Tpm.h"

2 #include "ACT_SetTimeout_fp.h"

3 #if CC_ACT_SetTimeout // Conditional expansion of this file

Error Returns Meaning

TPM_RC_RETRY returned when an update for the selected ACT is already pending

TPM_RC_VALUE attempt to disable signaling from an ACT that has not expired

4 TPM_RC

5 TPM2_ACT_SetTimeout(

6 ACT_SetTimeout_In *in // IN: input parameter list

7)

8 {

9 // If 'startTimeout' is UINT32_MAX, then this is an attempt to disable the ACT

10 // and turn off the signaling for the ACT. This is only valid if the ACT

11 // is signaling.

12 if((in->startTimeout == UINT32_MAX) && !ActGetSignaled(in->actHandle))

13 return TPM_RC_VALUE + RC_ACT_SetTimeout_startTimeout;

14 return ActCounterUpdate(in->actHandle, in->startTimeout);

15 }

16 #endif // CC_ACT_SetTimeout

Part 3: Commands Trusted Platform Module Library

Page 482 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

34 Vendor Specific

34.1 Introduction

This section contains commands that are vendor specific but made public in order to prevent proliferation.

This specification does define TPM2_Vendor_TCG_Test() in order to have at least one command that

can be used to ensure the proper operation of the command dispatch code when processing a vendor-

specific command.

34.2 TPM2_Vendor_TCG_Test

 General Description

This is a placeholder to allow testing of the dispatch code.

Trusted Platform Module Library Part 3: Commands

Family “2.0” TCG Confidential Page 483

Level 00 Revision 01.59 Copyright © TCG 2006-2019 November 8, 2019

 Command and Response

Table 248 — TPM2_Vendor_TCG_Test Command

Type Name Description

TPMI_ST_COMMAND_TAG tag
TPM_ST_SESSIONS if an audit session is present;
otherwise, TPM_ST_NO_SESSIONS

UINT32 commandSize

TPM_CC commandCode TPM_CC_Vendor_TCG_Test

TPM2B_DATA inputData dummy data

Table 249 — TPM2_Vendor_TCG_Test Response

Type Name Description

TPM_ST tag see clause 6

UINT32 responseSize

TPM_RC responseCode TPM_RC_SUCCESS

TPM2B_DATA outputData dummy data

Part 3: Commands Trusted Platform Module Library

Page 484 TCG Confidential Family “2.0”

November 8, 2019 Copyright © TCG 2006-2019 Level 00 Revision 01.59

 Detailed Actions

1 #include "Tpm.h"

2 #if CC_Vendor_TCG_Test // Conditional expansion of this file

3 #include "Vendor_TCG_Test_fp.h"

4 TPM_RC

5 TPM2_Vendor_TCG_Test(

6 Vendor_TCG_Test_In *in, // IN: input parameter list

7 Vendor_TCG_Test_Out *out // OUT: output parameter list

8)

9 {

10 out->outputData = in->inputData;

11 return TPM_RC_SUCCESS;

12 }

13 #endif // CC_Vendor_TCG_Test

	1 Scope
	2 Terms and Definitions
	3 Symbols and abbreviated terms
	4 Notation
	4.1 Introduction
	4.2 Table Decorations
	4.3 Handle and Parameter Demarcation
	4.4 AuthorizationSize and ParameterSize
	4.5 Return Code Alias

	5 Command Processing
	5.1 Introduction
	5.2 Command Header Validation
	5.3 Mode Checks
	5.4 Handle Area Validation
	5.5 Session Area Validation
	5.6 Authorization Checks
	5.7 Parameter Decryption
	5.8 Parameter Unmarshaling
	5.8.1 Introduction
	5.8.2 Unmarshaling Errors

	5.9 Command Post Processing

	6 Response Values
	6.1 Tag
	6.2 Response Codes

	7 Implementation Dependent
	8 Detailed Actions Assumptions
	8.1 Introduction
	8.2 Pre-processing
	8.3 Post Processing

	9 Start-up
	9.1 Introduction
	9.2 _TPM_Init
	9.2.1 General Description
	9.2.2 Detailed Actions

	9.3 TPM2_Startup
	9.3.1 General Description
	9.3.2 Command and Response
	9.3.3 Detailed Actions

	9.4 TPM2_Shutdown
	9.4.1 General Description
	9.4.2 Command and Response
	9.4.3 Detailed Actions

	10 Testing
	10.1 Introduction
	10.2 TPM2_SelfTest
	10.2.1 General Description
	10.2.2 Command and Response
	10.2.3 Detailed Actions

	10.3 TPM2_IncrementalSelfTest
	10.3.1 General Description
	10.3.2 Command and Response
	10.3.3 Detailed Actions

	10.4 TPM2_GetTestResult
	10.4.1 General Description
	10.4.2 Command and Response
	10.4.3 Detailed Actions

	11 Session Commands
	11.1 TPM2_StartAuthSession
	11.1.1 General Description
	11.1.2 Command and Response
	11.1.3 Detailed Actions

	11.2 TPM2_PolicyRestart
	11.2.1 General Description
	11.2.2 Command and Response
	11.2.3 Detailed Actions

	12 Object Commands
	12.1 TPM2_Create
	12.1.1 General Description
	12.1.2 Command and Response
	12.1.3 Detailed Actions

	12.2 TPM2_Load
	12.2.1 General Description
	12.2.2 Command and Response
	12.2.3 Detailed Actions

	12.3 TPM2_LoadExternal
	12.3.1 General Description
	12.3.2 Command and Response
	12.3.3 Detailed Actions

	12.4 TPM2_ReadPublic
	12.4.1 General Description
	12.4.2 Command and Response
	12.4.3 Detailed Actions

	12.5 TPM2_ActivateCredential
	12.5.1 General Description
	12.5.2 Command and Response
	12.5.3 Detailed Actions

	12.6 TPM2_MakeCredential
	12.6.1 General Description
	12.6.2 Command and Response
	12.6.3 Detailed Actions

	12.7 TPM2_Unseal
	12.7.1 General Description
	12.7.2 Command and Response
	12.7.3 Detailed Actions

	12.8 TPM2_ObjectChangeAuth
	12.8.1 General Description
	12.8.2 Command and Response
	12.8.3 Detailed Actions

	12.9 TPM2_CreateLoaded
	12.9.1 General Description
	12.9.2 Command and Response
	12.9.3 Detailed Actions

	13 Duplication Commands
	13.1 TPM2_Duplicate
	13.1.1 General Description
	13.1.2 Command and Response
	13.1.3 Detailed Actions

	13.2 TPM2_Rewrap
	13.2.1 General Description
	13.2.2 Command and Response
	13.2.3 Detailed Actions

	13.3 TPM2_Import
	13.3.1 General Description
	13.3.2 Command and Response
	13.3.3 Detailed Actions

	14 Asymmetric Primitives
	14.1 Introduction
	14.2 TPM2_RSA_Encrypt
	14.2.1 General Description
	14.2.2 Command and Response
	14.2.3 Detailed Actions

	14.3 TPM2_RSA_Decrypt
	14.3.1 General Description
	14.3.2 Command and Response
	14.3.3 Detailed Actions

	14.4 TPM2_ECDH_KeyGen
	14.4.1 General Description
	14.4.2 Command and Response
	14.4.3 Detailed Actions

	14.5 TPM2_ECDH_ZGen
	14.5.1 General Description
	14.5.2 Command and Response
	14.5.3 Detailed Actions

	14.6 TPM2_ECC_Parameters
	14.6.1 General Description
	14.6.2 Command and Response
	14.6.3 Detailed Actions

	14.7 TPM2_ZGen_2Phase
	14.7.1 General Description
	14.7.2 Command and Response
	14.7.3 Detailed Actions

	15 Symmetric Primitives
	15.1 Introduction
	15.2 TPM2_EncryptDecrypt
	15.2.1 General Description
	15.2.2 Command and Response
	15.2.3 Detailed Actions

	15.3 TPM2_EncryptDecrypt2
	15.3.1 General Description
	15.3.2 Comand and Response
	15.3.3 Detailed Actions

	15.4 TPM2_Hash
	15.4.1 General Description
	15.4.2 Command and Response
	15.4.3 Detailed Actions

	15.5 TPM2_HMAC
	15.5.1 General Description
	15.5.2 Command and Response
	15.5.3 Detailed Actions

	15.6 TPM2_MAC
	15.6.1 General Description
	15.6.2 Command and Response
	15.6.3 Detailed Actions

	16 Random Number Generator
	16.1 TPM2_GetRandom
	16.1.1 General Description
	16.1.2 Command and Response
	16.1.3 Detailed Actions

	16.2 TPM2_StirRandom
	16.2.1 General Description
	16.2.2 Command and Response
	16.2.3 Detailed Actions

	17 Hash/HMAC/Event Sequences
	17.1 Introduction
	17.2 TPM2_HMAC_Start
	17.2.1 General Description
	17.2.2 Command and Response
	17.2.3 Detailed Actions

	17.3 TPM2_MAC_Start
	17.3.1 General Description
	17.3.2 Command and Response
	17.3.3 Detailed Actions

	17.4 TPM2_HashSequenceStart
	17.4.1 General Description
	17.4.2 Command and Response
	17.4.3 Detailed Actions

	17.5 TPM2_SequenceUpdate
	17.5.1 General Description
	17.5.2 Command and Response
	17.5.3 Detailed Actions

	17.6 TPM2_SequenceComplete
	17.6.1 General Description
	17.6.2 Command and Response
	17.6.3 Detailed Actions

	17.7 TPM2_EventSequenceComplete
	17.7.1 General Description
	17.7.2 Command and Response
	17.7.3 Detailed Actions

	18 Attestation Commands
	18.1 Introduction
	18.2 TPM2_Certify
	18.2.1 General Description
	18.2.2 Command and Response
	18.2.3 Detailed Actions

	18.3 TPM2_CertifyCreation
	18.3.1 General Description
	18.3.2 Command and Response
	18.3.3 Detailed Actions

	18.4 TPM2_Quote
	18.4.1 General Description
	18.4.2 Command and Response
	18.4.3 Detailed Actions

	18.5 TPM2_GetSessionAuditDigest
	18.5.1 General Description
	18.5.2 Command and Response
	18.5.3 Detailed Actions

	18.6 TPM2_GetCommandAuditDigest
	18.6.1 General Description
	18.6.2 Command and Response
	18.6.3 Detailed Actions

	18.7 TPM2_GetTime
	18.7.1 General Description
	18.7.2 Command and Response
	18.7.3 Detailed Actions

	18.8 TPM2_CertifyX509
	18.8.1 General Description
	18.8.2 Command and Response
	18.8.3 Detailed Actions

	19 Ephemeral EC Keys
	19.1 Introduction
	19.2 TPM2_Commit
	19.2.1 General Description
	19.2.2 Command and Response
	19.2.3 Detailed Actions

	19.3 TPM2_EC_Ephemeral
	19.3.1 General Description
	19.3.2 Command and Response
	19.3.3 Detailed Actions

	20 Signing and Signature Verification
	20.1 TPM2_VerifySignature
	20.1.1 General Description
	20.1.2 Command and Response
	20.1.3 Detailed Actions

	20.2 TPM2_Sign
	20.2.1 General Description
	20.2.2 Command and Response
	20.2.3 Detailed Actions

	21 Command Audit
	21.1 Introduction
	21.2 TPM2_SetCommandCodeAuditStatus
	21.2.1 General Description
	21.2.2 Command and Response
	21.2.3 Detailed Actions

	22 Integrity Collection (PCR)
	22.1 Introduction
	22.2 TPM2_PCR_Extend
	22.2.1 General Description
	22.2.2 Command and Response
	22.2.3 Detailed Actions

	22.3 TPM2_PCR_Event
	22.3.1 General Description
	22.3.2 Command and Response
	22.3.3 Detailed Actions

	22.4 TPM2_PCR_Read
	22.4.1 General Description
	22.4.2 Command and Response
	22.4.3 Detailed Actions

	22.5 TPM2_PCR_Allocate
	22.5.1 General Description
	22.5.2 Command and Response
	22.5.3 Detailed Actions

	22.6 TPM2_PCR_SetAuthPolicy
	22.6.1 General Description
	22.6.2 Command and Response
	22.6.3 Detailed Actions

	22.7 TPM2_PCR_SetAuthValue
	22.7.1 General Description
	22.7.2 Command and Response
	22.7.3 Detailed Actions

	22.8 TPM2_PCR_Reset
	22.8.1 General Description
	22.8.2 Command and Response
	22.8.3 Detailed Actions

	22.9 _TPM_Hash_Start
	22.9.1 Description
	22.9.2 Detailed Actions

	22.10 _TPM_Hash_Data
	22.10.1 Description
	22.10.2 Detailed Actions

	22.11 _TPM_Hash_End
	22.11.1 Description
	22.11.2 Detailed Actions

	23 Enhanced Authorization (EA) Commands
	23.1 Introduction
	23.2 Signed Authorization Actions
	23.2.1 Introduction
	23.2.2 Policy Parameter Checks
	23.2.3 Policy Digest Update Function (PolicyUpdate())
	23.2.4 Policy Context Updates
	23.2.5 Policy Ticket Creation

	23.3 TPM2_PolicySigned
	23.3.1 General Description
	23.3.2 Command and Response
	23.3.3 Detailed Actions

	23.4 TPM2_PolicySecret
	23.4.1 General Description
	23.4.2 Command and Response
	23.4.3 Detailed Actions

	23.5 TPM2_PolicyTicket
	23.5.1 General Description
	23.5.2 Command and Response
	23.5.3 Detailed Actions

	23.6 TPM2_PolicyOR
	23.6.1 General Description
	23.6.2 Command and Response
	23.6.3 Detailed Actions

	23.7 TPM2_PolicyPCR
	23.7.1 General Description
	23.7.2 Command and Response
	23.7.3 Detailed Actions

	23.8 TPM2_PolicyLocality
	23.8.1 General Description
	23.8.2 Command and Response
	23.8.3 Detailed Actions

	23.9 TPM2_PolicyNV
	23.9.1 General Description
	23.9.2 Command and Response
	23.9.3 Detailed Actions

	23.10 TPM2_PolicyCounterTimer
	23.10.1 General Description
	23.10.2 Command and Response
	23.10.3 Detailed Actions

	23.11 TPM2_PolicyCommandCode
	23.11.1 General Description
	23.11.2 Command and Response
	23.11.3 Detailed Actions

	23.12 TPM2_PolicyPhysicalPresence
	23.12.1 General Description
	23.12.2 Command and Response
	23.12.3 Detailed Actions

	23.13 TPM2_PolicyCpHash
	23.13.1 General Description
	23.13.2 Command and Response
	23.13.3 Detailed Actions

	23.14 TPM2_PolicyNameHash
	23.14.1 General Description
	23.14.2 Command and Response
	23.14.3 Detailed Actions

	23.15 TPM2_PolicyDuplicationSelect
	23.15.1 General Description
	23.15.2 Command and Response
	23.15.3 Detailed Actions

	23.16 TPM2_PolicyAuthorize
	23.16.1 General Description
	23.16.2 Command and Response
	23.16.3 Detailed Actions

	23.17 TPM2_PolicyAuthValue
	23.17.1 General Description
	23.17.2 Command and Response
	23.17.3 Detailed Actions

	23.18 TPM2_PolicyPassword
	23.18.1 General Description
	23.18.2 Command and Response
	23.18.3 Detailed Actions

	23.19 TPM2_PolicyGetDigest
	23.19.1 General Description
	23.19.2 Command and Response
	23.19.3 Detailed Actions

	23.20 TPM2_PolicyNvWritten
	23.20.1 General Description
	23.20.2 Command and Response
	23.20.3 Detailed Actions

	23.21 TPM2_PolicyTemplate
	23.21.1 General Description
	23.21.2 Command and Response
	23.21.3 Detailed Actions

	23.22 TPM2_PolicyAuthorizeNV
	23.22.1 General Description
	23.22.2 Command and Response
	23.22.3 Detailed Actions

	24 Hierarchy Commands
	24.1 TPM2_CreatePrimary
	24.1.1 General Description
	24.1.2 Command and Response
	24.1.3 Detailed Actions

	24.2 TPM2_HierarchyControl
	24.2.1 General Description
	24.2.2 Command and Response
	24.2.3 Detailed Actions

	24.3 TPM2_SetPrimaryPolicy
	24.3.1 General Description
	24.3.2 Command and Response
	24.3.3 Detailed Actions

	24.4 TPM2_ChangePPS
	24.4.1 General Description
	24.4.2 Command and Response
	24.4.3 Detailed Actions

	24.5 TPM2_ChangeEPS
	24.5.1 General Description
	24.5.2 Command and Response
	24.5.3 Detailed Actions

	24.6 TPM2_Clear
	24.6.1 General Description
	24.6.2 Command and Response
	24.6.3 Detailed Actions

	24.7 TPM2_ClearControl
	24.7.1 General Description
	24.7.2 Command and Response
	24.7.3 Detailed Actions

	24.8 TPM2_HierarchyChangeAuth
	24.8.1 General Description
	24.8.2 Command and Response
	24.8.3 Detailed Actions

	25 Dictionary Attack Functions
	25.1 Introduction
	25.2 TPM2_DictionaryAttackLockReset
	25.2.1 General Description
	25.2.2 Command and Response
	25.2.3 Detailed Actions

	25.3 TPM2_DictionaryAttackParameters
	25.3.1 General Description
	25.3.2 Command and Response
	25.3.3 Detailed Actions

	26 Miscellaneous Management Functions
	26.1 Introduction
	26.2 TPM2_PP_Commands
	26.2.1 General Description
	26.2.2 Command and Response
	26.2.3 Detailed Actions

	26.3 TPM2_SetAlgorithmSet
	26.3.1 General Description
	26.3.2 Command and Response
	26.3.3 Detailed Actions

	27 Field Upgrade
	27.1 Introduction
	27.2 TPM2_FieldUpgradeStart
	27.2.1 General Description
	27.2.2 Command and Response
	27.2.3 Detailed Actions

	27.3 TPM2_FieldUpgradeData
	27.3.1 General Description
	27.3.2 Command and Response
	27.3.3 Detailed Actions

	27.4 TPM2_FirmwareRead
	27.4.1 General Description
	27.4.2 Command and Response
	27.4.3 Detailed Actions

	28 Context Management
	28.1 Introduction
	28.2 TPM2_ContextSave
	28.2.1 General Description
	28.2.2 Command and Response
	28.2.3 Detailed Actions

	28.3 TPM2_ContextLoad
	28.3.1 General Description
	28.3.2 Command and Response
	28.3.3 Detailed Actions

	28.4 TPM2_FlushContext
	28.4.1 General Description
	28.4.2 Command and Response
	28.4.3 Detailed Actions

	28.5 TPM2_EvictControl
	28.5.1 General Description
	28.5.2 Command and Response
	28.5.3 Detailed Actions

	29 Clocks and Timers
	29.1 TPM2_ReadClock
	29.1.1 General Description
	29.1.2 Command and Response
	29.1.3 Detailed Actions

	29.2 TPM2_ClockSet
	29.2.1 General Description
	29.2.2 Command and Response
	29.2.3 Detailed Actions

	29.3 TPM2_ClockRateAdjust
	29.3.1 General Description
	29.3.2 Command and Response
	29.3.3 Detailed Actions

	30 Capability Commands
	30.1 Introduction
	30.2 TPM2_GetCapability
	30.2.1 General Description
	30.2.2 Command and Response
	30.2.3 Detailed Actions

	30.3 TPM2_TestParms
	30.3.1 General Description
	30.3.2 Command and Response
	30.3.3 Detailed Actions

	31 Non-volatile Storage
	31.1 Introduction
	31.2 NV Counters
	31.3 TPM2_NV_DefineSpace
	31.3.1 General Description
	31.3.2 Command and Response
	31.3.3 Detailed Actions

	31.4 TPM2_NV_UndefineSpace
	31.4.1 General Description
	31.4.2 Command and Response
	31.4.3 Detailed Actions

	31.5 TPM2_NV_UndefineSpaceSpecial
	31.5.1 General Description
	31.5.2 Command and Response
	31.5.3 Detailed Actions

	31.6 TPM2_NV_ReadPublic
	31.6.1 General Description
	31.6.2 Command and Response
	31.6.3 Detailed Actions

	31.7 TPM2_NV_Write
	31.7.1 General Description
	31.7.2 Command and Response
	31.7.3 Detailed Actions

	31.8 TPM2_NV_Increment
	31.8.1 General Description
	31.8.2 Command and Response
	31.8.3 Detailed Actions

	31.9 TPM2_NV_Extend
	31.9.1 General Description
	31.9.2 Command and Response
	31.9.3 Detailed Actions

	31.10 TPM2_NV_SetBits
	31.10.1 General Description
	31.10.2 Command and Response
	31.10.3 Detailed Actions

	31.11 TPM2_NV_WriteLock
	31.11.1 General Description
	31.11.2 Command and Response
	31.11.3 Detailed Actions

	31.12 TPM2_NV_GlobalWriteLock
	31.12.1 General Description
	31.12.2 Command and Response
	31.12.3 Detailed Actions

	31.13 TPM2_NV_Read
	31.13.1 General Description
	31.13.2 Command and Response
	31.13.3 Detailed Actions

	31.14 TPM2_NV_ReadLock
	31.14.1 General Description
	31.14.2 Command and Response
	31.14.3 Detailed Actions

	31.15 TPM2_NV_ChangeAuth
	31.15.1 General Description
	31.15.2 Command and Response
	31.15.3 Detailed Actions

	31.16 TPM2_NV_Certify
	31.16.1 General Description
	31.16.2 Command and Response
	31.16.3 Detailed Actions

	32 Attached Components
	32.1 Introduction
	32.2 TPM2_AC_GetCapability
	32.2.1 General Description
	32.2.2 Command and Response
	32.2.3 Detailed Actions

	32.3 TPM2_AC_Send
	32.3.1 General Description
	32.3.2 Command and Response
	32.3.3 Detailed Actions

	32.4 TPM2_Policy_AC_SendSelect
	32.4.1 General Description
	32.4.2 Command and Response
	32.4.3 Detailed Actions

	33 Authenticated Countdown Timer
	33.1 Introduction
	33.2 TPM2_ACT_SetTimeout
	33.2.1 General Description
	33.2.2 Command and Response
	33.2.3 Detailed Actions

	34 Vendor Specific
	34.1 Introduction
	34.2 TPM2_Vendor_TCG_Test
	34.2.1 General Description
	34.2.2 Command and Response
	34.2.3 Detailed Actions

